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Abstract 

Novel nonlinear damping control is proposed for the second-order systems. The proportional output 
feedback is combined with the damping term which is quadratic to the output derivative and inverse 
to the set-point distance. The global asymptotic stability, passivity property, and convergence time and 
accuracy are demonstrated. Also the control saturation case is explicitly analyzed. The suggested non- 
linear damping is denoted as optimal since requiring no additional design parameters and ensuring a fast 
convergence, without transient overshoots for a non-saturated and one transient overshoot for a saturated 
control configuration. 
© 2021 The Author(s). Published by Elsevier Ltd on behalf of The Franklin Institute. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

For the second-order systems, it is understood that a linear feedback control [1] inherently
oses certain limits in terms of possibility to shape the transient response, exponential con-
ergence of the state trajectories and, as implication, steady-state accuracy of the controlled
utput of interest. Worth to recall is that the input-output second-order systems encompass
 vast number of practical applications. Input voltage to output speed in motors, transfer
haracteristics of different-type RLC circuits, pressure-flow dynamics in the fluid transport
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ystems and, finally, motion dynamics of rigid-body systems, in general sense, can be noted
s motivating examples for that. 

For linear control systems, an assignment of optimal damping, so as to shape the desired
ynamic response, is straightforward through for instance pole placement, cf. e.g. with [1] .
lso when allowing for a system damping to be switched once as a function of the system

tate, an optimal damping ratio for linear second-order systems has been proposed in the past
2] . On the other hand, nonlinear control methodology addressed, since long, the problem of an
fficient feedback shaping, while the complexity of associated analysis and control synthesis,
vailability of the system states, control specification, and type of the system perturbations led
o quite different design concepts. Among the well-established are the sliding mode control
3] , Lypunov redesign [4] , backstepping [5] , and passivity based control [6] . For more details
nd well-known basics we also refer to seminal literature e.g. [7,8] . Some former examples
f the nonlinear feedback stabilization and associated nonlinear damping can be found in e.g.
9,10] to mention few here. A comparative evaluation of different controllers, benchmarked
n a most simple second-order plant of double integrator, can also be found in [11] . 

The need to incorporate nonlinear damping in feedback of the second-order systems, es-
ecially for improving the stabilizing and convergence properties, has been (empirically) rec-
gnized in already former studies in robotics, thus resulting in e.g. nonlinear proportional-
erivative controls [12,13] . While the stability proof has been provided for several ad-hoc
onlinear damping strategies, no optimal convergence and trajectories shaping have been so
ar elaborated. Here it is also worth to side note that the convergence properties are strongly
elated to homogeneity of the corresponding dynamics vector-field and, as implication, of the
eedback map to be determined, in other words to be assigned. For overview on the use of
omogeneity for synthesis in, e.g. sliding mode control, we exemplary refer to e.g. [14] . As
nother approach, to feedback control problems, it appears that to enter energy into a system,
hrough potential field of the output feedback, is more straightforward than to control its
issipation. The latter should occur in a peculiar way, thus ensuring the desired convergence
o an equilibrium. For energy shaping in the feedback regulated Euler–Lagrange systems we
efer to e.g. [15,16] and some basic literature [6] . 

In this paper, we propose a novel nonlinear damping control of the second-order systems in
ombination with the linear output feedback. Using the fact of conservative energies exchange
n an undamped (oscillatory) second-order system, the dissipated energy is shaped in an
ptimal way with respect to the convergence to zero equilibrium and no transient overshoot
ndependent of the initial state. That way assigned nonlinear damping is quadratic to the
utput derivative and inverse to the set-point distance, while no free design parameters for
he damping term are required. The proposed control is generic and globally asymptotically
table. It also allows for control saturation, that is relevant for applications. The principle
nalysis of the control behavior, provided below, is focusing on the unperturbed second-order
ynamics only. In that was the further aspects of sensitivity and robustness are subject to the
uture works. 

. Second order system with state-feedback 

Throughout the paper we will deal with the feedback controlled second-order systems 

˙  1 = x 2 , (1)
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˙  2 = −kx 1 − D, (2)

here x 1 and x 2 are the available state variables, k > 0 is the proportional feedback gain, and
is the control damping of interest, correspondingly to be shaped. Obviously, the system (1),

2) is a classical double-integrator dynamics, for which a vast number of application examples
an be found e.g. in electrical and mechanical systems and combinations of those. 

.1. Optimal linear damping 

Using the linear state-feedback damping, the system (1), (2) can be written in a standard
orm 

 ̇  x 1 , ˙ x 2 ] 
T = A · [ x 1 , x 2 ] 

T = 

[
0 1 

−k −d 

]
· [ x 1 , x 2 ] 

T , (3)

here the system matrix A is Hurwitz, for positive damping coefficients d > 0, and is already
n the controllable canonical form. It is worth recalling that the state-feedback controlled
ystem (3) is equivalent to the proportional derivative (PD) controller for which an appropriate
hoice of the feedback gains allow for arbitrary shaping the closed-loop response, either in
ime t- or in Laplace s-domain. Assuming that k is given (by some control specification) and
equiring the control response has no transient oscillations or overshoot, meaning the real
oles only, one can assign the linear damping term by solving 

 

2 + ds + k = (s + λ) 2 (4)

ith respect to d . Here the real double-pole at −λ determines the optimal linear damp-
ng, usually noted as critical damping, since for d > 2λ the system behaves as overdamped,
hile for d < 2λ the system becomes transient oscillating. For any non-zero initial conditions

 x 1 , x 2 ] T (0) ≡ [ x 0 1 , x 
0 
2 ] 

T � = 0, which can be seen as a set-value control problem, the trajectories
re given by 

 x 1 , x 2 ] 
T (t ) = exp (At ) [ x 0 1 , x 

0 
2 ] 

T . (5)

t is obvious that the unperturbed matrix differential equation (3) , with two stable real poles,
as an exponential convergence property, meaning 

 x 1 (t ) , x 2 (t ) ‖ ≤ β exp (−γ t ) (6)

or some β, γ > 0 constants. From the output control viewpoint that means x 1 → 0 for
 → ∞ . 

. Main results 

.1. Optimal nonlinear damping 

The proposed nonlinear damping endows the system (1), (2) to be 

˙  1 = x 2 , (7)

˙  2 = −kx 1 − x 2 2 | x 1 | −1 sign (x 2 ) . (8)
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Fig. 1. Phase portrait of the control system (7), (8) . 
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V  
he single control parameter remains the given output feedback gain, while the quadratic
amping term yields optimal for all k > 0 values. The solution of Eq. (8) is non-singular
xcept in x 1 = 0, while the unique equilibrium (x 1 , x 2 ) = 0 is globally attractive as will be
hown below in Section 3.2 . The phase portrait of the system (7), (8) is shown in Fig. 1 . 

One can recognize that the damping rate, and the required control effort, which is ∼ ˙ x 2 ,
otably increases in vicinity of x 1 = 0 for | x 2 | 	 0. At the same time, the non-singular
olution provides the global convergence to origin within the II and IV quadrants without
 1 zero crossing, thus without transient overshoot of the control response. For showing this,
onsider the region of attraction in vicinity of the origin. For the steady-state, one obtains 

 = 

[
0 1 

−k −| x 2 || x 1 | −1 

]
· [ x 1 , x 2 ] 

T , (9)

hich results in 

| x 1 | x 1 = −| x 2 | x 2 . (10)

his can be seen as a trajectories’ attractor in vicinity of zero equilibrium. Rewriting Eq.
10) as 

x 2 1 sign (x 1 ) = −x 2 2 sign (x 2 ) (11)

nd allowing for the real solution only, results in 

 2 + 

√ 

k x 1 = 0, (12)

hich is a slope along which the trajectories converge to zero in vicinity of origin, that
ithout crossing the x 2 -axis. 

.2. Global asymptotic stability 

Assume the following Lyapunov function candidate 

 = 

1 

2 

x 2 2 + k 
1 

2 

x 2 1 , (13)
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hich is positive definite for all (x 1 , x 2 ) � = 0 and also radially unbounded, i.e. V (x 1 x 2 ) → ∞
s ‖ x 1 , x 2 ‖ → ∞ . Taking the time derivative and substituting dynamics of the states, i.e.
qs. (7) and (8) , results in 

˙ 
 = −x 3 2 | x 1 | −1 sign (x 2 ) ≤ 0, (14)

hich implies the origin is globally stable. Since the trajectories do not remain on the x 1 -axis
hen x 2 = 0, due to non-zero vector field cf. Eq. (8) , and proceed towards origin, cf. Fig. 1 ,

he asymptotic stability of origin can be concluded despite ˙ V = 0 for x 2 = 0, x 1 � = 0. This
act excludes the appearance of invariant sets and ensures (0; 0) is the single asymptotically
table equilibrium. 

For addressing the system stability within singularity x 1 = 0, we first consider the x 2
 0 case and, therefore, potential zero-crossing of the x 1 -axis. It can be shown that when

pproaching x 1 = 0 from the left in the II-nd or from the right in the IV-th quadrant, cf.
ig. 1 , the trajectory is always proceeding (asymptotically) to the origin, thus never crossing

he x 1 -axis. Equally, when approaching x 1 = 0 from the right in the I-st of from the left
n the III-rd quadrant, the trajectory is always repulsed away from x 1 = 0 and, thus, never
rossing the x 1 -axis as well. For a trajectory reaches ( x 1 , x 2 ) = 0, one can substitute the
ttractor (12) into (8) , correspondingly (14) . This results in cancelation of the | x 1 | –1 term and
liminates a not well defined solution in the origin. 

.3. Closed-loop passivity 

For analyzing damping properties of the control system (7), (8) we are to demonstrate the
assivity of the closed-loop dynamics 

˙  2 + kx 1 = −x 2 2 | x 1 | −1 sign (x 2 ) . (15)

ere the left-hand side can be seen as a conservative (oscillatory) system part, in other words
lant, and the right-hand side of Eq. (15) as a stabilizing control input u which provides
he closed-loop system with a required damping. Recall that for a system with output y to
e passive, the input-output port power should be greater than or equal to the rate of energy
tored in the system self, i.e. uy ≥ ˙ V . Here the same energy function as the Lyapunov function
andidate (13) , which is the system’s Hamiltonian, is assumed while x 1 is the controlled system
utput of interest. The above power inequality (for system passivity) yields 

x 2 2 sign (x 2 ) sign (x 1 ) ≥ −x 2 2 | x 2 || x 1 | −1 , (16)

hich results in the following passivity condition 

| x 2 | 
| x 1 | ≥ sign (x 2 ) sign (x 1 ) (17)

or the state-space. Based on that it is evident that the system is always passive in the II
nd IV quadrants of the phase plane, see Fig. 2 . Otherwise, the system becomes transiently
on-passive for x 2 − x 1 < 0 in the I quadrant and for x 2 − x 1 > 0 in the III quadrant (gray-
hadowed in Fig. 2 ). In those non-passive segments, the level of energy stored in the system
ncreases, this way also ensuring the state trajectories always cross x 1 -axis and do not remain
t x 2 = 0. Following to that, the trajectories always change, upon the velocity zero crossing,
o the passive segments of II or IV quadrant, which both act as a control attractor to the
lobally stable origin. 
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Fig. 2. Regions of system passivity in the phase plane. 
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.4. Convergence time 

The asymptotic convergence of the state solutions is ensured by 

˙ V < 0. On the other hand,
n order to ensure a finite-time convergence, one has to show that 

˙ 
 + αV 

1 
2 ≤ 0 (18)

or some positive time constant α > 0. If inequality (18) holds, the finite convergence time
 c is bounded by 

 c ≤ 2V 

1 
2 (0) α−1 . (19)

ubstituting the Lyapunov function candidate (13) and its time derivative Eq. (14) into Eq.
18) results in 

x 3 2 

| x 1 | sign (x 2 ) ≥ α

√ 

2 

2 

√ 

x 2 2 + kx 2 1 . (20)

n explanatory graphical interpretation of inequality (20) is shown in Fig. 3 by two surfaces,
ne of the energy level and another of its time derivative. 

One can recognize that the finite-time convergence can be ensured in vicinity of x 1 = 0
nd that until certain neighborhood to the origin only (cf. both both red horns above the green
one in Fig. 3 ). Outside of those regions the inequality (20) becomes violated, cf. Fig. 3 , and
he control system (7), (8) features the asymptotic convergence. Here it is worth emphasizing
hat, from the applications’ viewpoint, such partial finite-time convergence can be desired
nd sufficient, since the convergence to absolute zero is inherently restricted by some finite
esolution of sensors used in the feedback control. 

.5. Control with saturation 

From the applications’ viewpoint, where frequently the input limitations have to be taken
nto account, the control value v with saturation is essential. That means it is to show whether
he proposed nonlinear damping control system (7), (8) remains further on performing and,
4297 
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Fig. 3. Surface of time derivative of the Lyapunov function ˙ V (in red, dark) and square root of the Lyapunov function 
αV 1 / 2 (in green, light). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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bove all, globally stable when the overall control input 

S ≤ v = −kx 1 − x 2 2 | x 1 | −1 sign (x 2 ) ≤ + S (21)

s limited in the amplitude by some positive S. The latter constitutes an inherent control
ystem constraint, correspondingly a given fixed parameter. In the saturated control mode, the
ystem (7), (8) evolves to 

˙  1 = x 2 , (22)

˙  2 = S sign (v) , (23)

nd it has to be proven whether the control value returns to | v(t ) | < S after transients and,
herefore, to the nominal dynamic behavior independent of the initial conditions. In this case
ne one needs to demonstrate that 

−kx 1 − x 2 2 | x 1 | −1 sign (x 2 ) 
∣∣∣ < S (24)

an be achieved and will hold for some finite time t > 0 for any initial state [ x 1 , x 2 ] T (0) =
 X 1 , X 2 ] T . Due to symmetry of the control system and without loss of generality we focus,
n the following, on the positive saturation only, while the respective developments for a
egative saturation are equivalent when turning the sign and flipping the following inequality.
he positive control saturation requires to prove 

kx 1 − x 2 2 | x 1 | −1 sign (x 2 ) < S, (25)

hile the saturated control action ˙ x 2 = S yields an explicit solution of the state trajectories 

 2 (t ) = X 2 + St, (26)

 1 (t ) = X 1 + 

1 

2 

St 2 . (27)
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Fig. 4. Convergence of linear and nonlinear damping control. 
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ubstituting Eqs. (26), (27) into Eq. (25) results in 

k 
(

X 1 + 

1 

2 

S t 2 
)

−
(
X 2 + S t 

)2 
sign 

(
X 2 + S t 

)
∣∣X 1 + 

1 
2 St 2 

∣∣ < S. (28)

hile the second left-hand side term of Eq. (28) remains always positive for t > −X 2 S 

−1 , the
rackets of the first term remains also always positive for t 2 > −2X 1 S 

−1 . This implies that
here is a τ > 0 so that the condition (28) holds for all t > τ . This proves the closed-loop
ontrol system (22), (23) always returns to a non saturated control mode, i.e. Eqs. (7) and (8) ,
t some 0 < t = τ < ∞ , and that for all admissible { X 1 , X 2 } initial states and admissible
ontrol parameters S, k > 0. 

. Comparative numerical study 

Two feedback control systems described by Eqs. (1) and (2) are compared: one with the lin-
ar damping D l = dx 2 and one with the proposed nonlinear damping D nl = x 2 2 | x 1 | −1 sign (x 2 ) .
he convergence of the state trajectories is comparatively shown in Fig. 4 for the initial values
 x 0 1 , x 

0 
2 ] = (1 , 0) and output feedback gain assigned to k = 100. The optimal (critical) linear

amping factor, cf. (4) , is d = 20. 
As next, the convergence of the controlled output (absolute value) is shown logarithmically

n Fig. 5 for both the linear and nonlinear damping. It can be seen that the control with
onlinear damping reaches much faster, in fact quadratically on the logarithmic scale, some
ow bound of the steady-state accuracy. Different, the control with linear damping converges
inearly on the logarithmic scale. 
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Fig. 5. Logarithmic convergence of the output magnitude value. 

Fig. 6. Output convergence (a) and trajectories phase portrait (b) of the nonlinear damping control with various k
parameter. 
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The output convergence and state trajectories of the nonlinear damping control are shown in
ig. 6 when assuming the varying (by order) values of the feedback gain k = { 10, 100, 1000} .
ne can recognize a similar (scaled) trajectory shape independent of the control gain value. 
Finally, the impact of the control saturation, i.e. of the bounded v-input cf. Section 3.5 ,

s demonstrated for the different feedback gain values k = { 50, 100, 150, 200} and S = 25 ;
or the largest gain k = 200 the non-saturated (n.s.) case, i.e. S = ∞ , is also included for
he sake of comparison. The control response and state trajectories are shown in Fig. 7 (a)
nd (b) respectively. The saturation slows down the convergence and leads, in worst case of
argest gain, to a single transient overshoot, after which the trajectory converges as expected
cf. with Fig. 1 ). 
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Fig. 7. Control value (a) and trajectories phase portrait (b) for various k-parameter values, with and without control 
saturation. 
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. Conclusions 

This paper has proposed a novel nonlinear damping control for the second-order unper-
urbed systems with output feedback. The control is claimed to be optimal since it does not
equire any additional parameter and provides a fast (exponentially quadratic) convergence
ithout transient overshoots, when no control constraints. The global asymptotic stability,
assivity, and finite-time convergence until certain neighborhood to the stable origin of the
tate variables have been explored. An enhanced performance has been demonstrated compar-
ng to the linear and optimally (i.e. critically) damped controller. Also the saturated control
ase, as relevant for applications, was analyzed, regarding convergence, and demonstrated to
ave no negative impact on the principal control performance. It is believed that the proposed
ontroller may represent and interesting alternative to a conventional proportional derivative
PD) controller. 
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