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Abstract: Radars with mmWave frequency modulated continuous wave (FMCW) technology accu-
rately estimate the range and velocity of targets in their field of view (FoV). The targeted angle of
arrival (AoA) estimation can be improved by increasing receiving antennas or by using multiple-input
multiple-output (MIMO). However, obtaining target features such as target type remains challenging.
In this paper, we present a novel target classification method based on machine learning and features
extracted from a range fast Fourier transform (FFT) profile by using mmWave FMCW radars operat-
ing in the frequency range of 77–81 GHz. The measurements are carried out in a variety of realistic
situations, including pedestrian, automotive, and unmanned aerial vehicle (UAV) (also known as
drone). Peak, width, area, variance, and range are collected from range FFT profile peaks and fed into
a machine learning model. In order to evaluate the performance, various light weight classification
machine learning models such as logistic regression, Naive Bayes, support vector machine (SVM),
and lightweight gradient boosting machine (GBM) are used. We demonstrate our findings by using
outdoor measurements and achieve a classification accuracy of 95.6% by using LightGBM. The
proposed method will be extremely useful in a wide range of applications, including cost-effective
and dependable ground station traffic management and control systems for autonomous operations,
and advanced driver-assistance systems (ADAS). The presented classification technique extends the
potential of mmWave FMCW radar beyond the detection of range, velocity, and AoA to classifica-
tion. mmWave FMCW radars will be more robust in computer vision, visual perception, and fully
autonomous ground control and traffic management cyber-physical systems as a result of the added
new feature.

Keywords: mmWave radar; FMCW radar; autonomous systems; machine learning; ground station
radar; targets classification; range FFT features

1. Introduction

There exists a wide variety of sensors for sensing and perception of the surrounding
environment, such as camera, LiDAR, ultrasound, infrared (IR), thermal cameras, radar,
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accelerometers, gyroscopes, and global positioning system (GPS) to name a few. Although
individual sensors are capable of extracting related features of the surrounding, they fail
to obtain rich details necessary for reliable perception and navigation of autonomous
systems [1–4]. When compared to ultrasound sensors that provide 1D information, vision-
based sensors such as cameras provide more detailed 2D information, but they fail to
perform under limited lighting conditions, such as during the night, and adverse weather
such as rain and fog. Furthermore, spatio-temporal parameters of targets in the field of
view can only be captured by lengthy computations, which can cause an unacceptable
delay. Some of these problems, such as night vision or limited lighting conditions, can be
solved to some extent by integrating IR cameras with cameras. Although machine learning
techniques for training the model with images for object recognition and classification [5],
as well as traffic sign recognition, are well developed, they are insufficient for fully au-
tonomous and cyber-physical systems operating in varying weather conditions [6]. In
addition, the camera fails to provide a 3D representation of the environment. In order to
overcome these problems, LiDAR based sensing is one of the appealing approaches to
acquiring a 3D map of the environment. However, there are still a number of challenges
to overcome, such as reducing cost of the setup, reducing form factor, decreasing weight,
and increasing number of channels for increased resolution while reducing latency when
capturing the dynamics of objects in the FoV [1,2]. On the other hand, the mmWave
radar sensors are single-chip radar sensors with extremely high resolution and low power
consumption. These sensors work reliably in adverse weather conditions too, but no
information on object morphology is obtained. The classification of different types of UAVs
has been proposed by utilizing mmWave radars in [7]. Machine learning techniques are
used to categorize activities using radar data. Drone type classification has been proposed
in [8–10]. However, the proposed methods are computationally expensive. Recently, target
classification using range-Doppler plots from a high density phase modulated continuous
wave (PMCW) MIMO mmWave radar has been proposed in [11]. However, range-Doppler
is a 2D FFT processing based approach that is also computationally complex. On the
other hand, the target classification by mmWave FMCW radars using machine learning
on range-angle images has been proposed in [12]. These range-angle images are created
by utilizing range profiles obtained from a rotating radar. This approach is computation-
ally less complex compared to previously mentioned approached but requires rotation.
However, the various types of targets in classification under all weather conditions using
low-complexity algorithms are still challenging.

In order o exploit the advantages of individual sensors, approaches based on sensor
fusion has been implemented. For example authors in [13,14] fused data from camera and
LiDAR to represent visual as well as depth information in a compact form and extracted
the feature of the objects under interest. The disadvantages of this technique is that they
require calibration and will result in enormous errors if not performed well. Similarly,
radar-camera fusion for object detection, classification, and dynamics of environment
is observed [15]. The drawback of the sensor fusion based technique is that they are
flooded by a huge amount of data, e.g., image, video, and point cloud require additional
computational cost.

With the objective for detecting and classifying the objects with the limitations imposed
by individual sensors, extensive signal processing of both the image and point cloud (2D
or 3D data) radar, especially operating at the millimeter wave band, has been used recently
for autonomous systems. Radars detect object parameters such as radial range, relative
velocity, and the angle of arrival (AoA). While pulsed radar operate by finding the delay of
the returned pulse from the remote object relative to the transmitted pulse, FMCW operates
by transmitting frequency chirp and by beating the returned version with the transmitted
ones, resulting in the intermediate frequency (IF), which contains information about the
range and velocity of the objects. The FoV and/or beamwidth of mmWave FMCW radars
are adjustable parameters up to 120° and maximum range of 300 m [16]. Furthermore,
multiple radars can be cascaded together to achieve a wider FoV.
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The fast Fourier transformation (FFT) on the IF signal provides range profile. The
peaks in the range profile determines the radial range of the objects. In addition, time-
frequency analysis techniques such as the Micro-Doppler have been investigated in some
cases where targets have specific repeating patterns. This, however, increases the signal pro-
cessing complexity, resulting in unacceptable latency in some application scenarios [17–22].
Furthermore, such techniques are limited to static targets [23,24]. Machine learning tech-
niques have recently been investigated by using mmWave radars data. Surface classifica-
tion with millimeter-Wave radar has been accomplished through the use of temporal fea-
tures [25]. In [26], it was proposed to classify small UAVs and birds by using micro-Doppler
signatures derived from radar measurements. The use of micro-Doppler spectrograms in
cognitive radar for deep learning-based classification of mini-UAVs has been proposed
in [27]. The cadence velocity diagram analysis has been proposed for detecting multiple
micro-drones in [28]. Convolutional neural networks with merged Doppler images have
been proposed in [8] for UAVs classification. The use of micro-Doppler analysis to clas-
sify UAVs in the Ka band has been proposed in [29]. The detection of small UAVs has
been proposed using a radar-based EMD Algorithm and the extraction of micro-Doppler
signals in [30]. The detection of small UAVs has been proposed using cyclostationary
phase analysis on micro-Doppler parameters based on radar in [31]. UAV detection has
been proposed by using regularized 2D complex-log spectral analysis and micro-Doppler
signature subspace reliability analysis in [32]. A multilayer perceptron artificial neural
network has been proposed for classifying single and multi-propelled miniature drones
in [33]. It has been proposed to use FMCW radar to classify stationary and moving objects
in road environments in [34]. The detection of road users such as pedestrians, cyclists, and
cars using a 3D radar cube has been proposed by using CNN in [35]. CNN is used for
classification, followed by clustering. Based on the Euclidean distance softmax layer, a
method for classifying human activity by using mmWave FMCW radar has been proposed
in [36]. Several deep learning-based methods for detecting human activity using radar are
summarized in [37]. All of these works, however, used spectrograms or time-frequency
representations derived from spectrograms, such as cepstrogram and CVD, which necessi-
tates additional signal processing. The additional features of an intermediate frequency (IF)
signal’s range FFT profile have not been thoroughly investigated. It has been demonstrated
in [38] that by utilizing the features from the range FFT profile, additional information
about the objects can be extracted.

The ability to detect target features such as shape and size, as well as dynamic pa-
rameters of these targets, is critical. Such enhancements will improve the reliability and
robustness of any system that utilizes radars. On the one hand, while the IF signal explicitly
provides the object’s range, the distinguishing characteristics of the different objects are
obtained by extracting statistical parameters from the range FFT plot, such as peak height,
peak width, standard deviation, and area under peaks. Experiments have been carried out
in order to categorize three common objects: an unmanned aerial vehicle (UAV), a car, and
a pedestrian. A number of ML algorithms are used to classify the targets in combination
with statistic features extracted from the IF signal range FFTs of the radar measures with
different objects. Lightweight machine learning algorithms that have been investigated
include Logistic Regression, Naive Bayes, support vector machine (SVM), and Light Gradi-
ent Boosted Machine (GBM). This is the first paper to use ML for classifying purposes with
mmWave radars on the range FFT statistical features. The major contributions of the work
are as follows:

1. Outdoor experiments have been carried out to categorize three common objects: an
unmanned aerial vehicle (UAV), a car, and a pedestrian.

2. Extracting statistical parameters such as peak height, peak width, standard deviation,
and area under peaks from the range profile of the radar data.

3. Classification of the targets by using the statistical features extracted from the IF signal
range FFTs of the radar measures with different objects and various ML models.
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In complex situations, however, range profiles may not provide higher classification ac-
curacy. The combination of mmWave radars with additional sensors such as RGB cameras,
thermal cameras, and infrared cameras improves reliability and classification accuracy.

The rest of this paper is structured as follows. The system is described in Section 2. The
experimental setup is described in detail in Section 3. Section 4 presents the data set, signal
processing, details of the machine learning models, and the performances. The detailed
data set and algorithms are available at https://github.com/aveen-d/Radar_classification
(accessed on 19 June 2021) [39].

Finally, the conclusion remarks together with possible future works are discussed in
Section 5.

2. Measurement Setup and System Description

Figure 1 depicts the system-level diagram. There are six modules in total that are
covered in detail in the sections below: (1) Data acquisition using mmWave FMCW radar;
(2) Radar configuration details; (3) Range FFT/Range profile; (4) Features extraction using
the identified peaks on Range FFT; (5) Target classification using Lightweight Machine
learning models; and (6) Evaluation of performance of the classification models.
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Figure 1. System level diagram.

https://github.com/aveen-d/Radar_classification
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2.1. mmWave FMCW Radar and Data Acquisition

The measurements were taken outside by using a Texas Instruments complex base
band FMCW mmWave radar (TI). The radar is equipped with four transmitting and three
receiving antennas. The radar’s front-end complex base band architecture is depicted in
Figure 2.

Figure 2. Radar front-end architecture with complex IF signal.

In Figure 3, the starting frequency ( fc), bandwidth (BW), and chirp slope (S) during
one chirp period (Tchirp) are shown. The transmitted chirp’s instantaneous frequency is
given by the following equation.

ftr(t) = fc + S · t (1)

= fc +
BW

Tchirp
t, 0 ≤ t ≤ Tchirp

Time	(t)

Tchirptd

ftr(t)

fIF
frx(t)

fcFr
eq
ue
nc
y	
(G
H
z)

Figure 3. FMCW signal pattern.

The transmitted chirp’s phase is given by the following equation.

φtr(t) = 2π fct + π
BW

Tchirp
t2, (2)

Using (1) and (2), the transmitted chirp within a period (Tchirp) is given by the follow-
ing equation:

Str(t) = Acos(2π ftr(t)t + φtr(t)), (3)

where f tr(t) represents the frequency of the transmitted chirp and φtr(t) represents the
phase of the transmitted chirp [40]. Similarly, the received signal following a remote
target reflection is simply a delayed version of the transmitted signal and is given by
the following:

Srx(t) = Str(t− τ), (4)
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where τ = 2R/c represents the time delay between the transmitted and received signal, R
represents the radial range of the target from radar, and c represents the velocity of light in
a vacuum.

The transmitting and receiving chirps patterns are depicted in Figure 3. The complex
IF signal is created by combining the reflected chirp from the targets with the in-phase
and quadrature-phase of the transmitted chirp, as illustrated in Figure 2. This complex IF
signal is first processed with a low-pass filter before being digitized at a sampling rate of
10 Msps [2,40]. The frequency of IF signal is proportional to the radial range of the target
and is given by (5).

f IF =
BW · 2R
Tchirp · c

, (5)

Range is given by (6):

R =
f IFc
2S

, (6)

where BW, R, f IF, c, and S represent the RF bandwidth, range, IF signal frequency, light
velocity in vacuum, and chirp slope, respectively.

2.2. Radar Configuration Details

The mmWave radar configuration parameters are shown in Table 1. The raw ADC
data of the complex IF signal are obtained from the radar and then post-processed in
MATLAB in order to separate the data files for the four channels in the frame structure, as
shown in Figure 4. Each measurement consists of 200 frames. Each frame is composed of
128 chirp loops, each of which contains 256 samples.

Version July 31, 2021 submitted to Journal Not Specified 7 of 27

Table 1. Configuration parameters for the Radar

S.No. Configuration
Parameter

Value

1 Starting Frequency of
the Chirp, fc

77 GHz

2 Bandwidth, BW 1798.92 MHz

3 Slope of the Chirp, S 29.982 MHz / µs

4 Number of Receiver
Antennas

4

5 Number of Transmit
Antennas

3

6 Number of ADC
samples per chirp

256

7 Number of chirp loops 128

8 Number of frames 200

9 ADC Sampling rate 10 MSPS

10 Periodicity of the frame 40 ms

11 Rx Noise Figure 14 dB (76 to 77
GHz) 15 dB (77 to
81 GHz)

12 Transmission Power 12 dBm
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Channel-2

Channel-3

Channel-4

200	Frames

12
8	
C
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Figure 4. Details of frame structure.
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main lobe / sidelobe intersects the ground. Because the area of ground in the radar beam is often quite162

large, the ground return can be much larger than the target return. The clutter associated with ground163

returns close to radar is removed by removing associated components per range bin in range FFT.164

165
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Figure 4. Details of frame structure.

Table 1. Configuration parameters for the radar.

S. No. Configuration Parameter Value

1 Starting Frequency of the Chirp, fc 77 GHz
2 Bandwidth, BW 1798.92 MHz
3 Slope of the Chirp, S 29.982 MHz/µs
4 Number of Receiver Antennas 4
5 Number of Transmit Antennas 3
6 Number of ADC samples per chirp 256
7 Number of chirp loops 128
8 Number of frames 200
9 ADC Sampling rate 10 MSPS

10 Periodicity of the frame 40 ms
11 Rx Noise Figure 14 dB (76 to 77 GHz) 15 dB (77 to 81 GHz)
12 Transmission Power 12 dBm



Electronics 2021, 10, 1965 7 of 21

2.3. Range FFT

The FFT algorithm converts time-domain sampled complex IF signal data to frequency-
domain. Each chirp/frame is processed to obtain the range FFT spectrum. After that, the
range FFT is converted to an amplitude (dBFS) versus range (m) plot, where (6) can be
used to calculate the range in meters from the frequency, and dBFS denotes the decibel
full scale value of the signal amplitude. This range FFT plot is further processed by using
peak detection algorithm. The peaks in the range FFT spectrum represent targets in the
mmWave radar’s field of view.

The clutter is removed during preprocessing. Radar clutter is classified into two types:
mainlobe clutter and sidelobe clutter [41]. The mainlobe clutter is caused by unwanted
ground returns within the radar beamwidth (mainlobe), whereas the sidelobe clutter is
caused by unwanted returns from any other direction outside the mainlobe. When the
radar is placed at a lower height from the ground, the main lobe/sidelobe intersects the
ground. Since the area of ground in the radar beam is often quite large, the ground return
can be much larger than the target return. The clutter associated with ground returns close
to the radar is removed by removing the associated components per range bin in range FFT.

2.4. Features Extraction

Feature extraction details are presented in this section. The range FFT plot is used to
identify peaks, and then features for each peak are extracted. Among the features derived
from the detected peaks in the FFT spectrum are the radial range of the target, the height of
the peak, the peak width, the standard deviation, and the area under the peak. In general,
only peaks are used to determine whether or not a target is present in the radar’s field of
view [42–45]. Although other target parameters such as velocity and angle of arrival can
be extracted from the radar measurements, target features such as size and shape cannot
be estimated. However, targets can be classified by combining the aforementioned range
FFT features with lightweight machine learning models.

2.5. Machine Learning Models

Once features are extracted, light weight machine learning techniques such as Logistic
Regression, Support Vector Machine, Light Gradient Boost methods, and Naive Bayes are
used. These machine learning models, as well as their key performance outcomes, are
elaborated in detail in Section 4.

2.6. Target Classification

Three common targets such as a car, a pedestrian, and a UAV, are classified by using
the extracted range profile features and lightweight machine learning models. By taking
measurements with the targets of interest, additional targets can be added to the model.

3. Measurements and Signal Processing

The measurement setup is lightweight and portable. It is made up of a mmWave
FMCW radar with three transmitters and four receivers that operate in the frequency range
of 77 to 81 GHz. The Texas Instruments’ mmWave Studio application is used to configure
and control the radar setup. The configuration parameters of the radar used in these
measurements are shown in Table 1. The algorithm used for the feature extraction of the
objects is shown in Algorithm 1. A flowchart is shown in Figure 5 to explain the algorithm.
Measurements are made with three common objects in an outdoor environment, as shown
in Figure 6. Drone used in the measurements is quite small in size, and it possesses a
size of 214 × 91 × 84 mm when folded and 322 × 242 × 84 mm when unfolded. The
vehicle used was a medium-sized automobile with dimensions of 4315 × 1780 × 1605 mm.
Measurements for the pedestrian were taken with a 172 cm tall adult. All three objects
are one of a kind, with distinct shapes and sizes. For each object, several measurements
were taken in small range steps up to a range of 25 m, which was the measurement scene’s
limitation. The radar station is fixed and objects were moved from the radar in small steps
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while taking the measurements. The data collected using mmWave sensor are arranged for
four channels, and post processing is performed on 200*128 chirp loops of a channel. A Fast
Fourier Transform is applied on these chirp loops consisting of 256 samples/chirp loop.
Further dBFS and a mean of dBFS of all these chirploops is calculated for 256 samples. The
mean dBFS vs. distance plot is obtained using MATLAB. The highest peak in the plot will
indicate the object location. A sharp peak can be obtained after the removal of a static plane.
The features of the highest peak are extracted from this plot. This work has established
a relationship between these extracted peak features and the object. This relationship is
used to identify the type of object present in the vicinity of the mmWave sensors. All the
extracted features from the measurements are shown in Figure 7. It is clear from Figure 7
that features extracted from the range FFT plot, such as standard deviation of the peak, area
under the peak, the peak width, and the peak height, provide distinguishable information
about the targets. This makes sense because targets with a large cross-section reflect more
power and, as a result, larger peaks in the range FFT plot.

Start

k = 1, l = 1 

No
for(k = 1, k <= number_frame, k++)

dBFSi                mean(dBFSi(l))

No

vi(k,l)               FFT(ui(k,l))

ui(k)          u(k,i) 

Yes

for(l = 1, l <= chirp_loops, l++)

Yes

dBFSi(l)               vi(k,l)       

Plot dBFSi vs. Distance and find the 
highest peak in the plot.

For ith channel

Stop

number_frame = 200,
chirp_loops = 128,
Total channels = 4

Obtain the features (Distance, Height, Area,
Width, Std. Deviation) of the peak.

Figure 5. Features extraction flow chart.
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(a) Pedestrian Measurements

2m

(b) Car Measurements

7m

(c) Drone Measurements

Figure 6. Measurement Setup.



Electronics 2021, 10, 1965 10 of 21

(m
)

(a) Standard Deviation versus Distance
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(b) Area versus Distance
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(c) Width versus Distance
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)

(d) Height versus Distance

Figure 7. Extracted Features Plot.
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Algorithm 1 Object detection and features extraction from range FFT of mmWave FMCW radar.

Require: Object_ f eatures from raw IF signal data u having number_ f rame = 200, chirp_loops = 128;

for k← 1 to number_ f rame do

Ensure: Raw IF signal ADC data u contains complex data of the IF signal i.e., raw IF signal ADC data corresponding

to receiver i = 1, 2, 3, 4, for max_ f rame = 200, chirp_loops = 128 of raw data u.

ui(k)← u(k, i)

for l ← 1 to chirp_loops do

Ensure: FFT with Hanning window of raw IF signal data u for receiver i = 1, 2, 3, 4 of kth frame, lth chirp.

vi(k, l)← FFT(ui(k, l))

Ensure: dBFS values are calculated for each chirp FFT.

[dBFSi(l)]← vi(k, l)

end for

end for

Ensure: Mean dBFS is calculated for all frames and chirps.

dBFSi ← mean(dBFSi(l))

Ensure: Distance, height, width, and standard deviation of the peaks are calculated for the target detected using

findpeaksSb function.

f eatures(dis, ht, wd, ar, std)← f indpeaksSb(dBFSi)

Figure 8 depicts a single outdoor measurement case for three targets: a car, a pedes-
trian, and an UAV (drone). According to Figure 8, the areas under the peak extracted from
range FFT for a car, a pedestrian, and a drone are 2.5984, 2.038, and 0.45673, respectively.
It is proportional to the cross-section of the targets. Similarly, peak height, standard devi-
ation, and width are also proportional to the target features such as shape. All of these
extracted features are further processed by using machine learning techniques for target
classification.

Distance of the object = 5.1742 m
Height of the peak = 4.2115 dBFS
Width of the peak = 0.45455 m
Area under the peak = 2.038
dBFS*m
Standard deviation = 0.34917 m

(a) Extracted Features from Range FFT—Pedestrian

Figure 8. Cont.
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Distance of the object = 4.9271 m
Height of the peak = 4.7175 dBFS
Width of the peak = 0.51739 m
Area under the peak = 2.5984
dBFS*m
Standard deviation = 0.42748 m

(b) Extracted Features from Range FFT—Car

Distance of the object = 5.8678 m
Height of the peak = 1.7917 dBFS
Width of the peak = 0.23944 m
Area under the peak = 0.45673
dBFS*m
Standard deviation = 0.099459 m

(c) Extracted Features from Range FFT—UAV

Figure 8. Features extracted in the range FFT profile.

4. Machine Learning Algorithms and Performance Evaluation
4.1. Models

A machine learning model is depicted in Figure 9. Each of the three classes has
226 samples in our data set. Each sample has five properties: the target’s radial range (m),
the area under the peak (dBFS ×m), the peak’s height (dBFS), the peak’s width(m), and
the standard deviation (m) of the peak in the IF signal’s range FFT. The Human, Drone,
and Car are the class labels. Table 2 displays the sample count for each class.

Table 2. Per class total samples, train samples, and test samples count

S. No. Class Total Number
of Samples

Training
Samples

Testing
Samples

1 Human 95 86 10
2 Drone 59 53 6
3 Car 72 65 7

Total 226 203 23
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Figure 9. Overview of machine learning model.

The dataset is divided into two sections: training and testing. The training set consists
of 90% of the samples of the total dataset. The testing set contains 10% of samples of the
total dataset. Then, by using our dataset, we compare the performance, size, and other
parameters of various machine learning models.

4.1.1. Logistic Regression

The probabilities for classification problems with two possible outcomes are modeled
by using logistic regression. It is a classification-problem extension of the linear regression
model. Logistic regression is a supervised ML model based on logistic function. This ML
technique is useful to predict the binary decision variables {0,1}. There is only one node
and two operations: (i) a linear combination of model parameters such as weights and bias
and input (7); (ii) non-linear activation, which in this case is a sigmoid function (8). The
model then computes the probability ‘p’ that it belongs to the specified class following the
second operation [46]. The logistic regression model calculates the probability ‘p’ as shown
in Equation (9). In (7), ‘w’ is the weight vector, and ‘x’ is one sample vector. In (9), ‘Y’ is the
class label, and ‘X’ is the given dataset. In its most basic form, logistic regression is used to
classify only two classes. A multi-class classification model is used as our dataset has three
classes. For classification, we employ the one versus all method, also known as the one
vs. rest method. By this approach, we generate ‘n’ classifiers associated with ‘n’ classes.
We choose one class as class ‘0’ and all other classes as class ‘1’ from the dataset for each
classifier. The logistic regression model is then used to distinguish between classes ‘0’ and
‘1’. The same procedure is used to process the remaining ‘n’ classifiers in the dataset [47].
The logistic regression model and its confusion matrix for our dataset ‘n’ = 3 is shown in
Figures 10 and 11 [48], respectively.

z = wT ∗ xi (7)

sig(z) =
1

1 + e−z (8)

p(Y/X) = sig(z) (9)
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Figure 10. Logistic regression model.

Figure 11. Logistic regression model’s confusion matrix on test data.

4.1.2. Naive Bayes

Naive Bayes (NB) is a type of generative machine learning model. The discriminative
models are designed to learn the probability distribution P(y | x) given the input x and
corresponding label y. The generative ML model, on the other hand, estimates the joint
probability P(x,y) and applies the Bayes theorem to obtain P(y | x). The NB algorithm is a
popular supervised ML algorithm for dealing with classification problems. This algorithm is
based on the assumption that features are conditionally independent of one another [49]. The
NB algorithm has three variants based on the input features: (i) input with binary features;
(ii) input with discrete features; and (iii) input with continuous features. For input of binary type
features, Bernoulli NB is used, Multinomial NB is used for the input type of discrete features,
and Gaussian NB is used for the input type of continuous features. We used the Gaussian NB
model because our features were continuous. First, we computed the likelihood ratios from
our dataset. Following that, the posterior probability for each class is computed as shown
in (10). In (10), ‘Y’ is the class label, ‘X’ is the given dataset, ‘p(Y/X)’ is the conditional
probability of ‘Y’ given ‘X’, and ‘p(X)’ is the marginal probability of ‘X’. The sample is
a member of the class with the highest posterior probability. Figure 12 shows the Naive
Bayes model. Figure 13 depicts the Naive Bayes model’s confusion matrix.
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p(Y = Ci/X) =
p(X/Y = Ci) ∗ p(Y = Ci)

p(X)
(10)

Figure 12. Naive Bayes Model.

Figure 13. Confusion matrix of Naive Bayes model on test data.

4.1.3. Support Vector Machine (SVM)

The Support Vector Machine model was the next model we investigated for our
dataset. By locating a hyperplane between the classes, this model generates a classifier. A
hyperplane is a plane that separates two classes with the greatest possible margin. The
classes are separable with both linear and non-linear methods. Hyper-planes are easily
found in linearly separable cases. SVM uses a kernel to convert non-linearly separable
classes to linearly separable classes by converting low dimension input space to higher
dimension space [50]. The SVM model uses the Lagrangian method and dual problem
formulation for the model’s optimization. The Lagrangian function and the dual problem
formulation are shown in the (11) and (12). In (11) and (12), ‘w’ is the weight vector, ‘α’
is the lagrangian multiplier, ‘yi’ is the class label, ‘xi’ is the given sample, ‘m’ is the total
number of samples, and ‘b’ is the bias term. In (12), ‘K(xi, xj)’ is the kernel term, and we
used the ‘RBF’ kernel in this work as defined in Equation (13). In (13), ‘γ’ is called as the
kernel coefficient. After calculating the optimal ‘w’ and ‘b’, the model classifies a sample
using Equation (14). In its most basic form, SVM is a binary classification model. Thus, in
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order to make it work with our dataset, we used the one vs. all multi-class classification
method described in the previous section. The model’s hyperparameter values are as
follows: ‘C’ = 1.0 and ‘kernel’ = ‘rbf’. The SVM models and its confusion matrix are
depicted in Figures 14 and 15 respectively.

L(w, b, α) =
1
2
∗ (w ∗ w)−

m

∑
i=1

αi ∗ [yi ∗ (w ∗ xi + b)− 1] (11)

max
α

m

∑
i=1

αi −
1
2
∗ (

m

∑
i=1

m

∑
j=1

(αi ∗ αj ∗ yi ∗ yj ∗ K(xi, xj))

subject to αi ≥ 0, i = 1, 2 . . . m,
m

∑
i=1

αi ∗ yi = 0

(12)

K(xi, xj) = e(γ∗||xi−xj ||2) (13)

h(xi) =

{
C1, if w ∗ xi + b ≥ 0
not C1, if w ∗ xi + b < 0

(14)

Figure 14. Support Vector Machine Model.

Figure 15. Confusion matrix of SVM model on test data.
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4.1.4. Light Gradient Boost Methods

The Light Gradient Boost method is the next machine learning model used (Light
GBM). Light GBM is currently one of the most powerful performance enhancing algo-
rithms available. A decision tree algorithm is used in this method. Unlike other boosting
algorithms that divide the decision tree level-wise or depth-wise, Light GBM divides the
decision tree leaf-wise. This leaf-wise split can reduce loss but can also result in overfitting.
Since the model contains a hyper-parameter, it can control the depth of the tree for the
leaf-wise split to avoid overfitting [51]. The split is made by calculating the residual value
for each leaf as shown in Equation (15). Since we restrict the number of leaves that will be
present, we cannot directly sum the residuals of all leaves, instead we uses the gradient
boosting transformation technique shown in Equation (16). In Equation (16), ‘γ’ is the
transformation value, ‘r’ is the residual of each leaf, and ‘p’ is the previous predicted
probability for each residual. Thus, we transform the tree by this method. When compared
to other machine learning algorithms, this model is extremely fast. This model is built with
the available ‘lightgmb’ library. The following are the various hyper-parameter values for
the model: ‘boosting type’ = ‘gbdt’; ‘objective’ = ‘multiclass’; ‘metric’ = ‘multi logloss’; ‘sub
feature’ = 0.5; ‘num leaves’ = 10; ‘min data’ = 50; ‘max depth’ = 10; and ‘num class’ = 3.
Figure 16 depicts LGBM model. Figure 17 depicts the confusion matrix for the Light GBM
model on test data.

Residual = Observed_Value− Predicted_Value (15)

γ =
∑(r)

∑(p ∗ (1− p))
(16)

Figure 16. Light Gradient Boost Methods Model.
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Figure 17. Confusion matrix of LightGBM model on test data.

4.2. Performance Evaluation

On the test dataset, the performance of the four deployed models is compared using
four evaluation metrics. Each of the evaluation metric consists of the following elements:
‘True Positive (TP)’, ‘True Negative (TN)’, ‘False Positive (FP)’ and ‘False Negative (FN)’ [52].
They are detailed below.

4.2.1. Accuracy

The accuracy [52] of all the four models along with their inference time and model
size is shown in Table 3. The accuracy is calculated according to Equation (17). It can be
observed from Table 3 that the LightGBM method provides the best accuracy of 95.6%. For
all models, the inference time is under 0.5 ms.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (17)

Table 3. Accuracy of the four models, inference time, and model size. ms = Milli seconds; KB = Kilo Bytes.

S. No. Model Accuracy Inference Time
(ms)

Model Size
(KB)

1 Naive Bayes 73.9% 0.24 1
2 Logistic Regression 86.9% 0.1 1
3 SVM 87% 0.27 10
4 Light GBM 95.6% 0.48 523

4.2.2. Recall

The recall [52] of all four models is shown in Table 4. The recall is calculated according
to Eqaution (18). From the above table (Table 4), it can be observed that Light GBM model
performs the best for all the classes.

Recall = (TP)/(TP + FN) (18)

Table 4. Recall.

Class Naive Bayes Logistic Regression SVM Light GBM

Car 1.00 0.86 1.00 1.00
Drone 1.00 1.00 1.00 1.00

Human 0.40 0.80 0.70 0.90
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4.2.3. Precision

The precision [52] metric for all the models is shown in Table 5. This metric is
calculated according to Equation (19). It can be observed from the table that Light GBM
model outperforms over all the other models for all the three classes.

Precision = (TP)/(TP + FP) (19)

Table 5. Precision.

Class Naive Bayes Logistic Regression SVM Light GBM

Car 0.78 0.86 0.78 1.00
Drone 0.60 0.86 0.86 0.86

Human 1.00 0.89 1.00 1.00

4.2.4. F1-Score

The F1-score [52] metric is calculated and shown for all the models in Table 6. This
metric is calculated according to Equation (20). It can be observed from Table 6 that Light
GBM model values are the best as compared to other models for all the classes.

F1-score = 2× (Recall × Precision)/(Recall + Precision) (20)

Table 6. F1-score.

Class Naive Bayes Logistic Regression SVM Light GBM

Car 0.88 0.86 0.88 1.00
Drone 0.75 0.92 0.92 0.92

Human 0.57 0.84 0.82 0.95

5. Conclusions

In order to identify targets by using mmWave FMCW radars, a novel classification
technique based on statistical features from a range profile has been proposed. The pro-
posed method should be extended to include long-range targets as well as targets of various
types with different shapes and sizes. The range profile may lack distinguishable features
for long-range targets and targets with small cross sections, necessitating additional signal
processing before applying machine learning. In addition to the features presented here,
micro-Doppler features and various time-frequency plots can be incorporated into models
to effectively classify the targets if any of the targets have vibrating parts or repeating pat-
terns. In order to improve the robustness of the classification technique, the range-Doppler
and range-azimuth plot features can be incorporated into the model.
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