

Dynamic Augmented Kalman Filtering for

Human Motion Tracking
under Occlusion Using Multiple 3D Sensors

Atle Aalerud1 and Geir Hovland1

1Mechatronics Group, Faculty of Engineering and Science, Department of Engineering

Science, University of Agder, N-4898 Grimstad, Norway. atle.aalerud@uia.no

Abstract – In this paper real-time human motion tracking using multiple

3D sensors has been demonstrated in a relatively large industrial robot work

cell. The proposed solution extends state-of-the-art by augmenting the con-

stant velocity model and Kalman filter with low-pass filtered velocity states.

The presented method is able to handle occlusions by dynamically inclusion in

the Kalman filter of only those 3D sensors which provide valid human position

data. Human motion tracking was achieved at a frame rate of 20 Hz, with a

typical delay of 50 ms to 100 ms and an estimation accuracy of typically 0.10 m

to 0.15 m.

E.1 Introduction

With recent advances in 2D and 3D sensor technologies, algorithms and processing power,

real-time human motion tracking has become a possibility. Tracking of human motion

has many potential application areas. Some examples are safety systems for human-robot

collaboration, e-health applications such as fall detection, and for collision detection and

avoidance in intelligent autonomous systems.

YOLOv3 [1] is a state-of-the-art, real-time object detection system. In this paper,

multiple sensor nodes together with YOLOv3-tiny are used to detect humans in the sensor

images and extract the 3D position from depth images. The human position measurements

are fed into a constant velocity model and Kalman filtering is used to track human motion

in real-time. One novelty in the presented paper is the augmentation of the constant

velocity model with filtered states to reduce the noise in the estimated human motion.

For collision avoidance planning applications in particular, it is desirable to use human

velocity estimates which are not distorted by high-frequency noise.

In [2], Linder et al. presented a benchmark on multi-modal people tracking from

mobile platforms in very crowded and dynamic environments. Their framework integrated

four existing tracking approaches and was based on the Robot Operating System (ROS)

running under Ubuntu and both 2D lasers and 3D RGB-D type sensors were included.

One of the methods used was the RGB-D upper-body detector from [3]. More examples

of state-of-the-art human motion detectors can be found in the reference list of [2]. The

framework used in our paper is similar to [2] by using ROS and running on Ubuntu.

However, the upper-body detector used in this paper is the one developed in [4] and the

experimental results presented in this paper includes only the motion of one human for

ease of benchmarking, but the method would handle multiple humans.

The paper is organized as follows: Paper E.2 describes the methodology used, Paper E.3

describes the framework and experimental setup, Paper E.4 outlines the experiments while

the results are presented in Paper F.5. Discussion and conclusions are given in Papers E.6

and E.7.

N2

N4

N6

N1

N3

N5

Figure E.1: Orthogonal view of a combined point cloud depicting the Industrial Robotics

Lab at the University of Agder. Sensor node poses are annotated N1-N6. The sensors are

located 4.3 m above the floor and are angled approx. 60◦ from horizontal. The origin of

the world frame is located at the bottom-left, where the red and green lines represent the

X and Y-directions, respectively.

E.2 Methodology

For completeness this section contains the background material for human motion detection

using Kalman filtering. The section contains several novelties: A) dynamic sized Kalman

filter depending on the number of sensors which are not occluded, B) human motion

velocity filtering using augmented variables, C) a new test criterion for benchmarking

(SNRMSE).

E.2.1 Kalman Filter

A Kalman filter was designed to refine the position estimates from the human detector

and to estimate velocity states that can be used to predict a future human position.

The discrete Kalman filter is well known in the literature. Nevertheless, the governing

equations are included here for completeness and the reader’s convenience. The filter

is typically defined by a predicting and an updating phase where the predicting phase

consists of the equations:

x̂−
k = F x̂k−1 (E.1)

P−
k = FPk−1F

T +Q . (E.2)

Here, x̂−
k is the a priori state estimate calculated from the transition matrix, F , and the

previous posteriori state estimate, x̂k−1. P
−
k is the a priori covariance matrix and Q is

the process noise matrix.

In the second phase, the predicted estimates are updated by the equations:

x̂k = x̂−
k +Kky | y = (zk −Hkx̂

−
k) (E.3)

Kk = P−
k H

T
k Sk

−1 | Sk = HkP
−
k H

T
k +Rk (E.4)

Pk = (I −KkHk)P
−
k . (E.5)

The updated state estimate, x̂k, is calculated from x̂−
k , the Kalman gain, Kk, and

the residual, y. This residual is the difference between the measured states, zk, and

the estimated states found by multiplying the measurement matrix, Hk, with x̂−
k . The

Kalman gain,Kk, balances the influence caused by prediction uncertainty and measurement

uncertainty. Here, the innovation covariance matrix, Sk describes the system uncertainty

and weighs the uncertainty for each of the sensor measurements using the added sensor

noise matrix, Rk. Lastly, the covariance matrix, Pk, is updated.

Designing a model of the system, in this case human motion, is not a trivial task.

For example a constant velocity Kalman filter will not be able to track rapid changes in

heading, but it will catch up once signals enter steady state. A constant acceleration filter,

on the other hand, may react quickly, but it can also misinterpret noise as acceleration

during steady state. None of these are exact models of human motion, but a constant

velocity model was found most suitable for this application where stability was the main

concern. The transition matrix, F , modelled using a constant velocity model in two

dimensions is

F =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 , (E.6)

where ∆t is the discrete time step. The corresponding position and velocity states are

x =
[
x ẋ y ẏ

]T
(E.7)

where x and y show the human position in x and y direction. Since the velocity model is a

rough simplification of human motion, it is necessary to artificially boost the magnitude of

the process noise, Q, to account for the mis-matched model. In this paper, the piecewise

constant white acceleration model, as described in [5, ch.6.3] and [6], was applied. The

state equation for this model is

xk = Fxk−1 + Γwk−1 . (E.8)

The piecewise constant white acceleration noise, is defined by Γwk−1. Here, Γ is the noise

gain and wk−1 is the piecewise constant noise. This artificial acceleration noise has a

duration of ∆t which, in turn, will give a velocity increment of wk−1∆t. The effect on

position is wk−1∆t2/2. Inserting for all states yields the noise gain matrix

Γ =
[

1
2
∆t2 ∆t 1

2
∆t2 ∆t

]T
. (E.9)

Assuming no correlation between x and y, the covariance of the process noise is

Q = E
[
Γwk−1wk−1Γ

T
]

= ΓΓTσ2
v

=


∆t4

4
∆t3

2
0 0

∆t3

2
∆t2 0 0

0 0 ∆t4

4
∆t3

2

0 0 ∆t3

2
∆t2

σ2
v .

(E.10)

As the sensor setup was comprised of multiple sensor nodes that performed human

detection in a non-synchronous manner, the filter had to be able to scale from zero

to multiple separate pose readings per iteration. Hence, Hk, Rk and Kk were scaled

according to the number of received measurements in zk. Only positions were detected, so

the measurement matrix for a single sensor was

H1 =

[
1 0 0 0

0 0 1 0

]
(E.11)

whilst matrices for multiple sensors were concatenated in the combined measurement

matrix

Hk =

 H1

...
Hnk

 , (E.12)

where the number of sensors was

nk =
m

2

∣∣∣∣ zk ∈ Rm×1

Hnk
= H1 ∈ R2×4 , (E.13)

where m was number of rows in the measurement vector zk.

We assume that there was no correlation in the noise between sensors, so the covariances

were zero. The diagonal values of Rk are typically based on the sensors variances. In

our application, the sensors may have a low variance, but there was a significant bias.

The detections were based on measuring position of the human upper body using RGB-D

cameras and applying an offset to estimate the body center. However, this estimate had a

bias depending on the human orientation.

Further, the human detection algorithm used as input in this paper returned some

false positives that will appear as outliers, but since there were several sensors available,

pre-filtering and clustering was possible. From the position cluster used as input to the

system it was possible to implement a dynamic variance.

As described in [7], the average difference between measurements can be written

µk =

nk∑
j=1

(
nk∑

i=j+1

(
|zk,j − zk,i|

))
nk(nk − 1)

, (E.14)

where zk is the vector of x- and y-measurements for all sensors and nk is the number of

sensors for sample k. Setting the sensors standard deviation to

σk =
µk
λ

, (E.15)

where λ is a scaling factor set to 1.5, yields the dynamic variance σ2
k,d. For tuning purposes,

sensor noise is implemented as a combination of static and dynamic variance

σ2
k = ρ1 + ρ2 σ

2
k,d , (E.16)

where ρ1 and ρ2 are constant tuning parameters. Using the combined variance yields the

single sensor noise matrix

R1k =

[
ρ1 + ρ2 σ

2
k,d,x 0

0 ρ1 + ρ2 σ
2
k,d,y

]
(E.17)

and the complete sensor noise matrix:

Rk =

 R1k . . . 0
...

. . .
...

0 . . . Rnk

 . (E.18)

E.2.2 Augmented Kalman Filter (AKF)

Designing and tuning a Kalman Filter is inevitable a trade-off between state smoothness

and accuracy. In this case, the application requires a smooth velocity prediction for

estimating a future human path. This would require tuning the KF to have high confidence

in the model (low Q) and low confidence in measurements (high Rk). High tracking

accuracy, on the other hand, requires higher confidence in the measurements and low

confidence in the model. To alleviate this trade-off one can tune the filter for required

tracking and then apply an averaging filter for the velocity states.

As explained in [8], an exponentially weighted moving average (EWMA) filter in

discrete form can be written on the form

xf,k = (1− a)xf,k−1 + axk , (E.19)

where the xf,k is the filtered state and a is the filter parameter given by

a =
∆t

Ta + ∆t
, (E.20)

which, in turn, contains the filter time constant Ta and the time-step ∆t. The velocity

model from Equations (E.6) and (E.7) yields the position

xk = xk−1 + ∆tẋk−1 , (E.21)

Inserting Equation (E.21) in Equation (E.19) and rearranging terms yields the filtered

position

xf,k = axk−1 + a∆tẋk−1 + (1− a)xf,k−1 . (E.22)

The filtered velocity is calculated in a similar manner where the time derivative of

Equation (E.19) is

ẋf,k = (1− b)ẋf,k−1 + bẋk (E.23)

and the filter parameter is

b =
∆t

Tb + ∆t
(E.24)

such that the filter time constant Tb does not need to be the same as Ta. The constant

velocity model, Equation (E.6), states that

ẋk = ẋk−1 . (E.25)

Hence, by inserting Equation (E.25) in Equation (E.23) and rearranging terms, the filtered

velocity is given as

ẋf,k = bẋk−1 + (1− b)ẋf,k−1 . (E.26)

The filtered states are introduced as state variables such that the new vector for two

dimensions is

x =
[
x ẋ xf ẋf y ẏ yf ẏf

]T
. (E.27)

The augmented transition matrix, including Equation (E.22) and Equation (E.26) for two

dimensions, is

F =



1 ∆t 0 0 0 0 0 0

0 1 0 0 0 0 0 0

a a∆t 1−a 0 0 0 0 0

0 b 0 1−b 0 0 0 0

0 0 0 0 1 ∆t 0 0

0 0 0 0 0 1 0 0

0 0 0 0 a a∆t 1−a 0

0 0 0 0 0 b 0 1−b


(E.28)

and the measurement matrix for a single sensor becomes

H1 =

[
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

]
. (E.29)

The process noise matrix, Q, must also be augmented for the filter to work. However,

as seen in Equation (E.2) and Equation (E.4), this is indirectly multiplied with HT
k

causing only column one and five to be used. The new states have only covariances in

these columns whilst the variances are found in column three, four, seven and eight. As

the covariances are not considered to add value in this case and other columns are not

used, no additional process noise is calculated. Thus, the new zero-padded process noise

matrix is

Q =



∆t4

4
∆t3

2
0 0 0 0 0 0

∆t3

2
∆t2 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 ∆t4

4
∆t3

2
0 0

0 0 0 0 ∆t3

2
∆t2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


σ2
v . (E.30)

The augmented versions of x, F , H1 and Q are used by the governing equations of

the discrete Kalman filter, Equations (E.1) to (E.5). This enables the augmented filter to

estimate an EWMA filtered position and velocity as additional states without affecting

the existing states for position and velocity.

E.2.3 Tuning and Validation

The Kalman filter was tuned by iteratively adjusting σ2
v , ρ1 and ρ2. The filter configurations

were applied to a recorded dataset (ROS-bag) for identical input and the performance was

evaluated using the method of Bar-Shalom et al. [5, ch. 5.4] as described below.

No innovation magnitude bond test or whiteness test (autocorrelation) was performed

due to variable innovation, y. Nevertheless, to test for unbiasedness and conistency,

the χ2-tests normalized estimation error squared (NEES) and normalized innovation

squared (NIS) were performed. To further evaluate bias, a normalized mean estimation

error (NMEE) was conducted.

NEES is defined as

εk = x̃k
TPk

−1x̃k , (E.31)

where

x̃k = xk − x̂k . (E.32)

Under the linear Gaussian assumption, H0, the expected value of εk is

E[εk] = nx , (E.33)

where nx is the dimension of x. However, in our test we have not included the augmented

states and will use nx = 4. For multiple runs, i.e. Monte Carlo simulations, the N -run

average NEES (ANEES) is

ε̄k =
1

N

N∑
i=1

εk,i , (E.34)

and the new χ2 probability density function will have Nnx degrees of freedom. By utilizing

the ergodicity of the state errors, we can use the time-average rather than an ensamble

average. Thus, the time-average NEES for K time iterations is

ε̄ =
1

K

K∑
k=1

εk (E.35)

and Kε̄ will, under H0, have a χ2 density with Knx degrees of freedom. The NEES

acceptance criterion is

ε̄ ∈ [r1, r2] , (E.36)

where the interval is defined

P ε̄ ∈ [r1, r2]|H0 = 1− α . (E.37)

We use α = 0.05, i.e., the two-sided 95% confidence region. For a single run, K = 1 which

yields the acceptance interval

[r1, r2]/K = [χ2
4·1(0.025), χ2

4·1(0.975)]/1

= [0.484, 11.143]
(E.38)

whilst using K = 840 time iterations yields the interval

[r1, r2]/K = [χ2
4·840(0.025), χ2

4·840(0.975)]/840

= [3.811, 4.194]
. (E.39)

Note that increasing the number of averaged samples naturally reduces the interval needed

for 95% certainty.

Similar to the NEES test, the NMEE shows if the filter errors are consistent with the

covariance matrix, but here the results are shown individually for each state. Based on

the time-average described above, the error is defined

µ̄j =
1

K

K∑
k=1

x̃j,k√
Pjj,k

, (E.40)

where Pj,j,k is the jth diagonal covariance matrix element for the kth sample. The above,

µ̄j, is assumed distributed N (0, 1/K) with a standard deviation of 1/
√
K. Similar to

NEES, the acceptance criterion is

µ̄j ∈ [−r, r] , (E.41)

where the interval is defined

Pµ̄j ∈ [−r1, r1]|H0 = 1− α (E.42)

r = r1/
√
K . (E.43)

For α = 0.05 we get the two-sided 95% region such that the acceptance criterion for a

single sample, = 1, can be found by inverse lookup of the normal cumulative distribution

[−r, r] = [−r1, r1] = [−1.96, 1.96] . (E.44)

For K = 840 samples, the acceptance region is

[−r, r] = [−r1/
√

840, r1/
√

840] = [−0.068, 0.068] . (E.45)

Note that there is no actual mean for a single sample (Equation (E.40), so in this case we

will call it normalized estimation error (NEE), but it refers to the same method.

The NIS test is the same as the NEES, but is produced for the innovation vector and

corresponding innovation covariance. The test should show that the innovation is unbiased

and white under the hypothesis that the filter is consistent. The error is defined as

εy,k = yk
TSk

−1yk (E.46)

and time-average NIS (ANIS) estimated mean is

ε̄y =
1

K

K∑
k=1

yk
TSk

−1yk . (E.47)

Similar to NEES, NIS is expected to have a χ2 distribution and acceptance criteria as

described in Equations (E.36) and (E.37), but here, the expected value of εy,k is

E[εy,k] = nz , (E.48)

where nz is the dimension of zk. In this paper, the dimension of zk is not constant, (see

Equations (E.3) and (E.12),) but the test is still attempted with zk = 2. Using the same

two-sided 95% confidence region as before yields

[r1, r2]/K = [χ2
2·1(0.025), χ2

2·1(0.975)]/1

= [0.051, 7.378]
(E.49)

for a single iteration whilst using K = 840 time iterations yields the interval

[r1, r2]/K = [χ2
2·840(0.025), χ2

2·840(0.975)]/840

= [1.867, 2.138]
. (E.50)

In addition to the mentioned statistical tests, root mean square error (RMSE) values

are evaluated for position, velocity, speed and course. RMSE equations are omitted for

brevity as they assumed to be well known by the reader. However, it is noted that the

RMSE of position is the RMS of the Euclidean distance error. To evaluate the combination

of RMSE values, we define the metric sum of normalized RMSE (SNRMSE) as

SNRMSEc =
n∑
i=1

(ec,i −min
c

(ec,i)

max
c

(ec,i)−min
c

(ec,i)

)
, (E.51)

where c are the different configurations and n is the index of RMSE values for the

configuration.

E.3 Framework

The Industrial Robotics Lab (IRL) at the University of Agder depicted in Figure E.1 is the

industrial environment to be used for human tracking. This lab functions as a large robotic

cell where both industrial robots and humans need to operate. Thus, it is crucial that the

positions of the human workers are known so that safety systems can be developed for the

robots. The specific setup of the sensor network and the lab have been described in [9],

but key information is included here for completeness.

The mapped environment covered an area of 10 m× 10 m where sensors were placed

according to Figure E.1 at 4.3 m height. This sensor network comprised of six nodes in

waterproofed cabinets, where each cabinet was equipped with a Kinect V2 RGB-D camera

based on an active infrared (IR) sensor using the time-of-flight principle. The automatic

extrinsic calibration of the sensor nodes was described in [10].

Further, each node contained an NVIDIA Jetson TX2 Development board. These

boards processed the sensor data before sending requested data via Gigabit Ethernet to a

personal computer (PC). The PC used in this paper was equipped with a 3.6 GHz Intel

Core i7-7820x central processing unit (CPU), 32 GiB system memory and an NVIDIA

GeForce GTX 1080 Ti graphics processing unit (GPU). The communication between

the sensor nodes and the central PC is handled by the open-source middleware Robot

Operating System (ROS) [11] running on Ubuntu 16.04.

The multiple ROS nodes that performed human detections was adaped from [4] where

YOLOv3-tiny, [1], was trained to detect the upper body of humans. Removing limbs from

the detection reduces the problem of occlusion. Further, the detection nodes extracted the

3D position based on the depth image of the Kinect V2.

A ROS node on the central PC received the positions from all connected sensor nodes

and processed them using the augmented Kalman filter as described further in Paper E.2.

E.4 Experiments

To test the AKF, a (ROS-bag) dataset was recorded. Here, position detections and images

from all sensor nodes were recorded while a person walked in a predefined pattern. This

route was used as ground truth so errors could be calculated. To increase the accuracy of

the person with regards to the planned route, markers were placed at the floor at 0.5 m

intervals using known coordinates as reference. These markers were used as walking steps.

Further, to control the walking speed, a metronome was used to keep the pace. By setting

the metronome at 120 BPM, a walking speed of 1 m/s was ensured. This method may

cause some small position deviations, but using tracking equipment was not an option in

this specific case due to occlusion.

Each sensor node ran detections at 20 Hz. These detections were processed on the

central node that executed the AKF at 20 Hz. Thus, there may have been a maximum time

delay of 50 ms between the detection time stamp and filter processing. When evaluating

a walking speed of 1 m/s we see that this can introduce a maximum error of 50 mm.

Detections were currently not extrapolated to compensate for this as it was considered

sufficiently small.

The planned route was a rounded rectangle, with 6 m length and 1 m width, placed in

the middle of the lab between the two robot tracks shown in Figure E.1. As the sensors

had a limited range and field of view it was expected that the individual node’s detections

would depend on the actual position of the person. Occlusion would also reduce the

amount of detections. A large gantry crane covered large portions of N1 and N2’s field

of view as the boom crossed the lab at x = 2.5 m during the experiment. Further, the

industrial robots on both sides of the planned path caused occlusion depending on the

position of the person.

The extracted data from the dataset covers the time t = [10 s, 52 s] which yields three

clockwise rounds of the path starting at coordinate (4.5 m, 2.0 m). The sequence consists

of 840 samples at a sampling interval of 0.05 s.

E.5 Results

In Table E.1 the 4 best test results of 21 tested tuning configurations are shown. The top

of the table describes filter parameters where the main Kalman parameters are σ2
v , ρ1 and

ρ2, but also two different selections of Ta and Tb are also shown. Below the separator, the

test results are listed according to the described tests from Paper E.2.3. Where applicable,

corresponding equations are listed. The number of samples is K = 840 for all tests. The

best RMSEcourse is found in configuration D, where the value equals 18.6◦. Note that all

plots in this section are generated using data from configuration D.

Table E.1: Filter configurations and test results.

Configuration A B C D

Ta ,Tb [s] 0.1 , 0.5 0.1 , 0.5 0.1 , 0.25 0.1 , 0.25

σ2
v 10 10 10 10

ρ1 ,ρ2 0.05 , 0 0.01 , 0.5 0.05 , 0 0.01 , 0.5

ANEES Equation (E.35) 4.208 8.085 7.084 4.931

NMEEx Equation (E.40) =0.073 =0.027 =0.057 0.007

NMEEẋ Equation (E.40) 0.022 0.006 0.024 0.014

NMEEy Equation (E.40) =0.256 =0.341 =0.271 =0.330

NMEEẏ Equation (E.40) 0.015 =0.038 =0.010 =0.007

ANIS Equation (E.47) 1.139 0.961 1.373 0.635

RMSEposition [m] 0.120 0.133 0.157 0.110

RMSEvelocity [m/s] 0.376 0.416 0.380 0.311

RMSEspeed [m/s] 0.210 0.261 0.196 0.172

RMSEcourse [rad] 0.379 0.372 0.406 0.325

SNRMSE Equation (E.51) 1.915 3.074 2.929 0

The estimated positions and states calculated by the AKF are shown in Figures E.2

and E.3. Figure E.2 visualizes x- and y- position estimates and corresponding detections

for a single round of the path. This figure also illustrates the field of view and occlusion of

the different sensors. For example, one can see that detections near the sensor position

(as shown in Figure E.1) are more accurate than detections far away. In Figure E.3, the

estimated positions, velocities, speed and course are shown. Figures E.3(a) and E.3(b)

include the detections from the sensors, but they are omitted for clarity in the legend.

Figure E.2: Positions from the middle round, t = [10 s, 24 s], where the walking pace was

1 m/s in clockwise direction. Detections from sensors N1-N6 are illustrated using dots

in separate colors. Red and green line show the estimated position and EWMA-filtered

position, respectively. The dotted line is the reference.

(a)

(b)

(c)

(d)

(e)

Figure E.3: Timeplots of outputs from the AKF compared to the reference shown in black.

Position estimates for x and y are shown in (a) and (b), respectively. Here, detections

are included according to legend in Figure E.2, but not shown in the respective legend.

Velocity is shown in (c), speed in (d) and course in (e) where direction is positive clockwise

from positive (and negative) y-axis.

The statistical single run tests are visualized in Figure E.4 along with their two-sided

95% confidence intervals for a single sample and 840 samples average. The boundaries

of NEES in Figure E.4(a) were shown in Equations (E.38) and (E.39), the boundaries of

NEE in Figure E.4(b) were shown in Equations (E.44) and (E.45), and the bondaries of

ANIS in Figure E.4(c) were shown in Equations (E.49) and (E.50).

(a)

(b)

(c)

Figure E.4: Statistical tests of the AKF with the two-sided 95% confidence region for a

single sample and 840 samples average. (a) show the single run NEES, (b) illustrate the

single NEE for the evaluated states and (c) show single run NIS.

All evaluated absolute errors are shown in Figure E.5. Note that the EWMA filtered

states generally have larger errors in transient conditions. Because all errors are calculated

using a non-delayed reference, an error is a natural consequence of the filter induced delay.

Thus, EWMA filtered states are not used for benchmarking or filter selection. The x and y

position errors are shown in Figure E.5(a) whilst the Euclidean position error is shown in

Figure E.5(b). Velocity error in x and y direction is found in Figure E.5(c) and the speed

error is displayed in Figure E.5(d). Lastly, the course error is illustrated in Figure E.5(e).

(a)

(b)

(c)

(d)

(e)

Figure E.5: Error between estimated values and reference path. (a), position error in x-

and y-direction. (b), Euclidean distance error. (c), velocity error in x- and y-direction.

(d), speed error. (e), course error.

E.6 Discussion

As the considered system is modelled with reduced order, we do not expect to meet all test

criteria. Nevertheless, it is necessary to strive to make the filter as close to being consistent

as feasible, but also try to acchieve as small errors as possible. In this application, it is of

particular interest to get a stable and reliable course estimate.

In Table E.1 we found that none of the ANNES and ANIS test results are within the

acceptance criteria defined in Equation (E.39) and Equation (E.50), respectively. This

indicates that the filter is not consistent as we have a mismatch. This is likely caused by

sensor bias that has not been evaluated individually for the sensors. It is also possible

that the ground truth data is inaccurate as this was generated based on planned path and

not recorded. However, this would not affect the NIS test. By investigating the NMEE

results of the individual (non-augmented) states, one can see that the values are mainly

accepted as zero according to Equation (E.45). The exception is NMEEy where all values

are too large. This can also be seen in Figure E.4(b) where µy is clearly outside the single

sample bondary for more than 5% of the samples. This is one of the main contributors

in the large errors seen in the NEES value in Figure E.4(a). Thus, it is possible that we

have a sensor bias in y-direction. This bias is expected to be different for sensor N1-N6

depending on the mounting position. Further investigation of the sensor bias is left as

possible future work.

The choice of tuning configuration depends heavily on the RMSE values. All of the

listed position errors are acceptable for safely locating humans in the lab as the safety

zones will need to be significantly larger than the worst position RMSE of 0.13 m. However,

to predict a future position for safety applications, the course is important. Hence, the

choice of configuration D is obvious as this has the lowest RMSE values. Here, the course,

in particular, is cruicial. The SNRMSE metric, RMSEcourse, is helpful in rating which

configuration is better. Therefore, it can be a good cost function for optimization.

By investigating Figures E.3(e) and E.5(e) we see that the moving average filtering

has reduced the errors for stable conditions at the expense of an added error during course

change. Even if one would like the system to be both fast and stable it is not often possible.

For human tracking and prediction in an industrial setting, a stable course during constant

velocity is more valuable than precision of rapid course change. However, by utilizing the

proposed method of the AKF, different states can be used for different applications. For

example visualization and course estimation can use the averaged states while position

can be determined by the regular state.

Some advantages found in using an AKF of dynamic size is that the filter will adapt

to the number of received measurements whilst a constant filter is required to be scaled to

the maximum number of sensors. If a large area is to be mapped by numerous sensors,

it is likely that the dynamic filter can save some computation cost assuming all sensors

will not have data to transmit at the same time. On the other hand, unless some sort

of configuration lookup table is used, all sensors should have the same noise and bias

properties. The work in this paper illustrates that this is not necessarily the case even if

identical sensors are used.

The implementation of the proposed AKF should be further investigated with regards

to the statistical properties and tests that can be applied when the filter has variable

innovation, and thus, variable matrix sizes. The statistical properties can be analyzed

using simulations, but further analysis on real data should be based on high accuracy data

such as laser tracker- or motion capture measurements. Further, a sensitivity analysis

should be done as the filter is of reduced order compared to actual human motion and

a model mismatch can be expected. A real-time online monitoring system of the filter

performance would also be useful for industrial deployment.

E.7 Conclusion

In this paper an augmented Kalman filter with dynamic size to fuse a variable number

of position measurements from RGB-D sensors has been implemented. The ability to

handle a dynamic number of sensors is a significant advantage in terms of scalability. The

method proposed in this paper would be able to cover a large volume with a larger number

of sensors where the majority of the sensors do not see the human or are occluded by

obstacles. In this paper sensor occlusion has been demonstrated by including an overhead

gantry system in the workcell.

Compared to other forms of the Kalman filter, such as UKF and EKF, the computational

cost of the augmented filter is low which again is an advantage for scalability.

The main novelty of the presented solution is the inclusion of filtered states in the

Kalman filter for human velocity tracking. For 3D visualization and collision avoidance

planning applications in particular it is desirable to use human velocity estimates which

are not distorted by high-frequency noise.

Human motion tracking was achieved at a frame rate of 20 Hz, with a typical delay

of 50 ms to 100 ms and an estimation accuracy of typically 0.10 m to 0.15 m. The lowest

accuracies were achieved when the human changes direction, since a constant velocity

model has been used in the Kalman filter.

Acknowledgment

The research presented in this paper has received funding from the Norwegian Research

Council, SFI Offshore Mechatronics, project number 237896.

References

[1] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr. 2018.

arXiv: 1804.02767

[2] T. Linder, S. Breuers, B. Leibe, and K. O. Arras, “On multi-modal people tracking

from mobile platforms in very crowded and dynamic environments,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, May 2016.

doi: 10.1109/ICRA.2016.7487766. ISBN 978-1-4673-8026-3 pp. 5512–5519.

http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ICRA.2016.7487766

[3] O. H. Jafari, D. Mitzel, and B. Leibe, “Real-time RGB-D based people

detection and tracking for mobile robots and head-worn cameras,” in 2014 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, May 2014.

doi: 10.1109/ICRA.2014.6907688. ISBN 978-1-4799-3685-4 pp. 5636–5643.

[4] E. Borøy and S. Jarlsby, “Human Detection and Position Estimation Using RGB-D

Cameras in a Large Industrial Robotic Cell,” Master’s thesis, University of Agder,

2019.

[5] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applications to

Tracking and Navigation. New York, USA: John Wiley & Sons, Inc., 2001. ISBN

047141655X

[6] R. R. Labbe, Kalman and Bayesian Filters in Python, 2018.

[7] S. Ripegutu, “Multi-Camera Person Tracking Using Positional Features, Kalman

filters, and Unsupervised Classification,” Master’s thesis, University of Agder, 2019.

[8] F. Haugen, Advanced DYNAMICS and CONTROL. TechTeach, 2012. ISBN

9788291748177

[9] A. Aalerud, J. Dybedal, E. Ujkani, and G. Hovland, “Industrial Environment

Mapping Using Distributed Static 3D Sensor Nodes,” in 2018 14th IEEE/ASME

International Conference on Mechatronic and Embedded Systems and Applications

(MESA). Oulu: IEEE, Jul. 2018. doi: 10.1109/MESA.2018.8449203. ISBN

978-1-5386-4643-4 pp. 1–6.

[10] A. Aalerud, J. Dybedal, and G. Hovland, “Automatic Calibration of an Industrial

RGB-D Camera Network Using Retroreflective Fiducial Markers,” Sensors, vol. 19,

no. 7, p. 1561, Mar. 2019. doi: 10.3390/s19071561

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng, “ROS: an open-source Robot Operating System,” in ICRA workshop on open

source software, vol. 3, no. 3.5, Kobe, May 2009, p. 5.

https://doi.org/10.1109/ICRA.2014.6907688
https://doi.org/10.1109/MESA.2018.8449203
https://doi.org/10.3390/s19071561

