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Abstract Students’ opportunities to learn informally (e.g. by watching documentaries, 

visiting museums) explain socio-economic inequities in school performances. To explore 

informal learning about mathematical modelling, I studied two science museums, as these 

are environments typically visited by middle-class families. I framed the study by using the 

notions science capital and the public understanding of mathematical modelling (PUMM) 

and explored how these are mediated in science museums. The research method entailed 

observations of displays, artefacts, and visitors. One science museum completely detached 

mathematics from its use-value, while the other offered histories of how people used 

mathematics to solve society’s problems. This leads to recommendations for the design of, 

and research on, environments for informal learning about mathematical modelling. 
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1 Introduction 

The Organisation for Economic Cooperation and Development (OECD) reports there are 

inequities that affect mathematics scores on the PISA-test (OECD 2014). The report shows 

that students, whose parents are higher professionals, outperform students whose parents 

are workers in elementary occupations. This phenomenon is observed in all participating 

countries in PISA. Such socio-economic inequities are caused by differences in the 

educational environment, as students whose parents are higher professionals are more likely 

to attend schools with more resources and higher qualified teachers. Yet, even if all 

students would learn within the same educational environment (same curriculum, same 

teacher, same tasks, etc.), the socio-economic background plays a role in their uptake of, 

and interest in, science and mathematics. Richer families can use their economic resources 

to create advantages, for example, by paying for tutors. Also, the social background can 

empower students as Archer et al. (2013) showed: within white, middle-class home 

environments, students are more likely to know people who work in science-related jobs 

and learn from them about how science works. These acquaintances can be role models in 

their ways of reasoning, explaining phenomena or questioning causalities. Also, in such 

home environments, students are more likely to be encouraged to watch documentaries or 
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visit science museums. Thus, socio-economic inequities in science and mathematics scores 

are, among others, related to students’ informal (out-of-school) learning opportunities. 

Archer et al.’s (2013) research focused on the resources that can help less privileged 

students to succeed in areas of the natural sciences. Black and Hernandez-Martinez (2016) 

pointed out, that Archer and colleagues did not refer to mathematics and mathematical 

modelling. Yet, mathematics is a vital tool for solving many problems, not only in the 

natural sciences, but also in the social sciences, business, and so forth. Competencies in 

mathematical modelling assist students to succeed in non-mathematical disciplines and in 

future professions. Therefore, educational authorities throughout the world now advise 

schools and teachers to include mathematical modelling activities in their curricula (Kaiser 

2014). Nevertheless, the pertinent issue of socio-economic inequity in mathematical 

modelling performances remains. This inequity has been observed by OECD (2014) cited 

at the beginning of this chapter, and which is based on parental occupations and their 

relation to the scores on a mathematics test, in which competencies were tested regarding 

the application of mathematics in real-life situations. 

To explore socio-economic inequities in mathematical modelling education, I 

conducted a study on opportunities for students’ informal (outside-school) learning of 

mathematical modelling. Informal learning comprises students’ learning at home or with 

peers, when shopping, travelling, participating in sports, watching videos, and so forth. 

Informal learning is unsystematic and unstandardized (Marsick 2009); it happens ad-hoc, 

not guided by explicit goals or a curriculum; it is social and context-bound. Informal 

learning is erratic and happens in informal settings. Therefore, it is hard to capture by 

scientific research methods. Current research on informal learning consists of (1) studies on 

workplace-related learning, (2) studies through questionnaires, in which students report on 

their hobbies, pets and frequency of reading science magazines and having assistance with 

homework (e.g. Lin and Schunn, 2016), and (3) studies on designed environments for 

informal learning, such as zoos and museums (e.g. Borun et al. 1996; Van Schijndel and 

Raijmakers 2016). In the latter, the researchers study how visitors interact with artefacts, 

information, routing, each other, and what knowledge and dispositions they take home from 

it. In the current study, I followed this line of research and focused on the messages that 

visitors of science museums get about mathematical modelling. I chose to study science 

museums, because these are known to increase inequity between students: a visit to a 

(science) museum is a typical white, middle-class leisure activity (Archer et al. 2013). Also, 

when schools organize an excursion to a science museum, it means that the school is 

situated in an affluent country and has financial resources for the excursion. 

2 Theoretical Frame 

This study was framed by two concepts. The first concept is science capital, which is based 

on the sociological theory of Pierre Bourdieu. For a more detailed explanation of this 

theory see Vos, Hernandez-Martinez and Frejd (this volume). Here, it suffices to say that 

science capital is an extension of social capital (the social network of people who will 

assist when asked for help) and cultural capital (diplomas, knowledge of etiquette, access 

to information, etc.) (Bourdieu and Wacquant 1992). Both social and cultural capital are 
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valuable resources that people own and accumulate, just like economic capital, and that can 

generate profits and privileges. Extending the Bourdieusian theory, Archer et al. (2013, 

2015) defined science capital as the resources that offer advantages within scientific 

contexts, such as science dispositions, science media consumption, parental scientific 

knowledge, and so forth. Science capital can be accumulated in schools, but also out-of-

school. A typical example of science capital that some have, and others not, is a relative 

who works in a science-related job and who can tell how science works. Another example 

of how science capital can be accumulated is through a family visit to a science museum. 

Archer et al. (2013, 2015) established that students with more science capital are more 

likely to enter professions with science components (research, engineering, etc). In the 

present study, I took resources pertaining to mathematics and mathematical modelling as 

being an integral part of science capital. This means that cognitive and meta-cognitive 

modelling competencies (Galbraith et al. 2007; Kaiser 2007, 2014), affect and interest 

(Black and Hernandez-Martinez 2016; Schukajlow et al. 2012) are included. It remains to 

be noted, that science capital is a conceptual construct for analytic research. 

 The second concept used in the present study is the public understanding of 

mathematical modelling (PUMM). PUMM is an adaptation of the public understanding of 

science (PUS), which is the understanding, awareness and engagement of the general public 

of scientific knowledge and organisation (Bauer, Allum and Miller 2007). Many 

researchers of PUS work in Institutes for Communication Studies and they study how 

groups of people (e.g. shoppers in a supermarket, fishers in a coastal region, readers of a 

certain newspaper) understand the complexities of science, technology, and innovation and 

how they choose to use or disregard that knowledge (e.g. Dash 2015). 

PUMM is a similar construct as the public image of mathematics, which is the 

general public’s knowledge of, and about, mathematics. This public image of mathematics 

is shaped on the one hand by traditional mathematics education with meaningless and 

repetitive tasks, with alienating symbols, and so forth. On the other hand, the public image 

of mathematics is shaped by dialectics of modern society’s simultaneous mathematisation 

and de-mathematisation (Gellert and Jablonka 2007; Keitel 2006). The mathematisation of 

society consists of an increased use of mathematics virtually anywhere, whereby 

mathematics is considered as value-free and useful for establishing truths and making 

decisions. Simultaneously, there is a de-mathematisation process, which is the process 

whereby mathematics becomes increasingly invisible, being black-boxed in technological 

devices. Thus, the public image of mathematics has been studied, but PUMM has not been 

studied yet. There are no studies yet on whether the general public knows the term 

‘mathematical modelling’ at all, or whether certain groups of people have meta-knowledge 

of mathematical modelling, which Brown and Stillman (2017) defined as “the background 

knowledge (…) about the nature of modelling, how it is conducted and why mathematics 

can be applied in real situations” (p. 357). Neither do we know, whether the general public 

has experienced the usefulness of mathematics through mathematical modelling activities. 

The current study is the first to explore PUMM, in particular PUMM among middle-class 

families because of its focus on science museums. 

In this study, science capital and PUMM are used as complementary analytic 

concepts. They will be helpful in the following way. Science capital is the set of resources 
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that enable an individual to advance in science contexts (including in mathematical 

modelling contexts). It is an individual person’s asset, whereby some have more of it than 

others. Thus, science capital is at the micro level and it is used to analyse differences 

between individuals. In contrast, PUMM is a social asset, used to describe a certain 

knowledge at the macro level, being present in the public domain. Science capital and 

PUMM are related, yet different. PUMM can hinder or support individuals in their 

accumulation of science capital. Conversely, if many people accumulate much science 

capital related to mathematical modelling, this will improve PUMM.  

The aim of the study was to explore both science capital related to mathematical 

modelling and PUMM without striving for exhaustive descriptions. By focusing on the 

informal learning regarding mathematical modelling that can occur in science museums, I 

would be able to capture aspects of both. The research questions were: what possible 

science capital related to mathematical modelling can students (in the school going age) 

accumulate in science museums? What possible PUMM can science museums generate?  

3 Methods 

To answer the research questions, I selected the science museums/centres on the following 

criteria: (1) to keep cohesion in the study, the visits were to take place within a few months; 

(2) to have a fresh eye, I should not have visited the museums before, and (3) to limit bias, I 

should not have prior professional engagement with them (as consultant). This resulted in 

visits to the Experimentarium in Copenhagen (Denmark), and the London Science Museum 

(UK). On both occasions, I went together with a teacher trainer (respectively, a 

mathematics teacher trainer, and a primary school teacher trainer). Generally, a visit to a 

science museum will take more than a day, and one undertakes a spontaneous routing. To 

stay concentrated on the research, I limited our visits to 2 hours and to only those museum 

sections tagged with the keyword mathematics on the official website (the search word 

‘model*’ lead to a section on wax modelling). 

Similar to the research approaches of other science museum researchers (e.g. Borun, 

Chambers and Cleghorn 1996; Van Schijndel and Raijmakers 2016), I made field notes, 

photographs, and short videos. I registered the environment, the information on displays 

and in videos, and the activities for visitors. The visitors present during our stay were 

considered as a sample of convenience. Without disturbing them, I observed their activities 

and the time they stayed. I did not ask their permission, as the research did not breach their 

privacy. Additionally, I asked my colleague to read the displays, watch the videos, and 

engage in the activities as if it was a regular visit. Afterwards we discussed the visit and I 

wrote a report. I analysed these from two angles. First, I used the concept of science capital 

related to mathematical modelling, to identify resources, which can offer advantages to an 

individual in future science endeavours. Second, I used the concept of PUMM to identify 

messages to the general public on understanding mathematical modelling. 
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4 Results 

In this section, I will first report on the observations made in the Experimentarium in 

Copenhagen (Denmark) and then of those made in the London Science Museum (UK). 

 When we visited the Experimentarium in Copenhagen in June 2017, we were 

surprised by its brand-new architecture, design of artefacts and activities. In fact, this centre 

had opened only five months earlier (in January 2017). At the moment of our visit, on a 

Friday morning, the visitors consisted mainly of students aged 8-14 years old. Most came in 

a school excursion accompanied by a few teachers, which resulted in groups of 2-5 students 

roaming the centre unaccompanied by an adult. According to their website 

www.experimentarium.dk, there were two sections tagged as being about mathematics: 

Bubblearium and The Solver (see Fig. 1). 

In the section Bubblearium, the visitors were invited to create soap bubbles, which 

was exciting as judged from the visitors’ noise. Particularly attractive were the rings to 

create a cylinder around a person. However, after having made a few soap shapes, and 

watching others make these, all students left this section. Texts on the wall and three bubble 

machines (two of which were out of order) were designed with the intent to make students 

explore combined bubbles and the reflection in bubble surfaces. However, few students did 

this, and only if induced by an adult. In this section, the students’ activities were haphazard 

and aimless, also because the shapes were not stable and disappeared after a few seconds 

into the air. The maximum time that visitors spent here was three minutes.  

The second section in the Experimentarium tagged as mathematical was The Solver. 

In the middle was a labyrinth painted on the floor, on which one could walk. This labyrinth 

was surrounded by tables on which there were physical puzzles consisting of wooden or 

plastic pieces (spheres, blocks and other shapes). These were to be put together (tiled, 

stacked) or to be separated from one another. All objects were attractively colourful and 

tangible. In the time span of an hour, few visitors came to this section; it was not noisy at 

all. The students, who entered this section, tried one or two puzzles and left after a few 

unsuccessful attempts within 2 minutes. Only two boys stayed longer than half an hour, 

seated at one table being fully absorbed in a puzzle.  

 

 

 

 

 

 

 

 

 

http://www.experimentarium.dk/
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Fig. 1 Experimentarium Copenhagen, sections Bubblearium (left, © Pauline Vos) and The Solver 

(right, © Pauline Vos) 

Both sections in the Experimentarium in Copenhagen connected to mathematical 

shapes, aimed at showing that these shapes can create wonder and inquiry. When analysing 

in light of science capital related to mathematical modelling, in this science centre visitors 

can learn to enjoy mathematics. However, the exciting artefacts and activities showed a 

type of mathematics that has no use-value for solving problems in real-life. We, as visitors 

with a background in mathematics, were able to recognize the mathematics behind the 

puzzles and bubbles, but there were no indications that the students could. The sections 

neither connected to traditional mathematics education, nor to mathematical modelling. As 

such, the sections assisted students in accumulating a certain science capital, but no capital 

related to mathematical modelling. Analysing the sections in light of PUMM, we can but 

observe that they did not show the usefulness of mathematics and propagate a public image 

of mathematics as detached from real-life. By including sections tagged as mathematics, the 

Experimentarium clearly intends to make mathematics visible to its visitors, but its 

implementation keeps mathematical modelling invisible and makes PUMM void. 

The second science museum visited in this study was the London Science Museum 

(UK). We were there on a Friday morning in May 2017. Only one section, the Winton 

Gallery, was tagged as being about mathematics according to the website 

(www.sciencemuseum.org.uk). It was designed by architect Zaha Hadid, who studied 

mathematics before turning to architecture. This section opened in December 2016. When 

we entered it, we were caught by violet curls hanging from the ceiling, which surrrounded 

an antique aircraft, described as an authentic 1929 Handley Page Gugnunc. Displays and a 

video explained that the violet curls show the air flow around the aircraft in flight (see Fig. 

2). It was also explained that aircraft engineers needed the Navier-Stokes equations to 

better understand the dangers of flying, and that mathematics is needed to make flying an 

aircraft safer. 

 
Fig. 2 Curved shapes showing airflowaround an aircraft (© Zaha Hadid Architects) 

 

Surrounding the airplane, there were thematic exhibits telling histories of how people 

used mathematics for social purposes. For example, there was the story of Florence 

Nightingale, and how she visualized mortality statistics in the Crimean War (1853-56) to 

convince political and military leaders that lack of hygiene killed more soldiers than the 
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enemy. Another example was the story of the flooding disaster of 1953 in England, and 

how Winston Churchill asked mathematicians for better weather and tide predictions. 

Behind glass was the authentic tide prediction machine made by Lord Kelvin, which 

yielded the tides a year in advance after four hours of cranking its handle. Another 

authentic, antique object displayed in the Winton Gallery enabled conversion of weights in 

international trading. It was a cabinet with 96 drawers, each holding the weights from a 

place overseas.  

The Winton Gallery informed us, as visitors, through narrative displays, videos and 

artefacts in glass showcases, of which the authenticity was clarified through texts 

explaining their source (Vos 2015). The histories related of people who used mathematics 

to solve real-life problems; the terms ‘model’ and ‘modelling’ were explicitly used. Visitors 

were shown formulae, yet did not need to do mathematics. There was much to read, and 

nothing to be touched. Unlike the Experimentarium in Copenhagen, there were no tangible 

objects or exciting activities. During our visit, I observed only adults in the Winton Gallery 

and none stayed longer than 15 minutes. Although the museum attracted younger visitors, 

they rather went to the flight simulators elsewhere in the museum. 

When looking through the lens of science capital related to mathematical modelling, 

the Winton Gallery offered role models of women and men who solved real-life problems 

by using mathematics. The term ‘mathematical model’ was explicitly used, the texts offered 

insights into the purposes of mathematical modelling. Thus, the science capital that students 

can accumulate here is similar to what they can gather from science documentaries related 

to mathematical modelling: this science capital can increase an individual’s dispositions to, 

and knowledge about, mathematical modelling through raising curiosity and interest. 

However, modelling as an activity remains vague, as the visitors cannot experience 

modelling activities themselves. Also, the objects were untouchable and the explanations 

were rather verbal; both can be considered less attractive for students, whom we want to 

become competent modellers. Looking through the lens of PUMM, the Winton Gallery 

conveyed a message that mathematics is important because of its use-value. We were told 

histories of how women and men struggled with the creation of mathematical models to 

solve problems that mattered to their society. As such, this gallery can add to PUMM that 

mathematical modelling is a human activity and it serves social purposes, such as keeping 

flight passengers safe and reducing death toll in wars. 

5 Conclusion, Discussion and Recommendation 

The current study opened a window on informal learning of mathematical modelling, 

inspired by research that observed that informal learning is a source for socio-economic 

inequities in mathematical modelling education. Students who have access to out-of-school 

resources pertaining to mathematical modelling, for example through parental support, will 

be more likely to succeed in it. To study informal learning, I explored two science 

museums, because these are considered typical environments for informal learning, in 

particular by middle-class families (Archer et al. 2013, 2015). To frame the study, I used 

two concepts: (1) the concept of science capital to analyse out-of-school resources for 

students that can give them advantages when it comes to mathematical modelling, and (2) 



Accepted for publication in the book:  

Stillman, G., Kaiser, G., & Lampen, E. (Eds.), Mathematical Modelling Education and Sense 

Making. Cham, Switzerland: Springer. 

8 
 

the public understanding of mathematical modelling (PUMM), which captures how the 

general public conceptualizes mathematical modelling. The research questions were: what 

possible science capital related to mathematical modelling can students accumulate in 

science museums? What possible PUMM can science museums generate? 

 When looking through the lens of science capital related to mathematical modelling, 

the study yielded a mixed picture. On the one hand, a science museum can be like the 

Experimentarium in Copenhagen (Denmark), and focus on offering activities on bubbles 

(attractive to many, but only for a short time) and puzzles (only attractive to a few) that 

connect to an esoteric mathematics detached from real-life. In this case, the use-value of 

mathematics for solving real-life problems was not aimed for and thus ignored. Such a 

science museum offers many experiences to the middle-class children coming there, but no 

science capital related to mathematical modelling. On the other hand, a science museum 

can be like the London Science Museum (UK), and include a section that strongly focuses 

on the use-value of mathematics for solving social problems. This science museum offered 

histories of mathematical modellers and offered insights into the purposes of mathematical 

modelling, thereby enhancing science capital (science dispositions and knowledge). It 

remains to be noted, that the science museum of the first kind offered kinaesthetic 

experiences and was entertaining to young students, whereas the second merely presented 

factual knowledge, required a lot of reading effort and did not offer appealing activities to 

young students. Thus, in neither of the museums, students would be able to accumulate 

science capital related to mathematical modelling, although in the London Museum it was 

accessible to visitors receptive to narratives and antique objects. This answers the first 

research question. 

 When looking through the lens of PUMM, the study yielded a different picture. We 

saw that a science museum like the Experimentarium can choose to offer attractive 

activities that people with a mathematical background will recognize as being connected to 

mathematics, yet which a general, non-specialized public will only experience as shapes for 

entertainment and detached from real-life. So, the PUMM of middle-class families will not 

be enhanced. On the other hand, a science museum can include a section like the Winton 

Gallery with a strong focus on the use-value of mathematics for solving social problems 

and offer meta-knowledge about mathematical modelling through personal stories and 

authentic artefacts. It adds to the PUMM of middle-class visitors by explicitly using the 

terms mathematical models and modelling, and that these serve humankind. Thus, one 

science museum may not add to PUMM at all, whereas another can. However, neither of 

the visited science museums gave visitors the opportunity to experience the usefulness of 

mathematics by engaging in modelling activities, and so the potential PUMM observed in 

this study was of the meta-knowledge type. This answers the second research question. 

 A number of issues arise from this study. A first issue is the difference between 

propagating mathematics versus propagating mathematical modelling. A science museum 

can focus on mathematical modelling as a human activity for solving social problems, as 

done in a narrative way in the Winton Gallery in the London Science Museum. In contrast, 

a science museum can also propagate mathematics as detached from real-life and add to the 

invisibility of mathematical modelling. Second, both museums contributed to the process of 

de-mathematisation (Gellert and Jablonka 2007) with sections on kinematics, commerce 
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and other themes, that contained a lot of invisible mathematical modelling. Third, it 

remains an open question how museums intending to explicate mathematical modelling can 

include tangible artefacts and exciting activities, in which young visitors can actively 

engage. 

 As science museums assist students to accumulate science capital, and as they 

increase inequity between students, we need to consider (1) making them more accessible 

to less privileged students and (2) how to connect these better to mathematical modelling. 

To decrease inequity, it is pertinent to establish such institutions in less affluent countries, 

ask governments to reduce entrance fees, assist lower-class parents to understand their 

importance, and so forth. Also, the resources from science museums could become more 

universally available through digital media. As for the point to better connect science 

museums to mathematical modelling for students in the school-going age, we may learn 

from both museums in this study. The Experimentarium was more successful in offering 

excitement and inquiry activities, whereas the Winton Gallery was more successful in 

showing the usefulness of mathematics and even used the term mathematical modelling. 

Therefore, it is recommended to carry out further research into (1) how science 

museums/centres can combine excitement and inquiry activities without detaching 

mathematics from real-life and its use-value for solving real-life problems, (2) what other 

environments enhance students’ informal learning about mathematical modelling (and thus 

their science capital), and (3) how PUMM can further be studied and enhanced.  
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