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ABSTRACT

We show that every Müntz space can be written as a direct sum of Banach spaces X and Y ,
where Y is almost isometric to a subspace of c and X is finite dimensional. We apply this to
show that no Müntz space is locally octahedral or almost square.

3.1 Introduction

Denote the closed unit ball, the unit sphere, and the dual space of a Banach spaceX
by BX , SX , andX∗ respectively. Let Λ = (λi)

∞
i=0, with λ0 = 0, be a strictly increas­

ing sequence of non­negative real numbers and let Π(Λ) := span(tλi)∞i=0 ⊆ C[0, 1],

where C[0, 1] is the space of real valued continuous functions on [0, 1] endowed
with the canonical sup­norm ∥ · ∥∞. We will call Λ = (λi)

∞
i=0 aMüntz sequence and

M(Λ) := Π(Λ) a Müntz space if
∑∞

i=1 1/λi < ∞. This terminology is justified by
Müntz famous theorem from 1914, which says that Π(Λ) is dense in C[0, 1] if and
only if λ0 = 0 and

∑∞
i=1 1/λi = ∞.

It is known that a Müntz spaceM(Λ) is isomorphic to a subspace of c0, provided
that the Müntz sequence satisfies the gap condition, i.e. infk∈N(λk+1 − λk) > 0

([GL05, Theorem 9.1.6(c)]). In Section 3.2 we show that all Müntz spaces embed
isomorphically into c0. This is done by showing that M(Λ) can be written as a
direct sum X ⊕ Y where Y is almost isometric to a subspace of c and X is finite
dimensional.

Definition 3.1.1. Let X be a Banach space. Then X is

(i) locally octahedral (LOH) if for every x ∈ SX and ε > 0 there exists y ∈ SX

such that ∥x± y∥ > 2− ε.
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(ii) octahedral (OH) if for every x1, . . . , xn ∈ SX and ε > 0 there exists y ∈ SX

such that ∥xi ± y∥ > 2− ε for all i ∈ {1, . . . , n}.

In Section 3.3 we will show that no Müntz space is OH, answering the question
posed in [ALMN17] whether Müntz spaces can be OH. A partial negative answer
was given in [ALMN17, Remark 2.9] for Müntz spaces with Müntz sequences con­
sisting only of integers, by combining the Clarkson­Erdös­Schwartz Theorem (see
[GL05, Theorem 6.2.3]) with a result of Wojtaszczyk (see [Wern00, Theorem 1]).

Definition 3.1.2. Let X be a Banach space. Then X is

(i) locally almost square (LASQ) if for every x ∈ SX there exists a sequence
(yn)

∞
n=1 in BX such that ∥x± yn∥ → 1 and ∥yn∥ → 1.

(ii) almost square (ASQ) if for every x1, . . . , xk ∈ SX there exists a sequence
(yn)

∞
n=1 in BX such that ∥yn∥ → 1 and ∥xi± yn∥ → 1 for every i ∈ {1, . . . , k}.

Both ASQ and OH are closely related to the area of diameter two properties,
which has received intensive attention in the recent years (see for example [BGLPRZ16]
and [HLN18] and the references therein). Trivially ASQ implies LASQ and OH
implies LOH.
The area of diameter two properties concerns slices of the unit ball, i.e. subsets

of the unit ball of the form

S(x∗, ε) := {x ∈ BX : x∗(x) > 1− ε},

where x∗ ∈ SX∗ and ε > 0. Müntz spaces and their diameter two properties were
studied in [ALMN17]. Haller, Langemets, Lima and Nadel [HLLN18] pointed out
that the proof of [ALMN17, Theorem 2.5] actually shows that, in anyM(Λ)we have
that for every finite family (Si)

n
i=1 of slices of BM(Λ) and ε > 0, there exist xi ∈ Si

and y ∈ BM(Λ), independent of i, such that xi ± y ∈ Si for every i ∈ {1, . . . , n} and
∥y∥ > 1 − ε. This property is formally known as the symmetric strong diameter
two property (SSD2P).
It is known that if a Banach space is ASQ, then it also has the SSD2P. In fact,

ASQ is strictly stronger than SSD2P (see [HLLN18, Theorem 2.1d and Example
2.2]). A natural question is therefore if a Müntz space can be ASQ. The results
developed in this article will be used to show that this is never the case.

40



3.2 On embeddings of Müntz spaces

Note that we can exclude the constants and consider the subspace M0(Λ) :=

span(tλn)∞n=1 of M(Λ) and the results of the article still hold true, unless explicitly
stated.
We use standard Banach space terminology and notation (e.g. [AK06]), in addi­

tion the notation ∥f∥[0,a] := supx∈[0,a] |f(x)| will be used throughout the paper.

3.2 On embeddings of Müntz spaces

The main results of this article relies on the following results.

Theorem 3.2.1 (Bounded Bernstein’s inequality [BE97, Theorem 3.2]). Assume
that 1 ≤ λ1 < λ2 < λ3 < · · · and

∑∞
i=1 1/λi < ∞, then for every ε > 0 there is a

constant cε such that
∥p′∥[0,1−ε] ≤ cε∥p∥[0,1],

for all p ∈ Π(Λ).

Lemma 3.2.2. Let V be a subspace of C[0, 1] such that each f ∈ V is differentiable.
If for every ε > 0 there exists a Kε ∈ N such that

∥f ′∥[0,1−ε] ≤ Kε∥f∥∞ (3.1)

for all f ∈ V , then the Banach space V embeds almost isometrically into c.

The proof of Lemma 3.2.2 is almost identical to the proof of [Wern00, Theo­
rem 2], however, we do not require V to be closed, but instead require the inequality
(3.1).

Proof. Let ε > 0 and choose a sequence 0 = a0<a1< · · ·<ai< · · ·<1 converging
to 1. For each ai ∈ (0, 1) there exists Ki > 0, depending on ai such that

∥f ′∥[0,ai] ≤ Ki∥f∥∞ for all f ∈ V

Pick points 0 = s0<s1< · · ·<sn1 = a1<sn1+1< · · ·<sn2 = a2< · · · , in such a way
that

sj+1 − sj ≤
ε

Ki+1
for ni ≤ j < ni+1.

Define the operator Jε : V → c by Jε(f) = (f(sn))n, thus Jε is well­defined by
continuity of f ∈ V . As ||Jεf || = supn∈N |f(sn)| ≤ ||f ||∞, for all f ∈ V , we have
that ∥Jε∥ ≤ 1. For any f ∈ V let (fk) be a sequence in V converging uniformly to
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f . Let δ > 0 and find N ∈ N such that ∥f − fN∥∞ < δ. Then, for any s ∈ [0, 1), we
have ai ≤ s < ai+1 for some i ∈ N. Let sm ∈ [ai, ai+1] be such that |s− sm| ≤ ε

Ki+1
.

Then

|f(s)| ≤ |fN (s)|+ δ ≤ |fN (s)− fN (sm)|+ |fN (sm)|+ δ

≤ sup
ai≤t≤ai+1

|f ′N (t)||s− sm|+ ∥JεfN∥+ δ

≤ ∥fN∥∞Ki+1
ε

Ki+1
+ ∥JεfN∥+ δ

≤ ∥fN∥∞ε+ ∥JεfN∥+ δ

≤ (∥f∥∞ + δ)ε+ (∥Jεf∥+ δ) + δ

and therefore
(1− ε)∥f∥∞ − δ(ε+ 2) ≤ ∥Jεf∥.

Since δ was arbitrary we conclude that

(1− ε)∥f∥∞ ≤ ∥Jεf∥ ≤ ∥f∥∞,

completing the proof.

Combining Theorem 3.2.1 and Lemma 3.2.2, we arrive at the following propo­
sition.

Proposition 3.2.3. Let Λ be a Müntz sequence with λ1 ≥ 1. Then the associated
Müntz space M(Λ) is almost isometric to a subset of c. That is, for every ε > 0

there is an operator Jε : M(Λ) → c such that

(1− ε)∥f∥[0,1] ≤ ∥Jεf∥ ≤ ∥f∥[0,1].

We will need the following lemma for the coming theorem.

Lemma 3.2.4. Let Z = span(zi)i∈N and let N ∈ N. If Y = span(zi)i>N then
Z/Y = span(π(zi))i≤N , where π : Z → Z/Y is the quotient map. Consequently
Z/Y has finite dimension and Z = X ⊕ Y where X = span(xi)i≤N .

Remark 3.2.5. For everyN ∈ Nwe have that span(tλi)i≥N is a finite codimensional
subspace of M(Λ).

By combining Proposition 3.2.3 and Lemma 3.2.4 we obtain the following result.
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3.3 On octahedrality and almost squareness of Müntz spaces

Theorem 3.2.6. Every Müntz spaceM(Λ) can be written asX⊕Y whereX is finite
dimensional and Y is almost isometric to a subspace of c.

Corollary 3.2.7. Every Müntz space M(Λ) embeds isomorphically into c0.

Remark 3.2.8. From [GL05, Theorem 10.4.4] it is known that no Müntz space of
dimension greater than 2 is polyhedral. However, since c0 is polyhedral ([Klee60,
Theorem 4.7]), it follows that any Müntz space can be renormed to be polyhedral.

3.3 On octahedrality and almost squareness of Müntz spaces

The results from Section 3.2 will now be used to derive some results concerning
Müntz spaces. M(Λ)∗ is separable by Corollary 3.2.7, we therefore easily answer
the question posed in [ALMN17]. In fact we show more.

Theorem 3.3.1. No Müntz space M(Λ) is LOH.

Proof. Since M(Λ)∗ is separable, we can combine [Bour83, Theorem 4.1.3] with
[Bour83, Theorem 4.2.13] to see that there exist slices S(x, ε) of the unit ball of
M(Λ)∗ of arbitrarily small diameter, where x can be taken fromM(Λ). By [HLP15,
Theorem 3.1] this is equivalent to M(Λ) failing to be LOH, as claimed.

We finish this article by showing that M0(Λ) fails to be ASQ for any Müntz se­
quence Λ. Note thatM(Λ) is trivially not LASQ, just consider the constant function
1. First we show that even more is true for some spaces M0(Λ).

Proposition 3.3.2. No Müntz space M0(Λ) with λ1 ≥ 1 is LASQ.

Proof. Let Λ be a Müntz sequence with λ1 ≥ 1 andM0(Λ) be the associated Müntz
space. Choose some x ∈ (0, 1). By Theorem 3.2.1 there is a c ∈ N such that
∥f ′∥[0,x] ≤ c for all f ∈ BΠ(Λ). Let a = min( 1

2c , x) and observe that

sup
f∈BΠ(Λ)

∥f∥[0,a] ≤
1

2

since
|f(t)| = |f(t)− f(0)| ≤ ∥f ′∥[0,a] · |t− 0| ≤ c · 1

2c
=

1

2
.

Recall from [ALV16, Theorem 2.1] that M0(Λ) is LASQ if and only if for every
g ∈ SM(Λ) and ε > 0 there exists h ∈ SM(Λ) such that ∥g ± h∥ ≤ 1 + ε. We claim
that no such h exists for g = tλ1 . Indeed, if 0 < ε < aλ1/2 and h ∈ SΠ(Λ) is such that
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∥tλ1 ± h∥ ≤ 1 + ε, then |h(t)| < 1− ε for t ≥ a as tλ1 > 2ε for t ≥ a. Thus, h must
attain its norm on the interval [0, a], contradicting our observation. As Π((λn)∞n=1)

is dense in M0(Λ), we conclude that M0(Λ) is not LASQ.

Proposition 3.3.3. No Müntz space M0(Λ) is ASQ.

Proof. Combining Lemma 3.2.4 with Proposition 3.3.2 shows that every Müntz
space M0(Λ) has a subspace of finite codimension which is not ASQ. By [Abra15,
Theorem 3.6] no Müntz space can be ASQ.
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