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a b s t r a c t

By using comparison principles, we analyze the asymptotic behavior of solutions to
a class of third-order nonlinear neutral differential equations. Due to less restrictive
assumptions on the coefficients of the equation and on the deviating argument τ ,
our criteria improve a number of related results reported in the literature.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Higher-order functional differential equations have numerous applications in engineering and natural
sciences, see Hale [1]. For instance, one can describe the behavior of solutions to third-order partial
differential equations using information about the asymptotics of solutions to associated delay differential
equations; see Agarwal et al. [2] for more details. In this paper, we are concerned with the asymptotic
behavior of solutions to a class of third-order nonlinear neutral differential equations(

a(t) (z′′(t))γ)′ + q(t)xγ(τ(t)) = 0, (1)

where t ∈ I := [t0, ∞) ⊂ (0, ∞), γ is a ratio of odd positive integers, z(t) := x(t) + p0x(t − δ0), p0 ≥ 0,
p0 ̸= 1, and δ0 are constants, δ0 ≥ 0 (delayed argument) or δ0 ≤ 0 (advanced argument), a, q, τ ∈ C(I,R),
a(t) > 0, q(t) ≥ 0, q(t) is not identical to zero for large t, and limt→∞ τ(t) = ∞.

Let t∗ := min{t0 − δ0, mint∈I τ(t)}. By a solution of Eq. (1) we understand a function x ∈ C([t∗, ∞),R)
such that a(z′′)γ ∈ C1(I,R) and x satisfies (1) on I. We consider only solutions of Eq. (1) which satisfy
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sup{|x(t)| : t ≥ T} > 0 for all T ≥ t0 and tacitly assume that (1) possesses such solutions. A solution x (t)
of (1) is said to be oscillatory if it has arbitrarily large zeros on [tx, ∞) for some tx ∈ I depending on the
solution; otherwise, it is called nonoscillatory.

Usually, a second-order differential equation is called oscillatory if all its solutions oscillate. This is not
the case for third-order equations whose solutions often exhibit different asymptotic behavior. Thus a third-
order differential equation is called oscillatory if it has at least one oscillatory solution, see Erbe [3] and
Hanan [4]. Furthermore, the presence of functional argument in the equation may significantly affect the
nature of solutions. For example, a third-order linear differential equation

x′′′(t) + x(t) = 0

has a nonoscillatory solution x1(t) = e−t along with the oscillatory solutions x2 (t) = et/2 cos
(√

3t/2
)

and
x3 (t) = et/2 sin

(√
3t/2

)
. However, one can completely eliminate all nonoscillatory solutions introducing the

delayed argument and considering a third-order linear delay differential equation

x′′′(t) + x(t − π) = 0.

By the result due to Ladas et al. [5, Theorem 1], all solutions to the latter equation are oscillatory since the
associated characteristic equation λ3 + e−πλ = 0 has no real roots. We note that such drastic changes in
the asymptotic behavior of solutions are not specific for third-order equations and can be observed also for
first-order differential equations. Taking into account that under our assumptions differential equation (1)
can be both delayed and advanced and that we are concerned in this paper only with the asymptotic behavior
of solutions, we tacitly assume that solutions to the equation under study exist and can be continued to
infinity.

Numerous researchers analyzed asymptotic behavior of solutions to various classes of functional differ-
ential equations; see, for instance, the monographs [6–9], the papers [2,5,10–19], and the references cited
therein. Assuming that ∫ ∞

t0

a−1/γ(t)dt = ∞, (2)

0 ≤ p0 < 1, (3)

δ0 ≥ 0, τ(t) ≤ t, (4)

and
either a′(t) ≥ 0 or a′(t) ≤ 0, (5)

Bacuĺıková and Džurina [10], Džurina et al. [14], and Yang and Xu [19] established several sufficient
conditions which guarantee that all nonoscillatory solutions to Eq. (1) tend to zero at infinity. Bacuĺıková
and Džurina [11] and Li et al. [16,17] studied asymptotics of Eq. (1) for γ = 1 under conditions (3) and (4).
Candan [13] analyzed behavior of solutions to (1) assuming that (3) holds and

τ(t) = t − τ0. (6)

Finally, Li and Rogovchenko [15] investigated Eq. (1) under conditions (6) and 0 ≤ p0 < ∞.
The objective of this paper is to analyze the asymptotic nature of solutions to Eq. (1) in the case where

condition (2) is satisfied but without assumptions (3)–(6). In the sequel, all functional inequalities are
supposed to hold for all t large enough. Without loss of generality, we deal only with eventually positive
solutions of (1) since, under our assumption on γ, if x(t) is a solution of Eq. (1), so is −x(t).
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2. Auxiliary lemmas

The following lemmas will be used to establish our main results.

Lemma 1. Assume that condition (2) is satisfied and let x(t) be an eventually positive solution of Eq. (1).
Then there exists a sufficiently large t1 ≥ t0 such that, for all t ≥ t1, either

z(t) > 0, z′(t) > 0, z′′(t) > 0,
(
a(t) (z′′(t))γ)′ ≤ 0, (7)

or
z(t) > 0, z′(t) < 0, z′′(t) > 0,

(
a(t) (z′′(t))γ)′ ≤ 0. (8)

Proof. Thanks to condition (2) employed also by Bacuĺıková and Džurina [10, Lemma 1], the proof follows
the same lines as in the cited paper since assumptions (3)–(5) are not required here. ■

Lemma 2 (Győri and Ladas [8, Lemma 1.5.1]). Let f, g ∈ C(I,R) and f(t) = g(t) + pg(t − c), t ≥
t0 + max{0, c}, where p ̸= 1 and c are constants. Assume that there exists a constant l ∈ R such that
limt→∞ f(t) = l.

(S1) If lim inft→∞ g(t) = g∗ ∈ R, then g∗ = l/(1 + p).
(S2) If lim supt→∞ g(t) = g∗ ∈ R, then g∗ = l/(1 + p).

Lemma 3. Let x(t) be an eventually positive solution of Eq. (1) and assume that z(t) satisfies (8). If∫ ∞

t0

∫ ∞

v

(
1

a(u)

∫ ∞

u

q(s)ds

)1/γ

dudv = ∞, (9)

then
lim

t→∞
x(t) = 0. (10)

Proof. By virtue of inequalities z(t) > 0 and z′(t) < 0, there exists a constant z0 ≥ 0 such that
limt→∞ z(t) = z0. We claim that z0 = 0. Otherwise, using Lemma 2, we conclude that limt→∞ x(t) =
z0/ (1 + p0) > 0. Then there should exist a t2 ≥ t0 such that, for all t ≥ t2,

x(τ(t)) >
z0

2(1 + p0) > 0. (11)

It follows from (1) and (11) that (
a(t) (z′′(t))γ)′ ≤ −

(
z0

2(1 + p0)

)γ

q(t).

Integrating this inequality from t to ∞, we conclude that

a(t) (z′′(t))γ ≥
(

z0

2(1 + p0)

)γ ∫ ∞

t

q(s)ds,

which implies that

z′′(t) ≥ z0

2(1 + p0)

(
1

a(t)

∫ ∞

t

q(s)ds

)1/γ

. (12)

Integrating (12) from t to ∞, we have

−z′(t) ≥ z0

2(1 + p0)

∫ ∞

t

(
1

a(u)

∫ ∞

u

q(s)ds

)1/γ

du.
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One more integration from t2 to ∞ yields

z(t2) ≥ z0

2(1 + p0)

∫ ∞

t2

∫ ∞

v

(
1

a(u)

∫ ∞

u

q(s)ds

)1/γ

dudv,

which contradicts condition (9). Therefore, limt→∞ z(t) = 0, and the desired property (10) follows now from
the inequality 0 < x(t) ≤ z(t). ■

3. Main results

Theorem 4. Let conditions (2) and (9) be satisfied and assume that

δ0 ≥ 0. (13)

Suppose that there exists a function η ∈ C(I,R) such that η(t) ≤ τ(t), η(t) < t, and limt→∞ η(t) = ∞. If the
first-order delay differential equation

y′(t) + q(t)
(1 + p0)γ

(∫ η(t)

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

y(η(t)) = 0 (14)

is oscillatory for all large t1 ≥ t0 and for some t2 ≥ t1, then every solution x(t) of Eq. (1) is either oscillatory
or satisfies (10).

Proof. Let x(t) be a nonoscillatory solution of (1); assume that it is eventually positive. By Lemma 1,
there exists a t1 ≥ t0 such that either (7) or (8) hold for all t ≥ t1. For (8), it follows immediately from
Lemma 3 that (10) holds and we need to consider the second case. Suppose now that conditions (7) are
satisfied. Using the property (a(t)(z′′(t))γ)′ ≤ 0, we conclude that

z′(t) = z′(t1) +
∫ t

t1

(a(s)(z′′(s))γ)1/γ

a1/γ(s)
ds ≥ a1/γ(t)z′′(t)

∫ t

t1

a−1/γ(s)ds. (15)

Integrating (15) from t2 to t, t2 ≥ t1, we obtain

z(t) ≥ a1/γ(t)z′′(t)
∫ t

t2

∫ v

t1

a−1/γ(s)dsdv. (16)

Since z′(t) > 0 and z′′(t) > 0, there exists a positive constant c0 (it is also possible that c0 = ∞) such that
limt→∞ z′(t) = c0 > 0. Consequently, by Lemma 2, limt→∞ x′(t) = c0/ (1 + p0) > 0, and we conclude that

x′(t) > 0. (17)

Conditions (13) and (17) yield that z(t) = x(t) + p0x(t − δ0) ≤ (1 + p0)x(t), that is,

x(t) ≥ 1
1 + p0

z(t). (18)

By virtue of the inequalities η(t) ≤ τ(t), (17), and (18), we conclude that

x(τ(t)) ≥ x(η(t)) ≥ 1
1 + p0

z(η(t)). (19)

Using now (19) in (1), we arrive at(
a(t) (z′′(t))γ)′ + q(t)

(1 + p0)γ
zγ(η(t)) ≤ 0. (20)
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Combining inequalities (16) and (20), we deduce that

(
a(t) (z′′(t))γ)′ + q(t)

(1 + p0)γ

(∫ η(t)

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

a(η(t)) (z′′(η(t)))γ ≤ 0,

which means that the function y(t) := a(t) (z′′(t))γ is a positive solution of a delay differential inequality

y′(t) + q(t)
(1 + p0)γ

(∫ η(t)

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

y(η(t)) ≤ 0.

An application of the result due to Philos [18, Theorem 1] yields that the associated delay differential
equation (14) also has a positive solution, which contradicts the assumption of the theorem. ■

Combining Theorem 4 with [9, Theorem 2.1.1], we derive the following useful result.

Corollary 5. Let conditions (2), (9), and (13) be satisfied. Assume that there exists a function η ∈ C(I,R)
such that η(t) ≤ τ(t), η(t) < t, and limt→∞ η(t) = ∞. If, for all large t1 ≥ t0 and for some t2 ≥ t1,

1
(1 + p0)γ

lim inf
t→∞

∫ t

η(t)
q(u)

(∫ η(u)

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

du >
1
e , (21)

then conclusion of Theorem 4 remains intact.

Proof. Condition (21) ensures that, by virtue of the result in Ladde et al. [9, Theorem 2.1.1], Eq. (14) is
oscillatory. An application of Theorem 4 completes the proof. ■

The next result relates oscillation of (1) in the case when

δ0 ≤ 0 (22)

to that of an associated first-order delay differential equation.

Theorem 6. Let conditions (2) and (9) be satisfied and assume that (22) holds. Suppose also that there
exists a function η ∈ C(I,R) such that η(t) ≤ τ(t), η(t) < t − δ0, and limt→∞ η(t) = ∞. If the first-order
delay differential equation

y′(t) + q(t)
(1 + p0)γ

(∫ η(t)+δ0

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

y(η(t) + δ0) = 0 (23)

is oscillatory for all large t1 ≥ t0 and for some t2 ≥ t1, then conclusion of Theorem 4 remains intact.

Proof. Let x(t) be an eventually positive solution of (1). By Lemma 1, there exists a t1 ≥ t0 such that either
conditions (7) or (8) hold for all t ≥ t1. If (8) hold, Lemma 3 immediately yields the desired conclusion (10).
Next, suppose that (7) are satisfied. As in the proof of Theorem 4, inequalities (16) and (17) hold. It follows
now from the definition of z(t) and inequalities (17) and (22) that z(t) = x(t)+p0x(t−δ0) ≤ (1+p0)x(t−δ0),
which implies that

x(t) ≥ 1
1 + p0

z(t + δ0). (24)

Using the assumption η(t) ≤ τ(t) and inequalities (17) and (24), we have

x(τ(t)) ≥ x(η(t)) ≥ 1
1 + p0

z(η(t) + δ0). (25)
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Substitution of (25) into (1) yields(
a(t) (z′′(t))γ)′ + q(t)

(1 + p0)γ
zγ(η(t) + δ0) ≤ 0. (26)

Combining (16) and (26), we conclude that

(
a(t) (z′′(t))γ)′ + q(t)

(1 + p0)γ

(∫ η(t)+δ0

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

a(η(t) + δ0) (z′′(η(t) + δ0))γ ≤ 0.

This means that the function y(t) := a(t) (z′′(t))γ is a positive solution of a delay differential inequality

y′(t) + q(t)
(1 + p0)γ

(∫ η(t)+δ0

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

y(η(t) + δ0) ≤ 0.

Then, using the result of Philos [18, Theorem 1] once again, we deduce that the associated delay differential
equation (23) also has a positive solution, which contradicts the main assumption of the theorem. ■

Combining Theorem 6 with [9, Theorem 2.1.1], we obtain the following result.

Corollary 7. Let conditions (2), (9), and (22) be satisfied. Assume that there exists a function η ∈ C(I,R)
such that η(t) ≤ τ(t), η(t) < t − δ0, and limt→∞ η(t) = ∞. If, for all large t1 ≥ t0 and for some t2 ≥ t1,

1
(1 + p0)γ

lim inf
t→∞

∫ t

η(t)+δ0

q(u)
(∫ η(u)+δ0

t2

∫ v

t1

a−1/γ(s)dsdv

)γ

du >
1
e , (27)

then conclusion of Theorem 4 remains intact.

Proof. According to [9, Theorem 2.1.1], assumption (27) guarantees that Eq. (23) is oscillatory. A direct
application of Theorem 6 yields the desired conclusion. ■

4. Examples and discussion

The following examples illustrate theoretical results presented in the previous section. In both examples,
t ≥ 1 and p0 ̸= 1 is a nonnegative real number.

Example 8. Choosing η(t) = t − 1 in Corollary 5, we conclude that every solution to a third-order neutral
differential equation

(x(t) + p0x(t − 1))′′′ + (e2 + p0e3)x(t + 2) = 0
is either oscillatory or satisfies (10). In fact, x(t) = e−t is an exact solution to this equation satisfying (10).

Example 9. An application of Corollary 7 with η(t) = t yields that every solution to a third-order neutral
differential equation

(x(t) + p0x(t + 1))′′′ + (et + p0et−1)x(2t) = 0
is either oscillatory or satisfies (10). As a matter of fact, x(t) = e−t is an exact solution satisfying (10).

Remark 10. An important feature that distinguishes our results from many related theorems reported
in the literature is that we do not impose specific restrictions on the deviating argument τ , that is, τ may
be delayed, advanced, or change back and forth from advanced to delayed. On the other hand, we would
like to point out that, contrary to Bacuĺıková and Džurina [10,11], Candan [13], Džurina et al. [14], Li
and Rogovchenko [15], Li et al. [16,17], and Yang and Xu [19], in our results we do not need restrictive
conditions (3)–(6), which is an improvement compared to the results in the cited papers.
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Remark 11. Theorems 4 and 6 and Corollaries 5 and 7 ensure that every solution x(t) of Eq. (1) is either
oscillatory or tends to zero as t → ∞. Since the sign of the derivative z′(t) changes, it is hard to derive
sufficient conditions which ensure that all solutions of Eq. (1) are just oscillatory and do not satisfy (10).
Neither is it possible to utilize the method exploited in this paper for proving that all solutions of Eq. (1)
only have the property (10). These two interesting problems remain open for now.

CRediT authorship contribution statement

Tongxing Li: Methodology, Investigation, Writing - original draft. Yuriy V. Rogovchenko: Concep-
tualization, Writing - review & editing, Supervision.

Acknowledgments

The authors express their sincere gratitude to two anonymous referees for the careful reading of the
original manuscript and useful comments that helped to improve the presentation of the results and
accentuate important details. The research of TL was supported by NNSF of P.R. China (Grant No.
61503171), CPSF (Grant No. 2015M582091), and NSF of Shandong Province (Grant No. ZR2016JL021).

References

[1] J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[2] R.P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwanese

J. Math. 17 (2013) 545–558.
[3] L. Erbe, Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations,

Pacific J. Math. 64 (1976) 369–385.
[4] M. Hanan, Oscillation criteria for third-order linear differential equations, Pacific J. Math. 11 (1961) 919–944.
[5] G. Ladas, Y.G. Sficas, I.P. Stavroulakis, Necessary and sufficient conditions for oscillations of higher order delay

differential equations, Trans. Amer. Math. Soc. 285 (1984) 81–90.
[6] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation Theory of Functional Differential

Equations with Applications, Springer, New York, 2012.
[7] R.P. Agarwal, M. Bohner, W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel

Dekker, Inc., New York, 2004.
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