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Sammendrag 

Kystsonen langs ytre Oslofjord er fysisk unik, og huser flere økologisk utarmede men 

økonomisk viktige arter, blant annet torsk (Gadus morhua). Kystnær torsk i Skagerrak deles opp i 

to “økotyper” som sameksisterer i Ytre Oslofjord. Resterende lokale populasjoner vurderes å være 

sårbare overfor klimaendringer og andre menneskeskapte påvirkninger. Rekruttering av torsk i 

Skagerrak overvåkes av “strandnotserien” som .av Havforskningsinstituttet.  En sterk årsklasse 

med torsk rekrutterte til oppvekstområder i Ytre Oslofjord i 2017. Rekruttering av torskeyngel har 

i betydelig grad vært gjenstand for overvåking langs i Skagerrakkysten. Likevel er det kun i nyere 

tid at studier har begynt å undersøke rekrutteringsfasen hos torsk og hvilke faktorer som betinger 

suksess etter bunnslåing, og hvordan dette påvirker populasjonen som helhet. En metode som i 

økende grad er blitt tatt i bruk for undersøkelse av fiskebestander er agnet stereo-video eller 

“Baited Remote Underwater Video” (BRUV). Studier som benytter denne visuelle teknikken kan 

gi nærmere og mindre invasivt innsyn - uten fysisk prøvetaking. Videoopptak sikrer at data kan 

deles og evalueres objektivt. Målene for dette arbeidet har vært å samle biologisk grunnlinje-data 

from studieområdet, innhente informasjon om fiskesamfunnet på habitatene i fjorden på 

tidspunktet for gjennomføring, vurdere om ulike habitattyper er egnet for å huse juvenil torsk, 

samt å avgjøre hvilke av de tilgjengelige forklaringsvariablene som påvirker forekomst av 

torskerekrutter, samt juvenile stadier  hos andre arter. Et BRUV-feltarbeid ble gjennomført i 

august 2017, og data er blitt generert ved videoanalyser i programvaren EventMeasure. Basert på 

analyser av det genererte datasettet var arter i familien Gadidae mest tallrike på stasjonene, og 

torsk den mest tallrike ut av disse. Tilstedeværelse og antall torsk lot til å ha innvirkning på 

mangfoldet av fiskearter i området, og funnene indikerer at grunne dyp og sandrike habitat  var 

faktorer som forklarte tilstedeværelse av torsk ved målte stasjoner. 
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Abstract 

The coastal zone along the outer Oslofjord is physically unique and home to many 

ecologically depleted and economically important species, including Atlantic cod (Gadus 

morhua). Coastal cod in Skagerrak is divided into two ecotypes that co-exist in outer 

Oslofjord.Remnant local populations are considered sensitive to climate disturbances and 

anthropogenic influences. Recruitment of cod in Skagerrak is monitored in the annual beach 

seine sampling. A strong year-class of cod recruited to nursery areas in outer Oslo fjord in 

2017. Although recruitment of cod has been monitored extensively in Skagerrak, studies have 

only recently begun to examine the recruitment phase of Atlantic cod, the factors that confer 

success or failure post settlement, and how recruitment plays a role in the overall health and 

survival of the population. One method increasingly used to examine fish populations is 

Baited Remote Underwater Video (BRUV). Studies using visual sampling techniques enable 

scientists to take a closer and less invasive look, while video recording of observations means 

that data might be shared and validated objectively. The aims of this study were to gather 

baseline biological data, capture information on the fish assemblage present in the fjord 

habitats at the time of sampling, scope for features of habitat and substrate that is conducive 

to harboring young-of-the-year Atlantic cod and determine factors with explanatory properties 

regarding occurrence and co-occurrence of cod recruits and juveniles of other species. A 

BRUV study was conducted in August 2017 and the data derived from the video in the 

purpose built software EventMeasure. Based on analyses of the data thus obtained, Gadidae 

was found to be the most abundant family with cod being the most abundant species in that 

family. Cod presence and counts (abundance) seemed to have an impact on the fish diversity 

of the area, and it was found that shallow depths and sandy habitats were the strongest drivers 

in determining cod presence at sampled stations. 
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1 Introduction 

1.1 Coastal habitats in the Skagerrak Sea  

 The Skagerrak Sea is a diverse and complex area bordering southeast Norway, 

western Sweden and northern Denmark. Given that it is situated between the saline waters of 

the North Sea and the brackish waters of the Baltic Sea, this area is a popular study site for 

countless researchers examining its hydrographical and ecological diversity, which sustain 

important nursery grounds of many fish species (Munk et al., 2014). The Norwegian coast 

especially is a favorite among ecologists with many focusing on economically and 

ecologically important species (Fromentin et al., 2000, Jorde et al., 2007, Johannessen et al., 

2011,  Rogers et al., 2014, Huserbraaten et al., 2018).  These coastal ecosystems are dynamic 

environments characterized by complex topography and currents (Rogers et al., 2014), 

leading to an overall hydrography that varies both seasonally and annually, which could 

explain the communities being dominated by species such as herring, gobies, butterfish, sprat, 

pipefishes, flatfish and eels (Munk et al., 2014). The shallow coastal zone is known to provide 

habitats that can sustain high numbers and production levels of fishes, making it a target area 

for both scientists and fisheries (Wennhage & Pihl, 2002). Many fish species, including the 

ones named above, can utilize multiple habitats, and are therefore influenced by the 

complexity and structure of the seascape (Perry et al., 2018). 

1.1.1 Hydrology and ecology of Oslofjord  
 

One of the primary features of the Norwegian coast is the Oslofjord, which is equally 

as diverse and complex as the sea it connects to. The outer part of the fjord itself is unique due 

to three sources of water mixing and contributing to its diversity in many ways. The coastal 
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current comes from the Bay of Bothnia, deep Atlantic water surfaces south of the Hvaler 

archipelago and fjord water from the fjord is influenced by the discharge of Norway’s’ two 

largest rivers, the Glomma and Drammenselva. Having a multitude of water sources 

influences both the physical and biological mechanics of the ecosystems. Knutsen et al. 

(2004) detailed how continuous water masses facilitate the dispersal of adult individuals and 

pelagic eggs and larvae by passive drift, and these conditions are quite suitable for many 

species including crustaceans, fish, birds and marine mammals. A few of the most common 

species seen in this area are cod (Gadus morhua), whiting (Merlangius merlangus), haddock 

(Melanogrammus aeglefinus), corkwing wrasse (Symphodus melops), and saithe (Pollachius 

virens). The composition of the habitats themselves are also unique, and the highly complex 

seascapes positively influence the abundance of organisms that can utilize multiple habitats. 

However, even less complex seascapes are conducive for juvenile assemblages in the summer 

and still prove to be ecologically useful (Staveley et al., 2016). While these habitats can be a 

thriving home, they are also very sensitive to trophic cascades and other impacts on the food 

web. Staveley et al. (2016) found that a decrease in larger predatory fish led to an increase in 

smaller predator species in shallow-water seagrass areas, causing cascading trophic level 

effects, and Baden et al. (2012) found that overgrowth by filamentous algae reduces seagrass 

growth as a result of top-down processes caused by the decline in top predators. These top 

predators include the saithe, whiting and cod in these types of vegetation-rich habitats 

(Wennhage & Pihl, 2002). Seagrass and seaweed habitats are diversity hotspots especially in 

shallow coastal waters, as they provide food and shelter for countless species (Östman et al., 

2016). 
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1.2 The importance and impact of Atlantic cod (Gadus 

morhua) 

1.2.1 Ecology and economical influence 

 Atlantic cod (Gadus morhua) is one of the most prominent and economically 

important species for Norway, given its large offshore spawning populations (Knutsen et al., 

2004). Fromentin et al. (2000) detailed this species life history quite extensively in their 

publication. The cod in this area usually spawn in early March, with the juveniles settling to 

the ocean floor when they are about 3–5 cm and staying in more shallow and more sheltered 

areas, with a large portion of the North Sea juveniles settling on the Norwegian Sea shelf 

(Huserbraaten et al., 2018). They can live as long as 12 years, but very few survive to even 

five years which may explain why coastal individuals mature much more quickly than other 

cod populations. The majority of the spawning stock biomass is cod aged two to three years, 

given that any individuals four years or older have a higher mortality rate. Older juveniles and 

adult cod (>30 cm length) feed mostly on benthic invertebrates and fish in vegetated areas 

that have better resources (Freitas et al., 2015). 

Many studies have examined the connection between cod habitat selection and 

physical factors such as temperature. They usually remain in shallow waters during autumn 

and spring and go into deeper water during summer and winter (Fromentin et al., 2000). 

Climate change through Anthropogenic Global Warming (AGW) is responsible for increases 

in these temperature profiles and resulting adjustments from the cod in these areas (~1 degree 

Celsius) and will be described in more detail in section 1.2.3 of this paper, “Anthropogenic 

impacts”.  
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1.2.2 The influence of subpopulations 

 Coastal cod have been genetically categorized into various sub-populations by many 

researchers, and these studies have revealed important factors that influence the species as a 

whole. Jorde et al. (2007) stated that coastal cod have a limited range of 30 kilometers or less, 

with multiple local populations along the Norwegian Skagerrak coast with a saline gradient as 

a barrier. Coastal cod are also highly sedentary and older individuals are highly site-attached 

as coastal topography may be linked to population spatial structure (Rogers et al., 2014), but 

Knutsen et al. (2004) found that offshore cod may influence coastal cod populations over 

large distances. Fromentin et al. (2000) found differences in cod between fjords along the 

Skagerrak coast, and that Skagerrak cod grow faster than northern and western cod, but 

slower than the ones in the North Sea and with very limited migration. Recent work suggests 

that coastal cod in Skagerrak and outer Oslofjord are made up by two co-existing but 

genomically unique ‘ecotypes’ - with potentially differing and persisting adaptations to local 

environmental conditions (Knutsen et al., 2018; Barth et al., 2019).  

1.2.3 Anthropogenic impacts  
 

 Oslofjord is used heavily by humans, both for commercial and recreational purposes. 

Trawling for northern shrimps (Pandalus borealis) and recreational fishing are very common, 

along with recreational boating including overnight anchoring and mooring. Two national 

parks are established in the area, Ytre Hvaler and Færder national park. Multiple and 

consistent human activities eventually lead to changes in the environment both physical and 

biological, and almost always end up impacting the organisms that live in the used area.  

Because of this inevitability, it is crucial to determine the extent of the impact. 
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Overfishing in the seagrass areas that the juvenile cod rely on is a common theme 

among the studies that examine the impacts humans have on these environments. Baden et al. 

(2010) stated in their study that the area from southern Finland to western Sweden is affected 

by overfishing and resulting eutrophication, which Baden et al. elaborated on in their 2012 

paper. They investigated how the overgrowth by filamentous algae which reduces seagrass 

growth can be explained by a top-down cascading effect caused by declines in top predators 

such as cod. They stated that the depletion of fish stocks has been identified as one of the 

most serious threats to marine ecosystems worldwide, and that overfishing seems to have an 

indirect effect on seagrass survival through trophic cascades. Barcelo et al. (2016) focused on 

the “critical nursery phase”, and determined that juvenile communities have shifted several 

times, and currently are in a warm community period. In the North Sea specifically, small 

southerly species are increasing while large bodied northerly species are decreasing, and the 

changes in ranges and biodiversity are linked to rising temperatures. Moksnes et al. (2008) 

reiterated that seagrass communities are dominated by strong top-down processes controlling 

the aggregate biomass of mesograzers and macroalga.  

The other main stressor on these environments is eutrophication, detailed in these 

studies and in Östman et al. (2016). The authors of this study stated that eutrophication favors 

fast-growing algae that quickly takes over seagrasses, and that management agencies need to 

consider measures to improve stocks of predatory fish to reduce mesopredators. Their 

suggestion is reinforced by their statement that the top-down effects are at least as important 

as nutrient effects for the structure of coastal food webs. This action would restore and 

conserve these habitats and improve their health in the long run.  

One anthropogenic impact that is much more difficult to rectify is warming 

temperatures. Many species are already adapting, and not always positively, to climate change 
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in addition to already having natural adaptations to normal temperatures. Freitas et al. (2015) 

studied extensively the relationship between cod behavior and temperature changes. Habitat 

selection was greatly influenced by ocean temperature as the cod physiology is very sensitive 

to ambient temperature. Smaller cod appeared less sensitive to summer temperatures, but their 

growth also slows in the late summer. They stated that cod are a cold-water species found in 

temperatures ranging from -1.5 to 19°C but prefer a range of 9-16°C for optimal growth. Cod 

will select vegetation-heavy habitats in shallow areas if the temperature is below 16°C and 

avoid these areas when it is too warm.  In the latter situation, they will search for deeper 

waters and/or rocky substrates populated by anemones and soft corals (Freitas et al., 2015; 

Freitas et al., 2021). The cod may also utilize areas such as sandy habitats as surface 

temperature increases. Future increases in ocean temperature are expected to further influence 

the spatial behavior of marine fish, potentially affecting individual fitness and population 

dynamics, and surface temperatures have already risen above their thresholds.  

1.2.4 Recruitment 
 

 Recruitment is one of the most important stages in an ecological community as it 

influences the overall longevity of a population, and therefore the habitats for the recruits are 

equally as important. Understanding and then protecting both the recruits and their conditions 

is critical to recruitment success (Perry et al., 2018). Cod eggs are found in greater abundance 

in shallow waters (<15 m) flowing away from the ocean where the currents are gentler 

(Ciannelli et al., 2010). Young juveniles are planktonic feeders and rely on eelgrass meadows 

in coastal areas to access food and safety from predators (Freitas et al., 2015). Recruitment in 

0-group cod in these waters is determined mainly between late June and mid-August, after the 

cod have settled, and had a better chance of survival in the presence of large copepods and 0-
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group gobies (Johannessen et al., 2011).  Coastal populations in the Skagerrak appear largely 

self-recruiting, as indicated by their partial (i.e., weak) genetic distinctness, but seem partly 

open to (and most likely receive) recruits from offshore sources in the North Sea. (Jorde et al., 

2017).  

 Barcelo et al. (2016) stated that the juvenile nursery habitats provide a source for the 

adult stocks but are more sensitive to changes brought on by climate change.  Recruitment 

failure or even total collapses can quickly spell the end of a once-thriving population, and 

many researchers have investigated both the rates of collapse and the implications for the 

species’ ecosystem. Johannessen et al. (2011) found concurrent recruitment failure in gadoids 

(including cod, whiting and pollack) and changes in the plankton community along the 

Norwegian Skagerrak coast after 2002, which could have affected the study area of this 

project. Recruits can have a strong impact on their immediate area as shown in Moksnes et al. 

(2008). The authors of that paper determined that the seagrass community is dominated by 

strong top-down processes, and that overexploitation of gadoid fish (such as cod) may be 

linked to increased macroalgal blooms and loss of eelgrass in the area.  This could prove to be 

detrimental both to the juveniles who rely on these seagrasses to settle after hatching, since 

habitat has a significant effect on recruitment (Rogers et al., 2014), and adults of fish 

assemblages on rocky bottoms that predominantly rely on food found in vegetation 

(Wennhage and Pihl, 2002). However, the recruitment could also be affected by human 

activities as demersal fish catches have been dominated by immature fish and cod especially 

showed changes in size (Svedaang 2003). Elliott et al. (2017) determined that cod were most 

abundant in shallow, sheltered areas composed of gravel, while haddock and whiting 

preferred softer substrate like sand and mud. Both cod and whiting were positively related to 
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the diversity of epibenthic and demersal fauna. In their article, they examined the effects of 

substratum type on juvenile gadoid abundance.  

 

1.3 Stereo BRUV (Baited Remote Underwater Video) 

1.3.1 What is Baited Remote Underwater Video? 

 Stereo Baited Remote Underwater Video (BRUV) is a useful tool for implementing 

studies in benthic habitats. The rig itself consists of two GoPro cameras mounted onto a metal 

frame (base bar) in order to film left and right video. In the middle of the rig, an arm extends 

outward, and at the end of the arm is a mesh bag containing bait - in this study frozen Atlantic 

mackerel (Scomber scombrus) was used. It is one of the less intrusive methods of 

investigating an ecosystem and therefore is becoming an increasingly popular method of 

choice (e.g., Goetze et al., 2021; Taylor et al., 2013). The BRUV’s ability to measure several 

key aspects of the environment has proven to be useful in terms of management on multiple 

occasions. 

 

1.3.2 Benefits of utilizing Stereo BRUV systems 

 Another reason that BRUV setups are becoming a new favorite in fieldwork is for its 

simplicity in collection and analysis. It is not difficult for a researcher to learn how to use and 

is cost-effective which removes many financial restraints on projects. It is well suited for 

protected areas due to its unobtrusive presence in the environment and specializes in 

examining abundance and density. This method does not have the depth and time restraints or 

bias as in scuba studies, and it is quite easy to train observers in its process both in collection 

and verification whenever needed (Stobart et al., 2015).  Langlois et al. (2010) stated that 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Goetze%2C+Jordan+S
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stereo video can reduce inter-observer variability, improve definition of the sample area and 

accuracy of length estimates and can be re-analyzed or validated with greater ease than a 

visual census. Their study determined that this method is suitable to obtain greater estimates 

on the biomass of generalist carnivores, which is why it is very suitable to examine the cod in 

this project. In the long run, BRUV studies are more cost-efficient, time-efficient and more 

reliable than methods such as diver based underwater visual census surveys. 

  

1.3.3 Video based studies 

 Over the last several years, there has been an increase in studies that utilize video 

methods and highlight its usefulness and versatility. Caghlan et al. (2017) used BRUVs to 

determine that the density of large-bodied target species was higher inside closed fishery 

areas. Perry et al. (2018) focused on connectivity in coastal habitats with unbaited video 

systems and found that shallow-water fish communities were similar in adjacent habitats 

within a seascape, and that all habitats were dominated by juveniles. They discussed how 

shallow-water habitats are crucial to the health of the coastal seascape and how they 

contribute to both biodiversity and fishery stocks. Elliot et al. (2017) found depth and wave 

fetch to be the most influential factors in terms of suitable habitat, and that whiting abundance 

increased with increasing substratum extent. Their conclusion was that landscape effects 

should be considered as well, as it has implications for managing demersal fish populations.   
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2     Aims of the study 

The overall aim of the project within which this study was carried out was to gather 

baseline biological data and create an inventory of fish assemblages in the fjord to assist 

management agencies in making decisions regarding protocols and propose options to form 

marine protected areas. With that dataset and goal in mind, and focusing on coastal cod as the 

study species - there are two subgoals that this study intends to accomplish: 

● Scope for features of habitat and substrate that is conducive to harboring 

young-of-the-year Atlantic cod 

● Determine factors with explanatory properties regarding occurrence and co-

occurrence of cod recruits and juveniles of other species.  

Specifically, the following hypotheses and research questions were tested: 

● Does the presence of cod have an impact on the diversity? The null hypothesis 

(H0) was that the presence of cod has no impact on the diversity of the area, 

with its alternative hypothesis (HA) that cod presence does influence the 

diversity. 

● Does the presence of cod have an impact on the overall Max N? The null 

hypothesis (H0) was that the presence of cod has no impact on the MaxN, with 

its alternative hypothesis that cod presence does influence MaxN. 

● Does cod presence lead to different diversities?  

● What specific factors predict cod presence in the environment between habitat 

type, depth and the diversity of the area? 

● Which factors influence the overall Max N between cod presence, habitat type 

and depth? 

● Is there a difference in the length measurements between the northern group of 
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stations and the southern group? 

● Is there a difference in the diversities between the northern group of stations 

and the southern group? 

● Is there a difference in the species abundances between the northern group of 

stations and the southern group? 

● Is there a difference in the Max N means between the northern group, southern 

group and middle station? 
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3 Materials and Methods 

3.1 Study sites  

 This study was conducted in the outer Oslofjord in Færder National Park. Figure 3.1 

depicts a map of where the stations sampled in 2017 were located, created from the latitude 

and longitude data supplied for each location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Map showing locations of the 18 stations used in this study, 
compiled from latitude and longitude data during BRUV drops 

 



22 

 

 

 

3.2 Sampling and equipment 

3.2.1 Sampling procedure 

 Stereo video was recorded in August of 2017 during a three-day cruise. Thirty-five 

stations were visited in FNP, but only 18 had usable footage. Once at a location, the rig was 

lowered onto the seafloor and recorded one hour of video per station sampled. The depths 

ranged from 10 to 37 meters, with an average depth of 22 meters. Geographical data such as 

latitude and longitude were also noted. 

 

3.2.2 Stereo Baited Remote Underwater Video (BRUV) 

 

The video was collected with a Baited Remote Underwater Video (BRUV) rig, which 

consists of two GoPro-cameras mounted on a metal frame with an arm extending from the 

center. At the end of the arm, an attachment is secured with bait made of frozen mackerel. 

Calibration files were written for each camera setup in order to complete the next step of data 

collection in EventMeasure. These files were created based on the principles of 

Figure 3.2 Stereo Baited Remote Underwater Video (BRUV) setup: a metal 
rig with two GoPro cameras with a bait arm in the center  
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photogrammetry, which is defined as the science of determining measurements from photos 

(University of Arizona, 1993). The main principle that the process is based upon is 

triangulation, using photos from multiple locations and establishing “lines of sight” from the 

cameras to the object in question. These lines are then mathematically calculated to create 3D 

points, like how human eyes process depth perception (Geodetic Systems, 2020). 

The two main components of photogrammetry are photography (turning a 3D object 

into a 2D image) and metrology (turning a 2D image back into a 3D image). Measurements 

are not possible with just one image, hence the need for multiple photographs from multiple 

sources. These images produce a 2D (x and y) location of the object and are completed with a 

“z” point to convert it to 3D using a process called resection, which is the process of 

determining the final position and orientation of the cameras. In order to do this, the cameras’ 

positions and directions of aim are needed from three different coordinates to produce x, y 

and z. Even after all this effort, further calibration is needed in order to eliminate any errors 

(Geodetic Systems, 2020). Once these 3D points have been established, the program can 

calculate the length of the target object.  

 

3.3 EventMeasure 

 The next part of the data collection was done through the SeaGIS program 

“EventMeasure”. All species that were visible in the video frame were identified and 

individuals were counted. The individual had to be fully in the frame and able to be identified 

to at least family level in order to be included. Once every organism was counted, each was 

measured if it was possible to do so. The organism could only be measured if it was fully 

visible on both cameras, hence the need for the calibration files. For the stations that were 

densely populated with the same individuals in the area for extended periods of time, the 
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author of this study chose to select a few key frames with the greatest number of individuals, 

highest number of species and the most potential to be measured. This was implemented into 

the protocol for two reasons. Firstly, to be as time efficient as possible so the author could 

complete the study within the next century. Secondly, the aspect of the data that was of the 

most interest was the MaxN, which is the maximum number of individuals of one species 

seen in a frame at any given time.  

 In addition to species identification and length measurements, the behavior of the 

organisms was also recorded. The categories available were “passing”, “attracted”, “feeding”, 

“scavenging”, “chase conspecific” (members of its own species), “chase other” and “guarding 

bait”. “Passing” behavior was defined as an organism that did not make a visible effort on 

camera to remain in the area and/or close to the rig and bait and would just swim through the 

frame. “Attracted” was defined as organisms that actively stayed in the area, especially if they  

 

 

Figure 3.3 A screenshot of the EventMeasure program showing the left 
and right video clips with an example of how the data is presented  
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were making significant efforts to swim against strong surges. “Feeding” was defined as an 

organism eating the bait, and only the bait. The author determined that “scavenging” was to 

be defined as an encounter (for example) where a piece of bait would be falling to the seafloor 

in the middle of a feeding frenzy with several organisms, and a separate individual would 

quickly descend upon the falling piece to take its meal “to go” and prevent its food from 

being taken. Scavenging also applied to any organisms who were feeding on anything other 

than the bait, i.e., crabs feasting on algae to the side of the frame. “Chase conspecific” and 

“chase other” are self-explanatory, and “guarding bait” was defined as an organism acting 

aggressively to defend the food for itself.  

Figure 3.4 Screenshot of EventMeasure showing a school of saithe 
(Pollachius virens)  

and Labridae 
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Figure 3.5 Screenshot of EventMeasure showing how the data is inputted 
with all of the available categories  

 

 

 

Figure 3.6 Screenshot from EventMeasure showing an adult edible crab 
(Cancer pagarus) and a juvenile Atlantic cod (Gadus morhua) fondly 

nicknamed “the bully cod”  
for being extremely territorial over the bait  
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Figure 3.7 Screenshot from EventMeasure showing two juvenile Atlantic cod  
(Gadus morhua) 

 

  

 

Figure 3.8 Screenshot from EventMeasure showing an adult edible crab 
(Cancer paragus, left), juvenile Atlantic cod (Gadus morhua, far right) and a 

greater weever (Trachinus draco, right underneath bait arm) 
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3.4 Statistical analysis  

3.4.1 Data treatment  

The first step in the data analyses was to filter out data points that exceeded the Z-limit 

(horizontal distance from cameras) set by the author. While analyzing the videos with 

EventMeasure, the author of this paper determined that any organism beyond a Z-

measurement of two meters was to be excluded from further analysis, as these organisms 

were extremely difficult to distinguish in lower quality videos. In the interest of scientific 

integrity, only organisms that could be positively identified to at least family level were 

included in the next stage. Factors such as behavior and habitat type were considered to fulfill 

that minimum requirement. 

In BRUV studies, a proxy for abundance termed “MaxN” is used. MaxN is defined as 

the maximum number of individuals for a given species counted within the field of view at 

the same time (Harvey et al., 2013). The authors of this manuscript describe how it avoids 

double counts of individuals, and how the measures of cumulative MaxN are useful in the 

study of fish behavior and the influence of that behavior on abundance, which is key to this 

study given that one of the aims is to determine how cod affect other species. MaxN is 

calculated by using the number of fish within the focal distance of the camera and summing 

those counts (Campbell et al., 2015).                                                                                                                                                                                                                                                                                                                                                                                                                                  

The data needed manual cleaning and “tidying” in Microsoft Excel. Fields that were 

not relevant to the analysis (date, tape reader, time, etc.) were removed and the dataset was 

divided into two subsets. One dataset contained observations that included a species 

identification, while the other was the observations that could only be identified at the family 

level with genus and species fields removed. This was done in order to make the dataset more 

workable in RStudio (R core team, 2021).  
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3.4.2 Preliminary exploration 

 The next step in the analyses was to check for normality in R for both the length data 

and the MaxN data. The length data was right-skewed and transformed using the logarithmic 

function, and the MaxN data did not change very much after transformation. After the work in 

R, the data was examined in Microsoft Excel to determine the most predominant family and 

species. The most predominant family was Gadidae (cod, haddock, whiting, pollock), with 

Atlantic cod being the most prevalent species out of the most predominant family (see Figure 

4.1 in the Results section).  

3.4.3 Data wrangling and tests in R 

 Once the dataset had been cleaned up in Excel, the data was “wrangled” and 

reformatted in R. A column was added in order to reflect the number of a particular species in 

every frame, since the species were counted individually, and frames appeared repeatedly.  

A presence/absence factor and diversity index column were also added to the dataset. The 

data were reformatted using the “reshape2” package in order to make it compatible with the 

“vegan” package to run the Shannon-Wiener diversity index calculations. The diversity index 

dataset was then merged with the adjusted count dataset, and that dataset was tested using a 

chi-square test of independence. Cod presence was used as the predictor variable for the chi-

square test to see whether it had any impact on the presence of other species. Linear models 

were then run to determine predicting factors in cod presence. One model examined diversity 

in terms of cod presence/absence and cod counts, using the following model structure: 

Equation 1: lm(formula = newdata$IndexNum ~ newdata$codpa + 

newdata$codcount, data = newdata) 
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 where the response variable was the diversity of the area (newdata$IndexNum), and the 

predicting variables being cod presence (newdata$codpa) and cod abundance 

(newdata$codcount).  

Second, the author ran a generalized linear model determining factors that predicted 

cod presence using the following model structure: 

Equation 2: glm(formula = codpa ~ habitat + Depth + IndexNum, family = 

binomial, pl.data = completedat) 

where the response variable is cod presence (codpa), and the predicting variables are habitat 

type, depth and diversity index (IndexNum).   

 A two-sample t-test was used to determine if there were any statistically significant 

differences between the northern and southern stations for length measurements, diversity and 

abundance. There were six northern stations and eleven southern stations, with the final 

station being in the center of these two areas near Ormø-Færder and therefore was treated as 

an outlier and not included in the t-tests.  

 For the Max N dataset, a chi square test was conducted in order to determine whether 

cod presence had any impact on the Max N. A linear model was then constructed to examine 

which factors had the strongest influence on Max N, the factors being cod presence, habitat 

and depth, using the following model structure: 

Equation 3: lm(formula = MaxN ~ codpa + habitat + Depth, data = maxn) 

Where the response variable is MaxN and the predicting variables are cod presence, habitat 

type and depth. 

 To examine variance in the means between stations, the stations were sorted into the 

northern and southern stations as used previously, along with the center outlier station as the 
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third group. This was done because the outlier station had the highest Max N results overall, 

and the author wished to investigate whether that had any significance. 

A one-way ANOVA test was conducted, following a Tukey test to determine exactly 

what differences existed. There are three assumptions needed to run this test: each sample 

originated from a normally distributed population, each sample was independent of all other 

samples, and that the variance in each group is equal. The data were first examined with Q-Q 

plots and the Shapiro-Wilkes test to assess normality. The Shapiro-Wilkes test suggested that 

the data may not be normally distributed with a p-value <0.05, but the Q-Q plots showed that 

a large majority of the data fell along the regression line with some outliers. Even after a 

logarithmic transformation, the data did not improve very much. While this technically does 

not follow the assumption, a one-way ANOVA can withstand violations of the normality 

assumption if the sample size is large enough (Blanca et al., 2017). Given that the size was n= 

96, the author concluded that breaking this assumption would not severely affect the results of 

the test.  
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Figure 3.9 Max N data histogram raw and 
transformed  

Figure 3.10 Density plots for Max N both raw and transformed 
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The second assumption of independent samples unfortunately has no formal test to 

evaluate the strength of the assumption. The test assumes that the observations were collected 

randomly and independent of all other observations. The author assumed that the assumption 

had been met given that the design of the data collection was randomized. It is impossible to 

determine precisely whether the observations were completely independent given that animals 

move around, so the author relied on the randomized procedure to state that the assumption 

holds true. 

The final assumption is that the variances between the groups are equal, which was 

examined with boxplots and Levene’s test since it is less sensitive to slightly abnormal 

distributions (Garson, 2012). The p-value of Levene’s test was less than 0.05 suggesting that 

there may be significant differences between the variance, however the box plot showed the 

difference between north and south stations were minimal. The middle station had greater 

variance, which can be explained by the fact that the middle station had a MaxN of x=69 

which would skew the results. 
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The overall conclusion was that the assumptions were not met perfectly, but the 

violations were not severe enough to completely derail the one-way ANOVA test. The test is 

sturdy against mild to moderate violations (Garson, 2012), and it is up to the researcher 

whether to continue forward or use an alternative method such as the Kruskal-Wallis test (the 

non-parametric partner to ANOVA) to be conservative. The author chose to proceed with the 

ANOVA test, noting that the results should be interpreted with care. The structure was as 

follows: 

Equation 4: aov(formula = maxn$MaxN ~ maxn$Region, data = maxn) 

  

Figure 3.11 Boxplot showing variances in the means of the samples from the 
north, middle and south groups 
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4 Results 

4.1 Abundance  

 The first step in the analysis was to determine the most abundant family in the dataset, 

and the most abundant species within that family to determine whether we were on the right 

track examining cod. The most abundant family was Gadidae, followed by Labridae, 

Portunidae, Pleuronectidae and Cancridae as reflected in Figure 4.1, “Chart showing 

abundance by family across all stations”. Four other families (Rajidae, Triglidae, Trachinidae 

and Soleidae) made up the remaining 0.3%. Atlantic cod (Gadus morhua) was the most 

abundant species out of the Gadidae family, with saithe (Pollachius virens) being the next 

most abundant as shown in Figure 4.2.  
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Figure 4.1: Chart showing abundance by family 

from all stations 

Figure 4.2 Chart showing the breakdown of the most predominant family 
Gadidae by species  
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4.2 Length measurements distributions 

Because the focus of this study is on juveniles of species in order to assess 

recruitment, the length distributions for all species and species individually were calculated 

using density plots in R. The code is attached in Appendix 1. The mean for length across all 

species was 118 mm as shown in Figure 4.3, and the mean for each species is shown on the 

density plots below. Table 4.1 shows all species measurements with minimum, maximum, 

mean and standard deviations. 

 

  

Figure 4.3: Density plot showing the length measurement distribution for all 
species across all stations 
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Table 4.1: Measurements (in mm) for all species with size range (minimum and maximum), mean  

and standard deviation. The precision measurements in EventMeasure varied greatly, but only realistic 

measurements were included in the dataset.  

Species (fish) 

Species 

(crustacean) Minimum Maximum Mean 

Standard 

Deviation 

Ballan wrasse  95 218 148 52 

Goldsinny 

wrasse  42 180 160 40 

Cuckoo wrasse  115 515 213 87 

Scale-rayed 

wrasse  90 137 111 16 

Greater weever  299 313 306 10 

Spotted ray  424 426 425 1 

Corkwing 

wrasse  178 207 193 20 

Whiting  73 95 110 18 

Atlantic cod  34 498 104 41 

Saithe  64 567 128 49 

Haddock  78 102 90 17 

Grey gurnard  206 248 227 29 

Atlantic halibut  44 462 198 63 
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Species (fish) 

Species 

(crustacean) Minimum Maximum Mean 

Standard 

Deviation 

Pollack  111 111 111 0 

Common dab  162 199 180 26 

Sand goby  77 112 95 25 

European 

flounder  179 292 232 40 

Poor cod  130 130 130 0 

Pomatoschistus 

sp.  35 337 101 47 

 

European green 

crab 34 213 120 65 

 Edible crab 32 271 150 112 
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Figure 4.4: Q-Q plots for the length data set raw (left) and 
transformed with the logarithmic function (right) 

Figure 4.5: Length distribution of Atlantic cod (Gadus morhua) with a mean 
of 104 mm. 
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Figure 4.6: Length distribution for edible crab (Cancer pagurus) with a mean 
of 150 mm. 

Figure 4.7: Length distribution for Atlantic halibut (Hippoglossus 
hippoglossus) with a mean of 198 mm. 
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Figure 4.8: Length distribution for common dab (Limnada limnada) with a 
mean of 180 mm. 

Figure 4.9: Length distribution for European flounder (Platichthys flesus) 
with a mean of 231 mm. 
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Figure 4.10 Length distribution for corkwing wrasse (Symphodus 
melops) with a mean of 192 mm. 

 

Figure 4.11 Length distribution for European green crab (Carcinus maenas) 
with a mean length of 119 mm. 



44 

 

 

  

Figure 4.12 Length distribution for Pomatoschistus sp with a mean length of 
101 mm. 

Figure 4.13 Length distribution for goldsinny wrasse (Ctenolabrus rupestris) 
with a mean length of 105 mm. 
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Figure 4.14 Length distribution for greater weever (Trachinus draco) with a 
mean length of 305 mm. 

Figure 4.15 Length distribution for grey gurnard (Eutrigla gurnardus) with a 
mean length of 226 mm. 
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Figure 4.16 Length distribution for haddock (Melanogrammus aeglefinus) 
with a mean length of 90 mm. 

Figure 4.17 Length distribution for pollock, also known as saithe (Pollachius 
virens)  

with a mean length of 127 mm. 
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Figure 4.19 Length distribution for scale-rayed wrasse (Acantholabrus 
palloni) with a mean length of 111 mm.  

Figure 4.18 Length distribution for sand goby (Pomatoschistus minutus)  
with a mean length of 106 mm. 
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  Figure 4.21 Length distribution for cuckoo wrasse (Labrus mixtus) with a 
mean length of 212 mm. 

Figure 4.20 Length distribution for ballan wrasse (Labris bergylta) with a 
mean length of 148 mm. 
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4.3 Explanatory properties of cod presence 

 The logistic regression linear model aimed to predict suitable features for juvenile cod 

between habitat type, depth and the diversity of an area. The habitat type factor returned a 

prediction that there was a higher probability of finding cod on sand, but more variance on 

rocky habitats as shown in Figure 4.23. Figure 4.24 shows that there was a higher probability 

of cod presence at shallower depths, marked by a notable and rapid change at 20 meters. 

Figure 4.25 shows that there is a weak relationship between the diversity of an area and cod 

presence.  

Figure 4.22 Length distribution for whiting (Merlangius merlangus) with a 
mean length of 110 mm. 
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Figure 4.23: Logistic regression linear model output showing predictions of 
cod presence based on habitat type. 
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Figure 4.24: Logistic regression linear model output showing predictions for 
cod presence based on depth. 

Figure 4.25 Logistic regression linear model output showing the probability 
of cod presence based on the diversity of the area.  
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4.4 Body size, diversity and habitat specificity 

The chi-square test examining the relationship between cod presence and the diversity 

index had the null hypothesis that the presence of cod has no impact on the presence of other 

species, while the alternative hypothesis was that cod presence does influence the presence of 

other species. There was a significant relationship between cod presence and diversity, X2 (2, 

N = 1645) = 8.57, p = 0.014, so the alternative hypothesis was accepted. 

 The linear regression model (Equation 1) aimed to determine if cod presence leads to 

different diversities, with the diversity index being predicted by the presence of cod and cod 

counts. Although the model had a low adjusted R2 (0.017), it suggested a negative effect of 

cod abundance on species diversity (estimate: -0.026, p < 0.001).   

 A generalized linear model determining factors that predicted cod presence was run, 

with the predicting factors being habitat type, depth and diversity index (Equation 2), to 

determine the most influential factors affecting cod presence as reflected in Figures 4.23- 

4.25. Model selection based on Akaike’s information criterion (AIC) was carried out to 

validate the most parsimonious model (Glen, 2018). Four variations of this model were 

constructed: a “global model” with all the factors included, one excluding diversity, one 

excluding depth and one excluding habitat types in order to validate parsimony by means of 

AIC scores. The results of these models are shown in Table 4.2 below. Model selection 

suggested that the global model containing all the factors had more support, improved by 

more than 2 AIC steps compared to the model with the second lowest AIC score. The habitat 

type “sandy/shell” had a positive effect on cod presence (estimate: 2.97061, p < 0.0001). 

Depth had a negative effect on cod presence (estimate: -0.53319, p < 0.0001), indicating that 

cod would be present with higher MaxN counts in the shallower stations sampled. Diversity 

also showed a negative effect on cod presence (estimate: -0.60749, p < 0.05), suggesting that 
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fewer species other than cod were registered at stations in which cod were present. 

     Table 4.2: Comparison of different variations of the model that aims to determine the influential 

factors affecting cod presence.  

Model AIC score  

Global (all) 1245.4 

Habitat type + depth 1248.4 

Habitat type + diversity index 2283.6 

Depth + diversity index  1517.6 

 

Three t-tests were conducted to examine whether there was a difference in length 

measurements, abundance and diversity in the northern and southern groups. The results are 

presented in Table 4.3.  

Table 4.3: Results of the three t-tests examining differences between the northern group of stations and 

the southern group.  

Factor of interest Degrees of freedom T statistic P-value  

Length measurements 1571 0.63083 0.5282 

Abundance 630 0.38902 0.6974 

Diversity   722 -2.9703 0.003073 

 

There were no significant differences between north and south in terms of length 

measurements (means of 120.24 and 117.66 mm, respectively) and abundance (means of 0.10 
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and 0.10, respectively), but there was a significant difference in diversity (means of 1.72 and 

2.29, respectively) with higher diversity in the southern group.  

4.5 MaxN 

The chi-square test examining the relationship between cod presence and the Max N 

had the null hypothesis that the presence of cod has no impact on the Max N, while the 

alternative hypothesis was that cod presence does influence the overall Max N. There was a 

significant relationship between cod presence and Max N, X2 (14, N = 96) = 23.749, p < 0.05. 

The linear regression model (Equation 3) aimed to determine which factors had the 

strongest influence on Max N, with Max N being predicted by cod presence, habitat and 

depth. Like Equation 1, the adjusted R2 value was low (0.060) but suggested that a habitat that 

was “rocky/mixed” was the most significant factor with a positive effect on the MaxN 

(estimate 9.94, p < 0.05). 

A one-way ANOVA test (Equation 4) was used to determine if there was any 

difference between the northern and southern stations, along with the center outlier station. 

The results are shown in Table 4.4. 

 

Table 4.4: One-way ANOVA table examining differences in means between three groups. 

 Sum of squares df Mean Square F p-value 

maxn$Region 590 2 295.09  3.65 0.03 

Residuals 7519 93  80.85    

 

The results showed a significant difference in the means with a p-value < 0.05, so a 

Tukey test was then conducted to identify the specific differences. The test produced the 
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following output shown in Table 4.5. The results show that while there is no significant 

difference between the northern and southern stations, there was a significant difference 

between the northern group and middle station, and the middle station and the southern group.  

 

Table 4.5: Output from Tukey HSD test to show specific differences in the ANOVA test. 

Grouping Mean difference Lower interval Upper interval  P-value 

north-middle -10.63 -20.04 -1.22 0.02 

south-middle -9.62 -18.85 -0.38 0.04 

south-north 1.02 -3.55 5.59 0.86 

  

Figure 4.27 ANOVA plot comparing the Max N means from the 
northern group of stations, southern group of stations and middle 

outlier station   
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5 Discussion 

5.1 Disclaimers and sources of error 

 There are several points regarding this study that the author wishes to discuss before 

proceeding to the remainder of this chapter. Firstly, this dataset does not focus on specific 

individuals so much as the population and ecosystem as a whole. Double counts were not a 

matter of concern since the primary interest was to determine MaxN. Secondly, there are 

multiple potential sources of error in terms of the data collection portion of this study, 

Figure 4.28 Q-Q plots for the ANOVA test comparing the Max N results for 
the northern group of stations, southern group of stations and middle outlier 

station  
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specifically in terms of EventMeasure. While an extremely useful and interesting program, it 

did not seem to appreciate the author’s time and effort, with multiple crashes a day and 

deleting hours or even days’ worth of work. The author recovered the data to the best of her 

ability but felt it necessary to include in this section in the interest of scientific integrity.  

 Another major obstacle was in the calculations of length measurements in the 

EventMeasure program. Due to unknown causes, the guidelines provided by the calibration 

files were unable to sync in several stations and resulted in error messages for multiple 

measurements. In order to combat this, the author measured as many individuals as possible 

from a few well-populated frames in order to gather a subset for the measurements. The 

lengths of the organisms were not the highest priority for this study, so it did not doom the 

project, but it could have impacted the author’s ability to assess the juveniles.  

 The quality of the video at several stations was heavily affected by the surge and 

current stirring up debris and substrate, which made species identification very difficult in 

those areas. The author attempted to at least identify the family level in order to produce data, 

but some could not be identified past that taxonomic level.  

 In terms of the plots presented in the Results section, density plots were presented 

rather than histograms because several species only had one or two points and therefore did 

not make a clear plot. Three species were not graphed given that they only had one data point 

and did not provide useful information via a plot: poor cod (Trisopterus minutus), Atlantic 

pollock (Pollachius pollachius) and spotted ray (Raja montagui). The species with very few 

points are the ones presented with a bimodal distribution, with the mean and median in the 

same location. The previously mentioned calibration issues most likely contributed to some 

puzzling results as shown in Figure 4.12 depicting the length distribution of goldsinny wrasse. 

This species is not capable of reaching lengths over 180 mm (FishBase, n.d.), so the odd 
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outliers reaching points as high as 700 mm are due to errors in the program itself. This error 

most likely caused the abnormal results for Figure 4.16 showing the length distribution for 

pollock (also known as saithe) as well.  

5.2 Species size distributions and abundance  

 The size distributions suggested a fish species assemblage dominated by relatively 

small sized species and juveniles of larger species. The size distribution for cod confirmed 

that young-of-the-year juveniles were the most abundant age-group/ year class present in the 

study area in August 2017, although a few larger older cod were encountered. Even species 

such as whiting and pollock, which also can grow to be quite large, were overall quite small 

which only strengthens the findings of a juvenile-dominated community captured in areas that 

might be considered as nursery areas for these species. Very few species reflected an average 

size expected of adults of that species, such as sand goby and the greater weever.  

The most abundant family was Gadidae, and the most abundant species was Atlantic 

cod (Gadus morhua). This is not surprising as 2017 (the year this data were collected) was an 

excellent year for cod recruits as documented in the IMR beach seine sampling monitoring 

carried out annually in September (IMR, unpublished data), hence it being the focus of this 

study. When considering the generalist diet in the cod’s ecology and the fact they will eat just 

about anything, the next most abundant family being Labridae makes sense. Most labrids are 

too large to be an easy meal, and their size especially in comparison to juvenile cod provides 

them with a certain “safety net” so to speak.  

 Overall, the organisms in this study were on the smaller end with a mean of just 

118.08 mm. Cod had a mean length of 104.30 mm, and nearly all the observations were 

juveniles. Only 18 observations were adults out of the 534 observations for cod altogether. 

This reinforces the finding that 2017 was an excellent year for cod recruitment and supported 
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by the literature that states that the juveniles have settled by mid-August. The data were 

collected mere weeks after this established timeline, and therefore the results are logical.  

 There were multiple t-tests conducted in order to compare the northern and southern 

stations for length, abundance and diversity. While the mean lengths between the areas was 

not very different at all (120.23 mm ad 117.66 mm respectively), nor the diversity (p-value 

>0.05), the abundances in these two areas were significantly different (p-value < 0.05 with 

means of 1.72 and 2.29 respectively). This is interesting because the literature states that 

juveniles tend to settle away from the open ocean in more sheltered areas due to gentler 

currents, while this data suggests otherwise. One possible explanation is that the southern 

stations are in Færder nasjonalpark, and the fact that it is a marine park may provide the 

organisms in and near the area better resources and stronger protection, although no specific 

regulations are in place to limit fishing in this part of the park. Alternatively, the view that 

sheltered or less exposed areas are better nursery habitat is biased by the sampling methods 

most commonly used in the past and warrants further study.  

 The ANOVA test examining the MaxN, and the following Tukey HSD test provided 

some very interesting results. Like the t-tests for the length data, the northern and southern 

groups had no significant differences but both groups were different from the middle outlier 

station. This could be because the middle station had the highest MaxN (x=69), but the fact 

that it did have the highest MaxN warrants further investigation to determine exactly why that 

is.  
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5.3 Impact of cod presence on other species 

 The chi-square test of independence on the length data showed that there is a 

relationship between the presence of cod and the diversity of the area. The linear model aimed 

to answer if cod presence led to different diversities to further investigate the previous 

question, with both cod presence and cod counts as predicting variables for the diversity 

index.  The output returned that while the presence of cod was not significant, the actual 

number of cod in the area is what influences the diversity. The next question to answer was 

“what determines cod presence between habitat, depth and the diversity?” which was 

examined with the logistic regression model. The most significant factors were sandy habitats 

and depth, followed by diversity.  

These findings are highly informative given that nearly all observations were juveniles 

as mentioned in 5.2. They are also quite logical when considering the literature review 

presented in the introduction (Freitas et al., 2015; Perry et al., 2018; Freitas et al., 2021). The 

literature described how cod, especially juveniles, utilize different depths and sandy habitats 

during warmer temperatures. It also stated that juveniles are less sensitive to warmer 

temperatures than the adults, and this data follows that statement given that the logistic 

regression model predicted finding the cod in shallower waters less than 20 meters, and that 

nearly all observations were juveniles. This also follows the finding that the growth of 

juvenile cod is slower in the summer given that the finding in this study was that most of the 

community was very small juveniles who were nowhere near what is considered a mature 

size.   
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5.4 Management implications 

 These results have significant implications for management agencies regarding 

protocols that involve juveniles of economically and ecologically important species. Agencies 

have been increasingly criticized in recent years for not incorporating this crucial life stage in 

their protocols, especially agencies that oversee large and busy fisheries. Although this work 

is limited, with few stations and one sampling season only, the findings suggest that shallow 

habitat throughout the park (north to south) is nursery habitat for cod and other species.  

Without protection for juveniles who eventually grow up to become part of the stock, 

eventually there will be no stock when it collapses for any number of reasons. The stock 

could become inbred and have a genetic collapse if too many mature individuals are removed 

from the population. Many populations have been maturing at younger ages and smaller sizes, 

which can lead to juveniles with decreased fitness and other complications. Studies have 

shown that in temperate waters, older and large fish produce studier offspring that grow three 

times faster than the offspring of younger fish, and survive starvation 2.5 times longer 

(Berkeley et al., 2004). 

The findings discussed in section 5.2 and the literature regarding genetically 

distinguishing sub-populations could potentially be explained by the source-sink dynamics of 

the area. This is an ecological model to explain how the same species can have different 

populations in two separate habitats, with one being of high quality that encourages growth 

(the source) and one of low quality (the sink) that has a faster rate of decrease than the 

increase in population (Palumbi, 2004). While the “sink” habitat is unsustainable within itself, 

individuals that migrate to it from the overflowing “source” habitat can improve the 

sustainability Figure 4.19 Length distribution for whiting (Merlangius merlangus) with a 

mean length of 110 mm. 
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. With this theory in mind and the literature stating how offshore cod can affect other 

populations (implying some level of migration), a population genetics study could determine 

where the juveniles are occurring from (using the spawning site as the source) and where they 

could possibly go (the nursery habitat as the sink). Both habitats would need to be protected, 

possibly by a network of protected areas in order to ensure the juveniles’ survivability during 

the crucial life stage of recruitment.  The population genetics study would also provide key 

information about the home range and connectivity of the sub-populations that would narrow 

down where and how this network should be implemented. This project could be built upon 

the work of studies such as Barth et al. (2019) and Huserbraaten et al. (2018) with a focus on 

not only the recruits, but the actual eggs and larvae themselves to produce a more fine-tuned 

picture of their movement.  

 

5.5 Importance of baseline monitoring studies 

 Baseline monitoring studies are key to any topic under investigation in an 

environment. They provide the foundation for future studies to build upon, allowing them to 

pick apart specific areas and questions in order to expand that area of knowledge. However, 

the following studies should be mindful of the shortcomings of baseline studies and focus on 

filling in the gaps. An example is this study itself with the presence-absence data. Barcelo et 

al. (2016) stated that this type of data has the possibility of overemphasizing the role of rare 

occurrences, which may have happened with species in this study such as the greater weever 

and spotted ray. 

 

6   Conclusion 
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6.1 Conclusion 

This work demonstrated that BRUVs may be used in temperate and relatively turbid 

conditions such as those experienced during the collection of video recording utilized herein. 

Moreover, BRUVs are highly useful in assessing young-of-the-year juveniles and their 

association with other species in the coastal fish assemblage, and with different habitat 

categories. This information is crucial to management agencies who are in the process of 

establishing and maintaining viable fisheries and marine protected areas. This work also 

highlights which topics to investigate further, and which scientific holes need to be filled.  

6.2 Future work 

 Future studies should focus heavily on juveniles of all economically and ecologically 

important species, including Atlantic cod. Recruitment in these species has only recently been 

considered more frequently in terms of management strategies, and it is the author’s belief 

that stronger protection of juveniles is key to both the fishery’s success and the health of the 

surrounding environment. Specifically, their habitat preferences should be towards the top of 

the priority list since adequate wildlife management requires knowledge of animal habitat 

requirements and how environmental variables influence their habitat selection (Freitas et al., 

2015; 2021). In terms of proposing regions for marine protected areas, the physical 

composition of the environment and the waters themselves should be considered, given that 

factors such as salinity can change significantly depending on the specific location in relation 

to the fjord. This is strengthened by the fact that the studies mentioned in the introduction 

highlighted how unique the hydrology of this area is. All these factors have an impact on the 

species and the overall structure and composition of the community. This was reflected in this 

study with the ANOVA comparing the MaxN means.  
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 Management agencies should also investigate the possibility of using the spillover 

strategy in order to maintain a sustainable fishing stock and encourage a thriving ecosystem. 

This strategy has proven extremely effective in many cases and could prove so in this region 

given how sedentary cod populations tend to be. Huserbraaten et al. (2018) found that the 

spillover from the North Sea cod into Norwegian nursery habitats could be beneficial to the 

stock. When setting up the protected area for the spillover strategy, it is important to note that 

while marine reserves are not usually considered for species such as Atlantic cod, even a 

small area could boost conservation efforts as it would protect sedentary adults (Rogers et al., 

2014). The tricky part of setting up this reserve would be the placement along the coast but 

would keep the populations healthy and viable for years to come.  
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Overview of tables and figures 

● Figure 3.1: Map showing locations of the 18 stations used in this study, compiled from 

latitude and longitude data during BRUV drops 

● Figure 3.2 Stereo Baited Remote Underwater Video (BRUV) setup: a metal rig with 

two GoPro cameras with a bait arm in the center  

● Figure 3.3 A screenshot of the EventMeasure program showing the left and right video 

clips with an example of how the data is presented  

● Figure 3.4 Screenshot of EventMeasure showing a school of saithe (Pollachius virens) 

and Labridae  

● Figure 3.5 Screenshot of EventMeasure showing how the data is inputted with all of 

the available categories  

● Figure 3.6 Screenshot from EventMeasure showing an adult edible crab (Cancer 

pagarus) and a juvenile Atlantic cod (Gadus morhua) fondly nicknamed “the bully 

cod” for being extremely territorial over the bait 

● Figure 3.7 Screenshot from EventMeasure showing two juvenile Atlantic cod (Gadus 

morhua) 

● Figure 3.8 Screenshot from EventMeasure showing an adult edible crab (Cancer 

paragus, left), juvenile Atlantic cod (Gadus morhua, far right) and a greater weever 

(Trachinus draco, right underneath bait arm) 

● Figure 3.9 Max N data histogram raw and transformed  

● Figure 3.10 Max N data Q-Q density plots raw and transformed 

● Figure 3.11 Boxplot showing variances in the means of the samples from the north, 

middle and south groups 

  



72 

 

 

● Table 4.1: Measurements (in mm) for all species with size range (minimum and 

maximum), mean and standard deviation. The precision measurements in 

EventMeasure varied greatly, but only realistic measurements were included in the 

dataset.  

● Table 4.2: Comparison of different variations of the model that aims to determine the 

influential factors affecting cod presence.  

● Table 4.3: Results of the three t-tests examining differences between the northern 

group of stations and the southern group.  

● Table 4.4: One-way ANOVA table examining differences in means between three 

groups. 

● Table 4.5: Output from Tukey HSD test to show specific differences in the ANOVA 

test 

● Figure 4.1: Chart showing abundance by family from all stations 

● Figure 4.2 Chart showing the breakdown of the most predominant family Gadidae by 

species  

● Figure 4.3: Density plot showing the length measurement distribution for all species 

across all stations 

● Figure 4.4: Q-Q plots for the length data set raw (left) and transformed with the 

logarithmic function (right) 

● Figure 4.5: Length distribution of Atlantic cod (Gadus morhua) with a mean of 104 

mm. 

● Figure 4.6: Length distribution of edible crab (Cancer pagurus) with a mean of 150  

mm. 

● Figure 4.7: Length distribution for Atlantic halibut (Hippoglossus hippoglossus) with 
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a mean of 198 mm. 

● Figure 4.8 Length distribution for common dab (Limnada limnada) with a mean 

length of 180 mm.  

● Figure 4.9: Length distribution for European flounder (Platichthys flesus) with a mean 

of 231 mm. 

● Figure 4.10: Length distribution for corkwing wrasse (Symphodus melops)  

● Figure 4.11 Length distribution for European green crab (Carcinus maenas) with a 

mean length of 119 mm. 

● Figure 4.12 Length distribution for Pomatoschistus sp with a mean length of 101 mm. 

● Figure 4.13 Length distribution for goldsinny wrasse (Ctenolabrus rupestris) with a 

mean length of 105 mm. 

● Figure 4.14 Length distribution for greater weever (Trachinus draco) with a mean 

length of 305 mm. 

● Figure 4.15 Length distribution for grey gurnard (Eutrigla gurnardus) with a mean 

length of 226 mm. 

● Figure 4.16 Length distribution for haddock (Melanogrammus aeglefinus) with a 

mean length of 90 mm. 

● Figure 4.17 Length distribution for pollock, also known as saithe (Pollachius virens)  

● with a mean length of 127 mm. 

● Figure 4.18 Length distribution for sand goby (Pomatoschistus minutus)  

● with a mean length of 106 mm. 

● Figure 4.19 Length distribution for scale-rayed wrasse (Acantholabrus palloni) with a 

mean length of 111 mm.  

● Figure 4.20 Length distribution for ballan wrasse (Labris bergylta) with a mean length 
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of 148 mm. 

● Figure 4.21 Length distribution for cuckoo wrasse (Labrus mixtus) with a mean length 

of 212 mm. 

● Figure 4.22 Length distribution for whiting (Merlangius merlangus) with a mean 

length of 110 mm. 

● Figure 4.23: Logistic regression linear model output showing predictions of cod 

presence based on habitat type. 

● Figure 4.24 Logistic regression linear model output showing the probability of cod 

presence based on depth.  

● Figure 4.25 Logistic regression linear model output showing the probability of cod 

presence based on the diversity of the area.  

● Figure 4.26 ANOVA plot comparing the Max N means from the northern group of 

stations, southern group of stations and middle outlier station   

● Figure 4.27 Q-Q plots for the ANOVA test comparing the Max N results for the 

northern group of stations, southern group of stations and middle outlier station  
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Appendices 

Appendix 1: R code 

Length measurement work: density plots  

species_length=read.csv(file.choose(), header=T)  

attach(dat) 

head(dat) 

##Length distribution for all species 

plot(Length.mm, main="Length raw data") 

abline(h=mean(Length.mm,), col="red") 

abline(h=mean(Length.mm,)-sd(Length.mm,), col="blue") 

abline(h=mean(Length.mm,)+sd(Length.mm,), col="blue") 

plot(density(Length.mm), main="Length density raw") 

abline(v=mean(Length.mm,), col="red") 

abline(v=mean(Length.mm,)-sd(Length.mm,), col="blue") 

abline(v=mean(Length.mm,)+sd(Length.mm,), col="blue") 

library(ggplot2) 

d<-density(Length.mm) 

qplot(d$x,d$y) 

p<-ggplot() 

p<-p+geom_density(data=dat, aes(x=Length.mm,)) 

p 

 

### Assessing normality 

## qqplot 

qqnorm(Length.mm, main="Length measurements raw") 
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qqline(Length.mm) 

# make a qqplot for the norm vector 

qqnorm(norm, main="Random data from the Standard normal") 

qqline(norm) 

##############  data transformation 

par(mfrow=c(2,2)) 

logLength=log(Length.mm) 

plot(density(Length.mm)) 

plot(density(logLength)) 

qqnorm(Length.mm) 

qqline(Length.mm) 

qqnorm(logLength) 

qqline(logLength) 

 

#Histograms for length distributions by species 

par(mfrow=c(1,1)) 

ballan=species_length[species_length$Species=="bergylta",] 

hist(ballan$Length_mm) 

abline(v=mean(ballan$Length_mm), col="red", lwd=3) 

abline(v=median(ballan$Length_mm), col="blue", lwd=3) 

mean(ballan$Length_mm) 

text(160,2.0,label="Mean = 148.27", col="red") 

text(110,2.0,label="Median", col="blue") 

plot(density(ballan$Length_mm), main="Length distribution for ballan wrasse", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(ballan$Length_mm), col="green") 
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abline(v=median(ballan$Length_mm), col="red") 

text(160,0.004,label="Mean = 148.27", col="dark green") 

text(110,0.004,label="Median", col="red") 

 

goldsinny=species_length[species_length$Species=="rupestris",] 

hist(goldsinny$Length_mm) 

abline(v=mean(goldsinny$Length_mm), col="red", lwd=3) 

abline(v=median(goldsinny$Length_mm), col="blue", lwd=3) 

text(150,200,label="Mean", col="red") 

text(60,200,label="Median", col="blue") 

mean(goldsinny$Length_mm) 

plot(density(goldsinny$Length_mm), main="Length distribution for goldsinny wrasse", xlab="Length 

in mm", ylab="Density") 

abline(v=mean(goldsinny$Length_mm), col="green") 

abline(v=median(goldsinny$Length_mm), col="red") 

text(160,0.010,label="Mean = 105.63", col="dark green") 

text(50,0.0104,label="Median", col="red") 

 

haddock=species_length[species_length$Species=="aeglefinus",] 

mean(haddock$Length_mm) 

plot(density(haddock$Length_mm), main="Length distribution for haddock", xlab="Length in mm", 

ylab="Density") 

abline(v=mean(haddock$Length_mm), col="green") 

text(95,0.010,label="Mean (90.02) median", col="dark green") 

 

weever=species_length[species_length$Species=="draco",] 
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mean(weever$Length_mm) 

plot(density(weever$Length_mm), main="Length distribution for greater weever", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(weever$Length_mm), col="green") 

text(310,0.01,label="Mean (305.97) and median", col="dark green") 

 

flounder=species_length[species_length$Species=="flesus",] 

hist(flounder$Length_mm) 

abline(v=mean(flounder$Length_mm), col="red", lwd=3) 

abline(v=median(flounder$Length_mm), col="blue", lwd=3) 

text(240,1.5,label="Mean", col="red") 

text(210,1.5,label="Median", col="blue") 

mean(flounder$Length_mm) 

plot(density(flounder$Length_mm), main="Length distribution for European flounder", xlab="Length 

in mm", ylab="Density") 

abline(v=mean(flounder$Length_mm), col="green") 

abline(v=median(flounder$Length_mm), col="red") 

text(240,0.004,label="Mean = 231.57", col="dark green") 

text(200,0.0004,label="Median", col="red") 

 

gurnard=species_length[species_length$Species=="gurnardus",] 

mean(gurnard$Length_mm) 

plot(density(gurnard$Length_mm), main="Length distribution for grey gurnard", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(gurnard$Length_mm), col="green") 

text(240,0.004,label="Mean (226.81) and median", col="dark green") 
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halibut=species_length[species_length$Species=="hippoglossus",] 

hist(halibut$Length_mm) 

abline(v=mean(halibut$Length_mm), col="red", lwd=3) 

abline(v=median(halibut$Length_mm), col="blue", lwd=3) 

text(210,20,label="Mean", col="red") 

text(180,20,label="Median", col="blue") 

mean(halibut$Length_mm) 

plot(density(halibut$Length_mm), main="Length distribution for Atlantic halibut", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(halibut$Length_mm), col="green") 

abline(v=median(halibut$Length_mm), col="red") 

text(250, 0.004,label="Mean = 198.35", col="dark green") 

text(150,0.004,label="Median", col="red") 

 

dab=species_length[species_length$Species=="limanda",] 

mean(dab$Length_mm) 

plot(density(dab$Length_mm), main="Length distribution for common dab", xlab="Length in mm", 

ylab="Density") 

abline(v=mean(dab$Length_mm), col="green") 

text(190, 0.005,label="Mean (180.45) and median", col=" dark green") 

 

greencrab=species_length[species_length$Species=="maenas",] 

hist(greencrab$Length_mm) 

abline(v=mean(greencrab$Length_mm), col="red", lwd=3) 

abline(v=median(greencrab$Length_mm), col="blue", lwd=3) 
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text(140,2,label="Mean", col="red") 

text(60,2,label="Median", col="blue") 

mean(greencrab$Length_mm) 

plot(density(greencrab$Length_mm), main="Length distribution for European green crab", 

xlab="Length in mm", ylab="Density") 

abline(v=mean(greencrab$Length_mm), col="green") 

abline(v=median(greencrab$Length_mm), col="red") 

text(150, 0.002,label="Mean = 119.95", col="dark green") 

text(80, 0.002,label="Median", col="red") 

 

corkwing=species_length[species_length$Species=="melops",] 

mean(corkwing$Length_mm) 

plot(density(corkwing$Length_mm), main="Length distribution for corkwing wrasse", xlab="Length 

in mm", ylab="Density") 

abline(v=mean(corkwing$Length_mm), col="green") 

abline(v=median(corkwing$Length_mm), col="red") 

text(200, 0.005,label="Mean (192.54) and median", col="dark green") 

 

whiting=species_length[species_length$Species=="merlangus",] 

hist(whiting$Length_mm) 

abline(v=mean(whiting$Length_mm), col="red", lwd=3) 

abline(v=median(whiting$Length_mm), col="blue", lwd=3) 

text(90,6,label="Mean", col="red") 

text(130,6, label="Median", col="blue") 

mean(whiting$Length_mm) 
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plot(density(whiting$Length_mm), main="Length distribution for whiting", xlab="Length in mm", 

ylab="Density") 

abline(v=mean(whiting$Length_mm), col="green") 

abline(v=median(whiting$Length_mm), col="red") 

text(90,0.015,label="Mean = 110.00", col="dark green") 

text(130,0.015,label="Median", col="red") 

 

sandgoby=species_length[species_length$Species=="minutus",] 

mean(sandgoby$Length_mm) 

plot(density(sandgoby$Length_mm), main="Length distribution for sand goby", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(sandgoby$Length_mm), col="green") 

abline(v=median(sandgoby$Length_mm), col="red") 

text(90,0.005,label="Mean = 106.47", col="dark green") 

text(125,0.005,label="Median", col="red") 

 

cuckoo=species_length[species_length$Species=="mixtus",] 

hist(cuckoo$Length_mm) 

abline(v=mean(cuckoo$Length_mm), col="red", lwd=3) 

abline(v=median(cuckoo$Length_mm), col="blue", lwd=3) 

text(250,4,label="Mean", col="red") 

text(150,4, label="Median", col="blue") 

mean(cuckoo$Length_mm) 

plot(density(cuckoo$Length_mm), main="Length distribution for cuckoo wrasse", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(cuckoo$Length_mm), col="green") 
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abline(v=median(cuckoo$Length_mm), col="red") 

text(250,0.010,label="Mean = 212.80", col="dark green") 

text(150,0.010,label="Median", col="red") 

 

cod=species_length[species_length$Species=="morhua",] 

hist(cod$Length_mm) 

abline(v=mean(cod$Length_mm), col="red", lwd=3) 

abline(v=median(cod$Length_mm), col="blue", lwd=3) 

text(130,150,label="Mean", col="red") 

text(50,150, label="Median", col="blue") 

mean(cod$Length_mm) 

plot(density(cod$Length_mm), main="Length distribution for Atlantic cod", xlab="Length in mm", 

ylab="Density") 

abline(v=mean(cod$Length_mm), col="green") 

abline(v=median(cod$Length_mm), col="red") 

text(150,0.010,label="Mean = 104.30", col="dark green") 

text(50,0.010,label="Median", col="red") 

 

ediblecrab=species_length[species_length$Species=="pagurus",] 

hist(ediblecrab$Length_mm) 

abline(v=mean(ediblecrab$Length_mm), col="red", lwd=3) 

abline(v=median(ediblecrab$Length_mm), col="blue", lwd=3) 

text(200,40,label="Mean", col="red") 

text(50,40, label="Median", col="blue") 

mean(ediblecrab$Length_mm) 
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plot(density(ediblecrab$Length_mm), main="Length distribution for edible crab", xlab="Length in 

mm", ylab="Density") 

abline(v=mean(ediblecrab$Length_mm), col="green") 

abline(v=median(ediblecrab$Length_mm), col="red") 

text(200,0.004,label="Mean = 150.18", col="dark green") 

text(80,0.004,label="Median", col="red") 

 

scaleray=species_length[species_length$Species=="palloni",] 

hist(scaleray$Length_mm) 

abline(v=mean(scaleray$Length_mm), col="red", lwd=3) 

abline(v=median(scaleray$Length_mm), col="blue", lwd=3) 

text(115,1.5,label="Mean", col="red") 

text(105,1.5, label="Median", col="blue") 

mean(scaleray$Length_mm) 

plot(density(scaleray$Length_mm), main="Length distribution for scale-rayed wrasse", xlab="Length 

in mm", ylab="Density") 

abline(v=mean(scaleray$Length_mm), col="green") 

abline(v=median(scaleray$Length_mm), col="red") 

text(120,0.020,label="Mean = 111.42", col="dark green") 

text(100,0.020,label="Median", col="red") 

 

scaleray=species_length[species_length$Species=="palloni",] 

hist(scaleray$Length_mm) 

abline(v=mean(scaleray$Length_mm), col="red", lwd=3) 

abline(v=median(scaleray$Length_mm), col="blue", lwd=3) 

text(115,1.5,label="Mean", col="red") 
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text(105,1.5, label="Median", col="blue") 

plot(density(scaleray$Length_mm), main="Length distribution for scale-rayed wrasse", xlab="Length 

in mm", ylab="Density") 

abline(v=mean(scaleray$Length_mm), col="green") 

abline(v=median(scaleray$Length_mm), col="red") 

text(120,0.020,label="Mean", col="green") 

text(100,0.020,label="Median", col="red") 

 

gobysp=species_length[species_length$Genus=="Pomatoschistus",] 

hist(gobysp$Length_mm) 

abline(v=mean(gobysp$Length_mm), col="red", lwd=3) 

abline(v=median(gobysp$Length_mm), col="blue", lwd=3) 

text(125,30,label="Mean", col="red") 

text(50,30, label="Median", col="blue") 

mean(gobysp$Length_mm) 

plot(density(gobysp$Length_mm), main="Length distribution for Pomatoschistus sp", xlab="Length 

in mm", ylab="Density") 

abline(v=mean(gobysp$Length_mm), col="green") 

abline(v=median(gobysp$Length_mm), col="red") 

text(150,0.008,label="Mean = 101.06", col="dark green") 

text(50,0.008,label="Median", col="red") 

 

pollock=species_length[species_length$Species=="virens",] 

hist(pollock$Length_mm) 

abline(v=mean(pollock$Length_mm), col="red", lwd=3) 

abline(v=median(pollock$Length_mm), col="blue", lwd=3) 
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text(150,40,label="Mean", col="red") 

text(50,40, label="Median", col="blue") 

mean(pollock$Length_mm) 

plot(density(pollock$Length_mm), main="Length distribution for pollock", xlab="Length in mm", 

ylab="Density") 

abline(v=mean(gobysp$Length_mm), col="green") 

abline(v=median(gobysp$Length_mm), col="red") 

text(125,0.005,label="Mean = 127.65", col="dark green") 

text(50,0.005,label="Median", col="red") 

Data wrangling/ “tidying up” 

dat=read.csv(file.choose(), header=T)  

install.packages("vegan") 

library("vegan") ##To run diversity function 

install.packages("dplyr") 

library("dplyr") ##To tidy up data  

head(dat) 

str(dat)      #Shows structure of data 

#Add count column for cod 

dat$codcount <-  #for each frame sum the number column if the species is cod  

Countdat <- dat %>% 

  group_by(Frame, Code) %>% 

  summarize(NumSp = sum(Number)) 

head(Countdat) 

install.packages("reshape2") 

library("reshape2") 

wrangle1 <- acast(Countdat, Frame + NumSp ~ Code) 

wrangle1[is.na(wrangle1)] = 0 
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head(wrangle1) 

Diversity calculations and merging datasets 

diversity.vector <- diversity(wrangle1, "shannon")  

#setting up a little dataset to put the frame numbers back in  

Index <- diversity.vector 

IndexNum <- as.numeric(Index) 

Frame <- rownames(wrangle1) 

diversity.dataset <- read.csv(file.choose()) ##EXPORTED DIV. VECTOR IN ORDER TO FIX 

FRAMES IN EXCEL TO MATCH COUNTDAT 

head(diversity.dataset)  

#Smush data sets together 

newdata <- merge(Countdat, diversity.dataset, all.x=TRUE) 

newdata[is.na(newdata)] = 0 

head(newdata)  

#Add pres/abs for cod  

newdata$codpa <- ifelse(newdata$Code == "Torsk", 1, 0) 

#Add count column for cod 

newdata$codcount <-  ifelse(newdata$Code == "Torsk", newdata$NumSp, 0) 

Testing 

#CHI SQUARED 

#H0: The presence of cod has no impact on the presence of other species  

#H1: Cod presence does influence the abundance of other species  

test <- chisq.test(table(newdata$codpa, newdata$IndexNum)) 

test 

#Does cod presence lead to different diversities?  

# diversity index predicted by cod presence cod counts  
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divmod <-  lm(newdata$IndexNum ~ newdata$codpa + newdata$codcount, data = newdata) 

summary(divmod) 

#Logistic regression to determine factors in cod presence  

install.packages(lme4) 

library(lme4) 

#Putting the big dataset with the original to get habitat and depth information in the same dataset 

completedat <- merge(newdata, dat, all.x=TRUE) 

attach(completedat) 

#Removing irrelevant columns 

completedat = subset(completedat, select = -c(Number, Date, Region, Precision_mm)) 

#Logsitic regression 

codpres1 <- glm(codpa ~ habitat + Depth + IndexNum, data = completedat,  family = binomial) 

codpres2 <- glm(codpa ~ habitat + Depth, data = completedat,  family = binomial) 

codpres3 <- glm(codpa ~ habitat + IndexNum, data = completedat,  family = binomial) 

codpres4 <- glm(codpa ~ Depth + IndexNum, data = completedat,  family = binomial) 

summary(codpres1) 

summary(codpres2) 

summary(codpres3) 

summary(codpres4) 

library(rms) 

install.packages("devtools") 

library("devtools") 

install.packages("ggiraphExtra") 

library("ggiraphExtra") 

install.packages("ggeffects") 

library("ggeffects") 
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divplot <- ggpredict(codpres,se=TRUE,interactive=TRUE,digits=3) 

plot(divplot) 

########################################################################### 

Independent 2 sample t test, comparing north and south stations, length measurements 

#innersites = Northern stations closer to mouth of fjord 

innersites <- read.csv(file.choose()) 

#outersites = Southern stations closer to open ocean 

outersites <- read.csv(file.choose()) 

innerlength <- innersites$Length_mm 

outerlength <- outersites$Length_mm 

res <- t.test(innerlength, outerlength, var.equal = TRUE) 

res 

################################################################### 

Independent 2 sample t test north vs south, diversity 

install.packages("dplyr") 

library("dplyr") 

install.packages("vegan") 

library("vegan") 

#Outer sites first: Add count column for cod 

outersites$codcount <-  #for each frame sum the number column if the species is cod  

#Add count column for all species   

outercount <- outersites %>% 

  group_by(Frame, Code) %>% 

  summarize(NumSp = sum(Number)) 

head(outercount) 

install.packages("reshape2") 
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library("reshape2") 

outerwrangle <- acast(outercount, Frame + NumSp ~ Code) 

outerwrangle[is.na(outerwrangle)] = 0 

head(outerwrangle) 

outerdiv <- diversity(outerwrangle, "shannon")  

#Inner sites 

innersites$codcount <-  #for each frame sum the number column if the species is cod  

 #Add count column for all species   

innercount <- innersites %>% 

  group_by(Frame, Code) %>% 

  summarize(NumSp = sum(Number)) 

head(innercount) 

innerwrangle <- acast(innercount, Frame + NumSp ~ Code) 

innerwrangle[is.na(innerwrangle)] = 0 

head(innerwrangle) 

innerdiv <- diversity(innerwrangle, "shannon")  

#Comparing north and south diversities 

divttest <- t.test(innerdiv, outerdiv, var.equal = TRUE) 

divttest 

################################################################## 

Independent 2 sample test north vs south, abundance  

 

abundttest <- t.test(innercount$NumSp, outercount$NumSp, var.equal = TRUE) 

abundttest 

Max N work 

maxn=read.csv(file.choose(), header=T)  
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attach(maxn) 

head(maxn) 

par(mfrow=c(1,1)) 

##Histogram  

plot(MaxN, main="MaxN") 

abline(h=mean(MaxN), col="red") 

text(10,9,label="Mean", col="red") 

###Density plot  

plot(density(MaxN), main="MaxN density") 

abline(v=mean(MaxN), col="red") 

text(10,0.2,label="Mean", col="red") 

library(ggplot2) 

d<-density(MaxN) 

qplot(d$x,d$y) 

p<-ggplot() 

p<-p+geom_density(data=dat, aes(x=MaxN)) 

p 

 

### Assessing normality 

## qqplot 

qqnorm(MaxN, main="Max N") 

qqline(MaxN) 

##############  data transformation: Log 

par(mfrow=c(2,2)) 

logMaxN=log(MaxN) 

plot(density(MaxN)) 
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plot(density(logMaxN)) 

qqnorm(MaxN) 

qqline(MaxN) 

qqnorm(logMaxN) 

qqline(logMaxN) 

###################### The square root transform 

par(mfrow=c(2,2)) 

sqrtMaxN=sqrt(MaxN) 

plot(density(MaxN)) 

plot(density(sqrtMaxN)) 

qqnorm(MaxN) 

qqline(MaxN) 

qqnorm(sqrtMaxN) 

qqline(sqrtMaxN) 

par(mfrow=c(2,1)) 

hist(MaxN) 

hist(logMaxN) 

#Does cod presence affect Max N?  

#Add pres/abs for cod  

maxn$codpa <- ifelse(maxn$Code == "Torsk", 1, 0) 

#CHI SQUARED 

#H0: The presence of cod has no impact on the MaxN 

#H1: Cod presence does influence MaxN  

test <- chisq.test(table(maxn$codpa, MaxN)) 

test 

#Linear model predicting what influences MaxN between cod presence, habitat and depth 
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library(lme4) 

maxnmod <-  lm(MaxN ~ codpa + habitat + Depth, data = maxn) 

summary(maxnmod) 

#One Way Anova to compare means of north, south and middle stations 

install.packages(c("ggplot2", "ggpubr", "tidyverse", "broom")) 

library(ggplot2) 

library(ggpubr) 

library(tidyverse) 

library(broom) 

summary(maxn) 

##Data was divided into three “regions”: North, South and Middle 

one.way <- aov(maxn$MaxN ~ maxn$Region, data = maxn) 

summary(one.way) 

par(mfrow=c(2,2)) 

plot(one.way) 

par(mfrow=c(1,1)) 

#Tukey test to examine specific differences 

tukey.maxN<-TukeyHSD(one.way) 

tukey.maxN 

#Plotting 

mean.maxn.data <- maxn %>% 

  group_by(Region, MaxN) %>% 

  summarise( 

    MaxN = mean(MaxN) 

  ) 

one.way.plot <- ggplot(maxn, aes(x = Region, y = MaxN)) + 
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  geom_point(cex = 1.5, pch = 1.0,position = position_jitter(w = 0.1, h = 0)) 

one.way.plot 

one.way.plot <- one.way.plot + 

  stat_summary(fun.data = 'mean_se', geom = 'errorbar', width = 0.2) + 

  stat_summary(fun.data = 'mean_se', geom = 'pointrange') + 

  geom_point(data=mean.maxn.data, aes(x=Region, y=MaxN)) 

one.way.plot 

one.way.plot <- one.way.plot + 

  theme_classic2() + 

  labs(title = "Comparison of Max N from North, Middle and South stations") 

One.way.plot 

Linear model to examine how the diversity index is affected if cod was removed from the 

index 

nocod <- read.csv(file.choose()) 

head(nocod) 

#Add count column for all species   

NoCodCount <- nocod %>% 

  group_by(Frame, Code) %>% 

  summarise(NumSp = sum(Number)) 

head(NoCodCount) 

install.packages("reshape2") 

library("reshape2") 

NoCodWrangle <- acast(NoCodCount, Frame + NumSp ~ Code) 

NoCodWrangle[is.na(NoCodWrangle)] = 0 

head(NoCodWrangle) 

diversity.nocod <- diversity(NoCodWrangle, "shannon") 
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#setting up a little dataset to put the frame numbers back in  

NoCodIndex <- diversity.nocod 

NoCodIndex <- as.numeric(NoCodIndex) 

Frame <- rownames(NoCodWrangle) 

str(NoCodWrangle) 

write.csv(diversity.nocod, "C:\\Users\\Ian McLaughlin\\Documents\\ALEX THESIS\\Data analysis\\R 

work\\NoCodDiv.csv") 

diversity.codless<- read.csv(file.choose()) 

head(diversity.codless) 

#Smush data sets together 

NoCodData <- merge(NoCodCount, diversity.codless, all.x=TRUE) 

NoCodData[is.na(NoCodData)] = 0 

head(NoCodData) 

completedat <- merge(completedat, NoCodData, all.x=TRUE) 

completedat[is.na(completedat)] = 0 

head(completedat)  

#Linear model determining diversity with no cod 

nocoddivmod <-  lm(NoCodIndex ~ codcount + codpa, data = completedat) 

summary(nocoddivmod) 

library("ggplot2") 

ggplot(nocoddivmod) 

ggplotRegression(lm(NoCodIndex ~ codcount + codpa, data = completedat))+ 
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