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18 Abstract: 

19 1. We provide an overview of the most commonly used social network measures in animal research 

20 for static networks or time-aggregated networks.

21 2. For each of these measures, we provide clear explanations as to what they measure, we describe 

22 their respective variants, we underline the necessity to consider these variants according to the 

23 research question addressed, and we indicate considerations that have not been taken so far.

24 3.  We provide a guideline indicating how to use them depending on of the data collection protocol, 

25 the social system studied and the research question addressed. Finally, we inform about the existent 

26 gaps and remaining challenges in the use of several variants and provide future research directions.

27 A
cc

ep
te

d 
A

rt
ic

le

28 Keywords: Social Network Analysis; Network Measures, Animal Research, Theory, Review

29

https://doi.org/10.1111/2041-210X.13366
https://doi.org/10.1111/2041-210X.13366
https://doi.org/10.1111/2041-210X.13366
mailto:s.sosa@live.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13366&domain=pdf&date_stamp=2020-01-30


This article is protected by copyright. All rights reserved

30 INTRODUCTION
31

32 For those unfamiliar with Social Network Analysis (SNA) terminology (highlighted in the text with 

33 asterisks), we provide a glossary in Table.1. The mathematical formula of all the network measures 

34 discussed in this manuscript are provided in Appendix 1 and software handling their computation are in 

35 Appendix 2.

36 SNA has become a methodological framework that allows a transdisciplinary approach (from proteomic 

37 research to animal societies and ecosystems) to study multiple questions within single systems (networks*) 

38 such as groups, populations as well as connected units (links* and nodes*) of the systems. For example, in 

39 the study of animal societies, SNA can reveal the causes and consequences of individuals’ social 

40 heterogeneity (variation in social behavior) and link social interactions to both ecological and evolutionary 

41 processes (Sueur et al. 2019). Here we describe how the use of specific network measures* can lead to 

42 study these different aspects and levels.

43 The surge of SNA in the last couple of decades has been accompanied by the development of a large 

44 number of analytical software and methods to calculate network measures (Borgatti, Everett & Freeman 

45 2002; Csardi & Nepusz 2006; Whitehead 2009; Sosa et al. 2018). This has resulted in a diversity of 

46 software that vary in the way some network measures are calculated (because they used different methods), 

47 and/or are specialized in calculations/functions designed with a specific research purpose, here referred to 

48 as variants. Not surprisingly, non-experts in SNA may find difficult to get a clear picture of the most 

49 adequate approaches or tools for their research question.

50 In this manuscript, we do not aim to show the usefulness of SNA (which was already proved many times); 

51 instead we provide the reader with an extensive list of the different measures* (and their variants) that are 

52 commonly used in Animal Social Network Analysis (ASNA) for static networks or time-aggregated 

53 networks. We do so to highlight how mathematical differences in the calculation of these measurements 

54 may affect the interpretation of results, making it necessary to indicate some considerations that have not 

55 been taken so far. Our aim is to provide researchers with a guideline that helps them to: 1.) interpret the 

56 different measures and their variants, 2.) choose a specific measure according to the research question, and 

57 3.) avoid misuses of SNA measures. Although we provide a prescriptive approach on which network 

58 measure to use, when and how depending on the research question, the data collection protocol and the 

59 species-specific social structure (Figure.1, Figure.2 and Figure.3), readers may keep in mind that SNA is a 

60 versatile tool and each research question and system requires its own, bespoke set of considerations to deal 

61 with its own specificities.A
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62

63 Considerations prior to selecting network measures

64 Before considering the computation of network measures, one may first consider the type of data collected 

65 (e.g. rare or frequent, associations or interactions), the type of system under study (e.g. cohesive social 

66 group, population, etc.), the environment in which individuals evolve (e.g. forest or open field) and how the 

67 data are collected (e.g. scan sampling, focal sampling, Gambit of the Group (GoG)) as each of these factors 

68 may affect the accuracy of the data collected and the extent to which the data are a fair representation of the 

69 system. For example, data collected in animal social research can be divided into two main categories: 

70 associations and interactions. Associations are usually collected with GoG or scan sampling and 

71 interactions with scan or focal samplings. Whereas GoG allows to rapidly collect numerous individual 

72 associations, it inevitably generates networks with higher density than networks based on social 

73 interactions that are generally distributed differently depending on the social partners as well as undirected* 

74 networks (Franks, Ruxton & James 2010). This aspect entails three main considerations: 1) whether 

75 network associations represent faithfully the group/population social structure, 2) the usefulness of GoG in 

76 the study of social diffusion such as epidemiology and 3) the use of measures that do not consider links’ 

77 weights* in networks obtained through GoG. Similarly, the system studied and the environment in which 

78 individuals evolve may make it necessary to adapt the data collection protocol. For example, scan sampling 

79 can be perfectly adapted for the study of cohesive species with a well-known group composition, small size, 

80 and/or living in an open environment whereas focal sampling may be preferred for larger cohesive species 

81 living in dense forests or fission-fusion societies (in this case, scan sampling may lead to oversample the 

82 core group easily visible). As a rule, one may consider that it is not the best choice to use data obtained 

83 through GoG for the study of social diffusion or the computation of measures that do not consider links’ 

84 weights as this observation protocol produces highly dense networks and the link filtering usually 

85 performed to reduce the density generates important biases (Franks, Ruxton & James 2010).

86

87 Examining heterogeneity in node interactions
88

89 Node measures* (Figure.1) enable to assess individuals’ social heterogeneity and to understand the 

90 underlying mechanisms such as individual characteristics (e.g. ageing process; Almeling et al. (2016)), 

91 ecological factors (e.g. demographic variation; Borgeaud et al. (2017)) and evolutionary processes (e.g. 

92 differences in social styles; Sueur et al. (2011)). Node measures are calculated at an individual level and A
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93 assess in different ways and with different meanings how an individual is connected. Connections can be 

94 ego’s* direct links only (e.g. degree, strength), alters’* links as well (e.g. eigenvector, clustering 

95 coefficient), or even all the links of the network (e.g. betweenness). Node measures can also be used to 

96 describe the overall network structure through distributions, means and coefficients of variation.

97

98 Degree & strength 
99 The degree measures the number of links of a node. When computed on an undirected network, the degree 

100 represents the number of alters of ego. When the network is directed*, it represents the number of either 

101 incoming* or outgoing* links of ego and it is then called in-degree (i.e. number of incoming links) or out-

102 degree (i.e. number of outgoing links) respectively. In-degree is generally used as a measure of popularity 

103 in affiliative networks and out-degree as a measure of expansiveness (Borgatti, Everett & Johnson 2018). 

104 Note that degree can also be computed in directed networks, in this case it represents the sum of incoming 

105 and outgoing links and not the number of alters. 

106 Strength (or weighted degree) is the sum of links’ weights in a weighted network*. When the network 

107 comprises directed links, then it is also possible to differentiate between in-strength (the sum of weights of 

108 incoming links) and out-strength (the sum of weights of outgoing links). In ASNA, these measures usually 

109 represent the frequency of individuals’ interactions/associations and thus reflect individuals’ sociality and 

110 social activity. While degree and strength can be considered correlated, it may not always be the case as 

111 individuals can interact frequently with few social partners or vice versa (Liao et al. 2018). Therefore, it is 

112 necessary to test their correlation prior to the analysis.

113

114 There is a long list of research that have used degree and strength; these are the main findings: Degree has 

115 been found to decrease with age in primates and marmots (Almeling et al. 2016) while strength does not 

116 (Almeling et al. 2016; Liao et al. 2018). The philopatric sex has shown higher affiliative degree and 

117 affiliative strength in several species (Borgeaud et al. 2017) as well as high-ranked individuals (Brent, 

118 Ruiz-Lambides & Platt 2017b). A positive correlation has been found between parasite load and degree and 

119 strength (Leu et al. 2016), although this correlation may be compensated by social buffering/support 

120 (Scharf et al. 2012). Several personality traits have been positively related to degree and strength such as 

121 exploration (Aplin et al. 2014) or boldness (Moyers et al. 2018). In several primate species, the social circle 

122 of infants (i.e. mothers’ degrees) has been found to have a significant impact on their development 

123 (Shimada & Sueur 2014). Finally, individuals with wider social circles show higher longevity (Silk et al. 

124 2010; Brent, Ruiz-Lambides & Platt 2017a) and greater reproductive success (Schülke et al. 2010).A
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125 Degree shows low sensitivity to observation biases (e.g. misidentification of individuals or unobserved 

126 interactions), which makes it particularly relevant for epidemiology studies (Krause et al. 2014). However, 

127 when considering data collection, due to the high connectiveness of networks generated by GoG, degree 

128 may be less suitable than strength since degree is strongly correlated to density. Finally, cautions must be 

129 taken when using software as the computation of degree with directed networks induces by default the 

130 computation of the sum of incoming and outgoing links and not the number of alters. These contrasting 

131 variants of a measure as simple as the degree serve as a reminder that special care must be taken as to the 

132 mathematical formula applied to avoid misinterpretations. 

133

134 Eigenvector centrality 
135 Eigenvector centrality is the first non-negative eigenvector value obtained by transforming an adjacency 

136 matrix linearly. It can be computed on weighted, binary*, directed or undirected networks. It measures the 

137 centrality* by examining the connectedness of ego as well as that of its alters. Thus, a node’s eigenvector 

138 value can be linked either to its own degree or strength or to the degrees or strengths of the nodes to which 

139 it is connected. 

140 Eigenvector may be interpreted as the social support or social capital of an individual (Brent et al. 2011), 

141 i.e. the real or perceived availability of social resources. Eigenvector has been extensively used in ASNA 

142 and is linked to biological aspects such as individual fitness (Stanton & Mann 2012), epidemiology 

143 (Balasubramaniam et al. 2016), individual characteristics (Sosa 2016) or social style (Sueur et al. 2011).

144

145 Betweenness 
146 Betweenness is the number of times a node is included in the shortest paths (geodesic distances) generated 

147 by every combination of two nodes. The value of the betweenness informs on the theoretical role of a node 

148 in the social transmission ( information, disease, etc., see Figure.1) as it indicates to what extent a node 

149 connects subgroups, as a bridge, and then is likely to spread an entity across the whole network (Newman 

150 2005). 

151 To date, betweenness has been related to network cohesion (Lusseau & Newman 2004), infection processes 

152 (Balasubramaniam et al. 2016), information transmission (Pasquaretta et al. 2016), sex (Zhang et al. 2012), 

153 age, rank, kinship (Bret et al. 2013) and fitness (Gilby et al. 2013). Nodes with the highest betweenness 

154 usually link clusters/modules of nodes within the networks (e.g. different subgroups or populations) and 

155 may thus have an important role in group cohesion or exchange of entities (disease, information, genes). A
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156 However, betweenness is not always the most informative network measure for an individual’s role in 

157 disease spread and such variation could be related to the network structure (Rodrigues 2019) .

158 Special attention must be paid regarding the calculation of the betweenness since the way it is calculated 

159 depends on whether the network is binary or weighted, directed or undirected and on whether the lowest or 

160 the highest link/relationship strength is interpreted as the shortest path. Therefore, the different calculations 

161 may lead to different values. Furthermore, betweenness seems to be very sensitive to sampling effort 

162 (Krause et al. 2014). 

163 Closeness is another well-known network measure to study node centrality but we do not discuss it here as 

164 it is very similar - although less frequently used- to betweenness (same variants, same considerations 

165 required), and betweenness is usually preferred in ASNA.

166

167 Local clustering coefficient
168 The local clustering coefficient measures the number of closed triplets* over the total theoretical number of 

169 triplets (i.e. open and closed), where a triplet is an ensemble of three nodes that are connected by either two 

170 (open triplet) or three (closed triplet) edges. This measure aims to examine the links that may exist between 

171 the alters of ego and measures the cohesion of the network (Figure.1). The main topological effect of closed 

172 triplets is the clusterization of the network, generating cohesive clusters, and is thus strongly related to 

173 modularity (see corresponding section). The local clustering coefficient can be computed in a binary 

174 network by measuring the proportion of links between the nodes of an ego-network* divided by the number 

175 of potential links between them. In weighted networks, several versions exist such as those from Barrat et 

176 al. (2004) or Opsahl and Panzarasa (2009). To date, no attempt has been made in ASNA to evaluate which 

177 version of the clustering coefficient may be the most appropriate according to the research question. 

178 Therefore, careful attention is needed when choosing the variant as this may lead to different biological 

179 interpretations. For example, Opsahl’s generalized clustering coefficient proposes four variants to consider 

180 triplets’ link weights (the arithmetic or geometric mean or using the weight of the weakest* or strongest* 

181 links). Opsahl’s geometric mean variant considers triplet weights heterogeneity (and is robust against 

182 extreme values of weights) whereas Barrat’s variant does not. Thus, heterogeneity of weights should be 

183 preferred in social systems with high social heterogeneity such as groups with high hierarchy steepness for 

184 example. Finally, the minimum variant (using the weight of the weakest link in a closed triplet) should be 

185 preferred when trying to understand the mechanisms that shape link creation in animal societies since this 

186 variant helps determine the minimum threshold needed for closed triplets to appear.

187 One major asset of this measure is that it is both local and global, which allows to examine for example 

188 how such micro-motifs* affect the overall network structure (Wharrie, Azizi & Altmann 2019). As we will A
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189 see, the clustering coefficient examines different aspects of social networks and animal societies, going 

190 from individual heterogeneity of social interactions (present section) to the analysis of the overall group 

191 structure (see Global clustering coefficient) and it also explains patterns in links’ creation (see Transitive 

192 triplets). However, the local and global clustering coefficients can be importantly related to density so both 

193 measures require special attention when data are  collected through GoG and, additionally, density should 

194 be added as factor of control.

195 Examining patterns of node interactions
196

197 Patterns of interactions (how and with whom individuals interact) can be examined using specific network 

198 measures* that analyze local-scale interactions within a network and make possible to test hypotheses about 

199 the mechanisms underlying network connectivity (Figure 2). These types of measures are generally used to 

200 test mechanistic biological questions, such as what factors (e.g. ecological as well as sociodemographic) 

201 affect individuals’ interactions/associations. However, because these patterns of interactions are also known 

202 to affect global network features, such as group resilience or reciprocal interactions, and to occur in a wide 

203 variety of animal taxa, they may be crucial elements within the general processes that shape animal 

204 societies and populations. 

205

206 Assortativity 
207 Assortativity (Newman 2003) is probably the most used measure to study homophily (preferential 

208 associations or interactions among individuals sharing the same characteristics) (Lazarsfeld & Merton 

209 1954). Assortativity values range from -1 (total disassortativity i.e. all the nodes associate or interact with 

210 those with the opposite characteristic, such as males interacting exclusively with females) to 1 (total 

211 assortativity i.e. all the nodes associate or interact with those with the same characteristic such as males 

212 interacting only with males). The assortativity coefficient measures the proportion of links between and 

213 within clusters of nodes with same characteristics. Individuals’ characteristics can be continuous (e.g. age, 

214 individual network measure, personality) or categorical features (e.g. sex, matriline belonging) (Figure.2). 

215 Assortativity does not consider directionality* and can be measured in weighted (Leung & Chau 2007) or 

216 binary (Newman 2003) networks using categorical or continuous characteristics (Figure.2). The use of one 

217 or other assortativity variant depends of the type of characteristics being examined and, whenever possible, 

218 the weighted version should be preferred since it its more reliable than the binary version (Farine 2014). 

219 Recent studies in human research argue that homophily promotes cooperation, social learning, and cultural 

220 and norm transmission among strangers (Allen et al. 2013). Homophily according to different phenotypes A
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221 such as sex, age, kinship, hierarchical rank (Sosa 2016), degree (Croft et al. 2005), personality (Croft et al. 

222 2009) or body size (Leu et al. 2016) has been found in several species including fish (Croft et al. 2005), 

223 birds (Johnson et al. 2017), cetaceans (Hunt et al. 2019), humans (Wang, Suri & Watts 2012) and other 

224 mammals (Williamson, Franks & Curley 2016). The fact that similar homophilic mechanisms are found in 

225 a wide range of taxa suggests that homophily may have been a driver for cooperation between congeners 

226 (Apicella et al. 2012). One question that remains open, however, is whether assortativity is a consequence 

227 of evolution or a prior condition for cooperation, which would need to be investigated further.

228

229 Transitive triplets
230 Transitive triplets are micro-motifs that have widely been widely examined in ASNA in recent years. 

231 Transitive triplets are closed triplets where the links among the nodes follow a specific temporal pattern of 

232 creation -i.e. when the establishment of links between nodes A and B and between nodes A and C is 

233 followed by the establishment of a link between node B and node C. This network measure can be 

234 computed in directed, binary or weighted networks. This type of connections can be studied over time 

235 based on the creation of links. From a static perspective, directionality can be considered by calculating the 

236 number of transitive triplets divided by the number of potential transitive triplets, and weights can also be 

237 considered by using Opsahls’ variants, which are discussed in the section on local clustering coefficient 

238 (Opsahl & Panzarasa 2009). While transitivity is importantly related to the clustering coefficient (the 

239 clustering coefficient includes transitive triplets), not all close triplets are transitive. Transitive triplets are 

240 one of the 16 possible configurations of a triplet considering open and closed triplets as well as link 

241 directionality (i.e. triad census).

242 Transitive triplets have been used in animal affiliative social networks (Waters & Fewell 2012; Ilany, 

243 Booms & Holekamp 2015; Borgeaud et al. 2016; Boucherie et al. 2016; Sosa, Zhang & Cabanes 2017) to 

244 highlight ‘triadic closure’, commonly described as “the friend of my friend is my friend”. Ilany, Booms and 

245 Holekamp (2015) evidenced that several factors (rainfall, prey availability, sex, social rank, dispersal status 

246 and topological effects) shape social dynamics in wild hyenas. Among all these factors, transitive triplets 

247 appeared as the most consistent and social dynamics (link creation) could not be explained without it. This 

248 micro-motif represents an interesting measure when studying social network resiliency and efficiency. For 

249 example, in ants, transitive triplets appear supporting the hypothesis of adapted and selected patterns of 

250 interactions to increase colony functionality and efficiency (Waters & Fewell 2012). Moreover, the main 

251 topological effect of triadic closure is the clusterization of the network  generating cohesive groups and it 

252 seems to be closely linked to the emergence of reciprocity, altruism and cooperation (Davidsen, Ebel & A
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253 Bornholdt 2002). As for assortativity, studies testing how this micro-motif affects the spread of information 

254 could help gain knowledge on this crucial mechanism in the evolution of animal societies. 

255 Transitive triplets have also been used to study agonistic networks and animals’ dominance hierarchy. For 

256 instance, the study of Dey & Quinn 2014 showed that pukeko agonistic networks emerge from both 

257 individual characteristics and endogenous self-organization of dominance relationships (i.e. transitive 

258 triplets). While triad census has not been widely used in the past, few studies have started to use these 

259 micro-motifs to examine hierarchy linearity on the basis of occurrence of reciprocal triplets for example 

260 (Shizuka & McDonald 2012).

261 Transitive triplets, and triad census more generally, help to understand how relationships between 

262 individuals emerge and change over time and how these changes may be a consequence of changes in 

263 others’ relationships (Figure.2). The studies mentioned above investigated triplets’ configuration using 

264 unweighted* networks. While the weighted variant of transitive triplets (Opsahl & Panzarasa 2009) may 

265 allow researchers to better understand and predict how and when links between two individuals are created, 

266 it remains unused in ASNA to date. 

267

268 Examining network structure and properties
269

270 The structure of this section is based on the distinction between network connectivity and social diffusion 

271 (information or disease spread). Both of these aspects may overlap the use of the network measures that 

272 quantify them (Figure.3). However, the social diffusion section contains measures specifically designed to 

273 study theoretical (i.e. considering the diffusion is perfectly related to network links and link weights) social 

274 diffusion features based on the geodesic distances (see corresponding section). Aspects of the structure and 

275 properties of a group (e.g. cohesion, sub-grouping) can be quantified using global network measures*. For 

276 instance, one may quantify properties such as network resilience* (see Diameter), network clusterization* 

277 (see Modularity) through network connectivity analysis, or network transmission efficiency* (see Global 

278 efficiency) through network theoretical social diffusion analysis (Figure 3). These different network 

279 structures have been used in ASNA to study different evolutionary as how the network is structured, 

280 resilient or efficient (Puga-Gonzalez, Sosa & Sueur 2018) and ecological questions as how ecological 

281 factors such as pathogens affect the network structure (Croft et al. 2011). 

282
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283 Examining network connectivity.
284 Network connectivity can be studied using global network measures that describe the cohesion of the 

285 network and how this cohesion may be affected by intrinsic (e.g. species social organization and structure) 

286 or extrinsic factors (e.g. ecological factors as pathogens). There are three main measures for connectivity 

287 discussed in this section: density, modularity and clustering coefficient. As mentioned above, all these 

288 measures may affect social diffusion as high density and clustering coefficient induce a fast rate whereas 

289 high modularity induces a low rate of spread.

290

291 Density
292 The density is the ratio between existing links and all potential links of a network. This measure is easy to 

293 interpret, it assesses how a network is fully connected. Density does not consider directionality neither link 

294 weights.

295 In ASNA, a link has been found between density and factors such as living condition (i.e. higher density in 

296 captive groups than in wild groups), group size (i.e. Balasubramaniam et al. (2017) with the larger the 

297 group, the lower the density), seasonality (i.e. higher density during the mating season; (Brent et al. 2013), 

298 habitat structural complexity (i.e. higher density in complex habitats; (Leu et al. 2016), and population 

299 stress due to environmental changes (Dufour et al. 2011).

300 However, cautions should be taken when studying density since this measure may depend on the biology of 

301 the species (e.g. social system and group size) and because several other network measures appear 

302 correlated with it. Density is correlated with degree distribution (see corresponding section), geodesic 

303 distances (see corresponding section) and the frequency of micro-motifs, like closed triplets* and thus 

304 clustering coefficients (see corresponding section) (Rankin et al. 2016). These correlations between density 

305 and other global network measures make it necessary to control for network density when comparing 

306 global network measures from different groups, conditions or species. Further, when comparing species, 

307 special attention should be put that the social organizations (e.g. group size, sex ratio) are equivalent and 

308 thus that interspecies comparisons are meaningful. Furthermore, the type of behavior (the rarer the behavior, 

309 the lower the density; (Castles et al. 2014)), the size of the network and the sampling effort are other factors 

310 that may influence density and should be taken into consideration when comparing networks. Methods to 

311 control for such biases have already been proposed (e.g. evaluation of the data collection robustness) and 

312 should be used whenever differences in global network measures (density or other ones) are assessed 

313 (Balasubramaniam et al. 2017). Another option is to use weighted network measures that are theoretically 

314 less correlated with network density.A
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315

316 Modularity
317 Modularity is a measure designed to quantify the degree to which a network could be divided into different 

318 groups or clusters and its value ranges from 0 to 1. Networks with high modularity have dense connections 

319 within the modules but sparse connections between the modules. Modularity can be computed in weighted, 

320 binary, directed or undirected networks.

321 It has been evidenced that modularity varies according to dominance style in macaque species, with higher 

322 modularity found in despotic species (Sueur et al. (2011). Fission-fusion societies as elephants (Wittemyer 

323 & Getz 2007), geladas (Matsuda et al. 2015) or snub-nosed monkeys (Zhang et al. 2012) show many units 

324 and thus high modularity compared to cohesive groups. Modularity also seems to be linked to evolutionary 

325 advantages such as greater cooperation by the creation of clusters of cooperators (Marcoux & Lusseau 2013) 

326 or reduced risks of transmission of pathogens by decreasing associations between clusters (Nunn et al. 

327 2015). Individuals that interlink the different clusters may be those with specific social status as observed in 

328 dolphins (Lusseau & Conradt 2009) but clusters can also be linked by weak links that allow to maintain a 

329 certain cohesion and social transmission as described in giraffes (VanderWaal et al. 2016).

330 Several algorithms have been proposed to identify the different clusters in a network. These can be 

331 categorized according to the process used to identify the clusters such as spectral optimization (leading 

332 eigenvector), based on the structure of the edges (edge betweenness), or modularity optimization 

333 (Fastgreedy or Louvain algorithm). For an overview see Yang, Algesheimer and Tessone (2016). Until 

334 recently, no research had investigated what would be the impact of choosing different community detection 

335 algorithms in the results (Aldecoa & Marín 2013; Sumner, McCabe & Nunn 2018). Sumner, McCabe and 

336 Nunn (2018) showed possible variations between those different algorithms; therefore, we recommend to 

337 choose carefully an appropriate community detection algorithm for the question of interest. Unfortunately, 

338 it is only recently that these questions have been addressed and a general guideline cannot be provided 

339 except that multiple algorithms may be used and the results may be compared. Also note that such 

340 precautions could apply to any clusterization algorithm.

341

342 Global clustering coefficient
343 The global clustering coefficient, like the local clustering coefficient, evaluates how well the alters of ego 

344 are interconnected and measures the cohesion of the network. Its main topological effect is the 

345 clusterization of the network, generating cohesive clusters, and is thus strongly related to modularity. 

346 However, it becomes highly correlated to density and less to modularity as the density grows. Several A
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347 variants of the global clustering coefficient can be found: 1) the ratio of closed triplets to all triplets (open 

348 and closed), 2) the binary local mean clustering coefficient that derives from the node level (see Local 

349 clustering coefficient). The binary local mean clustering coefficient allows to consider node heterogeneity 

350 and thus should be preferred over the first variant. Weighted versions also exist and are based on the same 

351 variants described in the section on the local clustering coefficient and require the same considerations.

352

353 Examining social diffusion
354 One major aspect that SNA brings in the study of social structure is the possibility to examine social 

355 diffusion of disease, information transmission, new behavior or ecosystems’ food flow in a network 

356 (Figure.3). One of the measures that make this possible is the geodesic distance and derived measures such 

357 as global efficiency and diameter. While geodesic distance is not often used in ASNA, it is essential for 

358 calculating other network measures such as diameter, global efficiency, node betweenness (see 

359 corresponding sections). Therefore, we discuss geodesic distance in this section to inform the reader that 

360 the cautions needed when computing geodesic distances must also be considered when calculating its 

361 derived network measures.

362

363 Geodesic distance
364 Geodesic distance is the shortest path considering all potential dyads in a network. This measure thereby 

365 evidences the fastest path of diffusion. Despite its usefulness in the study of epidemiology, geodesic 

366 distance remains seldomly used in ASNA due to its high sensitivity to observation biases such as 

367 unobserved interactions or misidentification of individuals (Krause et al. 2014). Geodesic distance can be 

368 calculated in binary, weighted*, directed or undirected networks. In weighted networks, it can be 

369 normalized (by dividing all links by the network weight means) and the strongest or the weakest links can 

370 be considered as the fastest route between two nodes. This great number of variants of geodesic distance 

371 can greatly affect results and interpretations. Researchers must thus have knowledge of the variants and 

372 which one is the most appropriate according to their research question (Opsahl, Agneessens & Skvoretz 

373 2010). 

374 For example, many software calculate the geodesic distance using the paths with the lowest weights as the 

375 shortest paths because they were designed for research related to transportation routes or information 

376 transmission (e.g. road transportation or internet connection). However, in ASNA, the links with the 

377 highest weights are usually those of greater interest as they represent preferential interactions/associations. 

378 For example, the probability to learn a new behavior may be higher between individuals that are more A
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379 frequently in contact or close proximity (Hoppitt & Laland 2013). Yet, the weakest links can also be of 

380 interest for questions related to epidemiology. For example, whereas a pathogen is more likely to be 

381 transmitted among individuals sharing strong links, weak links may still play a role in disease transmission 

382 (VanderWaal et al. 2016). Directionality is also an important variant to consider when examining if 

383 diffusion can only follow a certain directionality such as pathogens that can be transmitted only by 

384 individuals carrying it. 

385

386 Global efficiency
387 Global efficiency is the ratio between the number of individuals and the number of connections multiplied 

388 by the network diameter. It provides a quantitative measure of how efficiently information is exchanged 

389 within the nodes of the network. As global efficiency gives a probability of social diffusion, it may help 

390 better understand social transmission phenomena in short-term and long-term (Migliano et al. 2017). 

391 Pasquaretta et al. (2014) found a positive correlation between the neocortex ratio and the global efficiency 

392 in primate species with a higher neocortex ratio. By drawing a parallel between cognitive capacities and 

393 social network efficiency, this study evidenced that in species with higher neocortex ratio, individuals may 

394 adjust their social relationships in order to gain better access to social information and thus optimize 

395 network efficiency. Alternatively, studies on epidemiology in ant colonies showed that ants adapt their 

396 interaction rate to decrease the network efficiency when infected by a pathogen (Stroeymeyt et al. 2018). 

397

398 Diameter
399 The diameter of a network represents the longest path of the shortest paths in the network. Diameter is used 

400 in ASNA to examine aspects such as network cohesion, the rapidness of information or disease 

401 transmission. While global efficiency measures the theoretical social diffusion spread, diameter informs on 

402 the maximum paths of diffusion to reach all nodes.

403 While diameter was first used in the social sciences to study information diffusion (Milgram 1967), in 

404 ASNA it is mostly used to examine social cohesion, and the resilience of the network cohesion to the 

405 removal of a certain amount of central individuals (Lusseau 2003; Williams & Lusseau 2006; Manno 2008; 

406 Sosa 2014). However, further investigation may be needed to test if the removal of central individuals give 

407 a fair picture of biological group resilience properties since currently these analyses do not account for the 

408 creation of new links after the loss of individuals and demographic variations (Firth et al. 2017). If future 

409 outcomes support this deletion simulation assumption, studies based on a comparative analysis may 

410 represent an interesting research approach to understand how natural selection may have favored resilience A
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411 properties in some species while it has not in others. For example, we could expect variation according to 

412 group structure (higher resilience in stable matriline groups than in fusion-fission societies). Moreover, 

413 given the insight that these simulations could provide into group or ecosystem resilience properties, those 

414 may be of great interest for conservation purposes (Delmas et al. 2019).

415

416 DISCUSSION
417 This updated overview of the most commonly used network measures in ASNA highlights the increasing 

418 prominence of techniques deriving from graph theory, as well as the insights they brought and their 

419 diversity. Some of these techniques were developed in specific contexts and for well-defined questions (e.g. 

420 Latora and Marchiori (2001) about global efficiency in neurology). It is very appealing to reuse them with 

421 different focus although this would require a thorough understanding of the mathematical background in 

422 order to know what is being measured and to decide whether a given measure applies or not to the question 

423 raised.

424 We hope that this non-exhaustive overview will contribute to facilitate future research in ASNA by helping 

425 investigators select the most relevant network measure and variant according to their research question. 

426 Moreover, we would like to point out that when using SNA, one is often led to test multiple measures for a 

427 single research question as these may reveal different aspects of individuals’ sociality (direct or indirect 

428 links for example). However, it is worth mentioning that all these measures are computed from the same 

429 mathematical object (the network) and can therefore be correlated (Bounova & De Weck 2012). This 

430 correlation may be low or high according to different parameters affecting the network, as the species 

431 social system or organization, its size, etc. While this has been discussed punctually along the manuscript, 

432 we cannot detail here all the possible autocorrelations between network measures as this is case-specific 

433 and would fall out of the scope. Nonetheless, we may recommend to run correlation tests prior to the 

434 analyses or to use the variance inflated factor to control for such bias in correlation factors.

435 Continuous advances in graph theory such as Graph Signal Processing (Shuman et al. 2013) or multi-layer 

436 networks (Kivelä et al. 2014) will undoubtedly give rise to novel measures with new applications in ASNA. 

437 With this perspective in mind, investigators need to make constant effort testing different versions of 

438 measures, clearly stating the mathematical interpretations and what is exactly being measured, expounding 

439 their strengths and limits and explaining why chose this variant rather than another in order for others to 

440 apprehend their relevance depending on the context.
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Terms Definition

Alters Nodes connected to ego

Binary Considering the presence or absence of links between two nodes

Closed triplets Three nodes interconnected between each other

Directed network Network with link directionality (representing the directionality of the behavior)

Directionality Link directionality from one node to another

Ego A specific node

Ego-network A network with ego's connections only

Incoming links Interaction received

Link
Element of a network representing the connection (e.g. interaction or association) between two nodes. Term edge is 

used as synonym in the literature.

Micro-motifs Sub-structures of a network

Network A system of interconnected elements

Network clusterization Formation of subgroups in a network

Network global measures Measures calculated at the level of the whole network

Network measures Mathematical calculations to quantify specific features of a network, include global, node and polyadic measures

Network node measures Measures calculated at the level of nodes

Network resilience Capacity for the network to remain undisrupted when nodes are removed

Network transmission efficiency How well pathogens or information spread in the network

Node Element of a network representing an individual. Term vertice is used as synonym in the literature.

Node centrality A central node is highly connected and/or is connected to highly-connected nodes
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Outgoing links Interaction given

Strongest links Links with highest weights

Undirected network Network without link directionality

Unweighted network Network in which links represent the presence (1) or absence (0) of interactions/associations between nodes

Weakest links Links with lowest weights

Weight Value of a link usually representing the frequency of an interaction/association 

Weighted network Network in which the weights of the links represent the frequency of interactions/associations between nodes

Table1. Network glossary 
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Figure 1. Decision tree for examining individual social heterogeneity according to the research question and the network studied.A
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Figure 2. Decision tree for examining patterns of individual interactions according to the research question and the network studied
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Figure 3. Decision tree for examining group structure and properties according to the research question and the network studied




