
Tuning Suricata Intrusion Detection
System for High Performance on a
Single Non-Uniform Memory Access
Node

VEGARD HENRIKSEN & ROAR FØRDE

SUPERVISOR
Olaf Owe & Roger Skjetlein

University of Agder, 2021
Faculty of Engineering and Science
Department of Information and Communication Technology

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler
i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om
eksamen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Ja

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Preface

The thesis is a result of a research carried out at the department of Information and Com-
munication Technology (ICT) at University of Agder (UiA) and Telenor Security Operations
Center from January 2021 to June 2021. We want to thank Olaf Owe from UiA and Roger
Skjetlein from Telenor for being our supervisors and assisting us throughout the project. We
would also like to thank all of our co-workers at Telenor that have assisted us throughout
the project.

ii

Abstract

The rapid increase in network capacity poses a challenge in detecting cyber attacks. Suricata
is a modern intrusion detection system (IDS) used to monitor network traffic to detect cyber
attacks. Telenor is monitoring considerable amounts of network traffic with IDS-servers,
commonly referred to as sensors. Occasionally, the traffic load reaches a point where the
IDS drops some of the incoming packets, termed packet loss. This is a serious problem, as
it can lead to undetected threats. With this in mind, Telenor wants to find out if a lossless
detection can be achieved by tuning Suricata for high performance. This can be accomplished
by pinning dedicated CPUs to Suricata and by optimizing the process from when the packets
arrive at the sensor until they have been processed by Suricata. Additionally, a non-uniform
memory access (NUMA) topology will be employed to reduce data latency. NUMA is a
memory architecture where the processing units are divided into two NUMA nodes with
their own local memory attached. By using the NUMA node where the packets arrive,
Suricata should in theory operate more efficiently. The Suricata performance is affected by
several factors, such as the hardware capability and capacity, BIOS settings, and the traffic
type. The sensors also run other critical processes on the same NUMA node. An additional
goal is therefore to limit the processing power reserved for Suricata.

Two Lenovo servers are used in this research. One of them will operate as the sensor, while
the other will operate as a traffic generator. The traffic generation tool is called TRex, able to
generate stateful, bidirectional traffic. Stateful means that TRex can dynamically alter the
packet headers, such as the source and destination IP addresses. A traffic profile containing a
combination of realistic network traffic is used for this purpose. TRex is also able to multiply
the connections per second in order to generate a desirable amount of traffic. This is used
to methodically stress test the sensor by gradually increasing the traffic to the limit where
packet losses are observed. If no limit is met, the processing power will be gradually limited
in the same manner. The automation tool Ansible is used to streamline the testing phase.
It methodically configures the sensor, runs the test, and finally gathers the results.

A high performance Suricata configuration has been proposed, tested and evaluated. The
solution is able to process 9 Gbps of data using only 10 CPUs on a single NUMA node,
which allows the sensor to also run other critical processes on the node. Compared to the
default configuration which uses all 64 CPUs, it is able to process 2 Gbps more data. This is
a significant improvement, and Telenor should be able to mitigate the packet loss problem by
applying this solution. However, optimizing the BIOS settings had no performance impact.
This is unexpected, as previous research has proven considerable performance benefits by
making the same changes. Additionally, the results reveal significantly higher last layer cache
misses than expected, indicating that the packet pipeline does not work as intended. There
is also a high number of TCP reassembly gaps reported in the results, which indicates a
problem with the memory allocation. These problems should be investigated further.

iii

Contents

Preface ii

Abstract iii

List of Figures x

List of Tables xii

List of abbreviations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement and Research Goals . 1

1.3 Limitations . 2

1.4 Research Methodology . 2

1.5 Thesis Outline . 3

2 Background 4

2.1 Memory Cache . 4

2.2 Shared Memory Architecture . 5

2.2.1 UMA . 5

2.2.2 NUMA . 6

2.3 Linux Kernel . 7

2.3.1 Processes . 7

iv

2.3.2 Virtual Address Space . 7

2.3.3 Kernel and User Space . 7

2.3.4 Threads . 7

2.3.5 Process Scheduler . 8

2.4 Network Interface Controller . 9

2.4.1 Receive Side Scaling . 9

2.5 Suricata IDS . 9

2.5.1 Rules . 10

2.5.2 Runmodes . 10

2.5.3 Performance Considerations . 10

2.6 Automation . 11

2.6.1 Ansible . 11

2.7 TRex Traffic Generator . 12

3 Related Work 13

3.1 Improvement of Hardware Firewall’s Data Rates by Optimizing Suricata Per-
formances . 13

3.2 Evaluating Network Intrusion Detection Systems for High-Speed Networks . 14

3.3 Kargus: A Highly-scalable Software-based Intrusion Detection System 15

4 Approach 16

4.1 System . 16

4.1.1 Mapping the Hierarchical Topology 18

4.2 Behavior . 21

4.2.1 Traffic Profile . 21

4.3 Testing Methodology . 22

4.3.1 Ansible . 22

4.3.2 Testing Approach . 25

5 Results 27

5.1 Default Configuration . 27

5.2 High Performance Configuration . 30

5.3 Additional Testing . 33

6 Discussions 36

6.1 Test Results . 36

6.1.1 Default Configuration . 36

6.1.2 High Performance Configuration . 36

6.1.3 Additional Testing . 37

6.2 Identifying the Suricata Throughput . 38

6.3 Decisions . 38

6.3.1 Pre-Recorded Traffic . 38

6.3.2 Management Threads . 39

7 Conclusions 40

7.1 Future work . 41

Bibliography 42

A System Configuration 44

A.1 BIOS Settings . 44

A.2 Linux Settings . 45

A.2.1 Disable IRQbalance . 45

A.2.2 Compile and install Suricata . 45

A.2.3 NIC driver and settings . 45

A.3 Suricata Configuration . 46

A.3.1 Af-packet . 46

A.3.2 Threading . 47

A.3.3 Memory . 47

B Ansible 48

B.1 Common Role . 48

B.1.1 Default Variables . 48

B.1.2 Tasks . 50

B.1.3 Handlers . 57

B.1.4 Suricata High Performance Playbook 58

List of Figures

2.1 Cache topology. Cache levels closer to the CPU have faster transfer speeds at
the cost of less memory. 4

2.2 Shared memory via two ports. P = Processor. 5

2.3 Bus-based UMA (SMP) shared memory system. P = Processor, C = Cache,
and M = Memory. 6

2.4 NUMA shared memory system. 6

4.1 Illustration of the system setup. The sensor and traffic generator are con-
nected through a switch. 17

4.2 Picture of the system setup from the front. 18

4.3 Picture of the system setup from behind, which includes two switches. 18

4.4 Output image from hwloc. Displays the hierarchical topology. 19

4.5 Illustration of the packet pipeline. 20

4.6 Illustration of the given time the packets are sent throughout the testing. . . 22

4.7 A simplified flowchart showing the Ansible task execution order. 23

5.1 Statistics for the default test with 7 Gbps of data over a timespan of 600s. . 28

5.2 Packets received by Suricata with default configurations. Compared over a
traffic range from 1 to 9 Gbps. 28

5.3 Packets dropped by Suricata with default configurations throughout the packet
pipeline. Compared over a traffic range from 1 to 9 Gbps. 29

5.4 CPU utilization and cache misses for Suricata with default configurations.
Compared over a traffic range from 1 to 9 Gbps. 30

5.5 Packets dropped by Suricata in a high performance configuration with default
BIOS settings. Compared from 8 to 12 CPUs. 31

ix

5.6 Packets dropped by Suricata in a high performance configuration with recom-
mended BIOS settings. Compared from 8 to 12 CPUs. 31

5.7 CPU utilization and cache misses for Suricata in a high performance configu-
ration with default BIOS settings. Compared from 8 to 12 CPUs. 32

5.8 CPU utilization and cache misses for Suricata in a high performance configu-
ration with recommended BIOS settings. Compared from 8 to 12 CPUs. . . 33

5.9 Packets dropped by Suricata for the additional tests. Suricata is using 10
CPUs with the recommended BIOS settings. 34

5.10 The amount of flows processed by Suricata for the additional tests. Suricata
is using 10 CPUs with the recommended BIOS settings. 34

5.11 TCP reassembly statistics for the additional tests. Suricata is using 10 CPUs
with the recommended BIOS settings. 35

5.12 CPU utilization and cache misses for the additional tests. Suricata is using
10 CPUs with the recommended BIOS settings. 35

x

.

List of Tables

4.1 Lenovo SR 630 specification. 16

4.2 Lenovo x3550 M5 specification. 16

xii

.

Abbreviations

This list specifies the pages each abbreviation is mentioned.

CFS Completely Fair Scheduling Class. 8

DCA Direct Cache Access. 5, 20, 25

DMA Direct Memory Access. 5, 20

FIFO First-In-First-Out. 20

Gbps Gigabits per second. iii, 2, 13–15, 21, 25, 27, 29, 37, 38, 40

GPU Graphics Processing Unit. 15

IaC Infrastructure as Code. 11

IDS Intrusion Detection Engine. iii, 1, 3, 9, 13–16, 29, 38

IRQ Interrupt Request Line. 10, 11

LIFO Last-In-First-Out. 7

LLC Last Layer Cache. 4, 20, 25

LTS Long Time Support. 16, 17

LWP Light Weight Process. 7

NIC Network Interface Controller. 1, 2, 9–11, 13–16, 20–25, 27, 33, 40, 45, 46

NUMA Non-Uniform Memory Access. iii, 1, 2, 5, 6, 14, 18, 20, 25, 26, 33, 37, 39, 40

OISF Open Information Security Foundation. 9

OOTB Out-Of-The-Box. 1, 40

PCAP Packet Capture. 17, 38

RSS Receive Side Scaling. 9, 13–16, 20, 24, 40

RX Receive. 9, 36

SEPTun Suricata Extreme Performance Tuning. 14

SMP Symmetric Multiprocessing. 5

xiv

TX Transmit. 9

UMA Uniform Memory Access. 5, 6

XDP Express Data Path. 14, 41

xv

Chapter 1

Introduction

1.1 Motivation

Telenor is monitoring considerable amounts of network traffic every day from their customers
through network monitoring sensors deployed on their network. At this date, each sensor
operates as a standard server with two CPU sockets. The sensors run an intrusion detection
engine (IDS) called Suricata. When the load is so high that the sensor’s bandwidth capacity
is saturated, Telenor can see a high cost when it comes to context switching. This leads to
loss of data which can result in an undetected threat. By optimizing the process from when
the packets arrive at the sensor until they have been processed by Suricata, defined as the
packet pipeline, Telenor should in theory be able to process more data.

Suricata throughput defines the amount of data that can be handled by the Suricata IDS
engine without any packet drops. With this in mind, Telenor wants to verify whether it
is possible to achieve a higher Suricata throughput while the sensor is still able to run
other critical processes. An out-of-the-box (OOTB) Suricata configuration will be used to
compare the performance difference, which is defined as the default configuration. The
default configuration is similar to the configuration Telenor uses today. The processing
speed may be affected by several factors such as the hardware capability and capacity, BIOS
settings and the traffic type. This research is proposed by Telenor Security Operation Centre
in Arendal.

1.2 Problem Statement and Research Goals

On a sensor, each CPU socket resides on a non-uniform memory access (NUMA) node with
its own local resources. Communication between the nodes adds some latency. The first
node has a local network interface card (NIC) that receives the packets to be processed by
Suricata, hereby defined as the monitoring interface. Hence, Suricata should run on the same
node. However, Telenor runs other applications on their sensors. Some of them need direct
access to the same NIC, which means that they should run on the same node. Thus, Suricata
should not occupy all of the processing power on the local node. From this background, the
problem statement of this research is:

1

Is it possible to achieve a higher Suricata throughput than the default configuration
while the sensor is still able to run other critical processes?

The problem statement can be divided into four main goals:

1. Set up a traffic generator on a separate system used to transmit bidirectional traffic to
the sensor. This ensures that the sensor is not affected by the workload of generating
traffic.

2. Tune Suricata for high performance on a single NUMA node. This includes modifi-
cations to Suricata and the NIC, as well as some adjustments in Linux and in the
BIOS.

3. Compare the Suricata throughput with default and high performance configurations.
Depending on how performant the high configuration is, processing power can be lim-
ited for Suricata. The remaining processing power is available for other critical pro-
cesses.

4. Use the final configuration to develop a configuration management module used for
automation. By using this module, the final configuration can be deployed on any
sensor that satisfy the hardware requirements.

By tuning Suricata and optimizing the packet pipeline, it is expected to achieve a significantly
higher Suricata throughput that also solves the packet loss problem for Telenor.

1.3 Limitations

The availability of equipment and hardware is limited to what Telenor has at hand. The
required equipment consists of two servers, where one of them needs to satisfy a hardware
requirement explained in section 4.1. Additionally, a switch that supports port mirroring is
needed in order to route the bidirectional traffic between the servers. The available equipment
has a common limitation of 10 Gbps bandwidth capacity.

1.4 Research Methodology

In order to start the research, it is necessary to select a research path. The main objec-
tive is to observe and study how Suricata behaves under extreme conditions with different
configurations, and then compare the results. The motivation behind this objective is that
the existing configuration on the network monitoring sensors results in loss of data. Be-
cause there is a preconceived problem that needs solving, applied research is the appropriate
research type [1, p. 74].

The applied research type is usually associated with testing and evaluating an application
of science to solve a real-world problem. There are two research methods that cover applied
research: applied experiments and applied observational studies. Because it is desirable
to understand how the solution performs in a simulated real-world scenario, an applied
observational study is the appropriate research method [1, p. 89-90].

2

Going forward, there are two different categories of applied observational studies: exploratory
and descriptive. Exploratory studies refers to how a system behaves. Descriptive studies
describe how the results of foundational research is applied. Because this study introduces
a specific change that is to be evaluated, an applied exploratory study is the most suitable.
[1, p. 300-301]

Again, there are two types of applied exploratory studies: operational bounds testing and sen-
sitivity analysis. Because this study will test the performance boundaries without considering
the sensitivity of the data, operational bounds testing is the appropriate type. Furthermore,
operational bounds testing is comprised of three different flavours of testing: stress testing,
performance testing and load testing. Because the system is often saturated with data, it is
natural to use stress testing in order to find the maximum traffic rate the IDS can process
[1, p. 301-305].

The first part of the testing phase is to establish a baseline for comparison. A default Suricata
configuration will be stress tested until a consistent throughput is found. The second part
of the testing phase is to experiment with configurations until the most performant is found.
Finally, the throughput of both configurations will be compared.

1.5 Thesis Outline

The thesis is outlined with the following chapters. Chapter 2 presents the related technologies
used in this research. Next, chapter 3 introduces the primary research conducted in this field.
Chapter 4 presents the system, the main behavior to study and the testing methodology.
The results are presented in chapter 5. Then, in chapter 6, the test results and anomalies
are discussed. Finally, chapter 7 concludes the findings in this thesis. The chapter winds up
with a few considerations on future work.

3

Chapter 2

Background

The following chapter first gives an introduction to how memory caches and shared memory
architectures work in computer systems. Then, the relevant parts of the Linux kernel are ex-
plained. Following, a fundamental network interface technology in this research is presented.
Finally, a brief description of the applications Suricata, Ansible and TRex is given.

2.1 Memory Cache

Figure 2.1: Cache topology. Cache levels closer to
the CPU have faster transfer speeds at the cost of
less memory.

Memory caches are reserved areas of mem-
ory located on the CPU, which is used to
speed up processing. Caches have faster
transmission speeds than the main memory
that feeds them. Cache is a memory bank
that bridges the processor to the main mem-
ory, and allows the CPU to execute instruc-
tions at a faster pace. If the next instruc-
tion is available in the cache, a cache hit oc-
curs. CPUs usually contains two or three
cache levels, where the levels closer to the
CPU have faster transfer speeds at the cost
of less memory. The higher levels supplies
the lower levels with data. The three cache
levels are called L1, L2 and L3. The L3
cache, also called last layer cache (LLC), is
slower than the lower levels. However, it has
far more memory, meaning it can store more
data. L3 is shared by all of the CPUs in con-
trary to the lower levels, which are pinned
to a single CPU [2]. Figure 2.1 displays the
cache topology.

4

Direct Memory Access & Direct Cache Access

Direct memory access (DMA) is the process where peripheral hardware, such as a NIC
can read or write data directly to memory without involving the CPU. This prevents the
processor to get interrupted each time an external device needs to transfer data. Hence,
while the external device is copying data, the processor can still execute programs [3].

Direct cache access (DCA) is similar to DMA, but it allows peripheral hardware to transfer
data directly to the CPU cache. Simply put, this is achieved with an accelerated copy by
a dedicated DMA engine. This can improve response times as well as reducing CPU cache
misses [4].

2.2 Shared Memory Architecture

The processors in a multiprocessing system need to access data on the system in one way
or another. The most common architecture used to solve this problem is called the shared
memory architecture. A system using this architecture consists of a set of independent
processors that share a global memory. All communication between the processors are also
done via the global memory [5, p. 77].

Figure 2.2: Shared memory via two ports. P =
Processor.

A simple shared memory system consists of
two processors connected to a memory mod-
ule, as shown in figure 2.2. The memory
controller can only handle one concurrent
request from a processor at a time. When
multiple processors are trying to access the
shared memory at the same time, it can
lead to performance degradation. The typi-
cal way to solve this is to implement caches.
Each processor then has its own local cache
that holds relevant copies of data. This so-
lution can lead to another problem regarding coherence. When a processor writes to a value
in the cache, the copy becomes inconsistent relative to the other copies on the surrounding
CPUs [5, p. 78]. Caching snoop protocols were invented to solve this very problem. Snoop
protocols is a set of protocols which ensures memory cache coherency in symmetric multi-
processing (SMP) systems. A widely used snoop protocol called write invalidate will erase
all other copies of data before writing to the local cache [6].

There are several types of shared memory systems based on the interconnection network
used. The two most common ones will be explained next, one of them being NUMA.

2.2.1 UMA

In a uniform memory access (UMA) system, the processors access the shared memory
through an interconnection network, which is typically one or more buses. This is similar
to the way a single processor accesses its memory. The memory access latency is balanced,
hence the name, and this is why they are also called SMP systems. This memory organiza-
tion is the most widespread among shared memory systems. An example model can be seen

5

in figure 2.3 [5, p. 78, 79].

By adding more processors to a UMA system the bandwidth on the bus can be saturated.
Implementing caching will minimize this risk. A high flow of data might also turn the bus
into a bottleneck [6].

Figure 2.3: Bus-based UMA (SMP) shared memory system. P = Processor, C = Cache, and M =
Memory.

2.2.2 NUMA

Non-uniform memory access (NUMA) is a shared memory system where the processing units
are divided into NUMA nodes. Each node has its own part of the shared memory attached.
This works by splitting the memory into different address spaces and distributing them to
each node. However, nodes can still access other parts of the memory, but this will add some
latency because the data has to traverse a proprietary interconnect link called NUMALINK
[5, p. 79] [7, p. 1-2].

Figure 2.4 can be used as an example. This is a system with two processors that have four
cores each. Each processor is a NUMA node with its own part of the shared memory. Node
A can access its own local memory with very little latency. It can also access the memory
in node B called foreign memory, but it has to traverse the interconnect which adds some
latency [7, p. 2].

Figure 2.4: NUMA shared memory system.

The current processor speed is so fast that
the signal path length from the processor
to memory becomes the throughput bottle-
neck. NUMA effectively brings the mem-
ory closer to the processor cores which in-
creases the overall bandwidth, as long as for-
eign memory access is minimal [7, p. 1].

The benefits from this memory organization
depends heavily on the type of workload. It
is more suitable for servers which typically
manages specific tasks [8].

6

2.3 Linux Kernel

In order to understand how Suricata can be optimized in a Linux System, it is necessary to
get a basic understanding of how the relevant parts of the Linux Kernel works.

2.3.1 Processes

When a computer program is executed, the program’s code and data is fetched into memory
regions and becomes a process. A process is a running instance of a program. The process is
also assigned additional memory regions called stack and heap. The stack is a reserved, fixed
region, and keeps track of the current state of the process by adding and removing data in
a last-in-first-out (LIFO) manner. The heap is a non-fixed region visible to other processes,
and is responsible for dynamic allocations during execution. Stack-memory allocation is
faster than heap-memory allocation because of the less complicated architecture [9, p. 6-8].

2.3.2 Virtual Address Space

Virtual address space is an abstraction provided by the kernel between the process and the
physical memory, which keeps concurrent processes from interfering with each other. The
kernel allocates a virtual address space for every process on the system, and any attempt
to access an address outside this space will trigger a hardware fault. For each process, an
address is relative to it’s own space and not the global space [9, p. 8-9].

2.3.3 Kernel and User Space

Besides protecting processes from one another, the kernel also prevents processes from ma-
nipulating kernel data and services by segmenting the memory into user and kernel space.
Processes reside in user space and the CPU is operating in user mode. Processes can still
interact with the kernel through system calls, a set of special CPU instructions that makes
up the kernel interface. The CPU have to switch to a more privileged mode called kernel
mode before requesting system calls, and then switch back to user mode. Fork is a system
call used to create a new process called child from a running process called parent [9, p. 9-11].

2.3.4 Threads

A thread in Linux is the flow of execution in a process, and there has to be at least one
thread for every process. All threads share their parent’s virtual address space and system
resources, but maintains it’s own code, stack and thread local storage. However, threads are
not suitable for concurrent computing, because they are locked to the same processor core as
their parent. Therefore, Linux does not support threads directly. Instead, a special process
called light weight process (LWP) is used to achieve the same goal. Briefly explained, they
function similarly to a thread, but can be bound to any processing core. Since threads and
LWP are similar, the terms are commonly interchangeable [9, p. 28].

7

2.3.5 Process Scheduler

Scheduler Design

Linux has evolved over the years, and has added support for several platforms with different
scheduling requirements. The Linux process scheduler is responsible for allocating processing
time among processes in an effective manner and consists of two layers. The generic scheduler
is the first layer and functions as an entry point. The second layer is a set of scheduling
classes which specializes in different kinds of processes, for example normal I/O bound and
real-time [9, p. 44-45].

Runqueue

For every CPU core, there is a runqueue which contains all the concurrent processes. Because
the scheduler classes have their own priorities and policies, it is not possible to have a
common runqueue. The solution is to let every scheduler class have its own runqueue, while
the general scheduler constructs the main runqueue by embedding all the scheduling class’
runqueues [9, p. 48].

Process Priorities

In order for the scheduler to determine which process to run next, every process are given
a priority. Normal processes are given dynamic priorities determined by the kernel, while
real-time processes are given static priorities set by the user. Linux scales the priorities
between 0 to 139 where a lower number indicates higher priority. 0 to 99 is assigned for
real-time processes. 100 to 139 is for normal processes and are called the nice value range,
because it implies how nice the process is to other processes. The nice value has an internal
range from -20 to 19 in the global priority range from 100 to 139. A nice value of 0 means
neutral priority, while a positive value means that the process is nicer to other processes [9,
p. 52-53].

Completely Fair Scheduling Class

The completely fair scheduling class (CFS) is responsible for maintaining balance in allocat-
ing time to all processes with dynamic priorities. It is the most used class as most processes
in Linux are non-realtime. The CFS uses a concept of virtual runtime for tracking the
amount of CPU time each process has been given. A high virtual runtime means that the
process has been given considerable CPU time. The scheduling class uses a combination of
virtual runtime and the nice value to determine which process to run next and for how long.
Another concept called sleeper fairness ensures that processes waiting for an I/O request
gets extra processing time when they wake up. Group scheduling is a concept designed to
prevent process starvation by making sure that every runnable process gets at least some
CPU time under a defined time duration called the scheduling period. In addition, CPU
time are distributed on group level rather than thread level to prevent allocation of unfair
amounts of CPU time to processes with a large number of threads [9, p. 54-57].

8

Processor Affinity

By default, Linux will try to keep a process on the same CPU. In order to increase perfor-
mance on multi-core systems, it is possible to determine a thread’s processor affinity with a
system call. This will keep the process on the same core, rather than on the same CPU [9,
p. 64].

2.4 Network Interface Controller

The network interface controller (NIC) is a device that makes it possible for a computer to
connect to the internet. Incoming and outgoing network packets are placed in receive (RX)
and transmit (TX) queues.

2.4.1 Receive Side Scaling

Receive side scaling (RSS) distributes incoming traffic over several RX queues on the NIC.
This allows multiple CPUs to process the inbound network traffic. In addition to reducing
network latency, RSS can relieve overloaded CPUs caused by bottlenecks when handling
interrupts [10].

RSS was originally designed for normal traffic, and not for IDS packet capturing. A hash
algorithm is used to distribute the traffic over different queues by hashing the packet header.
The RSS hash value is asymmetrical, which will cause packets from the same flow to be
mapped to different queues depending on the direction. This will lead to an unpredictable
order of packet processing, and Suricata will deem some of the traffic as invalid [11]. This
problem can be solved by using a symmetric RSS hash value. The hash algorithm will result
in the same hash for both sides of a flow, which causes the flows to end up in the same queue.
In [12], Woo et al. found that the following hash key can be used by Suricata to achieve
symmetrical RSS. The hash value is presented below:

0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a

2.5 Suricata IDS

Suricata is an open source network threat detection engine that includes an intrusion detec-
tion system (IDS), and is developed by the Open Information Security Foundation (OISF).
The Suricata IDS uses a signature language to match known threats and malicious behaviour
on the network. The IDS can be configured to use a ruleset, which is a set of malware sig-
natures [13][14].

9

2.5.1 Rules

Rules play an important part in Suricata’s performance since it scans all the rules in order
to perform inspections. A rule includes an action that determines what happens when a
signature matches. It also includes a header defining the IP addresses, ports, direction and
lastly the rule options defining the specifics of the rule. The command suricata-update will
update the rules by scanning the defined sources. By default, only the source Emerging
Threats Open is defined. This is an open source signature database featuring a large number
of rules, which should satisfy most requirements [15].

2.5.2 Runmodes

Suricata is a multi-threaded process built up by threads, modules and queues. Each module
is responsible for a specific functionality, like packet decoding and detection. Packets are
processed by one thread at a time, and can be passed to a different thread through a queue.
The arrangement of the threads, modules and queues is called the runmode.

There are three available runmodes: workers, autofp and single. Workers is the most CPU
efficient mode, where each thread contains the packet pipeline. The NIC will ensure that the
packets are balanced across each thread. Autofp uses one or more capture threads, which
captures the packets and decodes it. Then, the packets are sent to the worker threads. The
single runmode works like the worker runmode, but uses only one packet processing thread
[16].

2.5.3 Performance Considerations

Aside from configuring Suricata itself, there are a few modifications that can be set in the
Linux system worth considering.

Isolate CPUs

As mentioned in section 2.3.5, The Linux kernel scheduler is responsible for allocating pro-
cessing time among processes in an effective manner. In many scenarios, the scheduler yields
acceptable performance. However, when Suricata is affinitized to a CPU set, the scheduler
can pin other processes to the Suricata worker threads. In order to achieve high perfor-
mance, only Suricata should run on the threads. This problem can be solved by isolating
the Suricata threads from the Linux kernel, which will prevent the scheduler to detect the
CPUs.

Interrupt Handling

Aside from the scheduler, interrupt handling can greatly affect the system performance. An
interrupt is sent to a processor whenever an event requires immediate attention [9, p. 257].
When an external device like a NIC issues an interrupt, it is sent to an output pin on a CPU
called the interrupt request line (IRQ), which will signal an interrupt request [9, p. 260].

10

The Linux irqbalance service distributes IRQs across all CPUs on the system, attempting to
balance the work load [17]. If there is a high frequency of IRQs, it can severely degrade the
performance of cores under heavy load. In some situations it can therefore be necessary to
stop the irqbalance service as well as setting the IRQ affinity in order to affinitize interrupts
to cores [18]. For Intel NICs, this can be done using a script developed by Intel called
set_irq_affinity, which is included with the Intel i40e driver source package [19].

2.6 Automation

In an IT system, repeatable tasks can be automated by using an automation engine. The
software works within a set of instructions and executes them with little to no human inter-
action. This is key to IT optimization, as environments needs to be able to scale faster than
ever [20].

2.6.1 Ansible

Ansible is created by RedHat and is an IT automation engine. It is designed based on the
infrastructure as code (IaC) mindset. IaC is widely used within IT to deploy and orchestrate
the infrastructure topology. It also ensures that the same environment is deployed every
time[21]. Ansible uses files called playbooks to describe the automation job. Playbooks are
written in an easy to read language called YAML. Ansible is agent-less, which means that no
software needs to be installed on the target system. All communication uses SSH. [22][23].

Roles

Roles in Ansible let the user load related files, tasks, handlers and other artifacts based on
a known file structure. Ansible have a defined directory structure shown below. Common
and webservers are different roles with a different map structure based on the role.

roles/
common/

tasks/
handlers/
library/
files/
templates/
vars/
defaults/
meta/

webservers/
tasks/
defaults/
meta/

Roles can be used in three ways. At play level and at task level with include_role or
import_role [24].

11

2.7 TRex Traffic Generator

TRex is an open source traffic generator developed by Cisco [25]. It can generate and
amplify bidirectional traffic up to 200 Gbps as long as the bandwidth capacity is sufficient.
TRex uses traffic profiles to generate stateful traffic, dynamically changing the packet header
parameters when replaying packets [26, Ch.1.2]. Stateful traffic means it can generate client
and server side of the traffic based on smart replays and real traffic templates. To make it
possible for TRex to generate bidirectional traffic, it needs to be setup and configured for
loopback [27, Slide 4]. This means that two ports on the system are physically linked by
cable. A switch can be used to mirror this traffic and send it to a sensor, as suggested in
[28, Slide 10-11].

12

Chapter 3

Related Work

3.1 Improvement of Hardware Firewall’s Data Rates by Optimizing
Suricata Performances

In [29], Jakimoski et al. studies the performance gain by optimizing Suricata. Their sources
show that among the most popular IDSs, Suricata can process a higher rate of network traffic
with a lower packet drop rate at the expense of a higher consumption of computational
resources. It is stated that both the hardware and Suricata needs to be tuned in order to
achieve a lossless detection when the network capacity increases to 40 Gbps and beyond.
The test setup consists of a multi-core, high-end system suitable for telecommunications and
large IT needs. Suricata’s performance in this setup was dependent upon the below factors:

HW capability and capacity
In order for Suricata to make use of multiple cores, it is necessary to use a NIC that
supports the RSS multi-queue feature to hash the incoming traffic to multiple receive
queues.

Suricata version
By using the latest Suricata version, optimal performance is ensured as far as Suricata
is concerned. The test setup used Suricata version 5.0.0 dev.

Rules
The number of rules affects the performance. The test setup used a ruleset of 14350
signatures.

BIOS settings
It was discovered that BIOS tuning was needed for speeds higher than 50 Gbps.

Traffic type
Higher throughput rates were observed with simple HTTP flows. Thus, the traffic
profile will have an impact on the performance.

Most tuning efforts were done to ensure that the packets are read from the L3 cache in
order to minimize the time required to fetch data. Some of the most important tuning
considerations are:

• A single port of every NIC is used. The other ports are reserved for redundancy.

13

• A local NIC is used for each of the two NUMA nodes to reduce latency.

• All interface receive and transmit queues are pinned to cores local to the NUMA node
for the interface. The traffic is evenly distributed using symmetrical RSS hashing.

• Suricata runs in worker mode where the worker threads are pinned to the cores local
to the NUMA node for the interface.

• The memcap values in the Suricata configuration file are adjusted to handle high traffic
load.

• Interface buffers and interrupts are adjusted in order to decrease packet drops and to
endure higher performance.

By applying the tuning configurations specified above and using Suricata extreme perfor-
mance tuning SEPTun Mark I [30] and SEPTun Mark II [31] as a guideline, two tests were
performed. TRex traffic generator was used to generate stateful traffic for the tests. The first
test resulted in a maximum of 34.5 Gbps Suricata throughput using one NIC. The second
test resulted in 60 Gbps using two NICs. No kernel drops were observed in neither of the
cases.

A feature called eXpress Data Path (XDP) is described in SEPTun Mark II. However, the
authors do not use XDP in their research, as it is most effective for handling elephant flows.
The tests only consist of small flows.

Our thesis directly supports this work with a different testing approach explained in chap-
ter 4. The guides SEPTun Mark I and II will also be used in our thesis as references for
tuning Suricata.

3.2 Evaluating Network Intrusion Detection Systems for High-Speed
Networks

In [32], Qinwen et al. evaluate three different IDSs for high-speed networks: Snort, Suricata
and Bro. The testing environment consists of a sender, a receiver and a switch. The sender
uses the protocol GridFTP to transfer 10 Gbps of test data.

Three different methods for sending data are used. The first is a single flow test case. The
second is 20 flows running in parallel. The third is real time traffic from the campus, which
provides a typical mix of flow types. Each scenario are evaluated with three different experi-
ments. The first is default configuration which defines a baseline for evaluating performance.
The second modifies the detection algorithm and configuration. The third modifies the data
acquisition mechanisms to improve capturing performance.

From the results, they found that Suricata performed better with its multi-threaded archi-
tecture, while Snort and Bro are single-threaded. Snort and Suricata performed better using
the af-packet data acquisition compared to the default libpcap data acquisition. Suricata
dropped more packets when using the pattern matching algorithms gfbs and b3g than with
ac and b2g. They also found that the IDSs seem to only use a small amount of memory
resources.

14

Regarding the traffic, the IDSs handled 10 Gbps with a single flow, only dropping a few
percent of the packages. For instance, 10 Gbps with 20 flows resulted in higher CPU utiliza-
tions and drop rates. Finally, the campus network resulted in even worse results. In other
words, the number of flows can affect the performance of the IDS.

While our thesis does not explore pattern matching algorithms, it is interesting that the IDS
performance was significantly affected by changing the algorithm. In addition, even if our
thesis will only use constant network traffic, it is interesting that the number of flows can
affect the performance of the IDS.

3.3 Kargus: A Highly-scalable Software-based Intrusion Detection
System

In [33], Jamshed et al. are making their own IDS called Kargus based on the existing IDS
Snort. In 2012 when this report was published, it was a need for an IDS that is better suited
to profit from the multiple CPU cores and the modern commodity hardware advancements.
No existing IDS could process more than 10 Gbps of traffic for minimum-sized packets.
Additionally, the existing IDSs did not take advantage of the graphics processing unit (GPU)
or high capacity NICs with RSS support.

Kargus solved these problems and were able to process 33 Gbps of data. Additionally, it
managed to process 9-10 Gbps of traffic when all of the packets contained an attack signature.
The IDS were significantly more efficient than the existing IDSs. Kargus is mainly using the
CPUs for pattern matching, as the GPU has a higher latency and power usage. When the
CPU gets overloaded, the GPU will offload the CPU and process some of the packets. An
algorithm is developed for deciding the CPU processing threshold.

The report concludes that Kargus is an improved IDS compared to the alternative IDSs
on the market. By combining the CPU for processing and the GPU for offloading, the
computer resources can be better utilized. Also, the waste in process cycles are decreased.
However, using the GPU to offload the CPU can be risky, as an inadequately tuned offloading
will significantly hurt the performance. Additionally, if the cost of the context switching
exceeds the CPU cycles required for the workload, the offloading is not beneficial. This may
frequently occur for minimum-sized packets [33].

This work is not as relevant for our thesis as the previously introduced works. It is however
interesting that the GPU can be used for offloading, even though Suricata does not support
it.

15

Chapter 4

Approach

This chapter first introduces the system used for conducting this research. Next, the focus of
this study is scoped by defining the behavior to be studied. Then, the process of developing
the optimal configuration is presented. Lastly, the testing approach is explained.

4.1 System

This research will be performed on a system consisting of two Lenovo rack servers and a
Ubiquiti switch. The first server is a Lenovo Thinksystem SR630 which is used for running
the Suricata IDS packet processing. This server will hereinafter be referred to as the sensor.
The SR630 is equipped with an Intel x710 NIC that supports symmetric RSS hashing and
the workers runmode. The sensor will also have the latest version of Suricata installed and
configured. The hardware specifications can be seen in table 4.1.

Lenovo ThinkSystem SR630
CPU 2x Intel(R) Xeon(R) Gold 5218T 2.1GHz cores=16 threads=32
CPU Cache L1 Cache(64 KB), L2 Cache(1024 KB), L3 Cache (22MB)
Memory (RAM) 128GB 8x16GB DIMM DDR4 2933 MHz RAM
Ethernet(NIC) x710 10 GbE SFP+
OS Ubuntu 18.04.5 LTS
Kernel Linux 5.4.0-70-generic
Suricata v6.0.2
Driver Intel i40e

Table 4.1: Lenovo SR 630 specification.

Lenovo x3550 M5
CPU 2x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz cores=12 threads=24
Memory (RAM) 128GB 8x16GB DIMM DDR4 2933 MHz RAM
OS Ubuntu 18.04.5 LTS
Kernel Linux 4.15.0-140-generic
TRex v2.88 from github

Table 4.2: Lenovo x3550 M5 specification.

16

The other sensor is a Lenovo x3550 M5 that runs the TRex traffic generator. This server
will hereinafter be referred to as the traffic generator. TRex includes various packet capture
(PCAP) files which can be used for simulating real-time traffic. TRex also includes a set of
traffic configuration files in YAML-format. These traffic profiles combine a set of PCAP files
as well as dynamically changing the IP address in both direction of the flows. The remaining
specification can be seen in table 4.2. Both servers run Ubuntu 18.04 Long Time Support
(LTS), as this is the same version Telenor is using.

Ubiquiti EdgeSwitch 16 XG is a 10 gigabit switch with 12 SFP+ ports. The traffic generator

Figure 4.1: Illustration of the system setup. The
sensor and traffic generator are connected through
a switch.

is connected to the switch with two SFP+
cables in a loopback configuration. This
way, TRex can control the bidirectional flow
by sending both the client and server side
of the traffic. This traffic will then be mir-
rored to the sensor. The system setup is
illustrated in figure 4.1.

A picture of the system are shown from the
front in figure 4.2. The upper server is the
traffic generator, and the lower server is the
sensor.

The rest of the system is shown from be-
hind in figure 4.3. The upper switch is used
for port mirroring. The lower switch is only
used to assign IP addresses to the servers in
order to access the internet, and to enable
remote access over SSH. It is not considered
part of the system.

17

Figure 4.2: Picture of the system setup from the front.

Figure 4.3: Picture of the system setup from behind, which includes two switches.

4.1.1 Mapping the Hierarchical Topology

The hwloc package is used to output an image of the hierarchical topology by using the
following command:

$ lstopo --logical --output -format png > topo.png

The resulting image is shown in figure 4.4. In the figure one can also see which NUMA node
each interface belongs to.

18

Figure 4.4: Output image from hwloc. Displays the hierarchical topology.

19

The main goal is to use the LLC as a bus and let the NIC push packets directly to the LLC,
as illustrated in the simplified model in figure 4.5. This way, the worker threads will more
often find packets in the LLC, effectively reducing cache misses. This is an Intel feature
called DCA, an accelerated copy by a dedicated DMA engine [30, p. 11].

Figure 4.5 illustrates the packet pipeline in this system. Incoming packets are fetched by
the NIC into multiple first-in-first-out (FIFO) receive queues, one per Suricata worker CPU.
By using the symmetrical RSS hash value, packets of the same data flow are assigned to
the same receive queue. The NIC driver allocates and maintains one ring buffer per receive
queue within system memory. Af-packet, a high speed capture method built into Linux used
to load balance the incoming packets from the NIC, then moves incoming packets from the
receive queues to the corresponding ring buffers using DMA. DCA makes sure that the ring
buffers are available in the LLC. The NIC will finally send interrupts to the Suricata worker
CPU corresponding to the ring buffer. The CPU respond to the interrupt by starting to
process packets. There is a interconnection between the two NUMA nodes in case they need
to do a search in the corresponding nodes cache. NUMA The second node is idle in this
experiment, but would run other processes in an operational environment.

Figure 4.5: Illustration of the packet pipeline.

20

4.2 Behavior

The main behavior to study is the Suricata throughput, which is affected by several points
in the packet pipeline. As stated in [30, p. 34-35], it is important to monitor packet drops
in the following points:

Switch
As opposed to optical splitting, port mirroring can lead to packet drops. This can be
mitigated by keeping the traffic under the supported throughput.

NIC
The NIC will drop packets which are malformed, or if the receive queue is full.

Softirq layer
The kernel will drop packets if it cannot pull packets fast enough from the receive queue
and into the ring buffer.

Kernel drops
If the kernel cannot handle the throughput, it will discard packets instead of sending
them to userspace.

Suricata
If Suricata cannot process the incoming packets fast enough, packets will be dropped.

4.2.1 Traffic Profile

The traffic generator is configured to simulate a client-side and a server-side with multiple
concurrent connections. In order to simulate typical network traffic, a traffic profile included
with TRex called sfr_delay_10_1g.yaml is used. The profile contains a combination of
common protocols, and is defined by a French telecommunications enterprise called SFR. It
is suitable for the stress testing in this research, and benchmarking in general. The traffic
consists of the following protocols: HTTP/HTTPS, RTP, Exchange, Citrix, SMTP, DNS
and Oracle. The test will produce 1 Gbps of traffic by default and can be adjusted up and
down with a multiplier value.

The traffic profile introduces a delay of 10 ms from the client and server side, which is typical
in a real-world scenario. Figure 4.6 illustrates the type of traffic transmitted, and the given
time the packets are sent. The figure does not indicate how much data is sent per protocol,
nor does it show in which direction each packet is going.

21

Figure 4.6: Illustration of the given time the packets are sent throughout the testing.

4.3 Testing Methodology

Ansible is used for automating the testing process and apply the configurations, as well as
fetching the results from the sensor. This section first presents the Ansible task execution
order, and then explains the testing approach step by step. Appendix A presents a guide
for configuring Suricata manually.

4.3.1 Ansible

Ansible is used to automate the tests and to apply all the configurations on the sensor. This
approach saves a considerable amount of time, as the testing process is repetitive and time
consuming. The Ansible code of the tasks can be referred to in appendix B.1.2. Figure 4.7
illustrates the Ansible task execution order in a simplified manner. The tasks are divided
into three groups: system, Suricata and testing.

The system group includes all tasks that affects the Linux system

Isolate CPUs
All CPUs reserved for Suricata needs to be isolated from the Linux Scheduler, as the
scheduling will be handled by Suricata itself. CPU 0 should never be isolated, as it is
widely used by many Linux services.

Install dependencies
Ansible will verify that the required Linux packages specified in the task are present.
Otherwise, they will be installed.

Reload i40e NIC driver
This task will reload the Intel i40e NIC driver to make sure the NIC is reset. This

22

is a good practice before making changes to the NIC settings. Additionally, all NIC
counters will be reset, such as packets received and packets dropped. This is a desired
side effect when performing testing.

Disable irqbalance
Irqbalance is a Linux service that balances interrupts among cores, which in turn shifts
interrupt affinities frequently. The service will interfere with the careful setup. There-
fore, it needs to be disabled.

Figure 4.7: A simplified flowchart showing the Ansible task execution order.

23

Set IRQ affinity
With irqbalance disabled, it is possible to set an interrupt affinity for the NIC. By using
the script set_irq_affinity mentioned in section 2.5.3, all interrupts from the NIC can
be pinned to the Suricata worker threads. This way, the monitoring interface will not
interfere with the rest of the cores.

Configure NIC
The NIC needs to be configured in order to cooperate with Suricata to handle the
high throughput. The number of RSS queues are set to the number of Suricata worker
threads so that every worker thread has a designated RSS queue. Load balancing is
enabled for the NIC, which ensures that incoming traffic are distributed among the
RSS queues. A symmetric RSS hash key are set to enable symmetric hashing.

The Suricata group includes all the modifications that affects the Suricata files

Clean log files
All Suricata log files should be cleaned before every test so only the relevant logs
are gathered. Some of these log files must be manually deleted, while others can be
configured to overwrite at startup.

Configure Suricata
The parameters in the Suricata configuration file found in appendix A.3 are used in the
setup. The parameters of most importance is runmode and those under the af-packet
and cpu-affinity sections. To better utilize the system resources, the runmode is set to
workers. Here, each thread contains the full packet pipeline. In the af-packet section,
the monitoring interface must be specified in order for Suricata to know which interface
to listen to. Cluster_qm is another parameter set in the af-packet section. This cluster
type ensures that all packets are linked by the interface to a RSS queue and sent to the
same socket. Also, a parameter that defines how many threads af-packet will use is set.
Finally, the cpu affinity is set, determining which CPUs Suricata should use as worker
threads. The management CPUs are also set, which will be used for housekeeping.
They are not isolated from the Linux scheduler.

Restart Suricata
Suricata is restarted in order to apply the configuration.

The testing group includes all tasks that handles the testing. Each task is described
below

Wait for Suricata to initialize
Suricata needs a few seconds to initialize and apply the configurations in order to be
ready for processing packets.

Start TRex traffic generator
The TRex traffic generator is started and will send bidirectional, stateful traffic to the
sensor.

Start asynchronous commands used for logging
A set of commands used for logging are executed in the background. All of the com-
mands will run for the same duration as the test. The output of these commands are
recorded by Ansible.

24

Pause for the specified testing duration
The Ansible playbook is paused for the specified testing duration. Suricata needs to
process a sufficient amount of traffic for the statistics to stabilize.

Accumulate log files
Finally, Ansible will gather all of the recorded logs considered necessary for the results.

4.3.2 Testing Approach

A testing approach is established in order to stress test the sensor. The traffic load is set
to 9 Gbps. This is 1 Gbps below the bandwidth capacity on the NIC and switch in order
to mitigate packet loss. The default testing duration is 10 minutes, because Suricata seems
to stabilize within this time frame. Each test is done twice to make sure the results are
consistent. A ruleset of 29766 signatures from Emerging Threats Open are used throughout
the testing. The ruleset is never updated in order to ensure consistency. The testing approach
is described below:

Default configuration
This test will apply and test default configurations. The NIC is reset with default
settings, and only the required settings are applied to the Suricata configuration. It is
expected that the performance will be lower than the other tests. The result will be
used as a baseline for comparison.

High performance configuration with default BIOS settings
This test will apply and test a high performance configuration using the workers run-
mode. In this setup, both the management and worker threads are located on NUMA
node 0. Two management threads are used, pinned to the first CPU of both CPU
groups. This should be sufficient for management and they should not be overloaded.
The rest of the CPUs are pinned to the Suricata worker threads and isolated from the
Linux scheduler. As the NIC is located on the same NUMA node, the latency should
be minimal. Other noteworthy changes are larger buffer and memory allocations. Note
that this test is performed with default BIOS settings. By limiting the processing power
by unpinning one CPU at a time, the current Suricata throughput can be found. This
is necessary in order to reveal any performance differences in the upcoming tests.

Apply recommended BIOS settings
The BIOS settings recommended in [30, p. 11-15] are applied for the remaining tests.
Some noteworthy settings are mentioned below, while the rest of the settings are listed
in appendix A.1.

• Enable DCA.
• Setting the max Processor Idle Sleep States (C-state) to 3.
• Enabling OS control over Power Performance States (P-states).
• Disable prefetchers, as DCA will send packets to LLC.

High performance configuration with recommended BIOS settings
The same high performance test is performed after the recommended BIOS settings
are applied. The resulting Suricata throughput is used in the upcoming tests.

Additional testing
Five additional tests will be performed to examine the behaviour of the sensor with

25

unconventional modifications applied, which is described in section 5.3. This includes
different configurations of management and worker thread pinning, as well as different
values for the buffer sizes and memory allocation sizes. Latency is introduced in one
of the tests by pinning the Suricata worker threads to the CPUs on NUMA node one.
This will cause the packets to traverse the NUMA interconnection link between node
one and two. The result is designed to result in lower performance as a control.

Identifying the Suricata throughput
After the most performant Suricata configuration is found, the throughput limit needs
to be identified. If Suricata handles the traffic load without packet loss, the processing
power is lowered until a limit is found by unpinning CPUs. If Suricata does not handle
the traffic load without packet loss, the traffic load is lowered until a limit is found.

26

Chapter 5

Results

Throughout this chapter, the terms packet loss and packet drop will have the same meaning
and will be used interchangeably. To calculate the percentage of the packets being dropped
throughout the packet pipeline, the drop percentages on the NIC, softirq and Suricata will
be summarized. A distinction is made between packet loss at Suricata and in the kernel.
Kernel drops are more severe, as it seems to trigger an increase in packet drops. The total
packet loss tolerance limit in this research is set to 1%. If a result exceeds this tolerance,
the Suricata throughput for that test is deemed invalid.

5.1 Default Configuration

The default configuration test is able to process 7 Gbps of data before exceeding the packet
loss tolerance limit. In figure 5.1, the amount of packets captured by the kernel is presented
as the y axis, and the testing duration in seconds as the x axis. The blue line counts the
number of packets correctly sent to user space. There is a small drop of received packets
when reaching 600 seconds. This is because the traffic generator is in a termination phase.
The orange line counts the number of packets that have been discarded by the kernel instead
of being sent to user space. The green line counts missing data packets in TCP streams,
which is also affected by bad checksums and the Suricata engine running out of memory. If
the value is positive, it could indicate that packets are being dropped. The values stabilize
throughout the test.

Figure 5.2 shows the amount of packets received for the different traffic loads. When the
traffic load is 4 Gbps and higher, packets captured by the kernel and the NIC are slightly
lower than the total amount of packets received, indicating that packets are lost. The TCP
reassembly gap statistics are also growing with the traffic load, but stabilizes from 6 Gbps
and out. This indicates that the Suricata engine has problems with the high traffic loads
related to memory capacity.

27

Figure 5.1: Statistics for the default test with 7 Gbps of data over a timespan of 600s.

Figure 5.2: Packets received by Suricata with default configurations. Compared over a traffic range
from 1 to 9 Gbps.

28

Figure 5.3 displays the packets being dropped for the different traffic loads. The figure
illustrates where the packets are being dropped throughout the packet pipeline. At 6 Gbps,
the kernel starts dropping packets. This causes the total drop rate to grow at a higher rate.
At 7 Gpbs, the packet loss tolerance limit is still satisfied with a value of 0.95%. Note that
some packets are dropped on the monitoring interface in accordance with the traffic load.
This is not revealed in the figure, as the dropped packets only accounts for 0.01% of the
received packets. However, the number is steadily growing, indicating that the monitoring
interface encounters a problem with the increasing traffic load.

Figure 5.3: Packets dropped by Suricata with default configurations throughout the packet pipeline.
Compared over a traffic range from 1 to 9 Gbps.

The cache misses are almost constant at 26% throughout the tests, as illustrated in figure 5.4.
Because no system modifications has been done at this stage, this value is considered to be
the standard baseline. The CPU utilization is on the other hand steadily increasing in
accordance with the traffic load, a behavior that is logical. At 9 Gbps, none of the CPUs
exceeds 30% of CPU utilization. This is because no CPUs are pinned to Suricata yet, which
allows the IDS to utilize all 64 CPUs.

29

Figure 5.4: CPU utilization and cache misses for Suricata with default configurations. Compared
over a traffic range from 1 to 9 Gbps.

5.2 High Performance Configuration

Figure 5.5 shows the total packet drop rate when running Suricata in a high performance
configuration with default BIOS settings. The figure can be compared to figure 5.6, present-
ing the same test with recommended BIOS settings. In both cases, no packets are dropped
on the monitoring interface, and an increase in kernel drops is evident when using 9 CPUs.
The results in figure 5.5 show a slightly lower packet loss percentage, which is contrary to
the expectation. Regardless of the BIOS settings, Suricata needs to use 10 CPUs in order
to satisfy the packet drop tolerance limit. The TCP reassembly gap statistics are constant
in these tests.

30

Figure 5.5: Packets dropped by Suricata in a high performance configuration with default BIOS
settings. Compared from 8 to 12 CPUs.

Figure 5.6: Packets dropped by Suricata in a high performance configuration with recommended
BIOS settings. Compared from 8 to 12 CPUs.

Figure 5.7 shows the CPU utilization and cache misses for default BIOS settings. The
figure can be compared to figure 5.8, presenting the same test with recommended BIOS
settings. The differences in the results are insignificant. Just like figures 5.5 to 5.6, Suricata

31

performs slightly better with default BIOS settings. The average cache miss statistics are
constant on 35%, which is 14% more than the default test. This is a surprising results, as
the BIOS settings were expected to greatly reduce the cache misses. In [30, p. 19-20], the
resulting cache miss of a similar configuration is close to zero. When using fewer CPUs,
the overall CPU utilization is higher, peaking at 82% for 8 CPUs. This is expected, since
there are fewer CPUs to process the same amount of Suricata rules. Even though default
BIOS settings yielded slightly better results, the recommended BIOS settings are used in
the upcoming tests.

Figure 5.7: CPU utilization and cache misses for Suricata in a high performance configuration with
default BIOS settings. Compared from 8 to 12 CPUs.

32

Figure 5.8: CPU utilization and cache misses for Suricata in a high performance configuration with
recommended BIOS settings. Compared from 8 to 12 CPUs.

5.3 Additional Testing

In this section, five additional test are performed in order to observe how Suricata behaves
when modifying the high performance configuration in unconventional ways. The first test
is called latency, where the Suricata worker threads are pinned to the foreign NUMA node.
This will add some latency which should decrease the performance. The second test is called
mgmt node 1, where the two management threads are moved to the foreign node. If the
performance is not impaired by this modification, it could be useful to have two additional
disposable CPUs on the local node.

The third test is called default buffer, where the buffer values afpacket_ringsize, afpacket_blocksize
and max_pending_packets are set to the default values. The modifies buffer values can be
found in appendix A.3.3 and appendix A.3.1. The fourth test is called default memory,
where stream memory values such as memcap are set to the default values. The modified
memory values can be found in appendix A.3.3. The fifth test is called default memory and
buffer, which is a combination of test three and four. The performance is expected to be
impaired by the memory and buffer limitations, and the performance gain by using more
memory resources will be evident.

Figure 5.9 shows the total packet drop rate when running the additional tests using 10 CPUs
with the recommended BIOS settings. Next to no packets are dropped on the NIC. The tests
with default buffer sizes show a higher drop rate of 1.83%, which includes a high number of
kernel drops. This makes it clear that the default buffer sizes do not have enough capacity
to contain the incoming packets. The latency test show a lower drop rate of 0.53%, slightly
better than the high performance configuration. This is unexpected, and will be further
discussed in chapter 6.

33

The two rightmost tests on the figure show next to no packet drops. At first glance, it
seems that the default memory sizes improves performance. However, figure 5.10 shows
that Suricata processes approximately half of the flows compared to the other tests. This is
supported by the results in figure 5.11, where the reassembly gap statistics are in accordance
to the amount of flows processed. Therefore, the packet loss for the default memory must
be a misrepresentation.

Figure 5.9: Packets dropped by Suricata for the additional tests. Suricata is using 10 CPUs with
the recommended BIOS settings.

Figure 5.10: The amount of flows processed by Suricata for the additional tests. Suricata is using
10 CPUs with the recommended BIOS settings.

34

Figure 5.11: TCP reassembly statistics for the additional tests. Suricata is using 10 CPUs with the
recommended BIOS settings.

Figure 5.12 shows the CPU utilization and cache misses with small variations for the addi-
tional tests. The results are similar to the high performance test when Suricata is using 10
CPUs presented in figure 5.8. However, the additional tests resulted in an average of 30%
cache misses, which is 5% better than the high performance configuration.

Figure 5.12: CPU utilization and cache misses for the additional tests. Suricata is using 10 CPUs
with the recommended BIOS settings.

35

Chapter 6

Discussions

This chapter will further discuss the results by putting them into context. Then, the findings
will be used to answer the problem statement. Finally, the most fundamental decisions that
were taken in this research are discussed.

6.1 Test Results

Suricata never reports a lower packet loss than approximately 0.5%. However, it should be
feasible to achieve a packet loss of zero. There is an indication that a significant packet loss
occurs when the testing phase begins. An absolute amount of packets are being dropped
regardless of the traffic load, testing duration and the processing power. It does not help to
delay the traffic generation until Suricata is fully initialized. However, the initial packet loss
does not include any kernel drops. Therefore, the kernel drop statistics are more trustworthy.
Neither of the tests revealed any packet drops in the softirq layer. This indicates that the
Linux kernel pulls packets fast enough from the RX queues and into the ring buffer. A sensor
with different hardware might not produce the same result.

6.1.1 Default Configuration

The default configuration utilizes all 64 CPUs on the system. It is important to note that
even though all CPUs are used, the CPU utilization is only 23% when reaching the Suricata
throughput. This indicates that the processing power is not the limiting factor. The NUMA
topology is not utilized, which could cause the NUMALINK to be saturated by the commu-
nication between threads on different nodes. Also, the capture threads might have run out
of capacity caused by the increasing traffic load.

6.1.2 High Performance Configuration

The high performance configuration performed slightly better with default BIOS settings.
Even though the results are almost identical, the recommended BIOS settings were expected
to yield significantly better results. An explanation could be that the BIOS is not configured
correctly, or that some functionality is missing. The high cache miss results of 35% also indi-

36

cate that something is not working as intended in the packet pipeline. Another explanation
is that the BIOS changes would only result in a better performance when the network speed
reaches 50 Gbps and beyond, as stated in section 3.1. Troubleshooting this misbehavior is
out of scope for this research.

6.1.3 Additional Testing

The additional tests include: latency test, management on node one, default buffer, default
memory and default memory and buffer. None of the tests showed any improvements to
the system. There were however some unexpected results. The purpose of the additional
tests was to get a better understanding of how Suricata behaves when diverging from the
recommended configurations. There are definitely more tests in this category that could
have been conducted. In fact, a few additional tests were not included in the report, as they
were not fruitful. Regardless, it is assumed that the included tests are most important.

Latency test

The latency test performs surprisingly well despite the fact that every packet traverses the
interconnection between the NUMA nodes to reach the CPUs. A possible explanation is that
there is no other communication on the NUMALINK as no other demanding processes are
running on the system. The NUMALINK has a specific bandwidth capacity, and it seems
that Suricata does not saturate the bandwidth by itself. By introducing more communication
on the link, it is likely that the latency test would cause performance issues.

Management on Node One

With a packet loss of 0.7%, it seems that by moving the management threads to the foreign
node, some performance is lost. The explanation could be that the management threads
establish enough communication between the NUMA nodes to saturate the bandwidth. This
is only a speculation, since there are not enough information available about the management
thread behavior. The results are disappointing, as it would be practical to free up two CPUs
from the local node. From a more realistic standpoint, the results only show a packet loss
increase of 0.2%. Therefore, it should be possible to take advantage of this modification
without suffering any significant performance degradation. On one hand, OISF recommends
in [18] to pin the management threads to 10 CPUs on the foreign node. On the other hand,
the management threads were pinned to two CPUs on the local node in [29].

Default Memory and Buffer

The results show that using the default memory values, zero packets are lost. Closer inspec-
tion of the results reveals that the flows processed is less than half of the normal value. It
is uncertain why this is not reflected by the packet loss results. The TCP reassembly gap
counter is also much lower than the normal value, which is likely because Suricata handles
less flows.

The results when using default buffer values show a high packet loss of 1.83%, which does

37

not satisfy the tolerance limit. This is expected, as the buffers do not have enough space
for the incoming packets. When the buffer is full, the incoming packets will overwrite the
already existing packets in the buffers. This will result in packets being dropped.

6.2 Identifying the Suricata Throughput

By analyzing the results, it seems that the latency configuration performs the best, slightly
better than the high performance configuration. However, this test is designed to yield lower
performance. Therefore, it is not used to determine the Suricata throughput. The high
performance configuration with default BIOS settings results in the best performance. It is
able to process 9 Gbps of traffic with 10 CPUs, only dropping 0.57% of the packets. This is
2 Gpbs more traffic than the default configuration. The final configuration is presented in
appendix A.3.

During the stress testing of the sensor, no other processes were running besides Suricata.
Concurrent processes on any of the nodes may impact the results in a negative way, but this
is only speculations. It would probably affect the latency test the most, as the NUMALINK
is the weakest link.

6.3 Decisions

A few decisions had to be made in this research. Ansible is an optional tool that is not
strictly necessary to conduct the experiments. Pre-recorded traffic was used for the testing
instead of real-time traffic. The TRex traffic generator is running on an independent server
instead of replaying traffic on the sensor. Finally, Suricata requires one management thread
per CPU group.

Ansible

As Telenor uses Ansible to deploy IDS configurations in the operational environment, the
same tool is used in this research for convenience. It also turned out to be useful in the
testing phase in order to automate repetitive tasks. A considerable amount of the research
time frame was devoted to the Ansible project. The code is available on [34], and the most
important parts is presented in appendix B.

6.3.1 Pre-Recorded Traffic

Pre-recorded traffic is used for the testing to enforce consistency. Another option is to
use real-time traffic from Telenor’s systems to make a more authentic test environment.
However, this would complicate the testing as real-time traffic is an uncontrollable variable.
In addition, this traffic is privacy sensitive. Finally, it would be challenging to get a traffic
rate reaching 10 Gbps. A third option is to replay PCAPs on the sensor by using the tool
tcpreplay or similar. This would be more convenient, but it could affect the sensor in a
negative way.

38

Testing Phase

It is decided to run the TRex traffic generator on a separate server to not disturb the sensor
during the testing phase. A switch is used to mirror the traffic to the sensor in contrary to
a network tap in order to make the setup work as intended. With a tap, it is necessary to
spilt each side of the bidirectional flow on two different ports. This does not work with the
workers runmode in Suricata, as it is required to receive the bidirectional traffic on the same
port.

6.3.2 Management Threads

The first CPU in each group is pinned to a management thread. These CPUs also handle
Linux specific tasks. This is configured in the af-packet section of the Suricata configuration
file. Suricata requires one af-packet section per CPU group. This is because of how each
CPU group is distributed on the NUMA nodes. Each af-packet section require the same
number of threads, which leads to an even number of total threads when two sections are
declared. If a different number of threads are set in the af-packet sections, Suricata will pin
the additional threads to the previously pinned CPUs. Even though one management thread
should be sufficient for two af-packet sections, it is not possible in this case.

39

Chapter 7

Conclusions

The first main goal of the project was to set up a stand alone system used for generating
traffic. This was done by configuring the TRex traffic generator on a separate system that
can generate up to 10 Gbps of bidirectional traffic. This prevents the workload of generating
traffic to affect the sensor. By connecting TRex to a switch in a loopback configuration, the
traffic was mirrored from the switch to the sensor. To make sure that no packets are lost
because of the bandwidth capacities, a maximum of 9 Gbps of traffic is sent. The second
main goal was to configure Suricata for high performance on a single NUMA node. This
comprised of making modifications on the NIC and Suricata, as well as making adjustments
in Linux and in the BIOS. The CPU affinity of Suricata was restricted to the CPUs in NUMA
node 0. The parameters in af-packet, cpu-affinity and runmode among others in the Suricata
configuration file have been adjusted to utilize the system resources in a more efficient way.
Several settings were adjusted on the NIC, where the most important change was to set a
symmetric RSS key in order to enable symmetric hashing. This allows the use of multiple
RSS queues. The CPUs pinned to Suricata have been isolated in the kernel. This is done
to prevent the CPUs to be interrupted by the Linux scheduler while processing Suricata
rules. The BIOS were adjusted as advised in [30, p. 11-15]. However, these changes had
no performance impact on the results. A traffic rate beyond 50 Gbps might reveal different
results, as discovered in section 3.1.

The third goal was to compare the high performance Suricata throughput with the default
OOTB configuration of Suricata. The default configuration, using all 64 CPUs on the
system, managed to process 7 Gbps of data before the Suricata throughput was reached.
The high performance configuration reached a Suricata throughput of 9 Gbps using only 10
CPUs. This allows the remaining 54 CPUs to be utilized for other critical processes. The
fourth and final goal was to use an automation tool in order to conveniently deploy the final
configuration on any system that meets the hardware requirements. Ansible was used to
develop a configuration management module used to both deploy the configuration and to
automate the testing. The module can be used to deploy the high performance configuration
on any sensor that satisfies the hardware requirements. However, the configuration needs to
be adjusted in order to adhere to systems with different hardware specifications.

To conclude the research, a significantly higher Suricata throughput have been achieved by
tuning Suricata for high performance on a single NUMA node, and the packet pipeline has
been partially optimized. The solution is able to solve the issue Telenor is facing regarding
packet loss. Nonetheless, several problems arose during the research. These are detailed in
the next section.

40

7.1 Future work

The problem regarding the unexpected packet loss at startup should be addressed in the
future. This may uncover several underlying issues in the packet pipeline. As mentioned
in section 6.1, delaying the traffic generation until Suricata is finished initializing does not
make any difference.

The TCP reassembly gap statistics related to the suricata memory settings are alarmingly
high for all of the tests, and the value grows in accordance to the traffic load. This indicates
that there is a problem. This seems to be related to another counter called TCP segment
memcap drop, which is also showing high results. By fine-tuning the stream memory param-
eters in the Suricata configuration file presented in appendix A.3.3, these statistics could be
improved.

Using the last layer cache as a bus did show some unexpected results. The high performance
configuration results in higher cache misses than the default one. In [30, p. 19-20], the cache
misses are close to zero percent. The problem could be anywhere on the sensor, but it is
probably caused by the BIOS settings as they led to a higher cache miss percentage. This
problem should be identified and corrected to fully take advantage of the configuration.

It would be interesting to test the high performance in a real-world environment using
real-time traffic. This will verify whether the sensor is able to deliver a lossless detection
in Telenor’s environment. The number of concurrent flows may affect the performance of
Suricata as mentioned in section 3.2, which will be evident by testing with real-time traffic.

Another interesting experiment would be to run concurrent processes on the sensor alongside
Suricata. This may affect the performance of Suricata as well as disclosing any undesirable
behaviours. No concurrent processes are present during the tests in order to isolate the area
of research.

Express data path (XDP) is a Suricata feature explained in [31] that would be interesting
to implement. This would allow the sensor to bypass elephant flows, a term for extremely
large continuous flows, at the lowest point in the software stack. Most elephant flows like
video streaming does not need to be analyzed, and can be safely bypassed. XDP depends
on a filter called eBPF which is used to let specific elephant flows through to the IDS.
However, bypassing flows would affect the network statistics, which could be a problem for
some security companies.

41

Bibliography

[1] T. W. Edgar, D. O. Manz, Research Methods for Cyber Security. Todd Green, 2017, isbn:
9780128053492.

[2] J. Hruska, L2 vs. L3 cache: What’s the Difference? [Online]. Available: https : / / www .
extremetech.com/computing/55662-top-tip-difference-between-l2-and-l3-cache,
(accessed: 24.05.2021).

[3] E. Lai, Direct memory access. [Online]. Available: https://www.sciencedirect.com/topics/
computer-science/direct-memory-access, (accessed: 24.05.2021).

[4] Intel, Intel I/O Acceleration Technology. [Online]. Available: https : / / www . intel . com /
content/www/us/en/wireless-network/accel-technology.html, (accessed: 24.05.2021).

[5] H. El-Rewini, M. Abd-El-Barr, “Advanced computer architecture and parallel processing,” in.
Wiley-Interscience, 2005, pp. 77–102.

[6] F. Denneman, NUMA Deep Dive Part 1: From UMA to NUMA. [Online]. Available: https:
//frankdenneman.nl/2016/07/07/numa- deep- dive- part- 1- uma- numa/, (accessed:
03.11.2020).

[7] C. Lameter, “An overview of non-uniform memory access,” New York: ACM, 2013. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/2508834.2513149.

[8] N. Manchanda, K. Anand, Non-Uniform Memory Access (NUMA). [Online]. Available: https:
//web.archive.org/web/20131228092942/http://www.cs.nyu.edu/~lerner/spring10/
projects/NUMA.pdf, (accessed: 03.11.2020).

[9] R. Bharadwaj, Mastering Linux Kernel Development: A Kernel Developer’s Reference Man-
ual. Packt Publishing, 2017, isbn: 9781785883057. [Online]. Available: http : / / search .
ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1615018&site=ehost-live.

[10] Red Hat, Receive-Side Scaling (RSS). [Online]. Available: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/
network-rss, (accessed: 11.03.2021).

[11] OISF, Packet Capture. [Online]. Available: https://suricata.readthedocs.io/en/latest/
performance/packet-capture.html, (accessed: 28.05.2021).

[12] S. Woo, K. Park, Scalable TCP Session Monitoring with Symmetric Receive-side Scaling.
[Online]. Available: https://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf,
(accessed: 13.03.2021).

[13] OISF, Suricata Home. [Online]. Available: https://suricata-ids.org/, (accessed: 02.06.2021).

[14] ——, Suricata Features. [Online]. Available: https://suricata-ids.org/features/, (ac-
cessed: 02.06.2021).

[15] ——, Rules Format. [Online]. Available: https://suricata.readthedocs.io/en/suricata-
6.0.1/rules/intro.html, (accessed: 30.03.2021).

[16] ——, Runmodes. [Online]. Available: https://suricata.readthedocs.io/en/suricata-6.
0.1/performance/runmodes.html?highlight=runmodes#different-runmodes, (accessed:
27.05.2021).

42

https://www.extremetech.com/computing/55662-top-tip-difference-between-l2-and-l3-cache
https://www.extremetech.com/computing/55662-top-tip-difference-between-l2-and-l3-cache
https://www.sciencedirect.com/topics/computer-science/direct-memory-access
https://www.sciencedirect.com/topics/computer-science/direct-memory-access
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/
https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/
https://dl.acm.org/doi/pdf/10.1145/2508834.2513149
https://web.archive.org/web/20131228092942/http://www.cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf
https://web.archive.org/web/20131228092942/http://www.cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf
https://web.archive.org/web/20131228092942/http://www.cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf
http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1615018&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1615018&site=ehost-live
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rss
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rss
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rss
https://suricata.readthedocs.io/en/latest/performance/packet-capture.html
https://suricata.readthedocs.io/en/latest/performance/packet-capture.html
https://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
https://suricata-ids.org/
https://suricata-ids.org/features/
https://suricata.readthedocs.io/en/suricata-6.0.1/rules/intro.html
https://suricata.readthedocs.io/en/suricata-6.0.1/rules/intro.html
https://suricata.readthedocs.io/en/suricata-6.0.1/performance/runmodes.html?highlight=runmodes#different-runmodes
https://suricata.readthedocs.io/en/suricata-6.0.1/performance/runmodes.html?highlight=runmodes#different-runmodes

[17] Red Hat, IRQBALANCE. [Online]. Available: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/sect-red_hat_
enterprise_linux-performance_tuning_guide-tool_reference-irqbalance, (accessed:
15.03.2021).

[18] OISF, High Performance Configuration. [Online]. Available: https://suricata.readthedocs.
io/en/suricata-6.0.2/performance/high-performance-config.html?highlight=cpu%
5C%20scheduling#cpu-affinity-and-numa, (accessed: 15.03.2021).

[19] Intel Corporation, i40e Linux Base Driver for the Intel Ethernet Controller 700 Series. [On-
line]. Available: https://downloadmirror.intel.com/24411/eng/readme.txt, (accessed:
15.03.2021).

[20] Red Hat, What’s IT automation? [Online]. Available: https://www.redhat.com/en/topics/
automation/whats-it-automation, (accessed: 16.03.2021).

[21] ——, What is Infrastructure as Code (IaC)? [Online]. Available: https://www.redhat.com/
en/topics/automation/what-is-infrastructure-as-code-iac, (accessed: 27.05.2021).

[22] ——, How Ansible Works. [Online]. Available: https://www.ansible.com/overview/how-
ansible-works, (accessed: 16.03.2021).

[23] ——, Ansible Documentation. [Online]. Available: https://docs.ansible.com/ansible/
latest/index.html, (accessed: 16.03.2021).

[24] ——, Roles. [Online]. Available: https://docs.ansible.com/ansible/latest/user_guide/
playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles, (accessed:
18.03.2021).

[25] Cisco, TRex Low-Cost, High-Speed Stateful Traffic Generator. [Online]. Available: https :
//github.com/cisco-system-traffic-generator/trex-core, (accessed: 24.05.2021).

[26] ——, trex_manual. [Online]. Available: https://trex-tgn.cisco.com/trex/doc/trex_
manual.html, (accessed: 24.05.2021).

[27] ——, trex_preso. [Online]. Available: https://trex- tgn.cisco.com/trex/doc/trex_
preso.html, (accessed: 24.05.2021).

[28] J. Johnson, Reproducible Performance Testing of Suricata on a Budget Using TRex. [Online].
Available: https://suricon.net/wp-content/uploads/2019/01/SuriCon2018_Johnson.
pdf, (accessed: 24.05.2021).

[29] K. Jakimoski, N. V. Singhai, “Improvement of hardware firewall’s data rates by optimizing
suricata performances,” 27th Telecommunications forum TELFOR 2019, 2019.

[30] P. Manev, M. Purzynski, Suricata Extreme Performance Tuning. [Online]. Available: https:
//github.com/pevma/SEPTun, (accessed: 06.04.2021).

[31] ——, SEPTun Mark II. [Online]. Available: https://github.com/pevma/SEPTun-Mark-II,
(accessed: 06.04.2021).

[32] Q. Hu, M. Rizwan Asghar, N. Brownlee, “Evaluating network intrusion detection systems for
high-speed networks,” 2017 27th International Telecommunication Networks and Applications
Conference (ITNAC), 2017.

[33] M. Jamshed, J. Lee, S. Moon, “Kargus: A Highly Scalable Software-Based Intrusion Detection
System,” CCS ’12: Proceedings of the 2012 ACM conference on Computer and communications
security, 2012.

[34] V. Henriksen, R. Førde, Ansible_numa. [Online]. Available: https://github.com/vegah16/
Ansible_numa, (accessed: 02.06.2021).

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-tool_reference-irqbalance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-tool_reference-irqbalance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-tool_reference-irqbalance
https://suricata.readthedocs.io/en/suricata-6.0.2/performance/high-performance-config.html?highlight=cpu%5C%20scheduling#cpu-affinity-and-numa
https://suricata.readthedocs.io/en/suricata-6.0.2/performance/high-performance-config.html?highlight=cpu%5C%20scheduling#cpu-affinity-and-numa
https://suricata.readthedocs.io/en/suricata-6.0.2/performance/high-performance-config.html?highlight=cpu%5C%20scheduling#cpu-affinity-and-numa
https://downloadmirror.intel.com/24411/eng/readme.txt
https://www.redhat.com/en/topics/automation/whats-it-automation
https://www.redhat.com/en/topics/automation/whats-it-automation
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#embedding-modules-and-plugins-in-roles
https://github.com/cisco-system-traffic-generator/trex-core
https://github.com/cisco-system-traffic-generator/trex-core
https://trex-tgn.cisco.com/trex/doc/trex_manual.html
https://trex-tgn.cisco.com/trex/doc/trex_manual.html
https://trex-tgn.cisco.com/trex/doc/trex_preso.html
https://trex-tgn.cisco.com/trex/doc/trex_preso.html
https://suricon.net/wp-content/uploads/2019/01/SuriCon2018_Johnson.pdf
https://suricon.net/wp-content/uploads/2019/01/SuriCon2018_Johnson.pdf
https://github.com/pevma/SEPTun
https://github.com/pevma/SEPTun
https://github.com/pevma/SEPTun-Mark-II
https://github.com/vegah16/Ansible_numa
https://github.com/vegah16/Ansible_numa

Appendix A

System Configuration

In order to optimize Suricata and the underlying system, SEPTun [30] (Suricata Extreme
Performance Tuning) and SEPTun Mark II [31] will be used as guides. These guides are
written by P. Manev from Suricata Core Team and M. Purzynski from Mozilla Threat
Management.

A.1 BIOS Settings

The grub file needs to be modified in order to isolate the CPUs reserved for Suricata, disable
Intel IOMMU and to set the max c-state to 3. In /etc/default/grub, we modified the line:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"

to:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash isolcpus =1-10 intel_iommu=off ...
intel_idle.max_cstate =3"

In the BIOS, we did the following:

• Disable

– HW prefetcher

– Adjacent sector prefetch

– DCU stream prefetcher

• Enable

– DCA

– C-states and P-states

• Change operation mode from Maximum Performance to Custom

44

A.2 Linux Settings

A.2.1 Disable IRQbalance

IRQbalance is a Linux service used to balance interrupts among cores. Because interrupt
affinities are carefully set up, we disabled the service like so:

$ systemctl stop irqbalance
$ systemctl disable irqbalance

A.2.2 Compile and install Suricata

As the system runs a recent version of Ubuntu, the official PPA (Personal Package Archive)
can be used to install Suricata after updating the index. A command-line JSON processor
called jq is also installed as it can be used to better display Suricata’s EVE JSON output.

$ sudo add -apt -repository ppa:oisf/suricata -stable
$ sudo apt update
$ sudo apt install suricata jq

A.2.3 NIC driver and settings

In order to ensure that the latest i40e NIC driver on the system is installed, the i40e kernel
module is removed and added. Modprobe is a command that will look for the correct driver
in the module directory.

$ rmmod i40e && modprobe i40e

Then, a sequence of NIC settings are set. It is good practice to disable the NIC while
setting some settings. The number of RSS queues is set to 15, which is equal to the number
of Suricata worker threads. Receive hashing offload and RX ntuple filters and actions are
enabled before activating the NIC again.

$ ifconfig eno1 down
$ ethtool -L eno1 combined 15
$ ethtool -K eno1 rxhash on
$ ethtool -K eno1 ntuple on
ifconfig eno1 up

The set_irq_affinity script is used to pin interrupts from a NIC to specific threads. The
script is available in any Intel NIC source driver download. The number of RSS queues must
match the number of pinned threads.

$./ set_irq_affinity 1-15 eno1

Symmetric RSS can be enabled by using a low entropy toeplitz key. By doing this, AF_PACKET
can be used with cluster_qm later on.

45

$ ethtool -X eno1 hkey 6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D...
:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A...
:6D:5A:6D:5A:6D:5A:6D:5A equal 15

Receive and transmit offloading are disabled. Adaptive control is disabled for decreased
latency. Since hardware interrupts only activates the NAPI processing loop so it starts
processing packets, the maximum number of interrupts per second should be limited. The
ring rx descriptor is set to 1024 in order for the DDIO to work better, which in turn should
result in a lower L3 cache miss ratio.

$ ethtool -A eno1 rx off tx off
$ ethtool -C eno1 adaptive -rx off adaptive -tx off rx -usecs 125
$ ethtool -G eno1 rx 1024

Lastly, a bash script lets the NIC balance as much as possible.

$ for proto in tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do
ethtool -N eno1 rx-flow -hash $proto sdfn

done

A.3 Suricata Configuration

Suricata is configured in a file called suricata.yaml. This file is located in
/etc/suricata/suricata.yaml by default. Below are the most important sections.

A.3.1 Af-packet

The af-packet section defines which NIC af-packet should use. It also defines that af-packet
should use the cluster_qm cluster type as well as some other key parameters.

1 af-packet:
2 - interface: ens2f0
3 threads: 10
4 cluster-id: 99
5 cluster-type: cluster_qm
6 defrag: no
7 use-mmap: yes
8 mmap-locked: yes
9 tpacket-v3: yes

10 ring-size: 200000
11 block-size: 2097152
12

13 - interface: default

46

A.3.2 Threading

The threading section defines the Suricata CPU affinity settings for management and worker
threads.

1 threading:
2 set-cpu-affinity: yes
3 cpu-affinity:
4 - management-cpu-set:
5 cpu: ["0", "32"]
6 - receive-cpu-set:
7 cpu: ["0", "32"]
8 - worker-cpu-set:
9 cpu: ["1-10"]

10 mode: "exclusive"
11 prio:
12 low: []
13 medium: ["0", "32"]
14 high: ["1-10"]
15 default: "high"
16 detect-thread-ratio: 1.0

A.3.3 Memory

The flow and stream sections define how much memory the system should allocate to Suricata
in order to prevent resource starvation.

1 max-pending-packets: 65500
2

3 runmode: workers
4

5 flow:
6 memcap: 14gb
7 hash-size: 256072
8 prealloc: 300000
9 emergency-recovery: 30

10

11 stream:
12 memcap: 12gb
13 checksum-validation: no
14 prealloc-sessions: 375000
15 inline: auto
16 bypass: yes
17 reassembly:
18 memcap: 20gb
19 depth: 1mb
20 toserver-chunk-size: 2560
21 toclient-chunk-size: 2560
22 randomize-chunk-size: yes
23 segment-prealloc: 200000

47

Appendix B

Ansible

B.1 Common Role

There is only one role developed in Ansible, which is used for both configuring and testing
the sensor. The system running Ansible is able to connect to both hosts, the sensor and the
traffic generator, over SSH. The hosts are declared in the Ansible hosts file located in
/etc/ansible/hosts by default like so:

[ubuntu]
user@IP

[trex]
user@IP

B.1.1 Default Variables

The following code declares the default variables used by the role. Variables declared in the
playbook will override the defaults.

1 # monitor_if: "{{MONITOR_IF}}"
2 monitor_if: "ens2f0" # $ sudo lshw -class network -short
3

4 # Default configuration.
5 default: no
6

7 # Default memory allication and no local bypass.
8 default_memory: no
9

10 # High performance BIOS settings. Needs to be configured manually.
11 bios: yes
12

13 # NIC ring descriptor size
14 rx_ring: 1024 # Default 1024. 512 and 2048 yield worse results
15

48

16 # All CPUs in a set, e.g. 0-63
17 cpu_set: "0-{{ansible_processor_vcpus - 1}}"
18

19 threading_set_cpu_affinity: 'yes'
20 threading_management_cpu: '0'
21 threading_receive_cpu: '{{threading_management_cpu}}' # This is not used for

workers runmode, only autofp. For safe measure, we set equal to mgmt.↪→

22 threading_worker_cpu: '"1-15", "33-47"'
23 threading_worker_cpu_plain:

"{{threading_worker_cpu|regex_replace('[\x20\x22]', '')}}"↪→

24 threading_worker_prio_low: ''
25 threading_worker_prio_medium: '{{threading_management_cpu}}'
26 threading_worker_prio_high: '{{threading_worker_cpu}}'
27 threading_worker_prio_default: "high"
28

29 afpacket_interface: "{{monitor_if}}"
30 afpacket_threads_1: 15 # Threads in CPU group 1
31 afpacket_threads_2: "{{afpacket_threads_1}}" # Threads in CPU group 2
32 afpacket_clustertype: "cluster_qm" # To bind Suricata to RSS queues
33 afpacket_defrag: "no" # TODO: test yes/no, trenger kun å teste med beste

test?↪→

34 afpacket_usemmap: "yes"
35 afpacket_mmaplocked: "yes"
36 afpacket_tpacketv3: "yes"
37

38 # Ring-size is another af-packet variable that can be considered for tuning
39 # and performance benefits. It basically means the buffer size for packets
40 # per thread.
41 # Default : 2048
42 # SEPTun setting : 200000
43 # SEPTun 2/redipranha setting : 300000
44 afpacket_ringsize: 200000
45

46 # SEPTun/default setting : 1048576
47 # SEPTun 2/redipranha setting : 2097152
48 afpacket_blocksize: 2097152
49

50 # To deal with high traffic, we set the max-pending-packets to maximum value
65500.↪→

51 # Should not need any testing, leave at 65500.
52 # Default is 1024
53 max_pending_packets: 65500
54

55 runmode: "workers" # default is autofp
56

57 # Related to memory and emergency mode. See redpiranha under "Suricata
Config".↪→

58 # All values
59 flow_memcap: "{{'128mb' if default_memory else '14gb'}}"
60 flow_hash_size: "{{'65536' if default_memory else '256072'}}"
61 flow_prealloc: "{{'10000' if default_memory else '300000'}}"
62 stream_memcap: "{{'64mb' if default_memory else '12gb'}}"
63 stream_prealloc_sessions: "{{'2000' if default_memory else '375000'}}"

49

64 # Inspection will be skipped when stream.reassembly.depth is reached for a
particular flow.↪→

65 stream_bypass: "{{'no' if default_memory else 'yes'}}"
66 stream_reassembly_memcap: "{{'256mb' if default_memory else '20gb'}}"
67 stream_reassembly_segment_prealloc: "{{'2048' if default_memory else

'200000'}}"↪→

68

69 # Testing
70 counters: "capture.kernel_packets,capture.kernel_drops,tcp.reassembly_gap" #

Comma separated. Which counters to plot with suri-stats.↪→

71 test_seconds: 600 # How long to test in seconds.
72 test_name: "test1" # Which test is it? Remember to change this in each test.

Used to make result dir.↪→

73 traffic_gb: 9 # max 10.
74 trex_profile: "avl/sfr_delay_10_1g.yaml" # Which traffic profile to use for

TRrex.↪→

B.1.2 Tasks

The following code declares the tasks to be executed by the role.

1 ---
2

3 # To prevent entering the password when ansible executes.
4 - name: Set passwordless sudo
5 lineinfile:
6 path: /etc/sudoers
7 state: present
8 regexp: '^%sudo'
9 line: '%sudo ALL=(ALL) NOPASSWD: ALL'

10 validate: 'visudo -cf %s'
11

12

13 # Suricata worker CPUs needs to be isolated from the Linux kernel
scheduler.↪→

14 - name: Isolate CPUs in grub file
15 block:
16

17 # Add isolcpus boot parameter to grub file. PS: "isolcpus=" key with no
value is ok.↪→

18 - name: Modify grub file
19 template:
20 src: grub.j2
21 dest: /etc/default/grub
22 notify:
23 - Reboot to apply isolcpus
24

25 # Required after grub file is modified.
26 - name: Update grub
27 command: update-grub
28

50

29 # Force all handlers that have been notified to run now.
30 # Thus, reboot now of necessary.
31 - name: Flush handlers
32 meta: flush_handlers
33

34

35 - name: Install packages
36 package:
37 name:
38 - suricata # IDS
39 - jq # Command-line JSON processor
40 - ethtool # Query or control network driver and hardware settings
41 - build-essential # For compiling Intel driver
42 - linux-tools-generic # Installing Perf for testing
43 - linux-tools-5.4.0-72-generic # Installing Perf for testing
44 - sysstat # For CPU utilization output
45 - gawk # GNU awk needed to monitor network_softnet_stat
46 state: latest
47

48

49 # We make sure that the Intel i40e driver is present to ensure max
performance.↪→

50 - name: Install Intel i40e kernel module
51 block:
52

53 - name: Make sure directory exists
54 file:
55 path: /opt/i40e
56 state: directory
57 notify:
58 - Install i40e
59

60 - name: Unarchive driver stored locally
61 unarchive:
62 src: ../files/i40e-2.14.13.tar.gz
63 dest: /opt/i40e/
64 creates: i40e-2.14.13
65

66 # Force all handlers that have been notified to run now.
67 # Thus, install i40e now of necessary.
68 - name: Flush handlers
69 meta: flush_handlers
70

71 - name: Reload i40e driver to reset NIC counters
72 block:
73 - name: Remove driver
74 community.general.modprobe:
75 name: i40e
76 state: absent
77

78 - name: Add driver
79 community.general.modprobe:
80 name: i40e

51

81 state: present
82

83

84

85 - name: Stop irqbalance for high performance optimisation
86 service:
87 name: irqbalance
88 state: stopped
89 when: not default
90

91

92 # The set_irq_affinity script is included with the Intel i40e driver
download.↪→

93 # Pins interrupts from the monitor interface to the Suricata worker
threads.↪→

94 - name: Set irq affinity
95 command: "/opt/i40e/i40e-2.14.13/scripts/set_irq_affinity

{{threading_worker_cpu_plain}} {{monitor_if}}" # "local" means NUMA
0.

↪→

↪→

96 when: not default
97

98

99 # The NIC (Monitor IF) needs to be configured in order for better
performance,↪→

100 # and to support symmetric RSS.
101 - name: Configure NIC
102 ignore_errors: yes
103 when: not default
104 block:
105

106 - name: Disable NIC
107 command: "ifconfig {{monitor_if}} down"
108

109 - name: Change the number of RSS queues
110 command: "ethtool -L {{monitor_if}} combined {{(afpacket_threads_1 +

afpacket_threads_2) | int}}"↪→

111

112 - name: Enable receive hashing offload
113 command: "ethtool -K {{monitor_if}} rxhash on"
114

115 - name: Enable Rx ntuple filters and actions
116 command: "ethtool -K {{monitor_if}} ntuple on"
117

118 - name: Enable NIC
119 command: "ifconfig {{monitor_if}} up"
120

121 - name: Allow symmetric hashing by using low entropy toeplitz key
122 command: "ethtool -X {{monitor_if}} hkey

6D:5A:6D:5A
equal {{(afpacket_threads_1 + afpacket_threads_2) | int}}"

↪→

↪→

123

124 - name: Disable RX/TX pause.
125 command: "ethtool -A {{monitor_if}} rx off tx off"

52

126

127 - name: Adaptive control is disabled for lowest possible latency
128 command: "ethtool -C {{monitor_if}} adaptive-rx off adaptive-tx off

rx-usecs 125" # TODO: test e.g. 150↪→

129

130 - name: Changes the number of ring entries for the Rx ring. # TODO: test
131 command: "ethtool -G {{monitor_if}} rx {{rx_ring}}" # buffer

størrelse, finnes en maks størrelse men kan teste med mindre↪→

132

133 - name: Make sure the RSS hash function is Toeplitz.
134 command: "ethtool -X {{monitor_if}} hfunc toeplitz"
135

136 - name: Let the NIC balance as much as possible # TODO: test sdfn vs sd
137 shell: |
138 for proto in tcp4 udp4 tcp6 udp6; do
139 ethtool -N {{monitor_if}} rx-flow-hash $proto sdfn
140 done
141

142

143 # All tasks related to Suricata in this block.
144 - name: Suricata stuff
145 block:
146

147 # This file has no append parameter in suricata.yaml. Manually deletes
file. New file will be generated by Suircata.↪→

148 - name: Clean suricata.log
149 tags:
150 - testing
151 file:
152 path: /var/log/suricata/suricata.log
153 state: absent
154

155 # This file has no append parameter in suricata.yaml. Manually deletes
file. New file will be generated by Suircata.↪→

156 - name: Clean eve.json
157 tags:
158 - testing
159 file:
160 path: /var/log/suricata/eve.json
161 state: absent
162

163 # Uses the template to configure Suricata by inserting variables.
164 - name: Configure suricata
165 tags:
166 - configure
167 template:
168 src: suricata.yaml.j2
169 dest: /etc/suricata/suricata.yaml
170

171 - name: Stop Suricata
172 command: systemctl stop suricata.service
173

174 - name: Start Suricata

53

175 command: systemctl start suricata.service
176

177

178 # ======================== Testing ======================== #
179

180

181 - name: Testing
182 ignore_errors: yes
183 tags:
184 - testing
185 block:
186

187 # Suricata needs to start up before testing can begin.
188 - name: Pause for Suricata initialization
189 pause:
190 seconds: 30
191

192 # This task only runs on Trex machine.
193 - name: Start Trex traffic generator
194 shell: "./t-rex-64 -f {{trex_profile}} -c 4 -m {{traffic_gb}} -d

{{(test_seconds - 10) | int}}"↪→

195 args:
196 chdir: /opt/trex/v2.88
197 async: "{{test_seconds * 2 | int}}" # Don't wait for result. Async

value longer than command runtime.↪→

198 poll: 0 # Don't wait for result
199 delegate_to: "{{groups['trex'][0]}}"
200 tags:
201 - trex
202

203 # Example directory path for test1:
204 # results/test1/2021-04-26T08:53:00Z/
205 - name: Create timestamped dir for storing results
206 tags:
207 - test
208 file:
209 path:

"{{role_path}}/../../results/{{test_name}}/{{ansible_date_time.iso8601}}"↪→

210 state: directory
211 mode: "0755"
212 register: newdir_res # Use this fact to store results in the right

dir.↪→

213 delegate_to: localhost
214 become: false
215

216 - name: Copy softnet-stat.pl script to remote
217 copy:
218 src: softnet-stat.pl
219 dest: /usr/local/sbin/softnet-stat.pl
220 mode: '0755'
221

222 # All Linux commands we use for logging stats are stated in the loop
parameter.↪→

54

223 - name: Start commands used for logging stats
224 shell: "{{ item }}"
225 args:
226 executable: /bin/bash
227 async: "{{test_seconds * 2 | int}}" # Don't wait for result. Async

value longer than command runtime.↪→

228 poll: 0 # Don't wait for result
229 register: output
230 loop:
231

232 # Start mpstat for CPU utilization log
233 - "mpstat -P {{cpu_set}} -N 0,1 10 {{(test_seconds / 10) | int}}"
234

235 # Start mpstat for CPU interrupts log
236 - "mpstat -P {{cpu_set}} -I SCPU -I SUM 10 {{(test_seconds / 10) |

int}}"↪→

237

238 # Start perf for cache miss stats. PS: --log-fd 1 means to output to
stdout and not stderr.↪→

239 - "perf stat --log-fd 1 -I 10000 -e
LLC-loads,LLC-load-misses,LLC-stores,LLC-prefetches -C
{{cpu_set}} sleep {{test_seconds}}"

↪→

↪→

240

241 # Start pidstat for monitoring Suricata tasks
242 - "pidstat -tuw -C 'Suricata|{{monitor_if}}|FM#|FR#|CW|CS|US' 10

{{(test_seconds / 10) | int}}"↪→

243

244 # Start ethtool for monitoring card’s FIFO buffer drops/losses.
245 - "for i in {1..{{(test_seconds / 10) | int}}}; do date; ethtool -S

{{monitor_if}} | grep -E
'rx_dropped|rx_missed|rx_packets|errors'; echo ''; sleep 10;
done"

↪→

↪→

↪→

246

247 # Start softnet-stat.pl for monitoring packet drops at the softirq
layer.↪→

248 - "perl /usr/local/sbin/softnet-stat.pl --count {{(test_seconds /
10) | int}} --sec 10"↪→

249

250 # Ansible will wait for the set time in order for Suricata to process
some data.↪→

251 - name: Pause for testing
252 pause:
253 seconds: "{{test_seconds}}"
254

255 # Because of some problems with printing the end of suricata.log,
256 # we have to kill the service before stopping it.
257 - name: Kill Suricata
258 command: systemctl kill suricata.service
259

260 # Wait for Suricata to summarize the run.
261 - name: Pause for Suricata to shut down
262 pause:
263 seconds: 120

55

264

265 # Stop Suricata.
266 - name: Stop Suricata
267 command: systemctl stop suricata.service
268

269 # We have to wait for async tasks to finish in order to get the
outputs.↪→

270 - name: Wait for async tasks to finish
271 async_status:
272 jid: "{{ item.ansible_job_id }}"
273 register: output_results
274 until: output_results.finished
275 retries: 100
276 delay: 10
277 with_items: "{{ output.results }}"
278

279 # All async tasks will create a log file with their command as the
name.↪→

280 - name: Fetch command output logs
281 copy:
282 content: "{{item.stdout}}"
283 dest: "{{newdir_res.path}}/{{item.cmd|regex_replace('[\x2F]',

'-')}}.log"↪→

284 delegate_to: localhost
285 become: no
286 with_items: "{{output_results.results}}"
287 no_log: True
288 # debugger: always
289

290 # suri-stats is a python module used to generate plots from the
stats.log file.↪→

291 # The "counters" variable can be changed to plot different stats.
292 - name: Generate suri-stats plot
293 command: "suri-stats -p -c {{counters}} -S -o /tmp/plot.png

/var/log/suricata/stats.log"↪→

294

295 - name: Fetch plot
296 fetch:
297 src: /tmp/plot.png
298 dest: "{{newdir_res.path}}/plot.png"
299 flat: yes # Override file path name
300

301 - name: Fetch suricata.log
302 fetch:
303 src: /var/log/suricata/suricata.log
304 dest: "{{newdir_res.path}}/suricata.log"
305 flat: yes # Override file path name
306

307 - name: Fetch stats.log
308 fetch:
309 src: /var/log/suricata/stats.log
310 dest: "{{newdir_res.path}}/stats.log"
311 flat: yes # Override file path name

56

312

313 - name: Fetch suricata.yaml
314 fetch:
315 src: /etc/suricata/suricata.yaml
316 dest: "{{newdir_res.path}}/suricata.yaml"
317 flat: yes # Override file path name
318

319 - name: Fetch eve.json
320 tags:
321 - test
322 fetch:
323 src: /var/log/suricata/eve.json
324 dest: "{{newdir_res.path}}/eve.json"
325 flat: yes # Override file path name
326

327 # -T for timestamp
328 - name: Log dmesg
329 block:
330

331 - name: Register dmesg
332 command: "dmesg -T"
333 register: dmesg
334

335 - name: Fetch dmesg
336 copy:
337 content: "{{dmesg.stdout}}"
338 dest: "{{newdir_res.path}}/dmesg.log"
339 delegate_to: localhost
340 become: no
341

342 - name: Dump all variables
343 template:
344 src: dumpall.j2
345 dest: "{{newdir_res.path}}/dumpall.json"
346 delegate_to: localhost
347 become: false

B.1.3 Handlers

The following code declares the handlers used by the role. When a task notifies a handler,
it will run at the end of the play.

1 # Tasks in this file only runs when other tasks notify them.
2

3 # The Intel i40e driver is installed and added as a kernel module.
4 # Only when the driver is not present.
5 - name: Install i40e
6 block:
7 - name: Compile driver
8 community.general.make:
9 chdir: /opt/i40e/i40e-2.14.13/src

57

10 target: install
11

12 - name: Add the i40e module
13 community.general.modprobe:
14 name: i40e
15 state: present
16

17

18 # Reboot is required in order to set the boot parameter from grub.
19 # We only reboot when the grub file is modified.
20 - name: Reboot to apply isolcpus
21 reboot:

B.1.4 Suricata High Performance Playbook

The following code declares the playbook used to configure and test Suricata in a high
performance configuration using 10 worker threads.

1 ---
2

3 - name: cpu_10
4 hosts: ubuntu
5 become: yes
6 roles:
7 - role: ../roles/common
8 vars:
9

10 test_name: "cpu_10" # Which test is it? Remember to change this in
each test. Used to make result dir.↪→

11

12 threading_management_cpu: '"0", "32"'
13 threading_worker_cpu: '"1-10"'
14

15 afpacket_threads_1: 10 # Threads in CPU group 1
16 afpacket_threads_2: 0 # Threads in CPU group 2

58

	Preface
	Abstract
	List of Figures
	List of Tables
	List of abbreviations
	Introduction
	Motivation
	Problem Statement and Research Goals
	Limitations
	Research Methodology
	Thesis Outline

	Background
	Memory Cache
	Shared Memory Architecture
	UMA
	NUMA

	Linux Kernel
	Processes
	Virtual Address Space
	Kernel and User Space
	Threads
	Process Scheduler

	Network Interface Controller
	Receive Side Scaling

	Suricata IDS
	Rules
	Runmodes
	Performance Considerations

	Automation
	Ansible

	TRex Traffic Generator

	Related Work
	Improvement of Hardware Firewall’s Data Rates by Optimizing Suricata Performances
	Evaluating Network Intrusion Detection Systems for High-Speed Networks
	Kargus: A Highly-scalable Software-based Intrusion Detection System

	Approach
	System
	Mapping the Hierarchical Topology

	Behavior
	Traffic Profile

	Testing Methodology
	Ansible
	Testing Approach

	Results
	Default Configuration
	High Performance Configuration
	Additional Testing

	Discussions
	Test Results
	Default Configuration
	High Performance Configuration
	Additional Testing

	Identifying the Suricata Throughput
	Decisions
	Pre-Recorded Traffic
	Management Threads

	Conclusions
	Future work

	Bibliography
	System Configuration
	BIOS Settings
	Linux Settings
	Disable IRQbalance
	Compile and install Suricata
	NIC driver and settings

	Suricata Configuration
	Af-packet
	Threading
	Memory

	Ansible
	Common Role
	Default Variables
	Tasks
	Handlers
	Suricata High Performance Playbook

