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This paper deals with designing the controller of LTI system based on data-driven techniques. We propose a scheme embedding a
residual generator into control loop based on realization of the Youla parameterization for advanced controller design. Basic idea
of the proposed scheme is constructing the residual generator by using the solution of the Luenberger equations as well as the well-
established relationship between diagnosis observer (DO) and the parity vector. Besides, the core of the above idea is straightly using
the process measurements to obtain the parity space based on the Subspace Identification Method (SIM), rather than establishing
the system model. At last, a simulation based on the numerical model demonstrates the performance and effectiveness of the
proposed scheme.

1. Introduction

In the past decades, model-based controller design tech-
niques have been perfectly established and a larger number
of schemes have been proposed to design the controllers with
the process model given [1–3], especially T-S fuzzy approach
[4–6]. However, with the development of the science and
technology as well as increasing demands for system perfor-
mance and product quality, the modern industrial processes
become more and more complicated and the traditional
model-based approaches have become impractical for being
much difficult or even impossible to construct the processes
model. Hence, both the data-driven academic research and
the data-driven techniques focusing on modern industrial
applications have received widespread attention.

Compared with the well-developed model-based tech-
niques, data-driven/data-based approaches, whose core is
to extract the significant information contained in process
measurements, not only improve the systems performance
but also better solve the safety and reliability issues especially
on the modern process [7–9]. As a result, over the past two
decades, the data-driven methods and techniques have been

rapidly developed and many data-driven approaches have
been successfully used in industrial process. For example,
PID (proportional-integral-derivative)methodsmight be the
earliest and the most widely used in industrial processes
[10, 11]. Principal component analysis (PCA) [12, 13], one of
the earliest data-based approaches to lower dimensional prin-
cipal components, and partial least squares (PLS) aiming to
predict key indicator directly from processes measurements
are the most famous and successfully used approaches in
multivariate statistical analysis which deal with large amounts
of highly correlated measured data [14, 15].

In recent years, there are a lot of achievements in the
field of fault detection and isolation (FDI) technique based
on theory and many schemes to construct FDI systems
[16–18]. In the above-mentioned papers, one of the most
significant innovations is proposing a scheme that directly
uses process measurements to construct residual generators
for the purpose of FDI systems design. And several schemes
extracting residual signals directly from a feedback con-
trol loop, without additional designing and constructing a
residual generator based on observers, have been proposed
[19, 20]. Ding et al. [21] designed an EIMC structure whose

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 290371, 8 pages
http://dx.doi.org/10.1155/2014/290371

http://dx.doi.org/10.1155/2014/290371


2 Mathematical Problems in Engineering

core is embedding residual generation which aimed for FDI
in the feedback control loop and proposed an advanced
subspace identification method (SIM) which can generate
parity vector directly from process measurements, for the
purpose of constructing observer-based residual generator.
Besides, Youla parameterization can establish the relation-
ship between all stabilization controllers and observer-based
residual generator [16, 22].

Motivated by the aforementioned studies, in this paper,
we propose a data-driven scheme using process measure-
ments to design controllers for LTI system, and the basic idea
is instructing an observer-based residual generator into feed-
back control loop. Following the above idea, we first divided
the work into three sections based on Youla parameteriza-
tion and coprime factorizations [22]. Note that the first sec-
tion is the core of this paper. In this section, to produce resid-
ual signals, we design a residual generator with an observer
form. Besides, the basis of constructing the generator is the
solution of the Luenberger equations [16] from the well-est-
ablished relationship between diagnosis observer (DO) and
the parity vector which are identified directly from the avail-
able test data by using the advanced SIM. In addition, we pre-
sent the scheme proposed in form of algorithms to make it
easy to understand.

The structure of remaining content is shown as follows:
the basic plant model as well as the system preliminary
factorization, in other words, the related work, is explained
in Section 2. The first part of the designing controller will
be completed in Section 3. In addition, several algorithms
are presented to obtain the structure and parameters of the
residual generator based on diagnosis observer. And the rest
of the parts are studied in Section 4. For the purpose of illus-
trating the performance and effectiveness of the scheme, a
simulation study on an academicmodel will be presented and
discussed in Section 5. At last, we will give some conclusion
in Section 6.

2. Related Work

2.1. Process Description. In this paper, we deal with designing
the controller of linear time invariant (LTI) system. Without
loss of generality, we assume that the discrete state space
equation of the system is described by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐹𝑑𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) + 𝐹𝑛𝑛 (𝑘) ,

(1)

in which both the plant inputs and outputs are measurable;
in other words, the values of them can be obtained at every
discrete time point. And they are defined as 𝑢(𝑘) ∈ 𝑅

𝑙 and
𝑦(𝑘) ∈ 𝑅

𝑚, respectively. 𝑥(𝑘) ∈ 𝑅
𝑛 stand for the status

variables. It is assumed that 𝑑(𝑘) ∈ 𝑅
𝑛 and 𝑛(𝑘) ∈ 𝑅

𝑚 are
white noise. And note that values of 𝑑(𝑘) and 𝑛(𝑘) cannot be
measured, and there is no statistical correlation between the
noise sequences and the input vectors 𝑢(𝑘). In addition, the
system matrices and order are unknown parameters.

Based on the well-established relationship between the
transfer function matrix and the state space equation, there
are some significant points as follows:

𝑦 (𝑧) = 𝐺 (𝑧) 𝑢 (𝑧) + 𝐺1 (𝑧) 𝑑 (𝑧) + 𝐹𝑛𝑛 (𝑧) ,

𝐺 (𝑧) = 𝐷 + 𝐶(𝑧𝐼 − 𝐴)
−1
𝐵,

𝐺1 (𝑧) = 𝐶(𝑧𝐼 − 𝐴)
−1
𝐹𝑑.

(2)

As shown in Figure 1, we chose classical output feedback
control method to enhance the system performance and
robustness [23].

2.2. Left Coprime Factorization and Youla Parameterization.
Suppose that there exists a appropriate parameter matrix 𝐹,
satisfying

max
𝑖

󵄨
󵄨
󵄨
󵄨
𝜆𝑖

󵄨
󵄨
󵄨
󵄨
< 1, (3)

where 𝜆𝑖 stands for the eigenvalues of the matrix 𝐴 − 𝐹𝐶

and 𝑖 = 1, 2, . . . 𝑛. Then, the left coprime factorization of the
system transfer function matrices [22] can be described as
follows:

𝐺 (𝑧) = 𝐷
−1
(𝑧) 𝑉̂ (𝑧) (4)

𝑉̂(𝑧) and𝐷(𝑧) are, respectively, defined as 𝑉̂(𝑧) = 𝐷+𝐶(𝑧𝐼−

𝐴𝐹)
−1
𝐵𝐹 and 𝐷(𝑧) = 𝐼 − 𝐶(𝑧𝐼 − 𝐴𝐹)

−1
𝐹 with 𝐴𝐹 = 𝐴 − 𝐹𝐶

and 𝐵𝐹 = 𝐵 − 𝐹𝐷. According to the Youla parameterization,
all stable controllers𝐾(𝑧) can be expressed by a unified form
for a classical output feedback control loop. Consider

𝐾 (𝑧) = (𝑋 (𝑧) − 𝑅 (𝑧) 𝑉̂ (𝑧))

−1

(𝑌̂ (𝑧) − 𝑅 (𝑧)𝐷 (𝑧)) . (5)

𝑋(𝑧) and 𝑌̂(𝑧) are, respectively, defined as 𝑋(𝑧) = 𝐼 −

𝐿(𝑧𝐼 − 𝐴𝐹)
−1
𝐵𝐹 and 𝑌̂(𝑧) = 𝐿(𝑧𝐼 − 𝐴𝐹)

−1
𝐹, in which 𝐿 is an

appropriate parametermatrix and assures a stable𝐴+𝐵𝐿. And
𝑅(𝑧) is a parameter matrix whose parameter can be chosen
according to the requirements of plant performance.

In this paper, we assume that the matrix 𝐴 is stable to
simplify the controller design. Then, letting the matrix 𝐿 be
equal to zero is reasonable. Combining 𝐿 = 0with (5), we can
obtain a simplified controller as follows:

𝐾 (𝑧) = (𝐼 − 𝑅 (𝑧) 𝑉̂ (𝑧))

−1

𝑅 (𝑧)𝐷 (𝑧) . (6)

It is well known that the residual signals imply significant
information about process and can be used for FDI purpose
[17]. Recall that the residual vectors can be described as
follows:

𝑟 (𝑧) = 𝐷 (𝑧) 𝑦 (𝑧) − 𝑉̂ (𝑧) 𝑢 (𝑧) . (7)

Note that the process inputs, that is, outputs of the controller,
are expressed as

𝑢 (𝑧) = 𝐾 (𝑧) [ℎ (𝑧) − 𝑦 (𝑧)] . (8)
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Figure 1: The primal system.

Combining (6) and (8), we get

𝑢 (𝑧) = 𝑅 (𝑧) {𝐷 (𝑧) ℎ (𝑧) − [𝐷 (𝑧) 𝑦 (𝑧) − 𝑉̂ (𝑧) 𝑢 (𝑧)]} .

(9)

Thus, the feedback control loop is restructured as shown in
Figure 2.

Observing Figure 2, we notice that the task of designing
the controller can be divided into three sections:

(i) obtaining residual signal through constructing a
residual generator,

(ii) designing the parameter matrix 𝑅(𝑧) ∈ 𝑅H∝,
(iii) selecting the prefilter 𝐷(𝑧).

3. Residual Generator

This section is the core of the paper. Residual signal represents
the difference between the actual observed value and the
estimate value, which implies very important information
about process. There are many papers which construct resid-
ual generator directly using the process inputs and outputs,
instead of identifying the system parameter matrixes [12, 17,
18].The algorithm of constructing generator from inputs and
outputs will be given in this section.

3.1. Diagnostic Observer and Parity Space Approach. There
are many approaches to generate residual signals. In this
subsection, we study two methods of them, which are based
on diagnostic observer (DO) and parity space, respectively
[16].

The first method is based on DO, and its state space
equation is expressed by

𝑧 (𝑘 + 1) = 𝐴𝑧𝑧 (𝑘) + 𝐵𝑧𝑢 (𝑘) + 𝐹𝑧𝑦 (𝑘) ,

𝑦 (𝑘) = 𝑐𝑧𝑧 (𝑘) + 𝑑𝑧𝑢 (𝑘) + 𝑔𝑦 (𝑘) ,

(10)

where 𝑧 ∈ 𝑅
𝑠, 𝐴𝑧 ∈ 𝑅

𝑠×𝑠, 𝐵𝑧 ∈ 𝑅
𝑠×𝑙, 𝐹𝑧 ∈ 𝑅

𝑠×𝑚, 𝑔 ∈ 𝑅
1×𝑚, 𝑐𝑧 ∈

𝑅
1×𝑠, and 𝑑𝑧 ∈ 𝑅

1×𝑙. Besides, 𝑠 and 𝑇, respectively, represent
the order of DO which satisfies 𝑠 ≥ 𝑛 and the transformation
matrix. Besides, thematrixes𝐴𝑧,𝐵𝑧,𝐹𝑧,𝑔, 𝑐𝑧,𝑑𝑧, and𝑇 satisfy
the Luenberger equations,

𝑇𝐴 − 𝐹𝑧𝐶 = 𝐴𝑧𝑇, 𝑐𝑧𝑇 = 𝑔𝐶,

𝑇𝐵 − 𝐵𝑧 = 𝐹𝑧𝐷, 𝑑𝑧 = 𝑔𝐷.

(11)

The other method studied is based on parity space [24],
and we can also obtain the residual signal by using the parity
space approach as follows [12]. Assume that the systemwhich
is expressed in the relatedwork is observable and thematrix𝐶
is row full rank.Then, we can recursively describe the system
as

𝑦 (𝑘) = 𝐶𝐴
𝑠−1

𝑥 (𝑘 − 𝑠 + 1) + 𝐶𝐴
𝑠−2

𝐵𝑢 (𝑘 − 𝑠 + 1)

+ ⋅ ⋅ ⋅ + 𝐶𝐵𝑢 (𝑘 − 1) + 𝐷𝑢 (𝑘) .

(12)

Using the inputs and outputs to build the following data
structure:

𝑦𝑠 (𝑘) =

[

[

[

[

[

𝑦 (𝑘 − 𝑠)

𝑦 (𝑘 − 𝑠 + 1)

...
𝑦 (𝑘)

]

]

]

]

]

∈ 𝑅
𝑠𝑚
,

𝑢𝑠 (𝑘) =

[

[

[

[

[

𝑢 (𝑘 − 𝑠)

𝑢 (𝑘 − 𝑠 + 1)

...
𝑢 (𝑘)

]

]

]

]

]

∈ 𝑅
𝑠𝑙
,

(13)

we can get the rewritten system form as follows:

𝑦𝑠 (𝑘) = Γ𝑠𝑥 (𝑘 − 𝑠 + 1) + 𝐻𝑠,𝑢𝑢𝑠 (𝑘) , (14)

in which

Γ𝑠 =

[

[

[

[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑠

]

]

]

]

]

, 𝐻𝑠,𝑢 =

[

[

[

[

[

[

𝐷 0 ⋅ ⋅ ⋅ 0

𝐶𝐵 𝐷

...
... d d

𝐶𝐴
𝑠−1

𝐵 ⋅ ⋅ ⋅ 𝐶𝐵 𝐷

]

]

]

]

]

]

. (15)

Equation (14) expresses the relationship between system
inputs and outputs using the past plant inputs 𝑢𝑠(𝑘) and past
state vectors.

Solving the following equation, we are able to get a parity
vector 𝛾𝑠( ̸= 0) ∈ 𝑅

1×(𝑠+1)𝑚,

𝛾𝑠Γ𝑠 = 0. (16)

Hence, 𝛾𝑠 belongs to Γ
⊥

𝑠
, which is the parity subspace and

satisfies Γ⊥
𝑠
Γ𝑠 = 0.

Note that when both sides of (14) are multiplied by 𝛾𝑠 at
the same time, we can obtain a residual signal sequence in the
following form:

𝑟 (𝑘) = 𝛾𝑠 (𝑦𝑠 (𝑘) − 𝐻𝑠,𝑢𝑢𝑠 (𝑘)) . (17)

Despite that the diagnostic observer and the parity space
approach are in different forms, there have been a well-
established relationship between them [16, 25]. For a known
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Figure 2: The whole control system.

vector, 𝛾𝑠 = [𝛾𝑠,0 𝛾𝑠,1 ⋅ ⋅ ⋅ 𝛾𝑠,𝑠], 𝛾𝑠,𝑖 ∈ 𝑅
𝑚, 𝑖 = 0, 1, . . . , 𝑠, the

matrixes of the diagnostic observer can be set as follows [17]:

𝐴𝑧 =

[

[

[

[

[

0 0 ⋅ ⋅ ⋅ 0

1 0 ⋅ ⋅ ⋅ 0

... d d
...

0 ⋅ ⋅ ⋅ 1 0

]

]

]

]

]

∈ 𝑅
𝑠×𝑠
, 𝐹𝑧 = −

[

[

[

[

[

𝛾𝑠,0

𝛾𝑠,1

...
𝛾𝑠,𝑠−1

]

]

]

]

]

,

𝑐𝑧 = [0 ⋅ ⋅ ⋅ 0 1] ∈ 𝑅
𝑠
, 𝑔 = 𝛾𝑠,𝑠 ∈ 𝑅

𝑚
, 𝑑𝑧 = 𝛾𝑠𝐻𝑠,𝑠,

𝐵𝑧 =

[

[

[

[

[

𝛾𝑠𝐻𝑠,0

𝛾𝑠𝐻𝑠,1

...
𝛾𝑠𝐻𝑠,𝑠−1

]

]

]

]

]

, 𝐻𝑠,𝑢 = [𝐻𝑠,0 ⋅ ⋅ ⋅ 𝐻𝑠,𝑠] ,

(18)

𝑇 =

[

[

[

[

[

𝛾𝑠,1 𝛾𝑠,2 ⋅ ⋅ ⋅ 𝛾𝑠,𝑠−1 𝛾𝑠,𝑠

𝛾𝑠,2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛾𝑠,𝑠 0

... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

...
...

𝛾𝑠,𝑠 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

]

]

]

]

]

Γ𝑠. (19)

Notice that different selected principles of 𝛾𝑠 lead to
different system performances. A scheme to select 𝛾𝑠 is
proposed, and the scheme can improve the robustness of the
residual generator and system performance [26].

3.2. Realization of the Parity Space Approach. Recall the state
space of the process expressed in the related work, and
suppose that the system matrixes and order are unknown
constants which do not change with time, but the process
inputs and outputs are available. Constructing data structure
as follows:

𝑢𝑝 (𝑘) =
[

[

[

𝑢 (𝑘 − 𝑠𝑝)

...
𝑢 (𝑘)

]

]

]

, 𝑢𝑓 (𝑘) =
[

[

[

𝑢 (𝑘)

...
𝑈(𝑘 + 𝑠𝑓)

]

]

]

,

𝑦𝑝 (𝑘) =
[

[

[

𝑦 (𝑘 − 𝑠𝑝)

...
𝑦 (𝑘)

]

]

]

, 𝑦𝑓 (𝑘) =
[

[

[

𝑦 (𝑘)

...
𝑦 (𝑘 + 𝑠𝑓)

]

]

]

,

𝑈𝑝 = [𝑢𝑝 (𝑘) 𝑢𝑝 (𝑘 + 1) ⋅ ⋅ ⋅ 𝑢𝑝 (𝑘 + 𝑁 − 1)] ,

𝑈𝑓 = [𝑢𝑓 (𝑘) 𝑢𝑓 (𝑘 + 1) ⋅ ⋅ ⋅ 𝑢𝑓 (𝑘 + 𝑁 − 1)] ,

(20)

in which both 𝑠𝑝 and 𝑠𝑓 are larger than 𝑛, besides, 𝑁 is
user-defined parameters and always much larger than 𝑠. To
simplify the problem, let both 𝑠𝑝 and 𝑠𝑓 be equal to 𝑠 which
is user-defined parameters and larger than or equal to 𝑛

in general. Hence, considering the above-mentioned data
structures shown in (20), we can construct matrixes 𝑍𝑝 and
𝑍𝑓 for the process inputs and outputs with Hankel structure:

𝑍𝑝 = [

𝑌𝑝

𝑈𝑝

] , 𝑍𝑓 = [

𝑌𝑓

𝑈𝑓

] . (21)

In the following subsection, we use the subspace identi-
fication method (SIM) proposed by Wang and Qin [27] to
identify the parity space, that is, finding Γ⊥

𝑠
, Γ⊥
𝑠
𝐻𝑠,𝑢, and Γ𝑠.

Besides, we give thismethod in the form of an algorithm [28].

Algorithm 1. Consider the following.

Step 1. Construct 𝑍𝑓 and 𝑍𝑝 and calculate 𝑍𝑓𝑍
𝑇

𝑝
.

Step 2. Do SVD on (1/𝑁)𝑍𝑓𝑍
𝑇

𝑝

1

𝑁

𝑍𝑓𝑍
𝑇

𝑝
= 𝑈𝑧 [

Λ 𝑧,1 0

0 Λ 𝑧,2

]𝑉
𝑇

𝑧
, (22)

in which 𝑈𝑧 ∈ 𝑅
𝑠𝑙(𝑠+𝑚)×𝑠𝑙(𝑙+𝑚), 𝑉𝑧 ∈ 𝑅

𝑠𝑙(𝑠+𝑚)×𝑠𝑙(𝑙+𝑚), 𝑈𝑧 =

[
𝑈𝑧,11 𝑈𝑧,12

𝑈𝑧,21 𝑈𝑧,22
], 𝑈𝑧,11 ∈ 𝑅

𝑠𝑙𝑚×(𝑠𝑙𝑙+𝑛), 𝑈𝑧,12 ∈ 𝑅
𝑠𝑙𝑚×𝜁, 𝑈𝑧,22 ∈ 𝑅

𝑠𝑙×𝜁,
𝑠𝑙 − 1 = 𝑠, 𝜁 = 𝑠𝑙𝑚 − 𝑛, and both Λ 𝑧,1 and Λ 𝑧,2 are diagonal
matrixes. Note that if 𝑑 and 𝑛 are perfect white noise, all
eigenvalues ofΛ 𝑧,2 are equal to zero, andΛ 𝑧,1 is a nonsingular
matrix satisfying rank(Λ 𝑧,1) = 𝑠𝑙𝑙 + 𝑛. Hence, the value of 𝑛
can be determined.

Step 3. Respectively, define Γ⊥
𝑠
and Γ⊥
𝑠
𝐻𝑠,𝑢 as𝑈

𝑇

𝑧,12
and −𝑈𝑇

𝑧,22
.

Step 4. Do SVD on Γ
⊥

𝑠

Γ
⊥

𝑠
= 𝑈Γ⊥

𝑠
[Λ Γ⊥
𝑠

0]𝑉
𝑇

Γ⊥
𝑠

(23)
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with 𝑉Γ⊥
𝑠
= [𝑉Γ⊥

𝑠
,1 𝑉Γ⊥

𝑠
,2], 𝑉Γ⊥

𝑠
,2 ∈ 𝑅

(𝑠𝑙+1)𝑚×𝑛, and we can get
Γ𝑠 = 𝑉Γ⊥

𝑠
,2.

The necessary conditions have been completely studied
in [27, 29], when identifying the parity space by using SIM.
This paper assumes that the process measurements used for
identifying the parity space meet the above condition, so
that we can use Algorithm 1 to identify Γ

⊥

𝑠
, Γ⊥
𝑠
𝐻𝑠,𝑢, and Γ𝑠.

However, when 𝑑 and 𝑛 are not absolute white noise, we can
use the following method [27] to identify 𝑛.

For a sequence of the system order 𝑛, for instance, 𝑛 ∈

[0 ⋅ ⋅ ⋅ 10], the order of the systemwill be the one whichmakes
the following AIC index:

AIC𝑁 (𝑛) = 𝑁 (𝑚 (1 + ln 2𝜋) + ln |Φ|) + 2𝛿𝑛Ψ (24)
minimum, where

Φ =

1

𝑁

𝑁

∑

𝑖=1

𝑒 (𝑖) 𝑒(𝑖)
𝑇
,

𝑒 (𝑖) = (Γ
⊥

𝑠
)

𝑇
[𝐼 − 𝐻𝑠,𝑢] 𝑧𝑓 (𝑖 − 𝑛) ,

Ψ = 2𝑛𝑚 +

𝑚 (𝑚 + 1)

2

+ 𝑛𝑙 + 𝑚𝑙,

𝛿𝑛 =

𝑁

𝑁 − ((𝑀𝑛/𝑚) + ((𝑚 + 1) /2))

.

(25)

3.3. Design of Residual Generator. After identifying Γ
⊥

𝑠
,

Γ
⊥

𝑠
𝐻𝑠,𝑢, constructing a residual generator by using the rela-

tionship between DO and parity space is just around the
corner. Select a parity vector 𝛾𝑠 ∈ Γ

⊥

𝑠
and 𝛾𝑠𝐻𝑠,𝑢 ∈ Γ

⊥

𝑠
𝐻𝑠,𝑢,

with 𝛾𝑠 ∈ 𝑅
𝑚(𝑠+1), 𝛾𝑠 = [𝛾𝑠,0 𝛾𝑠,1 ⋅ ⋅ ⋅ 𝛾𝑠,𝑠], and 𝛾𝑠,𝑖 ∈ 𝑅

𝑚, 𝑖 =
0, 1, . . . , 𝑠; then, we can calculate the parameter matrixes of
DO𝐴𝑧,𝐵𝑧,𝐹𝑧, 𝑔, 𝑐𝑧, and 𝑑𝑧 by solving (18)-(19) and construct
a diagnosis observer according to (10).

Note that we can obtain the following residual signal [16]
by constructing and using the residual generator (7):

𝑟 (𝑘) = 𝑉 (𝑦 (𝑘) − 𝑦 (𝑘)) ∈ 𝑅
𝑥
, (26)

in which 𝑉 represent parameter matrix satisfying 𝑉 ∈ 𝑅
𝑥×𝑚

and 𝑦(𝑘) denote an estimate for the process outputs with con-
vergence to the real outputs. To improve the system perfor-
mance, it is necessary to design a residual generator which
can deliver an𝑚-dimensional residual vector.Hence, we need
to extend the data-driven based single residual generation to
multiple residual generations. In the following section, using
Γ
⊥

𝑠
and Γ

⊥

𝑠
𝐻𝑠,𝑢 having been identified, we propose a method

to construct𝑚-DOs spanning the overall state space to obtain
𝑚 residual sequences independent from each other [12].

Suppose that Γ
⊥

𝑠
and Γ

⊥

𝑠
𝐻𝑠,𝑢 are computed using the

above-mentioned method, and choose𝑚 parity vectors from
Γ
⊥

𝑠
, which are linearly independent from each other,

𝛾𝑠𝑖
∈ Γ
⊥

𝑠
, 𝑖 = 1, . . . , 𝑚, 𝛾𝑠𝑖

= [𝛾𝑠𝑖 ,0
𝛾𝑠𝑖 ,1

⋅ ⋅ ⋅ 𝛾𝑠𝑖 ,𝑠
] (27)

with rank([𝛾𝑇
𝑠1 ,𝑠

⋅ ⋅ ⋅ 𝛾
𝑇

𝑠𝑚,𝑠
]) = 𝑚, and select the correspond-

ing vectors from Γ
⊥

𝑠
𝐻𝑠,𝑢

𝛽𝑠𝑖
= 𝛾𝑠𝑖

𝐻𝑢,𝑠 ∈ Γ
⊥

𝑠
𝐻𝑠,𝑢, 𝑖 = 1, . . . , 𝑚. (28)

Using 𝛾𝑠𝑖 and 𝛽𝑠𝑖 , we can design the𝑚-DOs as follows:

𝑧 (𝑘 + 1) = 𝐴𝑧𝑧 (𝑘) + 𝐹𝑧𝑦 (𝑘) + 𝐵𝑧𝑢 (𝑘) ,

𝑟 (𝑘) = −𝐶𝑧𝑧 (𝑘) − 𝐷𝑧𝑢 (𝑘) + 𝐺𝑦 (𝑘) ∈ 𝑅
𝑚
,

(29)

𝐴𝑧 = diag (𝐴𝑧1 , . . . , 𝐴𝑧𝑚) , 𝐶𝑧 = diag (𝑐𝑧1 , . . . , 𝑐𝑧𝑚) ,

𝐵𝑧 =
[

[

[

𝐵𝑧1

...
𝐵𝑧𝑚

]

]

]

, 𝐹𝑧 =
[

[

[

𝐹𝑧1

...
𝐹𝑧𝑚

]

]

]

,

𝐷𝑧 =
[

[

[

𝑑𝑧1

...
𝑑𝑧𝑚

]

]

]

, 𝐺 =
[

[

[

𝑔1

...
𝑔𝑚

]

]

]

,

(30)

where the matrixes 𝐴𝑧𝑖 , 𝐵𝑧𝑖 , 𝑐𝑧𝑖 , 𝑑𝑧𝑖 , and 𝐹𝑧𝑖
, 𝑖 = 1, . . . , 𝑚

are calculated by solving (18)-(19), and the dimensions of
the matrix 𝐴𝑧, that is, 𝑠, satisfy 𝑠 = ∑

𝑛

𝑖=1
𝑠𝑖. Besides, the

transformation matrix 𝑇 ∈ 𝑅
𝑠×𝑛 satisfies rank(𝑇) = 𝑛, 𝑇 =

[𝑇1 ⋅ ⋅ ⋅ 𝑇𝑚] and note that 𝑇𝑖, 𝑖 = 1, . . . , 𝑚, can be got from
(19).Then, estimated value of outputs can be generated by the
𝑚-DOs,

𝑦 (𝑘) = 𝐺
−1
(𝐶𝑧𝑧 (𝑘) + 𝐷𝑧𝑢 (𝑘)) .

(31)

Obviously, when the process is multiple output system,
𝑠, the order of the system (29) is significantly larger than 𝑛,
the order of the process system. Hence, we need to reduce the
order of the𝑚-DOs to decrease the amount of calculation and
improve the system performance.

Note that the transformation matrix 𝑇 satisfies 𝑧(𝑘) =

𝑇𝑥(𝑘), then we can reduce the order of the multiple residual
generators as follows [12].

Assume that the multiple residual generators have been
constructed, and the transformation matrix 𝑇 has a pseu-
doinverse 𝑇− satisfying 𝑇

−
𝑇 = 𝐼. Thus, we can reconstruct

following residual generator:

𝑧̂ (𝑘) = 𝐴𝑥𝑧̂ (𝑘) + 𝐵𝑥𝑢 (𝑘) + 𝐹𝑥𝑦 (𝑘) ,

𝑟 (𝑘) = −𝐺
−1
𝐶𝑥𝑧̂ (𝑘) − 𝐺

−1
𝐷𝑧𝑢 (𝑘) + 𝑦 (𝑘) ∈ 𝑅

𝑚
(32)

with 𝑧̂(𝑘) being an estimate for the state vector of the system
(1), and the matrixes 𝐵𝑥, 𝐹𝑥, and 𝐶𝑥 satisfy 𝐵𝑥 = 𝑇

−
𝐵𝑧, 𝐹𝑥 =

𝑇
−
𝐹𝑧, and 𝐶𝑥 = 𝐶𝑧𝑇.

Algorithm 2. Consider the following.

Step 1. Identify Γ⊥
𝑠
, Γ⊥
𝑠
𝐻𝑠,𝑢, and Γ𝑠.

Step 2. Construct a multiple residual generator as defined in
(29).

Step 3. Calculate 𝑇𝑖, 𝑖 = 1, . . . , 𝑚,

𝑇𝑖 =

[

[

[

[

[

𝛾𝑠,1 𝛾𝑠,2 ⋅ ⋅ ⋅ 𝛾𝑠,𝑠−1 𝛾𝑠,𝑠

𝛾𝑠,2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛾𝑠,𝑠 0

... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

...
...

𝛾𝑠,𝑠 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

]

]

]

]

]

Γ𝑠, (33)
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Step 4. Reduce the order of the𝑚-DOs as defined in (32).

4. Design of Prefilter 𝐷(𝑧) and
Parameter Matrix 𝑅(𝑧)

4.1. Prefilter𝐷(𝑧) Design. Noticing that the multiple residual
generators which have been constructed and reduced order
need to deliver an 𝑚-dimensional residual vector. Thus, we
construct a residual generator with the state space equation
described in (32) which is a little different from (29). Accord-
ing to the well-established relationship between classical and
modern control theory, there are some significant equations
as follows:

𝑟 (𝑧) = 𝐷 (𝑧) 𝑦 (𝑧) − 𝑉̂ (𝑧) 𝑢 (𝑧) ,

𝐷 (𝑧) = 𝐼 − 𝐺
−1
𝐶𝑥(𝑧𝐼 − 𝐴𝑥)

−1
𝐹𝑥

= 𝐼 − 𝐶(𝑧𝐼 − 𝐴𝐹)
−1
𝐹,

(34)

𝑉̂ (𝑧) = 𝐺
−1
(𝐷𝑥 + 𝐶𝑥(𝑧𝐼 − 𝐴𝑥)

−1
𝐵𝑥)

= 𝐷 + 𝐶(𝑧𝐼 − 𝐴𝐹)
−1
𝐵𝐹.

(35)

Thus,𝐷(𝑧) satisfying (35) can be used in Figure 2. Convenient
for using in engineering, we can also design the state equation
of𝐷(𝑧).

4.2. Parameter Matrix 𝑅(𝑧) Design. To accomplish the con-
troller design, the rest of the work is to design the parameter
matrix 𝑅(𝑧) based on the requirements of the system perfor-
mance. Suppose that the system error is defined as 𝑒 = 𝑤 − 𝑦

and the requirement of performance is to decrease 𝑒. Recall
the system structure shown in Figure 2 and notice that the
dynamics of the system is subject to the following equation:

𝐷 (𝑧) 𝑦 (𝑧) = 𝑆 (𝑧) ℎ (𝑧) + 𝐻 (𝑧) 𝜙 (𝑧) (36)

in which 𝑆(𝑧) = 𝑉̂(𝑧)𝑅(𝑧)𝐷(𝑧), 𝐻(𝑧) = 𝐼 − 𝑉̂(𝑧)𝑅(𝑧), and
𝜙(𝑧) = [𝐼 𝐶(𝑧𝐼 − 𝐴)

−1
𝑑(𝑧)]. Hence, it has become a norm

optimization problem to design the parameter matrix 𝑅(𝑧)

[30]. We can choose a matrix 𝑅(𝑧) satisfying that the H∝-
normof thematrix 𝐼−𝑉̂(𝑧)𝑅(𝑧) is minimum. In general,𝑅(𝑧)
needmeet the conditions of stability and be simple enough to
satisfy the practical requirements.

All in all, we can choose 𝑅(𝑧) as a constant matrix

𝑅 = (𝐷𝑥 + 𝐶𝑥(𝐼 − 𝐴𝑥)
−1
𝐵𝑥)

−

𝐺 (37)

with (∙)− representing the pseudoinverse. When 𝐷𝑥 + 𝐶𝑥(𝐼−

𝐴𝑥)
−1
𝐵𝑥 is nonsingular, 𝑅 = (𝐷𝑥 + 𝐶𝑥(𝐼 − 𝐴𝑥)

−1
𝐵𝑥)

−

𝐺 is
equal to 𝑅 = (𝐷𝑥 + 𝐶𝑥(𝐼 − 𝐴𝑥)

−1
𝐵𝑥)

−1

𝐺.

5. An Academic Example

In this section, we apply the achieved results to an aca-
demic example. Our major purpose is to demonstrate the
applicability and effectiveness of the residual generator-based
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Figure 3: The output of system, 𝑠 = 𝑛 = 3.

controller. We assume the system matrixes in the state space
to be as follows:

𝐴 =
[

[

0 0 −0.006

1 0 −0.11

0 1 −0.6

]

]

, 𝐵 =
[

[

1 0

0.18 0.33

0.47 0.8

]

]

,

𝐶 = [1.6 1.5 0.5] , 𝐷 = zeros (1, 2) ,

𝑑 (𝑘) ∼ 𝑁 (0, 0.01
2
) , 𝑛 (𝑘) ∼ 𝑁 (0, 0.01

2
) .

(38)

𝑁(𝜇, 𝜎
2
) presents normal distribution whose mean is 𝜇

and variance is 𝜎2. Note that we just use the system model to
generate the indispensable inputs and outputs as the available
test data, and we do not use the system matrixes 𝐴, 𝐵, 𝐶,
and𝐷 and the noises to design the controller.The simulation
procedure of the data-driven based controller is as follows.

At first, simulate the academic example, and collect 1000
samples of the test data with the reference excitation. Then,
identify the parity space using Algorithm 1. Based on the
relationship between the parity space and DO, we construct
an observer-based residual generator, advanced to design the
controller. To demonstrate the application of the controller,
we choose the simulation time as 𝑇 = 1000 s and sample
time as 𝑇𝑠 = 1 s. And introduce disturbances 𝑑(𝑘) = 0.1 and
𝑛(𝑘) = 0.1, when 𝑡 = 500 s and 𝑡 = 600 s, respectively.

Figure 3 shows the output signal collected from exper-
iment with 𝑠 = 𝑛. And, as can be seen from Figure 3,
the performance of the controller system is very well, the
response speed of unit step is very fast, and disturbances have
been suppressed effectively.

More generally, we choose that 𝑠 > 𝑛, 𝑠 = 5, for instance,
and the output signal is shown in Figure 4. We can learn
from Figure 4 that the disturbances have been suppressed
effectively; however, when the reference excitation is unit step
signal, the overshoot is a bit larger. Thus, we reduce the order
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Figure 4: The output without order reduced, 𝑠 = 5.
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Figure 5: The output with order reduced, 𝑠 = 5.

of the residual generator based on Algorithm 2, and then we
generate the outputs of the system as Figure 5 shows. It is easy
to learn that the overshoot become a smaller one.

6. Conclusion

In this paper, we deal with the controller design for LTI sys-
tem based on data-driven techniques. The scheme proposed
is summarized in the form of several algorithms to be conve-
nient for the readers learning the scheme proposed. The core
of this paper is embedding residual generation aiming for FDI
in the feedback control loop and structuring the observer-
based residual generator based on data-driven approaches

directly identified from available process measurements
without generating system model. We constructed the resid-
ual generator based on the relationship between DO and
the parity vector, obtained directly from process measure-
ments using the advanced SIM. Finally, the applications and
effectiveness are demonstrated by applying the scheme and
algorithms to an academic example. Besides, our future work
is studying a scheme dealing with a real-time system [31, 32].
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