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Abstract: This paper is about designing a 3D no n-stationary wideband indoor channel model for
radio-frequency sensing. The proposed channel model allows for simulating the time-variant (TV)
characteristics of the received signal of indoor channel in the presence of a moving object. The moving
object is modelled by a point scatterer which travels along a trajectory. The trajectory is described by
the object’s TV speed, TV horizontal angle of motion, and TV vertical angle of motion. An expression
of the TV Doppler frequency caused by the moving scatterer is derived. Furthermore, an expression of
the TV complex channel transfer function (CTF) of the received signal is provided, which accounts for
the influence of a moving object and fixed objects, such as walls, ceiling, and furniture. An approximate
analytical solution of the spectrogram of the CTF is derived. The proposed channel model is confirmed
by measurements obtained from a pendulum experiment. In the pendulum experiment, the trajectory
of the pendulum has been measured by using an inertial-measurement unit (IMU) and simultaneously
collecting CSI data. For validation, we have compared the spectrogram of the proposed channel model
fed with IMU data with the spectrogram characteristics of the measured CSI data. The proposed channel
model paves the way towards designing simulation-based activity recognition systems.

Keywords: spectrogram; 3D no n-stationary channels; indoor channels; doppler frequency; channel state
information; Wi-Fi 802.11n; inertial measurement units; micro-doppler effect; CSI

1. Introduction

In wireless communications, the compound Doppler effect caused by the moving objects or bodies
opened up opportunities for many applications. These applications track the scattered wave components
by the moving bodies for drone detection [1], gesture recognition [2], human gait assessment for diagnosis
and rehabilitation [3], and tracking human activities using no n-wearable radio-frequency-based (RF-based)
elder-care [4]. Such waves contain the micro-Doppler effects corresponding to the moving bodies.

In channel modelling, the Doppler effect caused by moving scatterers has been modelled in
two-dimensional (2D) stationary fixed-to-mobile radio in [5]. Then, this model has been extended
for 2D no n-stationary fixed-to-fixed (F2F) indoor channels by considering the time-variant (TV) speed
of the moving scatterer, angle of motion, angle of arrival, and angle of departure [6]. Later on, the TV
Doppler frequency caused by the moving scatterer has been incorporated in three-dimensional (3D)
channels by taking into account the TV azimuth angles of motion (AAOM), elevation angle of motion
(EAOM), azimuth angle of departure (AAOD), elevation angle of departure (EAOD), azimuth angle
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of arrival (AAOA), and elevation angle of arrival (EAOA) for fixed-to-fixed channel models [6,7]
and vehicle-to-vehicle channels [8]. To reveal the TV Doppler power characteristics of non-stationary
multicomponent signals, a time-frequency distribution such as the spectrogram can be employed.
The authors of [9] distinguished between aided and unaided gaits by means of the spectrogram. In [10]
the angular velocities and lengths of rotating blades have been estimated by using the spectrogram.
The spectrogram has been employed in gesture recognition [11] and human activity recognition (HAR) [12].
It has been used for the detection of gait asymmetry in [3,13], distinguishing between armed and unarmed
persons for security services [14], and fall detection [15–17], as well.

The authors of [18] developed a software tool that captures the complex channel state information (CSI)
of 30 subcarriers corresponding to orthogonal-frequency-division-multiplexing (OFDM). This software tool
is compatible with commercial devices equipped with Intel NIC 5300 network interface cards and operates
on the Wi-Fi 802.11n protocol [19]. An overview of studies on signal recognition, action recognition,
and activity recognition by utilizing the amplitude of the measured CSI can be found in [20]. One of the
challenges faced while processing CSI data to extract the micro-Doppler signatures is that the phases
of such data are distorted as the transmitter and receiver are not clock synchronized [21–28]. To overcome
this issue, one of the attempts is to apply the principle component analysis (PCA) [29–32] on the magnitude
of the complex CSI data to denoise it, then to apply a one-sided spectrogram on the denoised data to reveal
the positive frequency components of the spectrogram. Another attempt has been applied by using
a phase sanitization technique [32–34] by employing linear transformation operation on the distorted
phases of the 30 subcarriers. Such an operation gives a better pattern of the transformed phases. These
attempts do not help to reveal the true Doppler power characteristics of the preprocessed CSI data.
In [35] the phase distortions of CSI data have been eliminated by using a back-to-back (B2B) connection
between the transmitter and receiver stations. This approach allows for revealing the true Doppler power
characteristics of the measured CSI data.

The micro-Doppler effect of pendulum motion in bistatic and monostatic radar systems
has been investigated in [36,37]. In [36], the micro-Doppler effect was analyzed by means of the one-sided
spectrogram of both simulated radar signal and verified with the experiment. According to the best of the
authors’ knowledge, there are no studies on the micro-Doppler effect of a swinging pendulum on measured
calibrated CSI with B2B connection. There are no simultaneous conducted measurements by using the CSI tool
and an IMU attached to the swinging pendulum, as well.

The Fresnel zone diffraction model has been described in [38–41]. Such a model has been used
for CSI-based human activity recognition [42], human respiration sensing [43], and indoor human
detection [44]. The Fresnel zone model is an envelope model that does not contain any phase information.
The phase information is important for the analysis of the micro-Doppler signatures, which is our
main focus in this paper. The motivation of this paper is to present a non-stationary wideband F2F
channel model that has Doppler power characteristics similar to experimental data. According to the best
of the authors’ knowledge, RF-based HAR, gesture recognition, and fall detection systems are designed
based on experimental data, i.e., the machine used for detection or classification is trained by using
experimental data. Thus, proposing such a model will help for simulation-based activity recognition
systems by using it for training instead of using experimental data. This approach is time efficient
and cost-effective. Instead of wasting too much time for collecting RF data for training, one can generate
data sets of different scenarios by using lab simulations. In order to design such a realistic channel model
with Doppler power characteristics close to experimental data, the TV trajectory of a moving object plays
an important role as the Doppler shift depends on the TV speed, AAOM, EAOM, EAOD, AAOD, EAOA,
and AAOA. The trajectory of the moving object can be measured by using an IMU which captures linear
accelerations, and Euler angles simultaneously. The Euler angles are used to rotate the measured linear
accelerations from the frame of the IMU to the reference frame. Then the rotated linear accelerations can be
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integrated to obtain TV velocities and displacements (trajectories). The TV velocities and displacements
suffer from linear and quadratic drifts, respectively. In [45,46], these drift problems were addressed
by employing zero update algorithms.

In this paper, we design a 3D no n-stationary wideband channel model for activity recognition.
We model a‘moving object as a moving scatterer. The expressions for the TV speed, AAOM, EAOM,
EAOD, AAOD, EAOA, and AAOA corresponding to the moving scatterer are presented. Then,
the expression for the TV Doppler frequency caused by the moving scatterer is provided. Furthermore,
the instantaneous channel phase of the moving scatterer and the complex channel transfer function (CTF)
of the no n-stationary F2F channels are determined. Next, an approximate solution of the spectrogram
of the complex CTF is presented to provide insight into the TV Doppler power characteristics of this
model. We perform measurements of the calibrated CSI and IMU, simultaneously during a moving object
experiment. The CSI data is calibrated by using a B2B connection to eliminate the TV phase distortions.
Then, we feed the proposed channel model with the measured trajectory using the IMU. Finally, we
show that the spectrogram of the calibrated measured CSI data and the channel model are matching.
The TV mean Doppler shifts computed from both spectrograms are matching as well. The proposed
channel model paves the way towards the design of software-RF-based human activity recognition and fall
detection systems.

The rest of the paper is structured as follows. Section 2 exhibits the 3D multipath propagation scenario
with moving and fixed objects. Section 3 presents the expressions of the TV channel parameters and the
complex channel transfer function. The approximate analytical solution of the spectrogram of the complex
channel function is provided in Section 4. Section 5 discusses the numerical and measurement results.
The conclusion and future work are discussed in Section 6.

2. The 3D Geometrical Model

We consider the 3D geometrical model of a 3D multipath propagation channel shown in Figure 1.
This figure shows a fixed Wi-Fi transmitter Tx and a fixed Wi-Fi receiver Rx which operate according
to the IEEE 802.11n standard [19] with carrier frequency f0 = 5.32 GHz and bandwidth B = 20 MHz.
The positions of Tx and Rx are denoted by

(
xT , yT , zT) and

(
xR, yR, zR), respectively. A moving object

whose center of mass (CoM) is modelled for simplicity by a single moving (point) scatterer SM initially
located at (xM, yM, zM). The trajectory of the moving scatterer SM is described by a TV velocity vector~vM(t)
which can be expressed by the TV speed vM(t), the TV AAOM αvM(t), and the TV EAOM βvM(t). Each
fixed object is modelled by a fixed scatterer SF

m (N) for m = 1, 2, . . . , M, whereM denotes the number
of fixed scatterers (objects). The TV parameters βT

M(t), αT
M(t), βR

M(t), and αR
M(t) designate the TV EAOD,

TV AAOD, TV EAOA, and TV AAOA, respectively. We assume single-bounce scattering, i.e., each wave
that is launched from Tx is bounced by either a fixed scatterer SF

m or a moving scatterer SM before arriving
at Rx.
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Figure 1. Geometrical model of a 3D multipath propagation scenario with one moving scatterer SM andM
fixed scatterers SF

m, m = 1, 2, . . . , M.

3. The Channel Transfer Function

The TV velocity vector ~vM (t) of the moving scatterer SM is presented as

~vM (t) =
[
vM,x (t) , vM,y (t) , vM,z (t)

]T
(1)

where [·]T denotes the vector transpose operation. The velocities vM,x (t), vM,y (t), and vM,z (t) can be
expressed in terms of the TV speed vM(t), TV EAOM βvM(t), and TV AAOM αvM(t) as

vM,x (t) = vM (t) cos (βvM (t)) cos (αvM (t)) (2)

vM,y (t) = vM (t) cos (βvM (t)) sin (αvM (t)) (3)

vM,z (t) = vM (t) sin (βvM (t)) (4)

where

αvM(t) = atan2
(
vM,y(t), vM,x(t)

)
(5)

βvM(t) = arcsin

 vM,z(t)√
v2

M,x(t) + v2
M,y(t) + v2

M,z(t)

 . (6)

The function atan2(·) in (5) represents the four-quadrant inverse trigonometric tangent function
that provides an azimuth angle αvM(t) ranging from −π to π, unlike the regular arctan(·) function that
provides an angle ranging from −π/2 to π/2. Note that the elevation angle βvM(t) is within the range
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from −π/2 to π/2. By using the components of the TV velocity vector ~vM(t) in (2)–(4), one can compute
the displacements xM(t), yM(t), and zM(t) of the moving scatterer SM as

xM(t) = xM +

t∫
0

vM,x(t′)dt′ (7)

yM(t) = yM +

t∫
0

vM,y(t′)dt′ (8)

zM(t) = zM +

t∫
0

vM,z(t′)dt′. (9)

From the displacements in (7)–(9), the TV Euclidean distance dT
M(t) between the transmitter Tx and the

moving scatterer SM can be computed by

dT
M(t) =

√
(xM(t)− xT)2 + (yM(t)− yT)2 + (zM(t)− zT)2. (10)

Analogously, the Euclidean distance dR
M(t) between the receiver Rx and the moving scatterer SM

is given by

dR
M(t) =

√
(xM(t)− xR)2 + (yM(t)− yR)2 + (zM(t)− zR)2. (11)

By using the expressions of the displacements in (7)–(9) and the distances in (10) and (11), the TV
EAOD βT

M(t), TV AAOD αT
M(t), TV EAOA βR

M(t), and TV AAOA αR
M(t) can be computed as follows:

βT
M(t) = arcsin

(
zM(t)− zT

dT
M(t)

)
(12)

αT
M(t) = atan2

(
yM(t)− yT , xM(t)− xT

)
(13)

βR
M(t) = arcsin

(
zM(t)− zR

dR
M(t)

)
(14)

αR
M(t) = atan2

(
yM(t)− yR, xM(t)− xR

)
(15)

where αT
M(t), αR

M(t) ∈ (−π, π] and βT
M(t), βR

M(t) ∈ [−π/2, π/2]. The TV propagation delay τM(t)
of the propagation path from Tx via SM to Rx is given by

τM(t) =
dT

M(t) + dR
M(t)

c0
. (16)

In (16), the parameter c0 denotes the speed of light. The CTF H(t, ∆ f (q)) is given by

H
(

t, ∆ f (q)
)

= HM

(
t, ∆ f (q)

)
+
M
∑

m=1
HF,m (17)
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where

HM

(
t, ∆ f (q)

)
= cM ej[θM−2π( f0+∆ f (q))τM(t)] (18)

HF,m = cF,m ejθF,m . (19)

The superscript q in (17) represents the subcarrier index of OFDM communication systems that
follows the IEEE 802.11n standard [19]. The parameter ∆ f (q) in (17) designates the subcarrier frequency
which is given by

∆ f (q) = q · ∆ (20)

for q ∈ {−28, −26, . . . , −2, −1, 1, 3, . . . , 27, 28}. In (20), the parameter ∆ represents the subcarrier
frequencies difference which has a value of 312.5 kHz [19]. The function HM(t, ∆ f (q)) designates
the complex CTF of the moving scatterer SM and the parameter HF,m denotes the complex CTF
corresponding the mth fixed scatterer SF

m. The expression in (17) is similar to the one in [47] [Equation (21)].
The only difference is that the multipath effect associated with the fixed scatterers is taken into account
by adding the second term in (17). The first term in (17) designates the TV part of the CTF corresponding
to the moving scatterer SM with a fixed path gain cM and stochastic phase process θM− 2π( f0 +∆ f (q))τM(t)
associated with the qth subcarrier [see (18)]. The second term in (17) is time-invariant and represents
the sum of the M received multipath components corresponding to the M fixed scatterers. Each
component of the second term in (17) is characterized by a fixed path gain cm,F and a random phase variable
θm,F due to the interaction with the mth fixed scatterer SF

m [see (19)]. It should be mentioned that the phases
θM and θm,F are identically and independently distributed (i.i.d), each follows a uniform distribution over
−π and π, i.e., θM, θm,F ∼ U (−π, π ]. The model presented in (17) is a stochastic model of the TV CTF

H(t, ∆ f (q)). The TV Doppler shift f (q)M (t) of the moving scatterer SM and associated with the qth subcarrier

index is expressed by using (16) in combination with the relationship f (q)M (t) = −( f0 + ∆ f (q))τ̇M(t),
which can be found in [47] [Equation (22)] as [48]

f (q)M (t) = − f (q)max (t)
{

cos (βvM (t))
[

cos
(

βT
M(t)

)
cos

(
αT(t)− αvM (t)

)
+ cos

(
βR

M(t)
)

cos
(

αvM (t)− αR
M(t)

) ]
+ sin (βvM (t))

[
sin
(

βT
M(t)

)
+ sin

(
βR

M(t)
) ]}

(21)

where function f (q)max(t) designates the maximum Doppler shift caused by the moving scatterer SM

which is given by

f (q)max (t) =

(
f0 + ∆ f (q)

)
vM (t)

c0
. (22)

From the expression in (21) and the relationship f (q)M (t) = −( f0 + ∆ f (q))τ̇M(t), one can conclude
that if the moving scatterer SM moves away from the Tx and Rx vicinity, the TV propagation delay τM(t)
and its slope τ̇M(t) increase and the Doppler effect fM(t) has negative values, and vice versa. To obtain
an approximate solution for the spectrogram of the CTF H(t, ∆ f (q)) that will be discussed in Section 4,
the Doppler frequency f (q)M (t) in (21) can be approximated by L linear piecewise functions according to

f (q)M (t) ≈ f (q)M,l(t) = f (q)M (tl) + k(q)M,l(t− tl) (23)
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for tl < t ≤ tl+1 and l = 0, 1, . . . , L − 1, where k(q)M,l denotes the slope of the approximated Doppler

frequency f (q)M (t) which is given by

k(q)M,l =
f (q)M (tl+1)− f (q)M (tl)

tl+1 − tl
. (24)

The difference between two consecutive time instances tl+1 and tl , i.e., δ = tl+1 − tl is the same for all
values of l = 0, 1, . . . , L− 1.

The TV mean Doppler shift B(1)
f (q)

(t) of the proposed 3D channel model can be computed by using (21)

as [49]

B(1)
f (q)

(t) =
c2

M f (q)M (t)

c2
M +

M
∑

m=1
c2

F,m

. (25)

The expression in (25) denotes the squared path gain c2
M multiplied by the Doppler frequency caused

by the moving scatterer f (q)M (t) divided by the sum of the squared path gain of all of the scatterers. Note
that, if the sum of the squared path gains ∑Mm=1 c2

F,m is much less than the squared path gain of the moving

scatterer c2
M of the moving scatterer SM, i.e., ∑Mm=1 c2

F,m � c2
M, then the TV mean Doppler shift B(1)

f (q)
(t) will

have values closer to those of the Doppler frequency of the moving scatterer f (q)M (t), i.e., B(1)
f (q)

(t)→ f (q)M (t).

4. Spectrogram Analysis

In this paper, we employ the spectrogram approach [50] to reveal the TV Doppler power spectrum
of the proposed channel model. The spectrogram SH(q)( f , t) of the CTF H(t, ∆ f (q)) corresponding to the qth
subcarrier index is computed in three steps. First, a sliding window w(t) is multiplied by the CTF
H(t, ∆ f (q)). In this paper, we choose a Gaussian window function [50] [Equation (2.3.1)]

w(t) =
1√

σw
√

π
e
− t2

2σ2
w (26)

where the parameter σw is called the Gaussian window spread. The window function w(t) is real, positive,
and even. It has a no rmalized energy, i.e.,

∫ ∞
−∞ w2(t) = 1. By multiplying the window function w(t) by the

CTF H(t, ∆ f (q)), the short-time CTF xH(q)(t′, t) is obtained as

xH(q)(t′, t) = H
(

t′, ∆ f (q)
)

w(t′ − t) (27)

where the variables t and t′ are the local time and the running time, respectively. The second step is to
compute the short-time Fourier transform (STFT) XH(q)( f , t) of xH(q)(t′, t). By using the approximation
of the TV Doppler shift provided in (23), the STFT XH(q)( f , t) associated with the qth subcarrier
is obtained as

XH(q)( f , t) =

∞∫
−∞

xH(q)(t′, t)e−j2π f t′dt′

≈ e−j2π f t
√

σwπ1/4

{
HM

(
t, ∆ f (q)

)
G
(

f , f (q)M,l(t), σ2
x,M,l

)
+
M
∑

m=1
HF,m G

(
f , 0, σ2

x,F,m

)}
(28)
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for tl < t ≤ tl+1 (l = 0, 1, . . . , L− 1), where

G
(

f , f (q)M,l(t), σ2
x,M,l

)
=

1√
2πσx,M,l

e
−

( f− f (q)M,l (t))
2

2σ2
x,M,l (29)

σ2
x,M,l =

1− j2πσ2
wk(q)M,l

(2πσw)2 (30)

σ2
x,F,m =

1
(2πσw)2 . (31)

The expression in (29) is a complex Gaussian function with a TV mean f (q)M,l(t) and a complex

variance σ2
x,M,l . Note that the complex variance σ2

x,M,l in (30) is dependent on the slope k(q)M,l of the Doppler

frequency f (q)M,l(t) [see (23)]. The last step is to obtain the spectrogram SH(q)( f , t) associated with the qth
subcarrier by squaring the magnitude of the STFT XH(q)( f , t);, i.e.,

SH(q)( f , t) ≈ |XH(q)( f , t)|2 = S(a)
H(q)( f , t) + S(c)

H(q)( f , t) (32)

where the functions S(a)
H(q)( f , t) and S(c)

H(q)( f , t) are called the auto-term and the cross-term of the spectrogram
SH(q)( f , t), respectively. The auto-term is given by

S(a)
H(q)( f , t) ≈ c2

M G
(

f , f (q)M,l(t), σ2
M,l

)
+
M
∑

m=1
c2

F,m G
(

f , 0, σ2
F,m

)
(33)

for tl < t ≤ tl+1, where

σ2
M,l =

1 +
(

2πσ2
wk(q)M,l

)2

2(2πσw)2 (34)

σ2
F,m =

1
2(2πσw)2 . (35)

The auto-term S(a)
H(q)( f , t) in (33) is an approximation that provides insight into the Doppler power

spectrum of the proposed 3D no n-stationary channel model presented in Section 2. This term is real,
positive, and consists of a sum of M + 1 weighted Gaussian functions. The first Gaussian function,
which is due to the moving scatterer SM is weighted by the squared path gain c2

M and centered on

the approximated TV Doppler frequency f (q)M,l(t). The second term of the auto-term S(a)
H(q)( f , t) in (33) is the

sum of weighted Gaussian functions, which capture the effect of theM fixed scatterers SF
m. The weighting

factors are the squared path gains c2
F,m and each Gaussian function is centered on zero-frequency as

the fixed scatterers do not cause Doppler shifts in F2F channels.
The cross-term S(c)

H(q)( f , t) of the spectrogram corresponding to the qth subcarrier is given by

S(c)
H(q)( f , t) ≈ 2

σw
√

π
<
{
M−1

∑
n=1

M
∑

m=n+1
G
(

f , 0, σ2
x,F,n

)
G∗
(

f , 0, σ2
x,F,m

)
HF,n H∗F,m

+
M
∑

m=1
G
(

f , f (q)n,l (t), σ2
x,n,l,M

)
G∗
(

f , 0, σ2
x,F,m

)
HM(t, ∆ f (q)) H∗F,m

}
. (36)
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The cross-term S(c)
H(q)( f , t) in (36) represents the undesired spectral interference term consisting

of M(M+ 1)/2 components which reduce the resolution of the spectrogram. This term is real
but not necessarily positive. The operators <{·} and (·)∗ denote the real value operator and the complex
conjugate operator, respectively. The cross-term in (36) consists of two terms. The first term of (36)
designates the sum of the components corresponding to the spectral interference caused by the
fixed scatterers. The mth component of the second term denotes the spectral interference between
the moving scatterer SM and the mth fixed scatterer SF

m. The cross-term S(c)
H(q)( f , t) in (36) is dependent

on the random phases θM and θF,m unlike the auto-term S(a)
H(q)( f , t). Hence, the cross-term S(c)

H(q)( f , t)

can be eliminated by taking the average over the random phases, i.e., E{S(c)
H(q)( f , t)}|θM, θF,m = 0, and thus,

E{SH(q)( f , t)}|θM, θF,m = S(a)
H(q)( f , t).

The TV mean Doppler shift can be obtained by using the spectrogram as follows

B(1)
H(q)(t) =

∞∫
−∞

f SH(q)( f , t)d f

∞∫
−∞

SH(q)( f , t)d f
. (37)

If the spectrogram SH(q)( f , t) in (37) is replaced by the auto-term S(a)
H(q)( f , t), the TV mean Doppler

shift B(1)
H(q)(t) becomes equal to B(1)

f (q)
(t), i.e., B(1)

H(q)(t)=B(1)
f (q)

(t).

5. Measurements and Numerical Results

In this section, we discuss and compare the TV Doppler power characteristics of our proposed channel
model with those of measured CSI data. We will describe the processing of the measured trajectory during
the measurements.

5.1. Measurement Scenario

To complement the TV Doppler power characteristics of the proposed channel model, measurements
have been performed. The CSI data and the trajectory of a pendulum (moving object) have been measured
simultaneously. Two laptops have been used for measuring the CSI as Wi-Fi Tx and Rx. An IMU sensor
fusion has been used to measure the trajectory of the pendulum. Figure 2 illustrate the measurement
scenario in xy and xz planes, respectively. The pendulum was a 3 kg medicine ball, covered with aluminum
foil and attached to the ceiling by a rope, and was swinging in a horizontal direction perpendicular
to the line-of-sight (LoS). The distance between the ceiling and the center of mass (CoM) of the ball L
was 1.17 m and the horizontal distance between Wi-Fi Tx antenna and the CoM of the ball was 1.5 m.
The distance between Wi-Fi Tx and Rx antennas was 2 m and they had the same height value of 1.18 m.
The initial location of the moving scatterer (ball) was the origin. The pendulum displacements xM(t)
and zM(t) are computed as follows [36]:

xM(t) = L sin
(

arcsin
( xmax

L

)
cos

(√
g
L

t
))

(38)

yM(t) = 0 (39)

zM(t) = L
{

1− cos
[

arcsin
(

xM(t)
L

)]}
(40)
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where g denotes the acceleration of gravity. The parameters xmax and L in (38)–(40) were set to 0.55 m
and 1.17 m according to Figure 2a,b respectively.

Pendulum (Ball with IMU attached)

m

Pendulum trajectory

m

Wi-Fi 
�

Wi-Fi
�

m

(a)

Pendulum (Ball with IMU attached)

Pendulum trajectory Wi-Fi 
�

Wi-Fi
�

mcm

cm

m

(b)

Figure 2. A presentation of the experiment scenario in the (a) xy plane and (b) xz plane.

5.2. Motion Capturing Using IMU

A MetaMotionR sensor fusion (IMU) [51] was attached to the swinging ball. A smartphone was
connected via Bluetooth to control the IMU and log the data files. The IMU was used to record quaternions
and linear accelerations during the experiment. Euler angles were computed by using the recorded
quaternions to rotate the measured linear accelerations. Next, the raw rotated linear accelerations were
smoothed by using quadratic regression provided by the signal analysis toolbox in MATLAB 2019a.
After that, the rotated linear accelerations were integrated and double integrated to obtain the velocities
and the displacements (trajectories), respectively. Due to measurement errors of the IMU, the velocities
and the displacements suffer from linear and quadratic drifts, respectively. To overcome this drift issue,
zero-update (ZUPT) algorithms [45] were employed. Since the pendulum motion is periodic, its horizontal
and vertical velocities reach zero when the horizontal and vertical accelerations approach their maximum
or minimum values. Similarly, the values of horizontal and vertical displacements approach zero values
when the velocities tend to their maximum or minimum values. Hence, by searching for the indices
corresponding to the local maximum or minimum values of the accelerations, the velocity drift is removed
between two consecutive indices. Also, by knowing the indices of the local maximum or minimum values
of the drift-eliminated velocities, the drift of the displacement is removed. The source code of the ZUPT
algorithm, where the sensors are placed on the toes of a walking person for position tracking, is available
online [46]. This algorithm was repeated to also eliminate the drift of the displacement. Figure 3a depicts
the TV drift-free horizontal displacements xM(t) of the captured data from the IMU and the mechanical
model of the pendulum in (38) by using the pendulum parameters shown in Figure 2. The TV drift-free
vertical displacements zM(t) of the captured data from the IMU and the mechanical model of the pendulum
in (40) by using the pendulum parameters shown in Figure 2, are depicted in Figure 3b. A minimal error
is noticed between the IMU data and the model in the order of centimeters during the whole interval
of 15 s.
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Figure 3. Trajectories of the mechanical model and measured IMU data in (a) horizontal direction xM(t)
and (b) vertical direction zM(t).

5.3. Capturing CSI Data

The CSI tool in [18] was installed to capture the CSI data (RF signals). Two HP Elitebook 6930p
laptops equipped with Intel NIC5300 were used. An Ubuntu 14.04 LTS operating system was installed
on both laptops. One laptop was the transmitter station in injector mode and the other laptop was
the receiver operating in monitor mode. The carrier frequency f0 was set to 5.32 GHz corresponding
to channel 64 according to IEEE 802.11n standards [19]. The sampling frequency and the bandwidth were
set to 1 KHz and 20 MHz, respectively. TV phase distortions exist due to carrier frequency offset [21–23],
sampling frequency offset [24–26], and packet boundary delay [27,28]. These TV phase distortions were
eliminated by using a B2B connection between the transmitter station and the receiver station as described
in [35]. Since there was only one RF transmission port in the Wi-Fi Tx, an RF power splitter ZFSC-2-10G+
from with two output ports was used. One of the output ports was used for the B2B connection and the
other one was connected to the transmitting antenna. At the Wi-Fi receiver laptop, one of the ports
was used for the B2B connection, and another port was connected to the receiver antenna. The port used
for the B2B connection was connected to a 30 dB attenuator. RF cables 141-1MSM+ from Mini-Circuits®

were used as well. The processing of the captured CSI data was done by using MATLAB R2019a. Two
matrices are stored in a file. One matrix contains the CSI data that corresponds to the captured signal
with the fingerprint information associated with the motion of the pendulum and TV phase distortions.
The other matrix corresponds to the B2B connection, i.e., it only contains the TV phase distortions.
Then, the matrix that contains the fingerprint information and TV phase distortions is divided by the
matrix corresponding to the B2B connection in elementwise form. The output matrix resulting from the
elementwise division only contains the fingerprint information. After the elementwise division, a highpass
filter has been used to reduce the power of zero-frequency components associated with the fixed scatterers
and/or the line-of-sight.
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Regarding the channel model and its spectrogram, Figure 4a shows the block diagram of the proposed
channel model discussed in Section 3 fed with IMU data as inputs and the computation of the spectrogram.
Figure 4b shows the block diagram of the proposed channel model discussed in Section 3 fed with the
mechanical model as inputs and the computation of the spectrogram. Note that the difference between
Figure 4a and Figure 4b is how the trajectories are obtained to feed the channel model. If they are measured
using IMU, then the preprocessing mentioned Section 5.2 should be considered before feeding them
to the simulator. If they are computed using the expressions in (38)–(40), then they can be fed into
the simulator directly. The channel model can be fed with the TV displacements from either the IMU (after
applying ZUPT) or the mechanical model presented earlier in Section 5.2, as inputs. The carrier frequency
of the simulator f0 was set to 5.32 GHz for consistency with CSI measurement scenario. The number of the
fixed scatterersM was chosen to be 6. The initial location of the moving scatterer SM and the locations
of the Wi-Fi Tx, Wi-Fi Rx were set according to the experiment scenario as presented in Figure 2, i.e., they
can be located anywhere, but the distances should be the same as those illustrated in Figure 2. Then,
the TV displacements as presented in Figure 3 were added to the initial location of the moving scatterer SM.
After that, the TV Doppler frequency f (q)M (t) caused by the moving scatterer SM was computed according
to (21). The path gains of the moving scatterer SM and each fixed scatterer SF

m were computed by

cM =
√

2η and cF,m =

√
2 (1− η)

M (41)

respectively. The parameter η is used to balance the contribution of the fixed and moving scatterers
and was set to 0.8. The phases θM and θF,m were generated as realizations of random variables with uniform
distribution from −π to π. Next, the STFT XH(q)( f , t) for each subcarrier index q was computed according
to (28). The window spread parameter σw was set 31.1 ms. Finally, the spectrogram S( f , t) (or S̃( f , t) in
case of using IMU data as inputs) was computed as the squared magnitude of the sum of the STFT over
the subcarriers by the following expression

S( f , t) =

∣∣∣∣∣∑q
XH(q)( f , t)

∣∣∣∣∣
2

. (42)

For computing the spectrogram of the recorded CSI as exhibited in Figure 4c, the CTF Ĥ(q)(t, ∆ f (q))
is recorded. Then, the STFT X̂H(q)( f , t) was computed for each subcarrier q. After that the spectrogram
Ŝ( f , t) is computed according to (42).

Figure 5a–c exhibit the spectrograms of S̃( f , t), S( f , t), and Ŝ( f , t) of the channel model with IMU
data as inputs, the channel model fed with the mechanical model as inputs, and the recorded CSI
data, respectively. It is shown that the TV Doppler power characteristics depicted by the spectrograms
S̃( f , t), S( f , t), and Ŝ( f , t) in Figure 5a–c are fairly similar to each other, respectively. In Figure 5a–c,
the Doppler frequency associated with the moving scatterer (pendulum) SM has negative values when
the pendulum swings away from the Wi-Fi Tx and Wi-Fi Rx antennas and has positive values when it
swings towards them. The Doppler frequency corresponding to the moving scatterer (pendulum) SM

approaches zero values at the time instants in which the moving scatterer reach its local maximum
and minimum displacement values [see Figure 3a,b]. Therefore, the speed of the pendulum vM(t)
approaches zero values. Thus, the Doppler shift at these instants is zero according to (22).

Figure 6 depicts the TV mean Doppler shifts B̃(1)(t), B(1)(t), and B̂(1)(t) computed from the
spectrograms S̃( f , t), S( f , t), and Ŝ( f , t) using (37), respectively. There is a good match between
B̃(1)(t), B(1)(t), and B̂(1)(t). The mean Doppler shifts have negative values at the time instants in
which the pendulum (moving scatterer SM) swings away from the Wi-Fi Tx and Wi-Fi Rx antennas.
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They have positive values when the pendulum swings towards the Wi-Fi Tx and Wi-Fi Rx antennas.
The TV mean Doppler shifts B̃(1)(t), B(1)(t), and B̂(1)(t) approach zero values at the moments when
the pendulum reaches its local maximum and minimum displacement values. There exists a slight drift
in the values of the mean Doppler shift B̂(1)(t) in between the time instants t ≈ 11.5 s and t ≈ 12.7 s
due to the no ise of the measured CSI signal.
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Figure 4. Block diagrams illustrating steps to compute the spectrograms S̃( f , t), S( f , t), and Ŝ( f , t)
of (a) the channel model with the IMU data as input, (b) the channel model with the trajectories of the
mechanical model as inputs, and (c) measured CSI data, respectively.
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(a)

(b)

(c)
Figure 5. Spectrograms S̃( f , t), S( f , t), and Ŝ( f , t) (a) the channel model with IMU data as inputs,
(b) the channel model with the mechanical model of the pendulum as inputs, and (c) measured
CSI, respectively.
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Figure 6. TV mean Doppler shifts B̃(1)(t), B(1)(t), and B̂(1)(t) computed from the spectrograms of the
channel model with IMU data as inputs, mechanical model as inputs, and the measured CSI, respectively.
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For quantitative evaluation, we collected CSI and IMU data for 20 experiments, i.e., K = 20. From the
collected data measurement, we computed the normalized-mean-square-error (NMSE) γk between the TV
mean Doppler shift B̃(1)

k (t) of the proposed channel model fed with the IMU data as inputs and the TV

mean Doppler shift B̂(1)
k (t) of the CSI data according to

γk =

Tobs∫
0

(
B̃(1)

k (t)− B̂(1)
k (t)

)2
dt

Tobs∫
0

(
B̂(1)

k (t)
)2

dt

(43)

for k = 1, 2, . . . , K, where the parameter Tobs denotes the observation interval which was set to
15 s, i.e., Tobs = 15 s. Figure 7 depicts the NMSE γk for each experiment. The maximum NMSE belongs
to the first experiment and has a value of 0.1829, whereas the minimum NMSE, with a value of 0.0477,
belongs to fourteenth experiment. The average NMSE equals 0.0932, and the variance of the NMSE
is 0.0013.
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Figure 7. NMSE γk of each experiment computed from the TV mean Doppler shift B̃(1)
k (t) of the channel

model fed with IMU data as inputs and the measured TV mean Doppler shift B̂(1)
k (t) for k = 1, 2, . . . , K.

6. Conclusions

In this paper, we proposed a no n-stationary wideband channel model and its TV Doppler power
characteristics when there is a moving object in the 3D space. We derived the TV Doppler shift caused
by the moving object in terms of the TV speed, AAOM, EAOM, AAOD, EAOD, AAOA, and EAOA.
The TV Doppler characteristics of the proposed channel model were analyzed by using the spectrogram.
Furthermore, we provided the approximate solution of the spectrogram of the channel model. We
validated the proposed channel model by measuring the trajectory of the moving object using an IMU
and calibrated CSI with B2B connection, simultaneously. Then, we fed the channel model with the trajectory
data extracted form the IMU. The results showed a good agreement between the measured CSI and the
channel model in terms of the spectrogram and the mean Doppler shift. We conclude that the proposed
channel model can be used for designing simulation-based HAR systems. For the future, we aim to extend
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the proposed channel model for human activity recognition by modelling the moving human as multiple
moving scatterers.
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