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Abstract: This paper introduces a novel approach to representing continuous inputs in Tsetlin
Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found
when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata
to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to
the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds
during the learning process. Two standard TAs finally decide whether to include the resulting
features as part of the clause. In this way, only four automata altogether represent one continuous
feature (instead of potentially hundreds of them). We evaluate the performance of the new scheme
empirically using five datasets, along with a study of interpretability. On average, TMs with SSL
feature representation use 4.3 times fewer literals than the TM with static threshold-based features.
Furthermore, in terms of average memory usage and F1-Score, our approach outperforms simple
Multi-Layered Artificial Neural Networks, Decision Trees, Support Vector Machines, K-Nearest
Neighbor, Random Forest, Gradient Boosted Trees (XGBoost), and Explainable Boosting Machines
(EBMs), as well as the standard and real-value weighted TMs. Our approach further outperforms
Neural Additive Models on Fraud Detection and StructureBoost on CA-58 in terms of the Area Under
Curve while performing competitively on COMPAS.

Keywords: Tsetlin Machine; Tsetlin automata; Stochastic Searching on the Line automaton; inter-
pretable AI; interpretable machine learning; XAI; rule-based learning; decision support system

1. Introduction

Deep learning (DL) has significantly advanced state-of-the-art models in machine
learning (ML) over the last decade, attaining remarkable accuracy in many ML application
domains. One of the issues with DL, however, is that DL inference cannot easily be inter-
preted [1]. This limits the applicability of DL in high-stakes domains such as medicine [2,3],
credit-scoring [4,5], churn prediction [6,7], bioinformatics [8,9], crisis analysis [10], and
criminal justice [11]. In this regard, the simpler and more interpretable ML algorithms,
such as Decision Trees, Logistic Regression, Linear Regression, and Decision Rules, can
be particularly suitable. However, they are all hampered by low accuracy when facing
complex problems [12]. This limitation has urged researchers to develop machine learning
algorithms that are capable of achieving a better trade-off between interpretability and
accuracy.

While some researchers focus on developing entirely new machine learning algo-
rithms, as discussed above, other researchers try to render DL interpretable. A recent
attempt to make DL interpretable is the work of Agarwal et al. [11]. They introduce Neural
Additive Models (NAMs), which treat each feature independently. The assumption of
independence makes NAMs interpretable but impedes accuracy compared with regular
DL [11]. Another approach is to try to explain DL inference with surrogate models. Here,
one strives to attain local interpretability; i.e., explaining individual predictions [13]. Nev-

Electronics 2021, 10, 2107. https://doi.org/10.3390/electronics10172107 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10172107
https://doi.org/10.3390/electronics10172107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10172107
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10172107?type=check_update&version=2


Electronics 2021, 10, 2107 2 of 25

ertheless, these explanations are only approximate and cannot explain the complete DL
model (global interpretability) [14].

Many prominent interpretable ML approaches are based on natively interpretable
rules, tracing back to some of the well-known learning models such as association rule
learning [15]. These have for instance been used to predict sequential events [16]. Other
examples include the work of Feldman on the difficulty of learning formulae in Disjunctive
Normal Form (DNF) [17] and Probably Approximately Correct (PAC) learning, which has
provided fundamental insights into machine learning as well as a framework for learning
formulae in DNF [18]. Approximate Bayesian techniques are another set of approaches
for the robust learning of rules [19,20]. Hybrid Logistic Circuits (HLC), introduced in [21],
are yet another novel approach to interpretable machine learning. Here, layered logical
operators translate into a logistic regression function. HLC has demonstrated promising
accuracy in image classification. However, in general, rule-based machine learning scales
poorly and is prone to noise. Indeed, for data-rich problems, in particular those involving
natural language and sensory inputs, rule-based machine learning is inferior to DL.

Another recent interpretable approach to machine learning is Explainable Boosting
Machines (EBMs) [22]. EBMs are highly intelligible and explainable, while their accuracy
is comparable to state-of-the-art machine learning methods such as Random Forest and
Boosted Trees [23]. Indeed, EBMs are recognized as state-of-the-art within Generalized
Additive Models (GAMs) [22,23]. The EBMs learn feature functions independently, using
methods such as gradient boosting or bagging. This allows the user to determine how
much each feature contributes to the model’s prediction and is hence directly interpretable.

Despite being rule-based, the recently introduced Tsetlin Machines (TMs) [24] have
obtained competitive accuracy in a wide range of domains [25–29], while producing
human-interpretable outputs. At the same time, TMs utilize comparably low computa-
tional resources [30]. Employing a team of TAs [31], a TM learns a linear combination of
conjunctive clauses in propositional logic, producing decision rules similar to the branches
in a decision tree (e.g., if X satisfies condition A and not condition B then Y = 1) [26]. In
other words, the TM can be said to unify logistic regression and rule-based learning in a
way that boosts accuracy while maintaining interpretability.

Regarding recent progress on TMs, they have recently been adopted for various
application domains such as natural language understanding [32,33], image classifica-
tion [34], and speech processing [35]. Simultaneously, the TM architecture and learning
mechanism has been improved in terms of accuracy, computation speed, and energy usage.
The convolutional TM provides competitive performance on MNIST, Fashion-MNIST,
and Kuzushiji-MNIST, in comparison with CNNs, K-Nearest Neighbor, Support Vector
Machines, Random Forests, Gradient Boosting, Binary Connect, Logistic Circuits, and
ResNet [36]. The regression TM [27] opens up for continuous output, achieving on par or
better performance compared to Random Forest, Regression Trees, and Support Vector
Regression. With the proposed Booleanization scheme in [37], the TM is also able to operate
with continuous features.

Furthermore, clauses are enhanced with weights in [25]. The weights reduce the
number of clauses required without any loss of accuracy. Later, integer weights replaced
real-valued weights to both reduce the number of clauses and to increase the interpretability
of the TM [38]. On several benchmarks, the integer-weighted TM version outperformed
simple Multi-Layered Artificial Neural Networks, Support Vector Machines, Decision Trees,
Random Forest, K-Nearest Neighbor, Random Forest, Explainable Boosting Machines
(EBMs), and Gradient Boosted Trees (XGBoost), as well as the standard TM. Further, the
introduced multi-granular clauses for TM in [28] eliminate the pattern specificity parameter
from the TM, consequently simplifying the hyper-parameter search. By indexing the
clauses on the features that falsify them, up to an order of magnitude faster inference and
learning has been reported [29]. Several researchers have further introduced techniques and
architectures that reduce memory footprint and energy usage [39], while other techniques
improve learning speed [39,40] and support explainability [41,42].
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Recent theoretical work proves the convergence to the correct operator for “identity”
and “not”. It is further shown that arbitrarily rare patterns can be recognized using a
quasi-stationary Markov chain-based analysis. The work finally proves that when two
patterns are incompatible, the most accurate pattern is selected [43]. Convergence for the
“XOR” operator has also recently been proven by Jiao et al. [44].

The approach proposed in [37] is currently the most effective way of representing
continuous features through Booleanization. However, the approach requires a large
number of TAs to represent the Booleanized continuous features. Indeed, one TA is needed
per unique continuous value. Consequently, this increases the training time of the TM
as it needs to update all the TAs in all of clauses for each training iteration. Further, this
adds more post-processing work for generating interpretable rules out of TM outputs. To
overcome this challenge in TMs, we propose a novel approach to represent continuous
features in the TM, encompassing the following contributions:

• Instead of representing each unique threshold found in the Booleanization process by
a TA, we use a Stochastic Searching on the Line (SSL) automaton [45] to learn the lower
and upper limits of the continuous feature values. These limits decide the Boolean
representation of the continuous value inside the clause. Only two TAs then decide
whether to include these bounds in the clause or to exclude them from the clause. In
this way, one continuous feature can be represented by only four automata, instead of
representing it by hundreds of TAs (decided by the number of unique feature values
within the feature).

• A new approach to calculating the clause output is introduced to match with the
above Booleanization scheme.

• We update the learning procedure of the TM accordingly, building upon Type I and
Type II feedback to learn the lower and upper bounds of the continuous input.

• Empirically, we evaluate our new scheme using eight data sets: Bankruptcy, Balance
Scale, Breast Cancer, Liver Disorders, Heart Disease, Fraud Detection, COMPAS,
and CA-58. With the first five datasets, we show how our novel approach affects
memory consumption, training time, and the number of literals included in clauses, in
comparison with the threshold-based scheme [46]. Furthermore, performances on all
these datasets are compared against recent state-of-the-art machine learning models.

This paper is organized as follows. In Section 2, we present the learning automata
foundation we build upon and discuss the SSL automaton in more detail. Then, in Section 3,
we introduce the TM and how it traditionally has dealt with continuous features. We then
propose our new SSL-based scheme. We evaluate the performance of our new scheme
empirically using five datasets in Section 5. In this section, we use the Bankruptcy dataset
to demonstrate how rules are extracted from TM clause outputs. The prediction accuracy
of the TM SSL-based continuous feature representation is then compared against several
competing techniques, including ANNs, SVMs, DTs, RF, KNN, EBMs (the current state-of-
the-art of Generalized Additive Models (GAMs) [22,23]), Gradient Boosted Trees (XGBoost),
and the TM with regular continuous feature representation. Further, we contrast the
performance of the TM against reported results on recent state-of-the-art machine learning
models, namely NAMs [11] and StructureBoost [47]. Finally, we conclude our paper in
Section 6.

2. Learning Automata and the Stochastic Searching on the Line Automaton

The origins of Learning Automata (LA) [48] can be traced back to the work of M. L.
Tsetlin in the early 1960s [31]. In a stochastic environment, an automaton is capable of
learning the optimum action that has the lowest penalty probability through trial and error.
There are different types of automata; the choice of a specific type is decided by the nature
of the application [49].

Initially, the LA randomly perform an action from an available set of actions. This
action is then evaluated by its attached environment. The environment randomly produces
feedback; i.e., a reward or a penalty as a response to the action selected by the LA. De-
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pending on the feedback, the state of the LA is adjusted. If the feedback is a reward, the
state changes towards the end state of the selected action, reinforcing the action. When
the feedback is a penalty, the state changes towards the center state of the selected action,
weakening the action and eventually switching the action. The next action of the automaton
is then decided by the new state. In this manner, an LA interacts with its environment
iteratively. With a sufficiently large number of states and a reasonably large number of
interactions with the environment, an LA learns to choose the optimum action with a
probability arbitrarily close to 1.0 [48].

During LA learning, the automaton can make deterministic or stochastic jumps as a
response to the environment feedback. LA make stochastic jumps by randomly changing
states according to a given probability. If this probability is 1.0, the state jumps are deter-
ministic. Automata of this kind are called deterministic automata. If the transition graph of
the automaton is kept static, we refer to it as a fixed-structure automaton. The TM employs
TAs to decide which literals to include in the clauses. A TA is deterministic and has a fixed
structure, formulated as a finite-state automaton [31]. A TA with 2N states is depicted in
Figure 1. States 1 to N map to Action 1 and states N + 1 to 2N map to Action 2.
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Figure 1. Transition graph of a two-action Tsetlin Automaton with 2N memory states.

The Stochastic Searching on the Line (SSL) automaton pioneered by Oommen [45] is
somewhat different from regular automata. The SSL automaton is an optimization scheme
designed to find an unknown optimum location λ∗ on a line, seeking a value between 0 to
1, [0, 1].

In SSL learning, λ∗ can be one of the N points. In other words, the search space is
divided into N points, {0, 1/N, 2/N, . . . , (N − 1)/N, 1}, with N being the discretization
resolution. Depending on the possibly faulty feedback from the attached environment (E),
λ moves towards the left or right from its current state on the created discrete search space.
We consider the environment feedback 1, E = 1, as an indication to move towards right (or
to increase the value of λ) by one step. The environment feedback 0, E = 0, on the other
hand, is considered as an indication to move towards the left (or to decrease the value of λ)
by one step. The next location of λ, λ(n + 1) can thus be expressed as follows:

λ(n + 1) =

{
λ(n) + 1/N, if E(n) = 1 and 0 6 λ(n) < 1 ,
λ(n)− 1/N, if E(n) = 0 and 0 < λ(n) 6 1 .

(1)

λ(n + 1) =

{
λ(n), if λ(n) = 1 and E(n) = 1 ,
λ(n), if λ(n) = 0 and E(n) = 0 .

(2)

Asymptotically, the learning mechanism is able to find a value arbitrarily close to λ∗

when N → ∞ and n→ ∞.

3. Tsetlin Machine (TM) for Continuous Features

As seen in Figure 2, conceptually, the TM decomposes into five layers to recognize
sub-patterns in the data and categorize them into classes. In this section, we explain the
job of each of these layers in the pattern recognition and learning phases of the TM. The
parameters and symbols used in this section are explained and summarized in Table 1.
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Figure 2. The TM structure.

Table 1. Parameters and symbols used in Section 3.

Parameter/Symbol Description Parameter/Symbol Description

X Input vector containing
o propositional variables L The augmented feature set containing

both original and negated features

xk
kth propositional

variable
lk kth literal

m The number of clauses cj jth clause and stored in vector C

Ij
The index set of the included

literals in clause j N The number of states per action
in the TA

aj,k

State of the kth literal
in the jth clause, stored

in matrix A
I1
X

The indexes of the literals of
value 1

v The difference between positive
and negative clause outputs pj

Decision on receiving Type I or Type II
feedback, stored in vector P

T Feedback threshold s Learning sensitivity

rj,k

The decision whether the kth

TA of the jth clause is to receive
Type Ia feedback, stored in

matrix R

qj,k

The decision whether the kth

TA of the jth clause is to receive
Type Ib feedback, stored in

matrix Q

IIa Stores TA indexes selected for
Type Ia feedback IIb Stores TA indexes selected for

Type Ib feedback

⊕ Denotes adding 1 to the current
state value of the TA 	 Denotes substracting 1 from the current

state value of the TA

III Stores TA indexes selected for
Type II feedback
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Layer 1: the input. In the input layer, the TM receives a vector of o propositional
variables: X, xk ∈ {0, 1}o. The objective here of the TM is to classify this feature vector
into one of the two classes, y ∈ {0, 1}. However, as shown in Figure 2, the input layer
also includes negations of the original features, ¬xk, in the feature set to capture more
sophisticated patterns. Collectively, the elements in the augmented feature set are called
literals: L = [x1, x2, . . . , xo, ¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o].

Layer 2: clause construction. The sub-patterns associated with class 1 and class 0 are
captured by m conjunctive clauses. The value m is set by the user where more complex
problems might demand a large m. All clauses receive the same augmented feature set
formulated at the input layer, L. However, to perform the conjunction, only a fraction of the
literals is utilized. The TM employs two-action TAs in Figure 1 to decide which literals are
included in which clauses. Since we found a number 2× o of literals in L, the same number
of TAs—one per literal k—is needed by a clause to decide the included literals in the clause.
When the index set of the included literals in clause j is given in Ij, the conjunction of the
clause can be performed as follows:

cj =
∧

k∈Ij

lk. (3)

Notice how the composition of a clause varies from another clause depending on
the indexes of the included literals in the set Ij ⊆ {1, . . . , 2o}. For the special case of
Ij = ∅—i.e., an empty clause—we have

cj =

{
1 during learning
0 otherwise.

(4)

That is, during learning, empty clauses output 1, and during classification, they output 0.
Layer 3: storing states of TAs of clauses in the memory. The TA states on the left-

hand side of the automaton (states from 1 to N) ask to exclude the corresponding literal
from the clause while the states on the right-hand side of the automaton (states from N + 1
to 2N) ask to include the literal in the clause. The systematic storage of states of TAs in the
matrix, A: A = (aj,k) ∈ {1, . . . , 2N}m×2o, with j referring to the clause and k to the literal,
allows us to find the index set of the included literals in clause j, Ij as Ij = {k|aj,k > N,
1 ≤ k ≤ 2o}.

Layer 4: clause output. Once the TA decisions are available, the clause output can be
easily computed. Since the clauses are conjunctive, a single literal of value 0 is enough to
turn the clause output to 0 if its corresponding TA has decided to include it in the clause.
To make the understanding easier, we introduce set I1

X , which contains the indexes of the
literals of value 1. Then, the output of clause j can be expressed as

cj =

{
1 if Ij ⊆ I1

X ,
0 otherwise.

(5)

The clause outputs, computed as above, are now stored in vector C, i.e., C = (cj) ∈
{0, 1}m.

Layer 5: classification: The TM structure given in Figure 2 is used to classify data into
two classes. Hence, sub-patterns associated with each class have to be separately learned.
For this purpose, the clauses are divided into two groups, where one group learns the
sub-pattern of class 1 while the other learns the sub-patterns of class 0. For simplicity,
clauses with an odd index are assigned a positive polarity (c+j ), and they are used to capture
sub-patterns of output y = 1. Clauses with an even index, on the other hand, are assigned
negative polarity (c−j ) and they seek the sub-patterns of output y = 0.

The clauses that recognize sub-patterns output 1. This makes the classification process
easier as we simply need to sum the clause outputs of each class and assign the sample
into the class which has the highest sum. A higher sum means that more sub-patterns are
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identified from the designated class and that there is a higher chance of the sample being
in that class. Hence, with v being the difference in clause output, v = ∑j c+j −∑j c−j , the
output of the TM is decided as follows:

ŷ =

{
1 if v ≥ 0
0 if v < 0 .

(6)

A TM learns online, updating its internal parameters according to one training sample
(X, y) at a time. As we discussed, a TA team decides the clause output, and collectively, the
output of all the clauses decides the TM’s output. Hence, to maximize the accuracy of the
TM’s output, it is important to sensibly guide individual TAs in clauses. We achieve this
with two kinds of reinforcement: Type I and Type II feedback. Type I and Type II feedback
decide if the TAs in clauses receive a reward, a penalty, or inaction feedback, depending
on the context of their actions. How the type of feedback is decided and how the TAs are
updated according to the selected feedback type is discussed below in more details.

Type I feedback: Type I feedback has been designed to reinforce the true positive
outputs of the clauses and to combat against the false negative outputs of the clauses. To
reinforce the true positive output of a clause (the clause output is 1 when it has to be 1),
include actions of TAs whose corresponding literal value is 1 are strengthened. However,
more fine-tuned patterns can be identified by strengthening the exclude actions of TAs in the
same clause whose corresponding literal value is 0. To combat the false negative outputs
of the clauses (the clause output is 0 when it has to be 1), we erase the identified pattern
by the clause and make it available for a new pattern. To do so, the exclude actions of TAs,
regardless of their corresponding literal values, are strengthened. We now sub-divide the
Type I feedback into Type Ia and Ib, where Type Ia handles the reinforcing of exclude actions
while Type Ib works on reinforcing exclude actions of TAs. Together, Type Ia and Type
Ib feedback force clauses to output 1. Hence, clauses with positive polarity need Type I
feedback when y = 1 and clauses with negative polarity need Type I feedback when y = 0.
To diversify the clauses, they are targeted for Type I feedback stochastically as follows:

pj =

{
1 with probability T−max(−T,min(T,v))

2T ,
0 otherwise.

(7)

All clauses in each class should not learn the same sub-pattern, nor only a few subpatterns.
Hence, clauses should be smartly allocated among the sub-patterns. The user set target T
in (7) does this while deciding the probability of receiving Type I feedback; i.e., T number
of clauses are available to learn each sub-pattern in each class. A higher T increases the
robustness of learning by allocating more clauses to learn each sub-pattern. Now, T together
with v decides the probability of clause j receiving Type I feedback, and accordingly, the
decision pj is made. The decisions for the complete set of clauses to receive Type I feedback
are organized in the vector P = (pj) ∈ {0, 1}m.

Once the clauses to receive Type I feedback are singled out as per (7), the probability
of updating individual TAs in selected clauses is calculated using the user-set parameter
s (s ≥ 1), separately for Type Ia and Type Ib. According to the above probabilities, the
decision whether the kth TA of the jth clause is to receive Type Ia feedback, rj,k or Type Ib
feedback, qj,k is made stochastically as follows:

rj,k =

{
1 with probability s−1

s ,
0 otherwise.

(8)

qj,k =

{
1 with probability 1

s ,
0 otherwise.

(9)
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The above decisions are stored in the two matrices R and Q, respectively; i.e., R =
(rj,k) ∈ {0, 1}m×2o and Q = (qj,k) ∈ {0, 1}m×2o. Using the complete set of conditions, TA
indexes selected for Type Ia are IIa = {(j, k)|lk = 1∧ cj = 1∧ pj = 1∧ rj,k = 1}. Similarly,

TA indexes selected for Type Ib are IIb =
{
(j, k)|(lk = 0∨ cj = 0) ∧ pj,y = 1∧ qj,k = 1

}
.

The states of the identified TAs are now ready to be updated. Since Type Ia strengthens
the include action of TAs, the current state should move more towards the include action
direction. We denote this as ⊕, and here ⊕ adds 1 to the current state value of the TA. The
Type Ib feedback, on the other hand, moves the state of the selected TA towards the exclude
action direction to strengthen the exclude action of TAs. We denote this by 	, and here, 	
subtracts 1 from the current state value of the TA. Accordingly, the states of TAs in A are
updated as A←

(
A⊕ IIa)	 IIb.

Type II feedback: Type II feedback has been designed to combat the false positive
output of clauses (the clause output is 1 when it has to be 0). To turn this clause output
from 1 to 0, a literal value of 0 can simply be included in the clause. Clauses with a positive
polarity need Type II feedback when y = 0 and clauses with negative polarity need this
when y = 1 as they do not want to vote for the opposite class. Again, using the user-set
target T, the decision for the jth clause is made as follows:

pj =

{
1 with probability T+max(−T,min(T,v))

2T ,
0 otherwise.

(10)

The states of the TAs whose corresponding literal of value 0 in selected clauses
according to (10) are now moved towards the include action direction with a probability of 1.
Hence, the index set of this kind can be identified as III = {(j, k)|lk = 0 ∧ cj = 1∧ pj = 1}.
Accordingly, the states of TAs in A are updated as A← A⊕ III.

When training has been completed, the final decisions of the TAs are recorded, and
the resulting clauses can be deployed for operation.

Booleanization of Continuous Features: In the TM discussed so far, the input layer
accepted only Boolean features; i.e., X = [x1, x2, x3, . . . , xo] with xk, k = 1, 2, ..., o, being 0 or
1. These features and their negations were directly fed into the clauses without any further
modifications. However, continuous features in machine learning applications are more
common than values of simply 1 or 0. In one of our previous papers [37], we presented
a systematic procedure of transforming continuous features into Boolean features while
maintaining ranking relationships among the continuous feature values.

We here summarize the previous Booleanization scheme using the example presented
in [27]. As seen in Table 2, we Booleanize the two continuous features listed in table
column 1 and column 2.

1. First, for each feature, the unique values are identified;
2. The unique values are then sorted from smallest to largest;
3. The sorted unique values are considered as thresholds. In the table, these values can

be seen in the “Thresholds” row;
4. The original feature values are then compared with identified thresholds, only from

their own feature value set. If the feature value is greater than the threshold, set the
corresponding Boolean variable to 0; otherwise, set it to 1;

5. The above steps are repeated until all the features are converted into Boolean form.

The first feature in the first column of the table contains three unique values: 5.779,
10.008, and 3.834 (step (i)). Once they are sorted as required in step ii, we obtain 3.834,
5.779, and 10.008. Now, we consider them as thresholds: ≤3.834, ≤5.779, and ≤10.008 (step
(iii)). Here, we find that each original feature in column 1 is going to represent 3 bit values.
According to step iv, we now compare the original values in the first feature against its
thresholds. The first feature value of 5.779 is greater than 3.834 (resulting in 0), equal to
5.779 (resulting in 1), and less than 10.008 (resulting in 1). Hence, we replace 5.779 with 011.
Similarly, 10.008 and 3.834 can be replaced with 001 and 111, respectively.
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The conversion of the feature values for the second feature starts once all the feature
values in the first feature are completed. This procedure is iterated until all the continuous
values of all the continuous features have been converted to Boolean form (step (v)).

Table 2. Preprocessing of two continuous features.

Raw Feature Thresholds

1 2 ≤3.834 ≤5.779 ≤10.008 ≤11.6 ≤25.7 ≤32.4 ≤56.1

5.779 25.7 0 1 1 0 1 1 1
10.008 56.1 0 0 1 0 0 0 1
5.779 11.6 0 1 1 1 1 1 1
3.834 32.4 1 1 1 0 0 1 1

This Boolean representation of continuous features is particularly powerful as it allows
the TM to reason about the ordering of the values, forming conjunctive clauses that specify
rules based on thresholds, and with negated features, also rules based on intervals. This
can be explained again with the following example.

The threshold ≤3.834 in the “Threshold” row stands for the continuous value 3.834 of
the first feature. Similarly, threshold ≤5.779 and ≤10.008 represent the continuous values
5.779 and 10.008, respectively. Consider a clause with threshold ≤5.779 included in the
clause, which is the only threshold included in the clause. Then, for any input value less
than or equal to ≤5.779 from that feature, the clause outputs 1. Now, consider the case
of having two thresholds, ≤5.779 and ≤10.008, included in the clause. The threshold
≤5.779 still decides the clause output due to the fact that the AND of ≤5.779 and ≤10.008
threshold columns in Table 2 yields the threshold column ≤5.779. When a clause includes a
negated threshold it reverses the original threshold. Consider a clause that only includeds
the negation of the threshold ≤3.834. Now, the clause outputs 1 for all the values greater
than ≤3.834 from that feature, as the NOT of ≤3.834 is equivalent to 3.834<.

The above explanation of the threshold selection reveals that the lowest original
threshold included in the clause and the highest negated threshold included in the clause
decide the upper and lower boundary of the feature values, and these thresholds are the
only important thresholds for calculating the clause output. Hence, this motivates us to
represent the continuous features in clauses in a new way and train the clauses accordingly
as follows.

4. Sparse Representation of Continuous Features

However, the above representation of continuous values in clauses is costly as it needs
two times the total number of unique values of TAs per clause. This is more severe when the
dataset is large and when there is a large number of input features to be considered. Hence,
we introduce SSL automata to represent the upper and lower limits of the continuous
features. With the new representation, a continuous feature can be then represented by only
two automata instead of having two times the number of unique values in the considered
continuous feature. The new parameters and symbols used in this section are explained
and summarized in Table 3.
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Table 3. Parameters and symbols used in Section 4.

Parameter/Symbol Description Parameter/Symbol Description

Xc Input vector containing
o continuous features

xc
k kth continuous feature

SSLl
j,k

Lower limit of the continuous
feature k in clause j

SSLu
j,k

Upper limit of the continuous
feature k in clause j

El
j,k

Feedback to the SSL automata
which represent the lower limit

of the feature k in clause j

Eu
j,k

Feedback to the SSL automata
which represent the upper limit

of the feature k in clause j

TAl
j,k

TA which decides whether to
include or exclude lower limit

of the kth feature in clause j

TAu
j,k

TA which decides whether to
include or exclude upper limit

of the kth feature in clause j

rl
j,k

The decision whether the TA of the
lower limit of kth feature in
the jth clause is to receive

Type Ia feedback

ru
j,k

The decision whether the TA of the
upper limit of kth feature in
the jth clause is to receive

Type Ia feedback

ql
j,k

The decision whether the TA of the
lower limit of kth feature in
the jth clause is to receive

Type Ib feedback

qu
j,k

The decision whether the TA of the
upper limit of kth feature in
the jth clause is to receive

Type Ib feedback

lj,k
Computed literal value for the

kth feature in clause j

Input Features. As discussed earlier, the TM takes o propositional variables as input,
X = [x1, x2, x3, . . . , xo]. In this section, we discuss how the TM maps Xc which contains o
continuous features, Xc = [xc

1, xc
2, xc

3, . . . , xc
o] into one of two classes y = 1 or y = 0.

Feature Representation. Each continuous feature is assigned two SSLs to represent
the upper and lower limits of the continuous value in a clause; i.e., SSLl

1, SSLu
1 , . . ., SSLl

k,
SSLu

k , . . ., SSLl
o, SSLu

o . Here, SSLl
k and SSLu

k are lower and upper limit values of the kth

continuous feature, respectively. However, step size N within an SSL in this case is not
constant. When E in (1) and (2) is 1, the SSL state moves to the higher neighboring unique
value of the attached continuous feature of the SSL. Similarly, when E is 0, SSL state moves
to the lower neighboring unique value of the considered continuous feature.

Clauses. Each conjunctive clause in the TM receives Xc as an input. The inclusion
and exclusion decisions of the corresponding upper and lower bounds of xc

k in the clause
are made by TAs. Hence, each clause now needs 2o TAs, where half of them make the
decision related to the lower bound of the continuous features while the other half make
the decision related to the upper bound of the continuous features. The matrix A therefore
still contains m× 2o elements: A = (aj,k) ∈ {1, . . . , 2N}m×2o.

In the phase of calculating clause outputs, both limit values given by SSLs and the
decisions of TAs on their corresponding SSLs are considered. The value of the kth literal, lj,k,
which represents the kth continuous feature inside the clause, j, to perform the conjunction
is evaluated as follows:

• Condition 1: Both TAl
j,k and TAu

j,k which respectively make the decision on SSLl
j,k and

SSLu
j,k decide to include them in the clause. Then,

lj,k =

{
1, if SSLl

j,k < xc
k ≤ SSLu

j,k ,

0, if xc
k ≤ SSLl

j,k ∨ SSLu
j,k < xc

k .
(11)
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• Condition 2: The TAl
j,k decides to include SSLl

j,k in the clause and TAu
j,k decides to

exclude SSLu
j,k from the clause. Then,

lj,k =

{
1, if SSLl

j,k < xc
k ,

0, if xc
k ≤ SSLl

j,k .
(12)

• Condition 3: The TAu
j,k decides to include SSLu

j,k in the clause and TAl
j,k decides to

exclude SSLl
j,k from the clause. Then,

lj,k =

{
1, if xc

k ≤ SSLu
j,k ,

0, if SSLu
j,k < xc

k .
(13)

• Condition 4: Both TAl
j,k and TAu

j,k decide to exclude their corresponding SSLs from
the clause, which consequently takes the lower limit to the lowest possible and the
upper limit to the highest possible values. Hence, lj,k always becomes 1 or can be
excluded when conjunction is performed.

Hence, when at least one of the TAs that represent the lower and upper limits decides
to include its corresponding limit in the jth clause, the index of the feature is included in Ij,
Ij ⊆ {1, . . . , o}. Then, depending on the literal value according to the above conditions, the
clause output is computed, cj =

∧
k∈Ij

lk, j = 1, . . . , m.
Classification. Similar to the standard TM, the vote difference v is computed as

v = ∑j c+j (Xc)−∑j c−j (Xc). Once the vote difference is known, the output class is decided
using (6).

Learning. In this new setup, the clauses still receive Type I and Type II feedback.
However, both TAs and SSLs have to be updated as feedback is received. In other words,
Type I and Type II feedback should be able to guide SSLs to learn the optimal lower and
upper limits of the continuous features in each clause and lead TAs to correctly decide
which limits should be included or excluded in individual clauses.

As discussed earlier, Type Ia feedback reinforces the true positive outputs of clauses
by rewarding the include action of TAs when the literal value is 1. In the new setting, Type
Ia feedback updates both SSLs and TAs when xc

k is within the lower and upper boundaries,
SSLl

j,k < xc
k ≤ SSLu

j,k and when the clause output is 1 when it has to be 1 (positive clauses
when y = 1 and negative clauses when y = 0). Under these conditions, the decision
regarding whether both the TAs of upper and lower bounds of kth feature in the jth clause
are to receive Type Ia feedback, rl

j,k and ru
j,k, is stochastically made as follows:

rl
j,k =

{
1 with probability s−1

s ,
0 otherwise.

(14)

ru
j,k =

{
1 with probability s−1

s ,
0 otherwise.

(15)

The environment feedbacks El
j,k to update SSLl

j,k and Eu
j,k to update SSLu

j,k are 0 and
1, respectively. By doing so, we force SSLs to tighten up the boundary of the continuous
feature k and include them in the clause j by reinforcing the include action of TAs. Notice
that the above updates are made only if the condition in (7) is satisfied.

Type Ib feedback activates if xc
k is outside any of the upper or lower boundaries,

xc
k ≤ SSLl

j,k ∨ SSLu
j,k < xc

k or if the clause output is 0. For the case where xc
k ≤ SSLl

j,k or the
clause output is 0 when it has to be 1, the decision on whether the TA of the lower bound of
the kth feature in the jth clause should receive Type Ib feedback, ql

j,k, is stochastically made
as follows:
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ql
j,k =

{
1 with probability 1

s ,
0 otherwise.

(16)

Similarly, when it violates the upper bound requirement—i.e., SSLu
j,k < xc

k or if the
clause output is 0 when it has to be 1—the decision to receive Type Ib feedback on the TA
which represents upper bound is made as follows:

qu
j,k =

{
1 with probability 1

s ,
0 otherwise.

(17)

The environment feedbacks for the SSLs when the Type Ib feedback is applied are 0
and 1 for El

j,k and Eu
j,k, respectively. In this way, SSLs are forced to expand the boundary

and TAs are discouraged from the inclusion of their respective SSLs in the clause.
Once the eligible clauses (positive clauses when y = 0 and negative clauses when

y = 1) to receive Type II feedback are stochastically selected using (10), the states of the
individual SSLs and TAs in them are updated. The original idea of Type II feedback is
to combat the false positive output of the clause. In the new updating scheme, this is
achieved by expanding the boundaries of the kth feature if xc

k is outside of the boundary
and including them in the clause, which then turns the clause output to 0 eventually. Hence,
if xc

k ≤ SSLl
j,k, the environment feedback on SSLl

j,k, El
j,k becomes 0 and the state of the TA

that appears for SSLl
j,k increases by one step with probability 1. Likewise, if SSLu

j,k < xc
k,

the environment feedback on SSLu
j,k, Eu

j,k becomes 1 and the state of the TA that appears for
SSLu

j,k increases by one step with probability 1.

The above decisions on receiving Type Ia, Type Ib, and Type II are stored in IIa, IIb,
and III, respectively. The processing of the training example in the new scheme ends with
the state matrix A of TAs being updated as A ←

((
A⊕ IIa)	 IIb)⊕ III, and the states

of SSLs are updated according to (1) and (2) with the identified environment feedback of
individual SSLs, E.

5. Empirical Evaluation

In this section, the impact of the new continuous input feature representation to the
TM is empirically evaluated using five real-world datasets (the implementation of Tsetlin
Machine with versions of relevant software libraries and frameworks can be found at:
https://github.com/cair/TsetlinMachine, accessed on 24 August 2021). The datasets Liver
Disorder dataset, Breast Cancer dataset, and Heart Disease dataset are from the health sector. The
Balance Scale and Corporate Bankruptcy datasets are the two other remaining datasets. The
Liver Disorder dataset, Breast Cancer dataset, Heart Disease dataset, and Corporate Bankruptcy
datasets were selected as these applications in the health and finance sectors demand
both interpretability and accuracy in predictions. The Balance Scale dataset was added
to diversify the selected applications. As an example, we use the Corporate Bankruptcy
dataset to examine the interpretability of the TM using both the previous continuous feature
representation and the proposed representation. A summary of these datasets is presented
in Table 4.

Table 4. Binarizing categorical features in the Bankruptcy dataset.

Dataset Number of Instances Number of Attributes Interpretability Needed

Corporate Bankruptcy 250 7 Yes
Balance Scale 625 4 Not necessarily
Breast Cancer 286 9 Yes

Liver Disorders 345 7 Yes
Heart Disease 270 13 Yes

https://github.com/cair/TsetlinMachine
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The performance of the TM is also contrasted against several other standard machine
learning algorithms, namely Artificial Neural Networks (ANNs), Decision Trees (DTs),
Support Vector Machines (SVMs), Random Forest (RF), K-Nearest Neighbor (KNN), Ex-
plainable Boosting Machines (EBMs), [22], and Gradient Boosted Trees (XGBoost) [50]
along with two recent state-of-the-art machine learning approaches: StructureBoost [47]
and Neural Additive Models [11]. For comprehensiveness, three ANN architectures are
used: ANN-1—with one hidden layer of 5 neurons, ANN-2—with two hidden layers
of 20 and 50 neurons each, and ANN-3—with three hidden layers and 20, 150, and 100
neurons. The other hyperparameters of each of these models are decided using trial and
error. The reported results in this sections are the average measure over 50 independent
experiment trials. The data are randomly divided into training (80%) and testing (20%) sets
for each experiment.

5.1. Bankruptcy

In finance, interpretable machine learning algorithms are preferred over black-box
methods to predict bankruptcy as bankruptcy-related decisions are sensitive. However,
at the same time, the accuracy of the predictions is also important to mitigate financial
losses [51].

The Bankruptcy dataset (available from: https://archive.ics.uci.edu/ml/datasets/
qualitative_bankruptcy, accessed on 24 August 2021) that we consider in this experi-
ment contains historical records of 250 companies. The output—i.e., bankruptcy or non-
bankruptcy—is determined by six pertinent features: (1) industrial risk, (2) management
risk, (3) financial flexibility, (4) credibility, (5) competitiveness, and (6) operation Risk.
These are categorical features where each feature can be in one of three states: negative (N),
average (A), or positive (P).

The output “bankruptcy” is considered as class 0 while “non-bankruptcy” is class
1. The features are, however, ternary. Thus, the TM has to be used with the proposed
SSL scheme to represent categorical features directly in clauses or features should be
Booleanized using the Booleanization scheme before feeding them into the TM. If the
features are Booleanized beforehand, each feature value can be represented in three
Boolean features as shown in Table 5. Thus, the complete Booleanized dataset contains 18
Boolean features.

Table 5. Binarizing categorical features in the Bankruptcy dataset.

Category Integer Code
Thresholds

≤0 ≤1 ≤2

A 0 1 1 1
N 1 0 1 1
P 2 0 0 1

First, the behavior of the TM with 10 clauses is studied. The included literals in
all these 10 clauses at the end of training are summarized in Table 6. In the TM with
Booleanized features, the TAs in clause 1 decide to include only the negation of feature 11,
¬x11. Feature 11 is the negative credibility, which we can find after binarizing all features.
The TAs in clauses 2, 4, 6, 8, and 10 decide to include the negation of average competitiveness
and negative competitiveness, which are non-negated in clauses. The TAs in clauses 3, 5, and
9, on the other hand, decide to include negated negative competitiveness. Clause 7 is “empty”
as TAs in this clause decide not to include any literal in the clause.

https://archive.ics.uci.edu/ml/datasets/ qualitative_bankruptcy
https://archive.ics.uci.edu/ml/datasets/ qualitative_bankruptcy
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Table 6. Clauses produced by TM with Booleanization and SSL schemes for m = 10.

Clause Class
TM with

Booleanized SSLs

1 1 ¬ x11 -
2 0 ¬ x13 ∧ x14 1 < xc

5 ≤ 2
3 1 ¬ x14 2 < xc

5
4 0 ¬ x13 ∧ x14 1 < xc

5 ≤ 2
5 1 ¬ x14 -
6 0 ¬ x13 ∧ x14 1 < xc

5 ≤ 2
7 1 - -
8 0 ¬ x13 ∧ x14 1 < xc

5 ≤ 2
9 1 ¬ x14 -
10 0 ¬ x13 ∧ x14 1 < xc

5 ≤ 2

Accuracy (Training/Testing) 0.98/1.00 0.99/0.96

Table 6 also contains the clauses learnt by the TM when the SSL continuous feature
approach is used. The clauses 2, 4, 6, 8, and 10 which vote for bankruptcy activate negative
competitiveness. On the other hand, clause 3 recognizes the sub-patterns of class 1 outputs 1
for positive competitiveness. There are four free votes for class 1 from the “empty” clauses 1,
5, 7, and 9, which are again ignored during classification. Note also that, without loss of
accuracy, the TM with the SSL approach simplifies the set of rules by not including negative
credibility in any of the clauses. With the identified thresholds for the continuous values
(categorical in this application), the TM with the SSL approach ends up with the simple
classification rule:

Outcome =

{
Bankruptcy if Negative Competitiveness
Non-bankruptcy otherwise.

(18)

By asking the TMs to utilize only two clauses, we can obtain the above rule more
directly, as shown in Table 7. As seen, again, the TM with both feature representations
achieves similar accuracy.

Table 7. Clauses produced by TM with Booleanization and SSL schemes for m = 2.

Clause Class
TM with

Booleanized SSLs

1 1 ¬ x14 2 < xc
5

2 0 ¬ x13 ∧ x14 1 < xc
5 ≤ 2

Accuracy (Training/Testing) 0.99/0.96 0.96/0.98

The previous accuracy results represent the majority of experiment trials. Some experi-
ments fail to obtain this optimum accuracy. Instead of conducting the experiments multiple
times to find the optimum clause configuration in the TM, the number of clauses can be
increased to find more robust configurations of clauses. Even though this provides stable
higher accuracy for almost all the trials, a large number of clauses affects the interpretability.
This is where we have to consider achieving a balance between accuracy and interpretabil-
ity. For the Bankruptcy dataset, how robustness increases with clauses can be seen in
Tables 8 and 9. The average performance (precision, recall, F1-Score, accuracy, specificity)
is summarized in the tables for the TM with both feature arrangements, respectively.
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Table 8. Performance of TM with Booleanized continuous features on Bankruptcy dataset.

m 2 10 100 500 2000 8000

Precision 0.754 0.903 0.997 0.994 0.996 0.994
Recall 1.000 1.000 1.000 0.998 1.000 1.000

F1-Score 0.859 0.948 0.984 0.996 0.998 0.997
Accuracy 0.807 0.939 0.998 0.996 0.998 0.996
Specificity 0.533 0.860 0.995 0.993 0.996 0.990
No. of Lit. 19 88 222 832 3622 15,201

Table 9. Performance of TM with SSL continuous feature scheme on Bankruptcy dataset.

m 2 10 100 500 2000 8000

Precision 0.622 0.777 0.975 0.995 0.994 0.996
Recall 0.978 0.944 0.994 1.000 0.997 0.995

F1-Score 0.756 0.843 0.984 0.997 0.995 0.995
Accuracy 0.640 0.787 0.982 0.997 0.995 0.994
Specificity 0.191 0.568 0.967 0.994 0.993 0.993
No. of Lit. 8 40 94 398 1534 7286

Table 8 reports the results of the TM with a regular Booleanization scheme. The goal
here is to maximize the F1-Score, since accuracy can be misleading for imbalanced datasets.
As can be seen, the F1-Score increases with clauses and peaks at m = 2000. To obtain this
performance with the Booleanized features, the TM classifier uses 3622 (rounded to nearest
integer) literals (include actions).

Despite the slight reduction in the F1-Score, the TM with the proposed continuous
feature representation reaches its best F1-Score with only 398 literals in the TM classifier.
This represents a greater than nine-fold reduction of literals, which is more significant
compared to the reduction of the F1-Score (0.001). At this point, the number of clauses, m,
equals 500.

Figure 3 outlines how the number of literals varies with the increase of the number
of clauses. The TM with the new continuous feature representation scheme consistently
uses fewer literals in its classifier than the TM with regular feature representation. The
difference between the number of literals in both approaches increases with the number of
clauses.
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Figure 3. The number of literals included in TM clauses to work with Bankruptcy dataset.

The performance of the TM with both continuous feature arrangements is compared
against multiple standard machine learning models: ANN, KNN, XGBoost, DT, RF, SVM,
and EBM. The performances of these techniques along with the best performance of the
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TM setups are summarized in Table 10. The best F1-Score is obtained by the TM with
regular Booleanized features. The second best F1-Score belongs to ANN-3 and the TM with
the SSL scheme. Memory wise, the TM with both input feature representations together
with DT needs close to zero memory at both training and testing, while ANN-3 requires a
training memory of 28,862.65 KB and a testing memory of 1297.12 KB. More importantly,
the training time per epoch and the number of literals in clauses are reduced with the SSL
scheme for the TM compared to the Booleanization approach.

Table 10. Performance comparison for Bankruptcy dataset.

Prec. Reca. F1 Acc. Spec. No. of Lit. Memory Required Training Time(Training/Testing)

ANN-1 0.990 1.000 0.995 0.994 0.985 - ≈942.538 KB/≈26.64 KB 0.227 s.
ANN-2 0.995 0.997 0.996 0.995 0.993 - ≈3476.76 KB/≈590.76 KB 0.226 s.
ANN-3 0.997 0.998 0.997 0.997 0.995 - ≈28,862.65 KB/≈1297.12 KB 0.266 s.
DT 0.988 1.000 0.993 0.993 0.985 - ≈0.00 KB/≈0.00 KB 0.003 s.
SVM 1.000 0.989 0.994 0.994 1.000 - ≈90.11 KB/≈0.00 KB 0.001 s.
KNN 0.998 0.991 0.995 0.994 0.998 - ≈0.00 KB/≈286.71 KB 0.001 s.
RF 0.979 0.923 0.949 0.942 0.970 - ≈180.22 KB/≈0.00 KB 0.020 s.
XGBoost 0.996 0.977 0.983 0.983 0.992 - ≈4964.35 KB/≈0.00 KB 0.009 s.
EBM 0.987 1.000 0.993 0.992 0.980 - ≈1425.40 KB/≈0.00 KB 13.822 s.
TM (Booleanized) 0.996 1.000 0.998 0.998 0.996 3622 ≈0.00 KB/≈0.00 KB 0.148 s.
TM (SSLs) 0.995 1.000 0.997 0.997 0.994 398 ≈0.00 KB/≈0.00 KB 0.119 s.

5.2. Balance Scale

We then move to the Balance Scale dataset (available from http://archive.ics.uci.edu/
ml/datasets/balance+scale, accessed on 24 August 2021). The Balance Scale dataset consists
of three classes: a balance scale that tips to the left, tips to the right, or that is in balance.
The above class is decided collectively by four features: (1) the size of the weight on the
left-hand side, (2) distance from the center to the weight on the left, (3) size of the weight on
the right-hand side, and (4) distance from the center to the weight on the right. However,
we remove the third class—i.e., “balanced”—and contract the output to a Boolean form.
The resulting dataset ends up with 576 data samples.

Tables 11 and 12 contain the results of the TM with two continuous feature representa-
tions, with varying m. The F1-Score reaches its maximum of 0.945 at m = 100 for the TM
with the Boolean feature arrangement. The average number of literals used to achieve the
above performance is 790. The TM with the SSL scheme reaches its maximum performance
when m = 500. The number of literals used in the classifier to achieve this performance
is 668.

Table 11. Performance of TM with Booleanized continuous features on Balance Scale dataset.

m 2 10 100 500 2000 8000

Precision 0.647 0.820 0.966 0.949 0.926 0.871
Recall 0.986 0.965 0.930 0.934 0.884 0.746

F1-Score 0.781 0.886 0.945 0.933 0.880 0.749
Accuracy 0.728 0.875 0.948 0.936 0.889 0.780
Specificity 0.476 0.782 0.966 0.935 0.905 0.819
No. of Lit. 17 77 790 3406 15,454 60,310

Table 12. Performance of TM with SSL continuous feature scheme on Balance Scale dataset.

m 2 10 100 500 2000 8000

Precision 0.579 0.717 0.919 0.961 0.877 0.851
Recall 0.957 0.947 0.972 0.938 0.867 0.794

F1-Score 0.717 0.812 0.944 0.946 0.854 0.781
Accuracy 0.612 0.777 0.943 0.948 0.854 0.795
Specificity 0.254 0.598 0.916 0.959 0.840 0.795
No. of Lit. 4 17 140 668 2469 9563

http://archive.ics.uci.edu/ ml/datasets/balance+scale
http://archive.ics.uci.edu/ ml/datasets/balance+scale
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The variation of the number of literals over different numbers of clauses in the TM
with these two continuous feature arrangements is graphed in Figure 4. The TM with the
SSL scheme uses a smaller number of literals for all the considered number of clauses, with
the difference increasing with number of clauses.
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Figure 4. The number of literals included in TM clauses to work with the Balance Scale dataset.

For the Balance Scale dataset, the performances of the other machine learning al-
gorithms are also obtained. Along with the TM performance, the prediction accuracies
of other models are presented in Table 13. The highest F1-Score from all the considered
models is procured by EBM. Out of the two TM approaches, the TM with the SSL scheme
shows the best performance in terms of the F1-Score, while using less training time and
training memory.

Table 13. Performance comparison for Balance Scale dataset.

Prec. Reca. F1 Acc. Spec. No. of Lit. Memory Required Training Time(Training/Testing)

ANN-1 0.993 0.987 0.990 0.990 0.993 - ≈966.57 KB/≈24.56 KB 0.614 s.
ANN-2 0.995 0.995 0.995 0.995 0.994 - ≈3612.65 KB/≈589.82 KB 0.588 s.
ANN-3 0.995 0.995 0.995 0.995 0.995 - ≈33,712.82 KB/≈1478.64 KB 0.678 s.
DT 0.984 0.988 0.986 0.986 0.985 - ≈131.07 KB/≈0.00 KB 0.007 s.
SVM 0.887 0.889 0.887 0.887 0.884 - ≈65.53 KB/≈241.59 KB 0.001 s.
KNN 0.968 0.939 0.953 0.953 0.969 - ≈249.77 KB/≈126.87 KB 0.001 s.
RF 0.872 0.851 0.859 0.860 0.871 - ≈0.00 KB/≈0.00 KB 0.021 s.
XGBoost 0.942 0.921 0.931 0.931 0.942 - ≈1126.39 KB/≈0.00 KB 0.030 s.
EBM 1.000 1.000 1.000 1.000 1.000 - ≈1642.49 KB/≈0.00 KB 15.658 s.
TM (Booleanized) 0.966 0.930 0.945 0.948 0.966 790 ≈16.37 KB/≈0.00 KB 0.011 s.
TM (SSLs) 0.961 0.938 0.946 0.948 0.959 668 ≈9.43 KB/≈0.00 KB 0.004 s.

5.3. Breast Cancer

The nine features in the Breast Cancer dataset (available from: https://archive.ics.uci.
edu/ml/datasets/Breast+Cancer, accessed on 24 August 2021) predict the recurrence of
breast cancer. The nine features in the dataset are age, menopause, tumor size, inverse
nodes, node caps, degree of malignancy, side (left or right), the position of the breast,
and irradiation status. The numbers of samples in the “non-recurrence” and “recurrence”
classes are 201 and 85, respectively. However, some of these samples are removed as they
contain missing values in their features.

The performances of the TMs with two feature arrangements and the number of
literals they included in their clauses to achieve this performance are summarized in
Tables 14 and 15, respectively, for the Booleanized scheme and the SSL scheme. In contrast
to the previous two datasets, the F1-Score for the TMs with both feature arrangements

https://archive.ics.uci. edu/ml/datasets/Breast+Cancer
https://archive.ics.uci. edu/ml/datasets/Breast+Cancer
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peaks at m = 2. The performance then decreases with the increase of m. The numbers of
literals at this phase in TMs with Booleanized and SSL feature arrangements are 21 and 4,
respectively. Overall, the TM with the SSL scheme requires the smallest amount of literals,
as can be seen in Figure 5.

Table 14. Performance of TM with Booleanized continuous features on Breast Cancer dataset.

m 2 10 100 500 2000 8000

Precision 0.518 0.485 0.295 0.101 0.058 0.054
Recall 0.583 0.380 0.416 0.205 0.200 0.250

F1-Score 0.531 0.389 0.283 0.089 0.090 0.088
Accuracy 0.703 0.737 0.644 0.633 0.649 0.581
Specificity 0.742 0.864 0.731 0.800 0.800 0.750
No. of Lit. 21 73 70 407 1637 6674

Table 15. Performance of TM with SSL continuous feature scheme on Breast Cancer dataset.

m 2 10 100 500 2000 8000

Precision 0.465 0.468 0.071 0.126 0.090 0.070
Recall 0.759 0.575 0.233 0.467 0.333 0.233

F1-Score 0.555 0.494 0.109 0.195 0.141 0.107
Accuracy 0.645 0.701 0.630 0.525 0.589 0.628
Specificity 0.599 0.753 0.778 0.551 0.682 0.775
No. of Lit. 4 16 101 321 997 4276
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Figure 5. The number of literals included in TM clauses to work with Breast Cancer dataset.

All the other algorithms obtain an F1-Score of less than 0.5. The performances of DT,
RF, SVM, XGBoost, and EBM can be identified as the worst of all models as summarized
in Table 16. The best F1-Score is obtained by the TM with the SSL feature representation
procedure, while the TM with Booleanized features obtain the second best F1-Score. The
increase of the F1-Score from 0.531 to 0.555 comes also with the advantage of having 19
less literals in clauses for the SSL approach. Both the training and testing memory usage
of the TM with these two feature arrangements is negligible. The TM also has the lowest
training time of all algorithms, amounting to 0.001 s.
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Table 16. Performance comparison for Breast Cancer dataset.

Prec. Reca. F1 Acc. Spec. No. of Lit. Memory Required Training Time(Training/Testing)

ANN-1 0.489 0.455 0.458 0.719 0.822 - ≈1001.97 KB/≈35.74 KB 0.249 s.
ANN-2 0.430 0.398 0.403 0.683 0.792 - ≈3498.47 KB/≈608.71 KB 0.248 s.
ANN-3 0.469 0.406 0.422 0.685 0.808 - ≈38,645.07 KB/≈1837.76 KB 0.288 s.
DT 0.415 0.222 0.276 0.706 0.915 - ≈102.39 KB/≈0.00 KB 0.005 s.
SVM 0.428 0.364 0.384 0.678 0.805 - ≈241.66 KB/≈299.00 KB 0.001 s.
KNN 0.535 0.423 0.458 0.755 0.871 - ≈249.85 KB/≈61.43 KB 0.001 s.
RF 0.718 0.267 0.370 0.747 0.947 - ≈139.26 KB/≈0.00 KB 0.020 s.
XGBoost 0.428 0.344 0.367 0.719 0.857 - ≈1327.10 KB/≈0.00 KB 0.026 s.
EBM 0.713 0.281 0.389 0.745 0.944 - ≈1724.41 KB/≈0.00 KB 6. 007 s.
TM (Booleanized) 0.518 0.583 0.531 0.703 0.742 21 ≈0.00 KB/≈0.00 KB 0.001 s.
TM (SSLs) 0.465 0.759 0.555 0.645 0.599 4 ≈0.00 KB/≈0.00 KB 0.001 s.

5.4. Liver Disorders

The Liver Disorders dataset (available from: https://archive.ics.uci.edu/ml/datasets/
Liver+Disorders, accessed on 24 August 2021) was created in the 1980s by BUPA Medical
Research and Development Ltd. (hereafter “BMRDL”) as a part of a larger health-screening
database. The dataset contains data in seven columns: mean corpuscular volume, alkaline
phosphotase, alamine aminotransferase, aspartate aminotransferase, gamma-glutamyl
transpeptidase, number of half-pint equivalents of alcoholic beverages (drunk per day),
and selector. By taking the selector attribute as a class label, some researchers have used this
dataset incorrectly [52]. However, in our experiments, the “number of half-pint equivalents
of alcoholic beverages” is used as the dependent variable, Booleanized using the threshold
≥3. Further, only results of various blood tests are used as feature attributes; i.e., the
selector attribute is discarded.

Tables 17 and 18 summarize the performance of the TM with two feature arrangements.
As can be seen, the F1-Scores of the TM with Booleanized continuous features peak at
m = 2, while this value for the TM with the SSL scheme is m = 10. With 10 clauses, the
method of representing continuous features for the TM with theSSL scheme considers
merely 9 literals in clauses to acquire a better F1-Score. The increase of the number of
literals included in TM clauses with the increase of the number of clauses can be seen in
Figure 6. Again, this confirms that the TM with the SSL scheme uses a considerably smaller
number of literals overall.

Table 17. Performance of TM with Booleanized continuous features on Liver Disorders dataset.

m 2 10 100 500 2000 8000

Precision 0.566 0.540 0.506 0.455 0.442 0.417
Recall 0.799 0.597 0.508 0.595 0.500 0.593

F1-Score 0.648 0.550 0.389 0.450 0.375 0.437
Accuracy 0.533 0.540 0.516 0.522 0.526 0.504
Specificity 0.204 0.436 0.497 0.395 0.500 0.396
No. of Lit. 27 51 117 509 2315 8771

Table 18. Performance of TM with SSL continuous feature scheme on Liver Disorders dataset.

m 2 10 100 500 2000 8000

Precision 0.619 0.591 0.546 0.420 0.414 0.522
Recall 0.905 0.924 0.605 0.700 0.700 0.407

F1-Score 0.705 0.709 0.447 0.525 0.520 0.298
Accuracy 0.587 0.574 0.526 0.546 0.543 0.461
Specificity 0.101 0.098 0.400 0.300 0.300 0.600
No. of Lit. 2 9 89 452 1806 7229

https://archive.ics.uci.edu/ml/datasets/ Liver+Disorders
https://archive.ics.uci.edu/ml/datasets/ Liver+Disorders
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Figure 6. The number of literals included in TM clauses to work with the Liver Disorders dataset.

From the performance of the other machine learning models, summarized in Table 19,
we can observe that the highest F1-Score (0.729) is produced by RF. The performance of DT
in terms of the F1-Score is comparable to the performance of RF. However, DT requires a
training memory of 49.15 KB, while RF uses a negligibly small memory both for training
and testing to work with the Liver Disorders dataset. The TM, on the other hand, performs
better with SSL continuous features representation than with the Booleanized continuous
features. This performance is the fourth best among all the other models. For training and
testing, the TMs with both feature representation approaches require an insignificantly
small amount of memory. However, the TM with SSL feature representation requires less
time for training.

Table 19. Performance comparison for Liver Disorders dataset.

Prec. Reca. F1 Acc. Spec. No. of Lit. Memory Required Training Time(Training/Testing)

ANN-1 0.651 0.702 0.671 0.612 0.490 - ≈985.13 KB/≈18.53 KB 0.305 s.
ANN-2 0.648 0.664 0.652 0.594 0.505 - ≈3689.39 KB/≈598.26 KB 0.305 s.
ANN-3 0.650 0.670 0.656 0.602 0.508 - ≈38,365.46 KB/≈1758.23 KB 0.356 s.
DT 0.591 0.957 0.728 0.596 0.135 - ≈49.15 KB/≈0.00 KB 0.025 s.
SVM 0.630 0.624 0.622 0.571 0.500 - ≈1597.43 KB/≈0.00 KB 0.005 s.
KNN 0.629 0.651 0.638 0.566 0.440 - ≈0.00 KB/≈434.17 KB 0.001 s.
RF 0.618 0.901 0.729 0.607 0.192 - ≈0.00 KB/≈0.00 KB 0.017 s.
XGBoost 0.641 0.677 0.656 0.635 0.568 - ≈3219.45 KB/≈0.00 KB 0.081 s.
EBM 0.641 0.804 0.710 0.629 0.406 - ≈7790.59 KB/≈0.00 KB 10.772 s.
TM (Booleanized) 0.566 0.799 0.648 0.533 0.204 27 ≈0.00 KB/≈0.00 KB 0.003 s.
TM (SSLs) 0.591 0.924 0.709 0.574 0.098 9 ≈0.00 KB/≈0.00 KB 0.001 s.

5.5. Heart Disease

The last dataset we use is the Heart Disease dataset (Available from: https://archive.ics.
uci.edu/ml/datasets/Statlog+%28Heart%29, accessed on 24 August 2021). The goal of
this dataset is to predict future heart disease risk based on historical data. The complete
dataset consists of 75 features. However, in this experiment, the updated version of the
dataset, containing 13 features, is used: one ordered, six real-valued, three nominal, and
three Boolean features.

Tables 20 and 21 summarize the performance of the TM with two feature arrangement
schemes. For the TM with Boolean features, the best F1-Score occurs with m = 10, achieved
by using 346 literals on average. The F1-Score of the TM with SSL continuous features
peaks again at m = 10 with only 42 literals. Even though the TM with Boolean features
performs better in terms of accuracy, the TM with SSL feature representation outperforms
the Boolean representation of continuous features by obtaining a higher F1-Score.

https://archive.ics. uci.edu/ml/datasets/Statlog+%28Heart%29
https://archive.ics. uci.edu/ml/datasets/Statlog+%28Heart%29
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Table 20. Performance of TM with Booleanized continuous features on Heart Disease dataset.

m 2 10 100 500 2000 8000

Precision 0.547 0.607 0.835 0.507 0.351 0.360
Recall 0.938 0.815 0.626 0.408 0.646 0.486

F1-Score 0.682 0.687 0.665 0.383 0.446 0.392
Accuracy 0.593 0.672 0.749 0.619 0.533 0.584
Specificity 0.306 0.566 0.848 0.803 0.460 0.665
No. of Lit. 118 346 810 1425 11,399 52,071

Table 21. Performance of TM with SSL continuous feature scheme on Heart Disease dataset.

m 2 10 100 500 2000 8000

Precision 0.529 0.588 0.562 0.305 0.674 0.687
Recall 0.971 0.915 0.504 0.431 0.660 0.667

F1-Score 0.680 0.714 0.510 0.343 0.571 0.555
Accuracy 0.591 0.674 0.709 0.630 0.633 0.581
Specificity 0.272 0.471 0.853 0.701 0.582 0.512
No. of Lit. 10 42 151 783 3152 12,365

Considering the number of literals used with an increasing number of clauses (Figure 7),
both approaches behave almost similarly until m = 500, and then the TM with Booleanized
features includes more literals in clauses than the proposed approach.
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Figure 7. The number of literals included in TM clauses to work with Heart Disease dataset.

Out of the considered machine learning models, as summarized in Table 22, EBM
obtains the best F1-Score. However, EBM needs the highest training time and uses the
second largest amount of training memory, while both TMs use negligible memory during
both training and testing and consume much less training time than EBM.

Table 22. Performance comparison for Heart Disease dataset.

Prec. Reca. F1 Acc. Spec. No. of Lit. Memory Required Training Time(Training/Testing)

ANN-1 0.764 0.724 0.738 0.772 0.811 - ≈973.64 KB/≈16.46 KB 0.297 s.
ANN-2 0.755 0.736 0.742 0.769 0.791 - ≈3659.59 KB/≈578.11 KB 0.266 s.
ANN-3 0.661 0.662 0.650 0.734 0.784 - ≈33,952.49 KB/≈1513.41 KB 0.308 s.
DT 0.827 0.664 0.729 0.781 0.884 - ≈0.00 KB/≈266.23 KB 0.016 s.
SVM 0.693 0.674 0.679 0.710 0.740 - ≈1363.96 KB/≈262.14 KB 0.004 s.
KNN 0.682 0.615 0.641 0.714 0.791 - ≈0.00 KB/≈319.48 KB 0.001 s.
RF 0.810 0.648 0.713 0.774 0.879 - ≈413.69 KB/≈0.00 KB 0.017 s.
XGBoost 0.712 0.696 0.701 0.788 0.863 - ≈3694.58 KB/≈0.00 KB 0.057 s.
EBM 0.827 0.747 0.783 0.824 0.885 - ≈4763.64 KB/≈0.00 KB 11.657 s.
TM (Booleanized) 0.607 0.815 0.687 0.672 0.566 346 ≈0.00 KB/≈0.00 KB 0.014 s.
TM (SSLs) 0.588 0.915 0.714 0.674 0.471 42 ≈0.00 KB/≈0.00 KB 0.001 s.
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5.6. Summary of Empirical Evaluation

To compare the overall performance of the various techniques, we calculate the
average F1-Scores across the datasets. Furthermore, to evaluate the overall interpretability
of TMs, we also report the average number of literals used overall.

In brief, the average F1-Scores of ANN-1, ANN-2, ANN-3, DT, SVM, KNN, RF, XG-
Boost, EBM, TM (Booleanized), and TM (SSL) are 0.770, 0.757, 0.744, 0.742, 0.713, 0.737,
0.724, 0.728, 0.775, 0.762, and 0.782, respectively. Out of all the considered models, the
TM with SSL continuous feature representation obtains the best average F1-Score, which
is 0.782. It should also be noted that increasing ANN model complexity (from ANN-1 to
ANN-3) reduces the overall F1-Score, which can potentially be explained by the small size
of the datasets.

Indeed, the average numbers of literals employed are 961 for the TM with Booleanized
continuous features and 224 for the TM with the SSL feature scheme. That is, the TM
with SSL feature representation uses 4.3 times fewer literals than the TM with Booleanized
continuous features.

The average combined memory requirements (training and testing) for the TM ap-
proaches are 3.27 KB and 1.89 KB for Booleanized features and SSL features, respec-
tively. The combined memory usage of the TM with SSL feature representation is signif-
icantly less compared to the other models—ANN-1: ≈528 times, ANN-2: ≈2211 times,
ANN-3: ≈19,197 times, DT: ≈59 times, SVM: ≈441 times, KNN: ≈1836 times, RF: ≈78
times, XGBoost: ≈1517 times, and EBM: ≈2121 times.

It should also be noted that increasing the number of clauses stabilizes the precision,
recall, F1-score, accuracy, and specificity measures, rendering variance insignificant. That
is, variance becomes negligible for all the datasets and feature representations.

5.7. Comparison against Recent State-of-the-Art Machine Learning Models

In this section, we compare the accuracy of the TM with reported results on recent state-
of-the-art machine learning models. First, we perform experiments on Fraud Detection
and COMPAS: Risk Prediction in Criminal Justice datasets to study the performance of
the TM in comparison with Neural Additive Models [11]. A Neural Additive Model is
a novel member of the so-called General Adaptive Models. In Neural Additive Models,
the significance of each input feature towards the output is learned by a dedicated neural
network. During the training phase, the complete set of neural networks is jointly trained
to learn complex interactions between inputs and outputs.

To compare the performance against StructureBoost [47], we use the CA weather
dataset [53]. For simplicity, we use only the CA-58 subset of the dataset in this study.
StructureBoost is based on gradient boosting and is capable of exploiting the structure of
categorical variables. StructureBoost outperforms established models such as CatBoost
and LightBoost on multiple classification tasks [47].

Since the performance of both of the above techniques has been measured in terms of
the Area Under the ROC Curve (AUC), here, we use a soft TM output layer [54] to calculate
the AUC. The performance characteristics are summarized in Table 23.

Table 23 shows that for the Fraud Detection dataset, the TM with the SSL continuous
feature representation approach performs on par with XGBoost and outperforms NAMs
and all the other techniques mentioned in [11]. For the COMPAS dataset, the TM with
the SSL feature arrangement exhibits competitive performance compared to NAMs, EBM,
XGBoost, and DNNs. The TM with SSL feature representation shows, however, superior
performance compared to Logistic Regression and DT on COMPAS. The performance of
the TM on CA-20 is better in comparison to StructureBoost, LightBoost, and CatBoost
models, as reported in [47].
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Table 23. Performance (in AUC) comparison against recent state-of-the-art machine learning models.

Model Fraud Detection COMPAS CA-58

Logistic Regression 0.975 0.730 -
DT 0.956 0.723 -

NAMs 0.980 0.741 -
EBM 0.976 0.740 -

XGBoost 0.981 0.742 -
DNNs 0.978 0.735 -

LightBoost - - ≈0.760 †
CatBoost - - ≈0.760 †

StructureBoost - - ≈0.764 †
TM (SSLs) 0.981 0.732 0.770

† These results were extracted from graphs in [47].

6. Conclusions

In this paper, we proposed a novel continuous feature representation approach for
Tsetlin Machines (TMs) using Stochastic Searching on the Line (SSL) automata. The SSLs
learn the lower and upper limits of the continuous feature values inside clauses. These
limits decide the Boolean representation of the continuous value inside the clauses. We
have provided empirical evidence to show that the novel way of representing continuous
features in the TMs can reduce the number of literals included in the learned TM clauses
by 4.3 times compared to the Booleanization scheme without loss of performance. Further,
the new continuous feature representation is able to decrease the total training time from
0.177 s to 0.126 s per epoch, and the combined total memory usage is reduced from 16.35 KB
to 9.45 KB while exhibiting on par or better performance. In terms of the average F1-Score,
the TM with the proposed feature representation also outperforms several state-of-the-art
machine learning algorithms.

In our future work, we intend to investigate the possibility of applying a similar
feature representation for multi-class and regression versions of the TM.
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