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Abstract - Achieving ultra-reliable low latency communications (URLLC)

in massive machine type communication networks requires novel medium ac-

cess mechanisms to accommodate a huge number of traffic arrivals. Random

access based on LTE-A suffers from collisions and long latency when two or

more devices select the same preamble to initiate channel access simultane-

ously and this problem becomes severe in mMTC networks. In this paper,

we propose a machine learning based scheme that allows an eNB to predict

the number of arrivals at each random access slot and allocate preambles ac-

cordingly. We demonstrate that, by combining arrival prediction with group

based dynamic preamble reservation, the grouped devices are able to achieve

URLLC under bursty traffic conditions and meanwhile the performance of

non-grouped devices is also improved.

C.1 Introduction

Driven by various novel application scenarios, the development of 5G mobile and wire-

less communication standards is focusing on three main technological directions, i.e.,

enhanced mobile broadband (eMBB), massive machine type communications (mMTC),

and ultra-reliable low latency communications (URLLC). While mMTC is expected to

accommodate 1+ million connections per square kilometer, URLLC is targeted at provid-

ing ultra-reliability levels with very low latency for certain types of, e.g., mission-critical,

services. When the number of devices attempting to access the network is large, it often

results in access congestion due to competitions among devices for scarce resources and

thereby deteriorating their performance. This situation becomes even more challenging

for bursty traffic. Therefore, such problems need to be addressed to a satisfactory degree

in order to achieve URLLC for mMTC. However, the long-term evolution advanced (LTE-

A) based random access (RA) process is not designed to facilitate a very large number

of devices due to its limited number of available preambles. This limitation may increase

collision probability and lead to long latency.

In [2], the 3rd generation partnership project (3GPP) specifies several possible solu-

tions to address LTE RA congestion. One popular solution is access class barring (ACB)

based schemes according to which devices are classified into access categories with differ-

ent access probabilities and barring times. Moreover, approaches like dynamic resource

allocation, MTC specific backoff, slotted RA, and pull based (i.e., eNB initiated) access

procedures were also considered in [2]. In addition to 3GPP based solutions, there exist

also other approaches proposed to reduce RA congestion (see e.g., [2] and the references

therein). Moreover, group based access schemes have also been proposed to reduce colli-

sion probabilities [3]. However, while these solutions contribute towards reducing random

121



Paper C

access channel (RACH) congestion, they do not adequately address the URLLC require-

ments. Consequently, these solutions often provide high levels of reliability at the cost

of long latency. For URLLC, the tradeoff between reliability and latency needs to be

addressed.

To estimate traffic arrivals at an eNB is one potential technique that can be utilized to

prevent the occurrence of congestion at an early stage which leads to reduced latency. For

ACB based random access, there exist some studies which focus on estimating random

access load and then adjusting ACB parameters using different methods. For example, [4]

proposed a congestion-aware admission control mechanism in which MTC signaling traffic

is rejected at the radio access network with a probability p that represents the level of

congestion. It utilizes a proportional integrative derivative controller to derive the value

of p. A Markov chain based traffic load estimation scheme was proposed in [5]. As

a machine learning based effort, [6] proposed a reinforcement learning based approach

to dynamically adjust the ACB barring rate. While most of these solutions focused on

parameter tuning for the ACB scheme, it is imperative to investigate how the observed

data at an eNB can be combined with machine learning techniques to achieve real-time

predictions of arrivals data which enables URLLC.

In this paper, we propose a supervised learning based random access scheme which

first predicts bursty traffic arrivals at an eNB and then allocates preambles for group

based access. The prediction is based on the detected number of preambles at the eNB.

According to its prediction, the eNB is able to dynamically evaluate traffic arrival condi-

tions and allocate preamble resources to different types of user groups. By combining a

group based access phase along with bursty traffic prediction, the eNB is able to provide

URLLC services to a set of mMTC devices.

The remainder of this paper is organized as follows. Sec. C.2 provides the background

information and problem statement for this study. Thereafter, Sec. C.3 presents a machine

learning based approach for predicting the number of arrivals, followed by Sec. C.4 which

proposes one scheme for achieving URLLC based on arrival predictions. The numerical

results are provided in Sec. C.5. Finally, the paper is concluded in Sec. D.6.

C.2 Background and Problem Statement

In this section, we first present some related background for this study and then introduce

the problem statement.

C.2.1 LTE-A RACH Process

Consider that multiple MTC end user devices are covered by the same eNB. When an

uplink communication is required, an LTE-A device needs to follow a 4-step random access

procedure [7], as illustrated in Fig. C.1. Each device needs to randomly select a preamble

from a set of R available preambles which are periodically advertised by the eNB. These

R preambles are orthogonal to each other and the selected preambles are transmitted in

the next available RA slot which appears every fifth subframe [7]. If two or more devices

select the same preamble to transmit in the same RA slot, a collision of preambles may be
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Figure C.1: 4-step LTE-A random access for MTC devices.

detected and the collided devices will not receive a Msg 2, i.e., a random access response

(RAR) message, from the eNB. If no Msg 2 is received within a timeout period, the

devices will retransmit Msg 1 up to a maximum number of times, Nmax. A retransmission

follows the same procedure as mentioned above but happens after a backoff time selected

randomly from the range of [0,WBO − 1], where WBO is the backoff window size.

If a preamble is successfully received at the eNB, it will reply with Msg 2 in Fig. C.1.

If two or more devices select the same preamble and transmit within the same RA slot

but the eNB cannot detect a collision at Step 1, then Msg 3 and Msg 4 will be exchanged

to resolve the contention.

C.2.2 RACH Limitations

A main constraint of the LTE-A RA process is the limited number of preambles available

for a cell. According to [7], 64 preambles can be allocated for a particular cell and out of

these a certain amount, typically 10, is reserved for non-contention based transmissions

like handover traffic. The rest are considered to be available for the competing devices

for random channel access.

When a large number of devices attempt to access the channel at the same time, the

preamble collision probability increases. Additionally, this will result in longer latency

for successfully accessed devices. This problem is even more serious for mMTC scenarios

where the number of competing devices could be much larger. To demonstrate this effect,

we illustrate in Fig. C.2 the access success probability for a bursty mMTC traffic scenario

with an increasing number of devices based on the analysis in [8] and the simulations we

performed. It can be observed that when the number of devices is very large, i.e., 30000

or more, the access success probability decreases sharply to an unsatisfactory level.

Generally, traffic arrivals for periodic data reporting are considered to follow an uni-

form arrival process. On the other hand, event-driven data reporting which often leads

to bursty traffic arrivals is assumed to follow a Beta distribution based arrival function

as expressed below
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Figure C.2: Access success probability for a varying number of total devices.

A(i) = M

∫ ti+1

ti

p(t)dt, (C.33)

where A(i) represents the access intensity for a total number of M devices accessing an

RA slot i between time ti and ti+1. In (C.33), p(t) = (tα−1(T − t)β−1)/(Tα+β−1Beta(α, β))

with Beta(α, β) being the Beta function with α = 3 and β = 4. T is the total observation

time for traffic arrivals [2].

C.2.3 Problem Statement

Considering the drawback in the LTE-A RA process as discussed above, it is imperative

to introduce novel solutions to enable URLLC based applications. Since an eNB does

not have sufficient information on the number of devices attempting random access at a

particular time, it is difficult to implement real-time dynamic preamble allocation based

solutions which satisfy the needs of URLLC.

Assuming that a preamble is correctly received by the eNB, collision detection at the

eNB depends on several factors like the delay spread and the signal strength received from

the competing devices. The eNB may detect a preamble even though multiple devices

are transmitting the same preamble, if the devices are separated sufficiently far away

from each other. On the other hand, when multiple devices are closer to each other, the

preamble transmissions overlap with each other and the eNB cannot distinguish whether

there are two or more users transmitting using the same preamble. Hence, Msgs 3 and 4

are needed to resolve the collision. Generally, it is difficult to use the previous collision

data to predict the future MTC arrivals accurately.

In this work, we resolve this issue by proposing an arrival prediction based preamble

allocation (APPA) scheme which consists of two phases. 1) We first propose a machine

learning based technique to predict the number of arrivals in a given RA slot based

on the number of successful detections at the eNB; and 2) we then propose dynamic

preamble allocation to achieve URLLC based on the estimated arrivals. In the following

two sections, we present these two phases in details.
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Figure C.3: Number of arrivals and detections in LTE-A random access for 30000 devices with 54

preambles following a bursty arrival process.

C.3 APPA Phase 1: Arrivals Prediction

In this section, the proposed machine learning based prediction technique is presented. It

corresponds to the first phase of APPA as shown in Algorithm 1.

C.3.1 Arrivals versus Successful Access: A Dilemma

For a given RA slot, the total number of arrivals consists of new arrivals and the retrans-

missions from previously failed devices. Due to collisions and detection failures, only a

few number of such arrivals are correctly decoded at the eNB. In some cases, not all the

detected devices will receive Msg 2 due to the limit on the number of devices that can be

responded in a given RAR message.

A substantial distinction between the numbers of arrivals and detections within an

RA slot under a bursty traffic scenario can be observed in Fig. C.3, which is obtained

based on 30000 devices in a period of 10 sec with R = 54 preambles. The numerical

results presented in this figure are generated following the LTE-A RA process [2] and

the analytical model proposed in [8]. It is evident that the actual number of arrivals

consisting of the initial arrivals and the retransmissions is much higher than the initial

arrivals itself. Hence, the number of retransmissions caused by collisions is a major cause

for further collisions. Furthermore, it is observed that the number of successfully detected

preambles initially increases with the increasing number of arrivals and then decreases to

a lower value as the arrival traffic reaches its peak around the 850th RA slot. Thereafter,

the success rate increases when the number of arrivals decreases, and then it reaches null

corresponding to zero arrivals.

In reality, not all the information illustrated in Fig. C.3 is available at the eNB.

Instead, the eNB has only knowledge on how many preambles are successfully detected

at each RA slot. From the above observations, we argue that there is a clear relationship
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Algorithm 1 Algorithm for arrival prediction and group based dynamic preamble allo-

cation

Input for Phase 1: Training data including Detections, Arrivals, and Current arrival

type; Validation data including Number of detected preambles (real time); Bursty

arrival threshold;

Input for Phase 2: Initial arrival type; Number of levels (L); Priority level for each

group (l); Number of groups per level (Nl); Device population M ; Number of available

preambles at eNB R; Number of priority levels (L); Assigned priority level l for each

group; Number of groups with priority level l (Nl), priority level l group threshold η.

Output: Predicated number of arrivals at each RA slot; Dynamic preamble allocation

and group enabling

Phase 1: Prediction of Arrivals :

1: Training: Smooth input data via Savitzky-Golay filtering;

2: Train the model using smoothed training data;

3: Select the model with minimum RMSE.

4: Prediction: Input real detection data at each RA slot and current arrival type to

the trained model.

5: if predicted arrivals > Bursty arrival threshold, then

6: current arrival type = Bursty

7: else

8: current arrival type = Normal

9: end if

Phase 2: Dynamic Group Preamble Allocation :

10: if predicted arrivals > priority level l group threshold then

11: Upgrade Nl groups in level l to highest priority

12: Reserve preambles for Nl groups in priority level l

13: Inform NGDs about preamble reservation

14: Update device population and number of available preambles for next prediction

and preamble allocation.

15: else

16: Go to Line 4 Prediction.

17: end if
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Figure C.4: A machine learning based prediction model.

between the number of detections and the corresponding number of arrivals for a given

device population attempting to access the same channel. If the eNB is able to predict the

number of arrivals based on the local available information, i.e., the detected preamble, it

would be helpful to allocate on the fly a number of preambles to reduce RA congestion.

In the following, we propose a machine learning based arrival prediction technique that

utilizes the detected data to predict the number of arrivals at each RA slot.

C.3.2 Arrival Prediction using Supervised Learning

Supervised learning is one type of machine learning algorithms that maps an input to an

output based on labeled training input-output data pairs. It is a widely used technique

that can be utilized for various regression and classification tasks. In this work, we aim

at applying supervised learning to predict the number of arrivals at the eNB.

Fig. C.4 denotes a block diagram which illustrates the main idea of the proposed model

for arrival prediction. The input data available at the eNB is the number of successful

detections at each RA slot. The eNB has also information about the initial arrival type,

i.e, the traffic type is bursty or normal. These two features and the corresponding arrival

data are used as input to train the model to predict the number of arrivals. The trained

model is then validated with the test data. For arrival prediction, we are interested in

identifying the point at which the predicted level of arrivals crosses a certain pre-defined

threshold. This criterion is evaluated with each new data arrival and the result is fed back

to the model to update its information about the current status of the traffic arrivals. In

what follows, we further elaborate the aforementioned process.

C.3.2.1 Input data preparation

For model training, a simulation based data set following the LTE-A RA process is gen-

erated. For initial training, a burst of arrivals with M = 30000 devices for a duration

of 10 sec is considered. These devices compete for 54 RA available preambles following

the RA process described in Subsec. C.2.1. The losses due to channel impairment are

represented using a detection probability pn, where the preamble detection probability

of the nth preamble transmission is given by pn = 1 − 1/en. In order to increase the

accuracy of learning, the input data is filtered to smooth out any abrupt changes. This
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Figure C.5: Responses from the learning model with RMSE.

is achieved using the Savitzky-Golay (SG) filtering method which enables to increase the

signal-to-noise ratio without significantly distorting the signal. The SG method achieves

this by minimizing the least-square errors in fitting a polynomial to frames of noisy data.

C.3.2.2 Model training

The model training process is carried out through a 5-fold cross validation procedure that

ensures protection against over fitting by partitioning the data set into different folds and

estimating the accuracy of each fold. Different models are evaluated based on root mean

square errors (RMSE) which indicate how close the observed data points are with respect

to the values predicted by the model. Among the models available in the simulation tool,

the tree based models generate the minimum RMSE error. Therefore, the fine tree model

with RMSE ≈ 1.0 is selected for our validation. In Fig. C.5, we illustrate the response

plots based on the fine tree model. It reveals that the predicted values (in yellow) match

the real values (in blue which are largely overlapping with the yellow curve) precisely. In

Fig. C.6, we demonstrate the accuracy of the training model by plotting the real response

and the prediction response in the x- and y-axis respectively. With both sets fitting the

diagonal line, the accuracy of the trained model is verified.

C.3.2.3 Prediction model

To validate the training model, another set of simulation data that represents a traffic

arrival burst is generated. The initial traffic arrival type is considered to be normal and

we assume that the eNB can detect the transmitted preambles successfully at each RA

slot. The eNB performs live data detection and relies on the trained model to predict

new arrivals. The data detection result from the current RA slot is added to the existing
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Figure C.6: Responses from the learning model.

data to predict arrivals in the next slot.

When the predicted number of arrivals within an RA slot exceeds the bursty arrival

threshold, the traffic type is assessed to having changed from normal to bursty. Further-

more, different thresholds are configured to measure the bursty level of traffic arrivals. We

will further elaborate this procedure in Sec. C.4. On the other hand, when the predicted

arrival intensity drops below a certain threshold, the traffic type is considered to having

changed back to normal traffic.

Moreover, providing a higher number of training data samples results in a lower RMSE

in the training model. Hence, several iterations of bursty traffic with the same 10 sec

duration are provided for training. Recall that the detection data alone may not provide

sufficient information for accurate arrival prediction. Therefore, we assume that the traffic

type is known initially. With the knowledge on both traffic type and detection data,

precise arrival prediction can be achieved at the eNB.

C.4 APPA Phase 2: Preamble Allocation

The knowledge on the number of arrivals can be exploited in several ways for URLLC

applications. In this section, we present two group based preamble allocation schemes,

one static which serves as a baseline scheme and another one dynamic which is based on

arrival prediction presented above.
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C.4.1 Static Group based Preamble Allocation (SGPA)

In this scheme, MTC devices are grouped based on their URLLC priority levels, location,

and applications. Devices with URLLC access requirements, e.g., those for monitoring

mission-critical information in smart grids or industrial processes, belong to grouped

devices (GDs). Other MTC devices which are covered by the same eNB are regarded as

non-grouped devices (NGDs).

Each group has a dedicated preamble managed by the group leader which has higher

processing and memory capability in comparison with its members. The eNB stores

information about group members and their leaders during the initial registration process.

When a triggering event occurs, the group devices establish an uplink communication with

their associated eNB through a collision-free preamble transmission initiated by their

group leader. By decoding the dedicated preamble, the eNB identifies the group and its

members based on the stored information during the initial registration process. Then,

the eNB will allocate an appropriate amount of radio resources for all the devices in that

particular group. For NGDs, the access process follows the standard RA procedure as

explained in Subsection II-A. However, for a given device population, allocating a suitable

number of preamble to NGDs is not an easy task, especially for bursty traffic. With static

preamble allocation without real-time traffic intensity awareness, the performance of GDs

and/or NGDs may be deteriorated.

C.4.2 Arrival Prediction based Preamble Allocation

In the APPA scheme, we consider that GDs have L different priority levels based on their

URLLC requirements, denoted as 1, 2, ..., L in an descending priority order. The devices

belonging to a higher priority level have more stringent latency requirements than those in

a lower level group. Regardless of the arrival traffic type, the highest priority, i.e., level-1,

GDs always have their dedicated preambles reserved for communication with the eNB.

Under normal traffic conditions, other priority level group members follow the legacy

LTE-A RA process the same as NGDs. However, when a traffic burst is observed in the

first phase of APPA, the eNB will dynamically allocate more preambles as dedicated to

a lower level GDs. In this way, more devices will experience collision-free transmissions

based on dynamic preamble allocation.

Whenever a group belonging to a certain priority level is upgraded to the level with

dedicated preambles, its member devices will be able to enjoy collision-free preamble

transmissions through their group leaders. We assume that the eNB transmits the updated

reservation information immediately to all devices. With this information, these GDs will

not compete with the NGDs using the common RA preambles. Accordingly, the number of

preambles available for the NGDs is reduced. Meanwhile, the number of competing devices

is also reduced. Recall, however, that such a preamble allocation update is performed

dynamically based on the predicted traffic arrival. Hence, in comparison with the SGPA

scheme, the preamble utilization efficiency is improved in APPA.
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Figure C.7: Bursty traffic arrivals: Prediction versus actual.

C.5 Simulations and Numerical Results

To evaluate the performance of the proposed schemes, we perform extensive simulations

in MATLAB. Consider a cell with M = 30000 devices and a traffic burst in a period of 10

sec. The devices are categorized into GDs (with 40% of M devices) and NGDs (with 60%

of M devices). These GDs are further classified into L = 3 levels, as 10%, 10%, and 20%

of M devices for level-1, -2, and -3 respectively. For each level, there are multiple groups

each with a number of member devices. As mentioned earlier, each group has only one

dedicated preamble which is managed by the group leader.

For performance comparison, three schemes are studied, i.e., 1) preamble allocation

without grouping (PAWG), 2) SGPA, and 3) APPA. The following three metrics recom-

mended by 3GPP [2] are used for our performance evaluation.

• Collision probability, Pc, defined as the ratio between the number of occurrences

when two or more devices transmit the same preamble during the same RA slot and

the overall number of RA opportunities within this slot.

• Access success probability, Ps, defined as the probability that a device successfully

completes the RA procedure within Nmax + 1 transmissions.

• Average delay for successfully accessed devices, Da, calculated from the first pream-

ble transmission attempt to the successful completion of the access process.

C.5.1 Validation of the APPA Scheme

To assess the performance of the proposed APPA scheme, we plot two figures to illustrate

the results obtained based on the two phases of APPA, i.e., Fig. C.7 for Phase 1 and

Fig. C.8 for Phase 2, respectively.

In Fig. C.7, we illustrate both the actual traffic arrivals generated by simulations

and the predicted number of arrivals which is obtained based on the supervised learning

131



Paper C

0 200 400 600 800 1000 1200 1400 1600 1800 2000

RA slot index

0

50

100

150

200

250

300

D
ev

ic
e 

ar
riv

al
s/

de
te

ct
io

ns
  a

t e
N

B
 p

er
 R

A
 s

ub
 fr

am
e

Arrivals   PAWG M=30k R=54
Detected PAWG M=30k R=54
Arrivals APPA
Detected APPA

Enabling
Level 3
Groups

Enabling
Level 2
Groups

Figure C.8: Enabling dynamic grouping according to traffic arrival prediction.

algorithm presented in Subsection III-B. It is evident that, despite the sparks occurred

in simulated arrivals, the predicted number of arrivals represents closely the actual data

arrivals.

Let us now explain how the second phase of APPA works using Fig. C.8 which illus-

trates how to allocate the number of dedicated preambles based on the predicted number

of arrivals per RA slot. Following the LTE-A RA process, there are R = 54 preambles

which are available for all M = 30000 devices. However, how to allocate these preambles

depends on the adopted scheme. In PAWG, all devices follow the standard process based

on 54 preambles. In SGPA, certain number of preambles are allocated to GDs beforehand

but the eNB is not aware of traffic arrival patterns.

When APPA is employed, we initially enable only level-1 groups with dedicated pream-

bles. In other words, there are 27k devices, including NGDs and level-2 and -3 GDs, com-

peting for 51 preambles. At around the 407th RA slot, the number of predicted arrivals

exceeds the threshold, which is 50 according our network configuration. Then level-2

groups are upgraded with contention-free preambles. Correspondingly, the total number

of competing devices is reduced to 24k while the number of preambles reduces to 48. At

the 466th RA slot, the predicted arrivals exceed the second threshold, which is 75. Im-

mediately, the level-3 groups are upgraded with contention-free preambles. This causes a

greater reduction of the number of competing devices to 18k, competing for 44 preambles.

At each stage when more GDs are allocated with dedicated preambles, the number

of NGD arrivals decreases significantly since only leaders generate preambles on behalf

of each group. This behavior can be observed in the figure when comparing the original

arrival curve based on PAWG in which all 30k devices compete for these 54 available

preambles. Accordingly, the RA performance could be improved as presented below.
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Table C.5: Performance evaluation of grouped and non-grouped devices

SchemeMetric Pc Ps Da

GDs 0 1 11.0

NGDs with PAWG 0.4288 0.3153 67.35

NGDs with SGPA 0.2909 0.5875 67.0144

NGDs with APPA 0.2684 0.6816 73.5183

C.5.2 Performance Comparison of PAWG, SGPA, and APPA

Table C.5 illustrates the numerical results for the studied three schemes. For grouped

devices with dedicated preambles, denoted as GDs in the table, the collision probability

is zero and the access success probability equals to one. The delay associated with these

devices is calculated to be approximately 11 subframes. In comparison with the other

results shown in the same table, this means that for GDs ultra reliability is achieved

together with very low access delay.

For NGDs, as well as level-2 and/or -3 GDs that do not yet have a dedicated preamble,

all denoted as NGDs in Table C.5, we investigate the benefits brought by APPA based

on the performance metrics defined earlier. It is evident that APPA outperforms SGPA

and APPA in terms of Ps and Pc. This is because in APPA preamble resources are

dynamically allocated depending on the predicted traffic arrivals. Compared with the

significant improvements for Ps and Pc, the extra delay cost introduced by APPA is low.

C.5.3 Further Discussions

The delay results shown in Table C.5 have a unit as the duration of a subframe which is

1 ms in LTE-A. In 5G new radio (NR), the transmission time interval (TTI) is shortened

down to 125 µs or even 62.5 µs. Accordingly, much shorter delay can be achieved, meeting

the requirements for URLLC.

Another potential application of the proposed APPA scheme Phase 1 is to apply

it for dynamic frame structure configuration as suggested in [9]. If a flexible 5G NR

frame structure is implemented, where the TTI size is configurable on a per-user basis

according to its specific service requirement, different TTI sizes can be configured on the

fly depending on the predicted traffic arrival load at eNB. When traffic load is predicted

to be light, a short TTI appears to be more pragmatic for achieving low latency, and vice

versa.

C.6 Conclusions

In this paper, we have proposed a machine learning based traffic prediction and preamble

allocation scheme which encompasses two phases. The first phase relies on local informa-

tion available at the eNB to estimate the number of arrivals within one RA slot. Based on

the prediction, dynamic allocations of preamble resources are performed to enable URLLC

applications. By combining group based preamble reservation with the proposed traffic
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prediction and preamble allocation scheme, we demonstrate, through extensive simula-

tions, that URLLC for grouped devices can be achieved while improving the performance

of non-grouped devices.
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