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ON STABILITY OF LINEAR DYNAMIC SYSTEMS

WITH HYSTERESIS FEEDBACK

Michael Ruderman*

Abstract. The stability of linear dynamic systems with hysteresis in feedback is considered. While
the absolute stability for memoryless nonlinearities (known as Lure’s problem) can be proved by the
well-known circle criterion, the multivalued rate-independent hysteresis poses significant challenges
for feedback systems, especially for proof of convergence to an equilibrium state correspondingly set.
The dissipative behavior of clockwise input-output hysteresis is considered with two boundary cases of
energy losses at reversal cycles. For upper boundary cases of maximal (parallelogram shape) hysteresis
loop, an equivalent transformation of the closed-loop system is provided. This allows for the application
of the circle criterion of absolute stability. Invariant sets as a consequence of hysteresis are discussed.
Several numerical examples are demonstrated, including a feedback-controlled double-mass harmonic
oscillator with hysteresis and one stable and one unstable poles configuration.
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1. Introduction

The stability of dynamic systems containing hysteresis has been investigated for some time, but still remains
a challenging and appealing topic for systems and control theory. Much the same can be said of hysteresis in
other fields such as structural mechanics, tribology, magnetism and biology. It should be noted that most of the
existing analyses of dynamic systems with hysteresis have their roots in earlier works [3, 38]. A combination of
passivity [17], Lyapunov [23], and Popov [28] stability theories have been used [27] for analyzing the asymptotic
stability and stationary set of systems with hysteresis based on the LMI (linear matrix inequality). Some
strong assumptions, including loop transformation with integral nonlinearity and smooth approximation of
discontinuities (for example for Preisach [19, 29, 36] hysteresis operator), have been requested in [27], while
the proposed stability theorem required formulating and solving an LMI with certain additional conditions and
constraints. Although more recently the absolute stability of dynamic systems with hysteresis operator has been
addressed in [26], here the hysteresis was required to be the so-called Duhem operator [24], and a certain matrix
inequality, similar to KYP (Kalman–Yakubovich–Popov) lemma [17], had to be solved. Moreover, only examples
of second-order systems have been described. The related passivity property, which states that the feedback
connection of two passive systems is passive, has been used for stability analysis of systems with hysteresis in
[15]. However, the passivity of hysteresis in feedback has been established for the output rate only and not for
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the output itself. Several analyses of dynamic behavior of systems incorporating hysteresis have mainly been
guided as domain-specific, for example when studying friction where the dissipative properties of hysteresis have
been brought into focus, see [1, 10, 18, 21, 31].

The objective of this study is to contribute towards stability analysis of systems with linear forward dynamics
(of an arbitrary order) and static hysteresis nonlinearity in the feedback channel. While the dynamic hysteresis
loops have also been described and analyzed, e.g., in [8], the rate-independent hysteresis nonlinearity will be our
main focus, for details see [9]. It is worth noting that this type of hysteresis, where rate-independent maps have
a persistent memory of the past after the transients have died out, is particularly relevant for multiple natural
and artificial systems, in other words engineering systems. Furthermore it should be stressed that our study
focuses on the clockwise hysteresis, for which the (ẏ, ξ) input-output system is passive, cf. [17] for passivity. This
is despite the fact that hysteresis with counter-clockwise input-output loops (sometimes referred to as passive
hysteresis [27]), are usually considered like Preisach operators, play-type operators and phenomenological or
physics-based magnetic hysteresis models. For details see [4]. For analysis of the systems with counter-clockwise
input-output dynamics, we also refer to [2]. While the counter-clockwise hysteresis in systems is often in the
forward channels of physical signals and hence energy flow (e.g., classical B-H magnetic hysteresis), the clockwise
hysteresis usually appears in the feedback interconnection. Examples include nonlinear friction forces, e.g., [1],
restoring forces in elasto-viscoplastic structures, e.g., [7], and vibro-impact in the collision mechanisms [16].
Several models for the latter example can also be found in [25].

Before dealing with the main content of the paper, we first need to formalize the hysteresis systems that
we will focus on. These have to fulfill two requirements: to be (i) rate-independent and (ii) clockwise in the
input-output (I/O) sense. The first requirement means that the hysteresis output trajectories, and consequently
the energy conservation or dissipation, do not depend on the input rate ẏ. This means a rate-independent (also
called static) hysteresis map is invariant to affine transformations of time, i.e., a + bt ∀ a ∈ R, b ∈ R+. The
second requirement implies that for any pair of the output trajectory segments which are connected via an
input reversal point, the forward segment for which ẏ > 0 always lies above the backward one for which ẏ < 0.

The rest of the paper is organized as follows. In Section 2 we first discuss a dissipative clockwise hysteresis
map. This is to highlight its energy dissipation property upon the input reversals. The linear dynamic sys-
tem with hysteresis feedback is introduced in Section 3 with the associated equilibrium set. The main results
in terms of the proposed loop transformation and circle-based absolute stability are described in Section 4.
Section 5 contains several numerical examples which illustrate the stabilizing properties of hysteresis in feedback
and invariant sets of equilibria. Two boundary cases of equilibria, lying on the coordinate axes of hysteresis map,
are demonstrated. Following this, another relevant example of the feedback controlled double-mass harmonic
oscillator with hysteresis spring is described in detail. This includes hysteresis with and without discontinuities
and a hysteresis-free case of memoryless nonlinear spring. Some general stabilizing properties of hysteresis in
the closed-loop are demonstrated and discussed. Finally, the main conclusions are drawn in Section 6.

2. Dissipative hysteresis map

Considering a static hysteresis map with the input y and output ξ, which represent “energy pair” of a physical
system, one can introduce the supply rate w = ẏ(t) · ξ(t). The energy flowing into the system, I/O hysteresis in
our case, is obtained as ∫ t2

t1

wdt.

Then, for a non-negative real function V (z) : Z → R+ of the system state z, called the storage function, the
system is said to be dissipative, cf. [37], when satisfying

V (z(t2))− V (z(t1)) ≤
∫ t2

t1

wdt (2.1)
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Figure 1. Hysteresis loop ξ(y) with input reversals.

for all (y, ξ, z) and t2 ≥ t1. In other words, for all causal time trajectories, a dissipative system cannot store more
energy than is supplied to it, while the difference represents the energy dissipated by the system. It is worth
noting that the scalar function V (·) is often also called the energy function, or more specifically the Lyapunov
function, since it reflects the instantaneous energy level of the lumped system supplied through y.

Next, we will consider the energy level of hysteresis system ξ(y), which is indirectly analogous to a hysteresis
spring which has a displacement-to-force “energy pair”. Any changes in energy level and corresponding energy
storage, can be considered for two arbitrary points y2 > y1, assumed as exemplary and depicted in Figure 1
without loss of generality. Here y1 represents an initial state and y2 represents the next reversal state in the
input sequence. Recall that the total energy state of hysteresis system can then be written as

E(t) =

∫
Y (t)

ξ(y)dy + E(0), (2.2)

where Y (t) is the entire hysteresis input path with Y (0) = y1 and E(0) is the initial value; for the sake of
simplicity we assume E(0) = 0. Note that no kinetic-type energy should be taken into account since the input-
output hysteresis map is rate-independent [6, 36], i.e., E(t) is independent of the input rate. For a monotonically
increasing trajectory Y (t) ∈ [y1, y2] it can be seen that the change in energy level is given by

E(y2)− E(y1) =

∫ y2

y1

ξ(y)dy. (2.3)

First, one can show that if ξ(y) has no hysteresis effect, i.e. no loop, then the forward and backward trajectories
coincide with each other. Therefore, for the difference in energy levels at both points, one can write

∆E2−1 =

∫ y2

y1

ξa(y)dy = −
∫ y1

y2

ξb(y)dy, (2.4)

∆E1−2 =

∫ y1

y2

ξb(y)dy = −
∫ y2

y1

ξa(y)dy. (2.5)

Obviously, the total energy change during one y1-y2-y1 cycle is ∆E2−1 + ∆E1−2 = 0. That means the system
behaves as lossless, i.e., without hysteresis-related damping.
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Next, we consider an actual hysteresis branching after an input reversal, as shown in Figure 1, so that the
corresponding energy change results in

∆E = ∆E2−1 + ∆E1−2 =

∫ y2

y1

ξa(y)dy −
∫ y1

y2

ξb(y)dy 6= 0. (2.6)

The first summand in the above equation constitutes the potential energy which has been stored when moving
from y1 to y2, while the second summand corresponds to the potential energy which has been released on the
way back. The positive difference ∆E > 0 represents the energy losses due to the hysteresis. Obviously, the
amount of loss corresponds to the area of hysteresis loop, gray-shaded in Figure 1. It is worth noting that the
loop does not necessarily need to be closed. As the input proceeds after reversal, the growing (gray-shaded)
area reflects the increment in energy losses during each cycle. That is, each flip in the sign of the input rate
results in energy dissipation, provided the forward and backward paths diverse from each other. This allows us
to introduce the following

ξ(y) = g(y) + h sign(ẏ) (2.7)

input-output hysteresis map (equally drawn in Figure 1 by the dotted-line), as the upper boundary of energy
dissipation after input reversals. Here h > 0 is a parametrization constant and g(·) is a static (generally nonlin-
ear) map satisfying the sector conditions, cf. (4.2) below. In the following, we will assume a linear relationship
g(y) = γ y with the slope constant γ > 0, this is for the sake of simplicity and without loss of generality. Fur-
thermore, it is worth noting that for h → 0 the input-output map (2.7) approaches the lower boundary case
of energy dissipation ∆E → 0, with a corresponding vanishing of hysteresis. It seems appropriate to assume
that all clockwise hysteresis maps which lie between the lower and upper boundary cases, as defined above, will
behave as dissipative upon the input cycles. Moreover, this is independent of the shape of the hysteresis loops.

For the input-output hysteresis map the following storage function, fully analogous to the generalized energy
function of hysteresis spring, can be introduced

V (y) =
1

2
γ y2 −

∫
Y

ξ(y)dy. (2.8)

Note that while the first term of (2.8) describes the potential energy which is stored and therefore can be
recuperated, the second term constitutes the energy dissipation over the path Y traversed within the hysteresis
loop. It is worth emphasizing that this class of Lyapunov, corresponding to energy, functionals has already been
introduced in [38], for analyzing systems with a hysteresis nonlinearity. Taking time derivative of the storage
function (2.8), for the input-output map (2.7) with g = γ y, one obtains

V̇ = γ y ẏ − γ y ẏ − h sign(ẏ) ẏ = −h|ẏ|. (2.9)

From the above, one can see that the time derivative of the storage (Lyapunov) function is always negative
definite if ẏ 6= 0. Only for h = 0 does the system behave as lossless, which means that no hysteresis loops arise
after input reversals. Otherwise, any input changes would provoke an energy dissipation at a rate proportional
to the input rate. Therefore, a clockwise hysteresis, enclosed by any system dynamics, will act as a damping
element on the input cycles. However, no exponential damping rate, as otherwise conventional for linear system
dynamics, can be associated with hysteresis. It appears natural since no Laplace transform corresponding to
poles allocation is available for analysis of hysteresis behavior. Below, we address the stability of linear dynamic
systems incorporating hysteresis in feedback. This is in the spirit of the Lure’s type systems [22] which have
been thoroughly investigated and formalized for nonlinearities without memory.
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3. Feedback system with hysteresis

The considered feedback system

Φ =


ẋ = Ax+Bu,

y = CTx,

−u = ξ[y, t, ξ0].

(3.1)

largely consists of a linear dynamics system, given in the state-space notation and hysteresis nonlinearity ξ
connected in negative feedback. The linear dynamics system is described by the n × n system matrix A and
n× 1 input and output coupling vectors B and C, respectively. The system output of interest is y, while x is a
n× 1 vector of the system states. The initial hysteresis state is denoted by ξ0. The time argument t is omitted
for the sake of simplicity, unless in ξ, and that is for explicitly stressing the memory properties of the hysteresis
operator. That means the output at t depends from its previous values on the time interval [0, t]. Generally
speaking, Φ is what we will understand under the dynamic system with hysteresis feedback, in equivalence to
the Lure’s systems [22] which have memoryless nonlinearities. Note that although u is often assumed to be a
control variable, it can equally appear as some coupling quantity for hysteresis nonlinearity in feedback.

Let us now define the equilibrium state, corresponding to the equilibrium set due to the set-valued hysteresis
nonlinearity. It was provided in an elegant way in [3]. Introducing the corresponding transfer function

G(s) = CT (sI −A)−1B, (3.2)

which is a dynamic map from u to y, with s as the Laplace variable, one can write a steady-state equation

y +G(0)ξ = 0 (3.3)

for hysteresis nonlinearity acting in feedback. This one represents a line in the (y, ξ)-coordinates, which cuts the
hysteresis loop at the corresponding points {(y0, ξ0)}. It is obvious that the steady-state of the dynamic system
Φ, cf. (3.1), is given by

x0 = A−1Bξ0, (3.4)

while x(t) = x0 constitutes all steady-state solutions of the closed-loop system (3.1). It implies that the equi-
librium set E = {x0} is built up from those (x0, ξ0) solutions for which (3.3) and (3.4) hold, and that they are
independent of the initial (ξ(0), x(0)). Recall that due to a multi-valued hysteresis map, the initial ξ(0) should
be explicitly taken into account, along with x(0) of the dynamic system.

4. Loop transformation and absolute stability

Considering the boundary case, cf. with (2.7), of hysteresis nonlinearity in feedback, one obtains the output
of Φ as a Laplace transformed superposition

y(s) = −G(s) ξg [y(s)]−G(s) ξh [y(s) s] (4.1)

of both input parts in the loop. Here ξg[·] maps the static part of feedback nonlinearity, not necessarily limited
to the linear g-gain, while ξh[·] = h sign[·] is the sign-nonlinearity with output rate in argument. By means
of the block diagram algebra, with corresponding loop transformations, the closed-loop (4.1) can be brought
into the structure as shown in Figure 2. Both closed loops, coupled in the way of superimposed feedback, are
denoted by Φg and Φh respectively. One can recognize that while both linear transfer functions are subject to
the common input u, the outputs of both nonlinearities act as external disturbances, each one for the opposite
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Figure 2. Transformed loop with both nonlinearities.

Figure 3. Graphical interpretation of circle criterion.

loop, i.e., ug = ξg for Φh and uh = ξh for Φg. This allows us to investigate the input-output stability of Φg and
Φh separately from each other, as shown in the following.

The widely accepted circle criterion [5, 32, 39], which is closely related to and can be derived from the Popov
theorem [28] of absolute stability of the Lure’s type systems [22], enables analysis of the dynamical systems Φ.
The latter includes ξ which should satisfy the [α, β] sector condition, cf. e.g., [17],

α y2 ≤ ξ(y) y ≤ β y2. (4.2)

Not that the [0,∞) sector, as a particular case, is also included. The circle criterion says that if the system matrix
A has no eigenvalues on the jω axis and v eigenvalues strictly in the right half-plane, then the Nyquist locus
of G(jω) does not enter the critical disk D(α, β) and encircles it v times counter-clockwise, that for 0 ≤ α ≤ β,
cf. [33, 34]. Recall that the open disk D(α, β) lies in the complex half-plane Re[s] ≤ 0 passing through −α−1

and −β−1 as shown in Figure 3. Also note that the critical disk shrinks to the conventional critical point as the
gain limits α and β approach each other [5], while for nonlinearities lying in the sector [0, β] the critical disk
“blows up” into the half-plane Re[s] ≤ −β−1. The latter allows reducing the general circle criterion to

Re [1 + βG(jω)] > 0, ∀ω, (4.3)

cf. [33], that ensures the origin of Φ to be asymptotically stable, while the above stability of A is in effect. Note
that for the case when inequality (4.3) contains ≥ 0, meaning the Nyquist locus G(jω) is admitted to touch the
vertical axis −β−1, only a bounded output stability can be guaranteed, cf. [5].

In the following, we will make a restrictive assumption of a stable linear system dynamics, thus requiring
v = 0. Therefore, non-entering of the critical disk remains the single sufficient (but not necessary) condition to
be fulfilled by the circle criterion. With regard to the transformed closed-loop of Φ, cf. Figure 2, we request that
both Φg and Φh satisfy the above circle criterion. This is necessary for the entire system Φ is asymptotically
stable. For Φg, the situation is standard and for the given ξg ∈ [0, β], it is straightforward to evaluated the
fulfillment of circle criterion. For Φh, which matters in the hysteresis loop, one can show that β → ∞ while
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Figure 4. Graphical representation of equilibrium sets within hysteresis nonlinearity.

α = β due to the sign-operator which switches immediately upon zero crossing of the input of ξh. Here we
stress that the sign nonlinearity lies completely in the first and third quadrants, thus complying with the sector
condition of nonlinearity in feedback. The latter is of relevance to avoid violating the formulation of Lure’s
problem, as in (3.1) cf. [17, 22, 33], for which the circle criteria have been originally elaborated. The above
sector condition yields that for Φh, the critical disk D(∞,∞) = 0 shrinks to the single point, so that the
Nyquist locus of jωG(jω) is requested to not enter, or correspondingly encircle, the coordinate origin ∀ |ω| > 0.

It is worth emphasizing that the circle criterion specified above for ξ-type hysteresis nonlinearities is sufficient
to prove the global asymptotic stability of Φ. However, based on the above, nothing can be said about the
possible stabilizing properties of hysteresis in feedback. This means that for the case when G(s) has unstable
poles lying in C+. Notwithstanding, a numerical example of stabilizing hysteresis properties will be provided
and commented on in Section 5.2.

5. Numerical examples

5.1. Boundary cases with simple dynamics

We look at two boundary cases for which the intersection line of hysteresis nonlinearity (2.7) coincides with
one of the (y, ξ) axes. Recall that (2.7) captures a limiting shape of the clockwise hysteresis that features the
maximal energy dissipation upon changes in the input direction. Here and for the rest of subsection, the unity
g, h coefficients are assumed for the sake of simplicity. Recall that hysteresis is in negative feedback with the
linear dynamics, as in Φ defined in Section 3.

First, assume a double integrator system, with the state vector x = (x1, x2)T , so that

A1 =

(
0 1
0 0

)
, B1 =

(
0
1

)
, CT

1 =
(

1 0
)
. (5.1)

It is evident that the corresponding transfer function G1(0) → ∞ and the Γ1-line rests on the y-axis cf. with
[3], while it cuts the hysteresis loop as schematically shown in Figure 4. Since A1 is singular, i.e., not invertible,
no equilibrium state can be found by x0(t) = A−1

1 B1ξ0 for y0 +G1(0)ξ0 = 0 belonging to Γ1. At the same time,

S1 = {x ∈ R2 | x1 ∈ Γ1, x2 = 0} (5.2)

constitutes an invariant (or stationary) set, in which the trajectories are independent of the initial state x(0).
Each point of S1 represents a steady-state solution of the hysteresis closed-loop (3.1) with (2.7) and (5.1), while
α1 = {−1 ≤ x1 ≤ 1, x2 = 0} acts as a global attractor in the state-space, as shown in Figure 5a. Note that the
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Figure 5. Trajectories with attraction to the invariant sets, for G1 in (a) and G2 in (b).

double integrator dynamics does not fulfill the circle criterion, cf. Section 4, and that for the static (memoryless)
part ξg of feedback nonlinearity.

Next, we assume a second-order system

A2 =

(
0 1
−1 −1

)
, B2 =

(
0
1

)
, CT

2 =
(

0 1
)
. (5.3)

for which the transfer function G2(0) = 0. From y0 + G2(0)ξ0 = 0 one obtains the vertical Γ2-line which cuts
the hysteresis at y0 = 0, as equally visualized in Figure 4. Here one should stress that the (y, ξ)-coordinates are
different for G1 and G2 input-output dynamics, while the hysteresis nonlinearity in both cases is the same, given
by (2.7). According to (2.7), the ξ0 ∈ [−1, 1] at y0 = 0, while the sign-dependency is governed by sign

(
ẏ0(t−)

)
,

i.e., instantly before reaching the output steady-state y0. From the equilibrium x0(t) = A−1
2 B2 ξ0, for ξ0 = ±1,

one obtains the lower and upper boundaries x0 =
{
{−1, 1}, 0

}
of the invariant set

S2 = {x ∈ R2 | x1 ∈ [−1, 1], x2 = 0}. (5.4)

Here again, each point of S2 represents a steady-state solution of the hysteresis closed-loop (3.1) with (2.7)
and (5.3), while α2 = {−1 ≤ x1 ≤ 1, x2 = 0} acts as a global attractor of the state trajectories. A set of x1(t)
trajectories, converging to α2, are shown in Figure 5b for a large number of random x(0) initializations. Referring
to the circle criterion, cf. Section 4, one should notice that the Nyquist locus of G2(s)s is touching the critical
disk for ω = 0. Recall that the critical disk for the sign-nonlinearity collapses to the single critical point, thus
approaching zero from the left for β →∞. In this case, Φ is stable in the sense that all sets of initial conditions
lead to a bounded y as t→∞ [5]. Moreover, the Nyquist locus enters the critical point only in the stationary
case (ω = 0), that cancels stability issues for a Φ system which has free differentiators in the loop.

5.2. Feedback controlled double-mass harmonic oscillator

Consider a feedback controlled two-mass harmonic oscillator, for which the connecting spring features the
nonlinear stiffness with hysteresis. The free body diagram, shown in Figure 6, visualizes the corresponding
closed-loop dynamic system. The setup represents a class of common engineering problems where the inertial
elements are interconnected by an energy storage which is coupled with (structural) energy dissipation that
takes place during harmonic oscillations. Examples for this can be found in the machine elements [12, 30],
piezoelectric materials [11, 14], micro-frictional and generally tribological systems [1, 35], structures with elasto-
plasticity [7, 13] and others. An open-loop system is inherently passive and therefore remains stable even if a
harmonic oscillator without auxiliary damping can reveal nontrivial transient trajectories in the presence of the
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Figure 6. Closed-loop harmonic oscillator with nonlinear spring.

hysteresis. However, in order to explicitly address the stability of the closed-loop dynamics with hysteresis, a
negative feedback of x2-state is incorporated. This allows for a direct analogy, for instance to an output feedback
controller, where K > 0 is the control gain of an appropriate choice. Note that despite mimicking an output
feedback control structure, we deliberately omit to insert any control damping. This is intentional since our
goal is to demonstrate the stability and possible stabilizing properties of hysteresis in the loop. For the assumed
unity masses, the closed-loop system (3.1) is given by

A3 =


0 0 1 0
0 0 0 1
−g g −K 0 0
g −g 0 0.01

 , B3 =


0
0
−1
1

 , CT
3 =

(
1 −1 0 0

)
, (5.5)

while for the static map ξ we will consider both a memoryless stiffness and stiffness with hysteresis. These are
addressed separately in the following subsections. The state vector is x = (x1, x2, x3, x4)T , while non-zero initial
conditions x(0) = (1, 0, 0, 0)T will be assumed for the solutions shown below. Note that the linear stiffness of
connecting spring, assigned to be g = 100, is already captured in the system matrix A3. Further we note that
an auxiliary (low-valued) viscous damping term 0.01 × x4 is added to the second mass, in order to provide a
better separation between two pairs of the conjugate-complex poles of A3. This is also to numerically stabilize
computation of the solutions since we are addressing two boundary cases in the vicinity of the stability margin
of the closed-loop system.

5.2.1. Memoryless stiffness

First, we consider a linear memoryless stiffness of the connection spring so that ξ = 0. In this case an
oscillating behavior of the system will depend on assignment of the feedback gain. Analyzing the system matrix
A3, one can show that the closed-loop system becomes marginally stable once K = g. For a stable and unstable
system response, we define a boundary-stable and boundary-unstable feedback gain K = 99 and K = 101,
respectively. The associated poles-zeros configuration for both cases are shown in Figure 7a and b. One can see
that a relatively small variation of the feedback gain, i.e., by some 2 %, shifts one boundary-stable conjugate
complex pole pair into the right half-plane of the s-domain. This results in an unstable configuration of the
system poles and, as implication, the overall closed-loop dynamic system becomes unstable, as can be seen from
the phase portrait depicted in Figure 8b. Opposite, the phase portrait of the same (x1, x2)-states is shown in
Figure 8a for the boundary-stable feedback gain.

5.2.2. Hysteresis stiffness

Next, we give an example of the stabilizing property of hysteresis in the loop, when keeping the boundary-
unstable K = 101 feedback gain, as addressed above. The linear dynamics of the system Φ remains the same as
in Section 5.2.1, while the single modification is made in the nonlinear part of (2.7). We are assuming the sign-
dependent hysteresis term with h = 50, further denoted as sign-hysteresis. In this case the feedback nonlinearity
coincides exactly with (2.7). Another, instead of h sign(ẏ), we then assume a simple single Prandtl-Ishlinskii (PI)
stop-type operator [19, 20], which represents one rheological element, further denoted by PI-hysteresis. Recall
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Figure 7. Poles and zeros for boundary-stable K = 99 (a) and boundary-unstable K = 101
(b) feedback.

Figure 8. Phase portrait of the (x1, x2)-states, once for boundary-stable K = 99 (a) and once
for boundary-unstable K = 101 (b) feedback gain.

that PI-hysteresis produces an additional slope in the (y, ξ) coordinates, thus avoiding the sign-dependent
step-wise transitions. The single rheological element is parameterized by two constants, one giving the output
saturation level (analogous to h for the sign-hysteresis), and one determining the slope after the input reversals.
For details see [31].

For the closed-loop response, with the same initial conditions as in Section 5.2.1, the input-output map of
both nonlinearities are shown in Figure 9a, without incorporating the linear stiffness part (already captured in
A3). The sign-hysteresis converges to a final state, while the numerical integration at discontinuities produces
a (minor) spurious drift, see the red vertical bar in Figure 9a. The same can be said of the PI-hysteresis
trajectory while multiple reversal slopes still remain inside the surrounding major loop. The corresponding x2-
state trajectories, shown in Figure 9b, indicate the appearance of a stable limit cycle in both cases, while the
second superimposed harmonic, obviously related to additional stiffness of PI-hysteresis, is also visible during
initial transients.

Note that in both the above examples, inclusion of the hysteresis provides a stabilizing effect, while the linear
feedback dynamics (5.5) is inherently unstable for K = 101. However, the stability analysis based on the circle
criterion given in Section 4, does not deliver conclusive results since one of the transformed closed loops, cf.
Figure 2, is unstable. Nevertheless, an additional stabilizing feature of hysteresis points to an important effect
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Figure 9. Response of feedback nonlinearity (plotted without linear stiffness part) for both
PI- and sign-hysteresis (a), and corresponding x2-state response (b).

in shaping the closed-loop system dynamics. This does not appear to be controversial and can be interpreted
as a local stability property, while the absolute stability cannot be guaranteed in this case. Local stability is
supposedly related to the amount of energy dissipated at the hysteresis cycles and is therefore dependent on the
hysteresis shape and initial conditions in the otherwise unstable closed-loop dynamics. These additional aspects
of hysteresis stabilization are equally interesting, but are beyond the scope of this study. They are certainly
worth investigating in the future.

6. Conclusions

In this paper, we have addressed the stability of linear dynamics with clockwise hysteresis in feedback.
Starting by analyzing a dissipative hysteresis map, we have demonstrated the property of energy dissipation
once the input changes and for each input reversal. In this context, we have derived an upper boundary case
of a clockwise hysteresis, constructed with the help of a simple sign operator applied to the input rate. In
contrast, the lower boundary case (where the hysteresis vanishes and the hysteresis loops collapse to the static
nonlinearity without memory), is shown to be non-dissipative and therefore lossless from an energy viewpoint.
Other hysteresis shapes lying in-between the boundary cases, i.e., having non-zero loop area, are shown to be
equally dissipative, cf. Figure 1. A general class of linear dynamic systems with hysteresis in feedback has been
considered in the spirit of the seminal work [3]. In addition to existing approaches, a simple loop transformation
which allows for stability analysis by means of the circle criterion has been introduced. It has been shown that
the standard circle criterion should be satisfied for both parallel loops of the transformed dynamics, upon which
the absolute stability can be concluded. The numerical examples have been demonstrated for two boundary
cases of the second-order system dynamics. In addition, a more demanding fourth-order dynamics of a feedback
controlled double-mass harmonic oscillator has been treated and discussed for one stable and one unstable poles
configuration. In this regard, some general stabilizing hysteresis properties have also been discussed.
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