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Abstract. In this paper, we propose a hybrid model consisting of a
Deep Convolutional feature extractor followed by a fast and accurate
classifier, the Extreme Learning Machine, for the purpose of fire detec-
tion in images. The reason behind using such a model is that Deep CNNs
used for image classification take a very long time to train. Even with
pre-trained models, the fully connected layers need to be trained with
backpropagation, which can be very slow. In contrast, we propose to em-
ploy the Extreme Learning Machine (ELM) as the final classifier trained
on pre-trained Deep CNN feature extractor. We apply this hybrid model
on the problem of fire detection in images. We use state of the art Deep
CNNs: VGG16 and Resnet50 and replace the softmax classifier with the
ELM classifier. For both the VGG16 and Resnet50, the number of fully
connected layers is also reduced. Especially in VGG16, which has 3 fully
connected layers of 4096 neurons each followed by a softmax classifier,
we replace two of these with an ELM classifier. The difference in conver-
gence rate between fine-tuning the fully connected layers of pre-trained
models and training an ELM classifier are enormous, around 20x to 51x
speed-up. Also, we show that using an ELM classifier increases the ac-
curacy of the system by 2.8% to 7.1% depending on the CNN feature
extractor. We also compare our hybrid architecture with another hybrid
architecture, i.e. the CNN-SVM model. Using SVM as the classifier does
improve accuracy compared to state-of-the-art deep CNNs. But our Deep
CNN-ELM model is able to outperform the Deep CNN-SVM models. 1

Keywords: Deep Convolutional Neural Networks, Extreme Learning
Machine, Image Classification, Fire Detection

1 Introduction

The problem of fire detection in images has received a lot of attention in the
past by researchers from computer vision, image processing and deep learning.

1 Preliminary version of some of the results of this paper appear in Deep Convolutional
Neural Networks for Fire Detection in Images, Springer Proceedings Engineering
Applications of Neural Networks 2017 (EANN’17), Athens, Greece, 25-27 August
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This is a problem that needs to be solved without any compromise. Fire can
cause massive and irrevocable damage to health, life and property. It has led to
over a 1000 deaths a year in the US alone, with property damage in access of
one billion dollars. Besides, the fire detectors currently in use require different
kinds of expensive hardware equipment for different types of fire [27].
What makes this problem even more interesting is the changing background en-
vironment due to varying luminous intensity of the fire, fire of different shades,
different sizes etc. Also, the false alarms due to the environment resembling fire
pixels, like room with bright red/orange background and bright lights. Further-
more, the probability of occurrence of fire is quite low, so the system must be
trained to handle imbalance classification.
Various techniques have been used to classify between images that contain fire
and images that do not. The state-of-the-art vision-based techniques for fire and
smoke detection have been comprehensively evaluated and compared in [39]. The
colour analysis technique has been widely used in the literature to detect and
analyse fire in images and videos [4, 24, 31, 37]. On top of colour analysis, many
novel methods have been used to extract high level features from fire images
like texture analysis [4], dynamic temporal analysis with pixel-level filtering and
spatial analysis with envelope decomposition and object labelling [40], fire flicker
and irregular fire shape detection with wavelet transform [37], etc.
These techniques give adequate performance but are currently outperformed
by Machine Learning techniques. A comparative analysis between colour-based
models for extraction of rules and a Machine Learning algorithm is done for the
fire detection problem in [36]. The machine learning technique used in [36] is
Logistic Regression which is one of the simplest techniques in Machine Learning
and still outperforms the colour-based algorithms in almost all scenarios. These
scenarios consist of images containing different fire pixel colours of different in-
tensities, with and without smoke.
Instead of explicitly designing features by using image processing techniques,
deep neural networks can be used to extract and learn relevant features from
images. The Convolutional Neural Networks (CNNs) are the most suitable choice
for the task of image processing and classification.
In this paper, we employ state-of-the-art Deep CNNs for fire detection and then
propose to use hybrid CNN-ELM and CNN-SVM models to outperform Deep
CNNs. Such hybrid models have been used in the past for image classification,
but the novelty of our approach lies in using state-of-the-art Deep CNNs like
VGG16 and Resnet50 as feature extractors and then remove some/all fully con-
nected layers with an ELM classifier. This models outperform Deep CNNs in
terms of accuracy, training time and size of the network. We also compare the
CNN-ELM model with another hybrid model, CNN-SVM and show that the
CNN-ELM model gives the best performance.
The rest of the paper is organized in the following manner: Section 2 briefly
describes the related work with CNNs for fire detection and Hybrid models for
image classification. Section 3 explains our work in detail and section 4 gives
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details of our experiments and presents the results. Section 5 summarizes and
concludes our work.

2 Related Work

In this paper, we integrate state-of-the-art CNN hybrid models and apply it to
the problem of fire detection in images. To the best of our knowledge, hybrid
models have never been applied to fire detection. So, we present a brief overview
of previous research done in CNNs used for fire detection and hybrid models
separately in the next two sub-sections.

2.1 CNNs for Fire detection

There have been many significant contributions from various researchers in de-
veloping a system that can accurately detect fire in the surrounding environment.
But, the most notable research in this field involves Deep Convolutional Neu-
ral Networks (Deep CNN). Deep CNN models are currently among the most
successful image classification models which makes them ideal for a task such
as Fire detection in images. This has been demonstrated by previous research
published in this area.
In [7], the authors use CNN for detection of fire and smoke in videos. A simple
sequential CNN architecture, similar to LeNet-5 [18], is used for classification.
The authors quote a testing accuracy of 97.9% with a satisfactory false positive
rate.
Whereas in [43], a very innovative cascaded CNN technique is used to detect
fire in an image, followed by fine-grained localisation of patches in the image
that contain the fire pixels. The cascaded CNN consists of AlexNet CNN archi-
tecture [17] with pre-trained ImageNet weights [28] and another small network
after the final pooling layer which extracts patch features and labels the patches
which contain fire. Different patch classifiers are compared.
The AlexNet architecture is also used in [34] which is used to detect smoke in
images. It is trained on a fairly large dataset containing smoke and non-smoke
images for a considerably long time. The quoted accuracies for large and small
datasets are 96.88% and 99.4% respectively with relatively low false positive
rates.
Another paper that uses the AlexNet architecture is [23]. This paper builds its
own fire image and video dataset by simulating fire in images and videos using
Blender. It adds fire to frames by adding fire properties like shadow, fore-ground
fire, mask etc. separately. The animated fire and video frames are composited
using OpenCV [2]. The model is tested on real world images. The results show
reasonable accuracy with high false positive rate.
As opposed to CNNs which extract features directly from raw images, in some
methods image/video features are extracted using image processing techniques
and then given as input to a neural network. Such an approach has been used
in [6]. The fire regions from video frames are obtained by threshold values in the
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HSV colour space. The general characteristics of fire are computed using these
values from five continuous frames and their mean and standard deviation is
given as input to a neural network which is trained using back propagation to
identify forest fire regions. This method performs segmentation of images very
accurately and the results show high accuracy and low false positive rates.
In [11], a neural network is used to extract fire features based on the HSI colour
model which gives the fire area in the image as output. The next step is fire area
segmentation where the fire areas are roughly segmented and spurious fire areas
like fire shadows and fire-like objects are removed by image difference. After
this the change in shape of fire is estimated by taking contour image difference
and white pixel ratio to estimate the burning degree of fire, i.e. no-fire, small,
medium and large. The experimental results show that the method is able to
detect different fire scenarios with relatively good accuracy.

2.2 Hybrid models for Image classification

The classifier part in a Deep CNN is a simple fully connected perceptron with
a softmax layer at the end to output probabilities for each class. This section
of the CNN has a high scope for improvement. Since it consists of three to four
fully connected layers containing thousands of neurons, it becomes harder and
slower to train it. Even with pre-trained models that require fine tuning of these
layers. This has led to the development of hybrid CNN models, which consist of
a specialist classifier at the end.
Some of the researchers have employed the Support Vector Machine (SVM) as
the final stage classifier [1, 21, 25, 33, 38]. In [25], the CNN-SVM hybrid model
is applied to many different problems like object classification, scene classifica-
tion, bird sub-categorization, flower recognition etc. A linear SVM is fed ’off the
shelf convolutional features’ from the last layer of the CNN. This paper uses the
OverFeat network [30] which is a state-of-the-art object classification model. The
paper shows, with exhaustive experimentation, that extraction of convolutional
features by a deep CNN is the best way to obtain relevant characteristics that
distinguishes an entity from another.
The CNN-SVM model is used in [21] and successfully applied to visual learn-
ing and recognition for multi-robot systems and problems like human-swarm
interaction and gesture recognition. This hybrid model has also been applied to
gender recognition in [38]. The CNN used here is the AlexNet [17] pre-trained
with ImageNet weights. The features extracted from the entire AlexNet are fed
to an SVM classifier. A similar kind of research is done in [33], where the soft-
max layer and the cross-entropy loss are replaced by a linear SVM and margin
loss. This model is tested on some of the most well known benchmark datasets
like CIFAR-10, MNIST and Facial Expression Recognition challenge. The results
show that this model outperforms the conventional Deep CNNs.
In 2006, G.B. Huang introduced a new learning algorithm for a single hidden
layer feedforward neural network called the Extreme Learning Machine [13,14].
This technique was many times faster than backpropagation and SVM, and
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outperformed them on various tasks. The ELM randomly initializes the input
weights and analytically determines the output weights. It produces a minimum
norm least squares solution which always achieves lowest training accuracy, if
there are enough number of hidden neurons. There have been many variants of
ELM depending upon a specific application, which have been summarised in [12].
This led to the advent of CNN-ELM hybrid models, which were able to outper-
form the CNN-SVM models on various applications. The major advantage of
CNN-ELM models is the speed of convergence. In [29], the CNN-ELM model is
used for Wireless Capsule Endoscopy (WCE) image classification. The softmax
classifier of a CNN is replaced by an ELM classifier and trained on the feature
extracted by the CNN feature extractor. This model is able to outperform CNN-
based classifiers.
The CNN-ELM model has also been used for handwritten digit classification
[19, 22]. In [19], a ’shallow’ CNN is used for feature extraction and ELM for
classification. The shallow CNN together with ELM speeds up the training pro-
cess. Also, various weight initialization strategies have been tested for ELM with
different receptive fields. Finally, two strategies, namely the Constrained ELM
(C-ELM) [44] and Computed Input Weights ELM (CIW-ELM) [35] are com-
bined in a two layer ELM structure with receptive fields. This model was tested
on the MNIST dataset and achieved 0.83% testing error. In [22], a deep CNN is
used for the same application and tested on the USPS dataset.
A shallow CNN with ELM is tested on some benchmark datasets like MNIST,
NORB-small, CIFAR-10 and SVHN with various hyper parameter configura-
tions in [20]. Another similar hybrid model that uses CNN features and Kernel
ELM as classifier is used in [9] for age estimation using facial features. Another
application where a CNN-ELM hybrid model has been applied is the traffic sign
recognition [41].
A different strategy of combining CNN feature extraction and ELM learning is
proposed in [15]. Here, an ELM with single hidden layer is inserted after every
convolution and pooling layer and at the end as classifier. The ELM is trained
by borrowing values from the next convolutional layer and each ELM is updated
after every iteration using backpropagation. This interesting architecture is ap-
plied to the application of lane detection and achieves excellent performance.
A comparative analysis of the CNN-ELM and CNN-SVM hybrid models for ob-
ject recognition from ImageNet has been illustrated in [42]. Both these models
were tested for object recognition from different sources like Amazon, Webcam,
Caltech and DSLR. The final results show that the CNN-ELM model outper-
forms the CNN-SVM model on all datasets and using Kernel ELM further in-
creases accuracy.
Using ELM as a final stage classifier does not end at image classification with
CNNs. They have also been used with DBNs for various applications [3, 26].
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3 The Fire Detector

In this paper, we propose to employ hybrid deep CNN models to perform fire
detection. The AlexNet has been used by researchers in the past for fire detection
which has produced satisfactory results. We propose to use two Deep CNN archi-
tectures that have outperformed the AlexNet on the ImageNet dataset, namely
VGG16 [32] and Resnet50 [10]. We use these models with pre-trained ImageNet
weights. This helps greatly when there is lack of training data. So, we fine-tune
the ELM classifier on our dataset, which is fed the features extracted by the
Deep CNNs.

3.1 Deep ConvNet Models

The Convolutional Neural Network was first introduced in 1980 by Kunihiko
Fukushima [8]. The CNN is designed to take advantage of two dimensional struc-
tures like 2D Images and capture local spatial patterns. This is achieved with
local connections and tied weights. It consists of one or more convolution layers
with pooling layers between them, followed by one or more fully connected lay-
ers, as in a standard multilayer perceptron. CNNs are easier to train compared
to Deep Neural Networks because they have fewer parameters and local recep-
tive fields.
In CNNs, kernels/filters are used to see where particular features are present
in an image by convolution with the image. The size of the filters gives rise to
locally connected structure which are each convolved with the image to produce
feature maps. The feature maps are usually sub-sampled using mean or max
pooling. The reduction in parameters is due to the fact that convolution layers
share weights.
The reason behind parameter sharing is that we make an assumption, that the
statistics of a patch of a natural image are the same as any other patch of the
image. This suggests that features learned at one location can also be learned
for other locations. So, we can apply this learned feature detector anywhere in
the image. This makes CNNs ideal feature extractors for images.
The CNNs with many layers have been used for various applications especially
image classification. In this paper, we use two state-of-the-art Deep CNNs that
have achieved one of the lowest error rates in image classification tasks.
In this work, we use VGG16 and Resnet50, pre-trained on the ImageNet dataset,
along with a few modifications. We also compare our modified and hybrid mod-
els with the original ones. The VGG16 architecture was proposed by the Visual
Geometry Group at the University of Oxford [32], which was deep, simple, se-
quential network whereas the Resnet50, proposed by Microsoft research [10], was
an extremely deep graphical network with residual connections (which avoids the
vanishing gradients problem and residual functions are easier to train).
We also test slightly modified versions of both these networks by adding a fully-
connected layer and fine-tuning on our dataset. We also tested with more fully
connected layers but the increase in accuracy was overshadowed by the increase
in training time.
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3.2 The Hybrid Model

We propose to use a hybrid architecture for fire detection in images. In this
paper, instead of using a simple CNN as feature extractor, we employ state-of-
the-art Deep CNNs like the VGG16 and Resnet50.
Figure 3(a) and 3(b) show the architecture of the VGG16-ELM and Resnet50-
ELM hybrid models respectively. Usually, only the softmax classifier is replaced
by another classifier (ELM or SVM) in a CNN to create a hybrid model. But, we
go one step further by replacing the entire fully connected multi-layer perceptron
with a single hidden layer ELM. This decreases the complexity of the model even
further.

The Theory of Extreme Learning Machine: The Extreme Learning Ma-
chine is a supervised learning algorithm [13]. The input to the ELM, in this case,
are the features extracted by the CNNs. Let it be represented as xi, ti, where
xi is the input feature instance and ti is the corresponding class of the image.
The inputs are connected to the hidden layer by randomly assigned weights w.
The product of the inputs and their corresponding weights act as inputs to the
hidden layer activation function. The hidden layer activation function is a non-
linear non-constant bounded continuous infinitely differentiable function that
maps the input data to the feature space. There is a catalogue of activation
functions from which we can choose according to the problem at hand. We ran
experiments for all activation functions and the best performance was achieved
with the multiquadratics function:

f(x) =
√
‖xi − µi‖2 + a2 (1)

The hidden layer and the output layer are connected via weights β, which are to
be analytically determined. The mapping from the feature space to the output
space is linear. Now, with the inputs, hidden neurons, their activation functions,
the weights connecting the inputs to the hidden layer and the output weights
produce the final output function:

L∑

i=1

βig(wi.xj + bi) = oj (2)

The output in Matrix form is:
Hβ = T (3)

The error function used in Extreme Learning Machine is the Mean Squared error
function, written as:

E =
N∑

j=1

(
L∑

i=1

βig(wi.xj + bi)− tj)2 (4)

To minimize the error, we need to get the least-squares solution of the above
linear system.

‖Hβ∗ − T‖ = minβ‖Hβ − T‖ (5)
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The minimum norm least-squares solution to the above linear system is given
by:

β̂ = H†T (6)

Properties of the above solution:

1. Minimum Training Error: The following equation provides the least-squares
solution, which means the solution for ‖Hβ − T‖, i.e. the error is minimum.
‖Hβ∗ − T‖ = minβ‖Hβ − T‖

2. Smallest Norm of Weights: The minimum norm of least-squares solution is
given by the Moore-Penrose pseudo inverse of H.
β̂ = H†T

3. Unique Solution: The minimum norm least-squares solution of Hβ = T is
unique, which is:
β̂ = H†T

Detailed mathematical proofs of these properties and the ELM algorithm can be
found in [14]. Both the VGG16 and Resnet50 extract rich features from the im-
ages. These features are fed to the ELM classifier which finds the minimum norm
least squares solution. With enough number of hidden neurons, the ELM outper-
forms the original VGG16 and Resnet50 networks. Both VGG16 and Resnet50
are pre-trained with ImageNet weights. So, only the ELM classifier is trained on
the features extracted by the CNNs.
Apart from fast training and accurate classification, there is another advantage
of this model. This hybrid model does not require large training data. In fact,
our dataset consists of just 651 images, out of which the ELM is trained on 60%
of images only. This shows its robustness towards lack of training data. A normal
Deep CNN would require much higher amount of training data to fine-tune its
fully-connected layers and the softmax classifier. Even the pre-trained VGG16
and Resnet50 models required at least 80% training data to fine-tune their fully-
connected layers.
And, as we will show in the next section, a hybrid CNN-ELM trained with 60%
training data outperforms pre-trained VGG16 and Resnet50, fine-tuned on 80%
training data.

3.3 Paper Contributions

1. The previous hybrid models have used simple CNNs for feature extraction.
We employ state-of-the-art Deep CNNs to make feature extraction more
efficient and obtain relevant features since the dataset is difficult to classify.

2. Other hybrid models simply replace the softmax classifier with SVM or some-
times ELM. We completely remove the fully connected layers to increase
speed of convergence since no fine-tuning is needed and also reduce the com-
plexity of the architecture. Since VGG16 and Resnet50 extract rich features
and the ELM is an accurate classifier, we do not need the fully-connected
layers. This decreases the number of layers by 2 in VGG16 and by 1 in
Resnet50, which is 8192 and 4096 neurons respectively.
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3. The above point also justifies the use of complex features extractors like
VGG16 and Resnet50. If we used a simple CNN then, we might not be able
to remove the fully-connected layers since the features might not be rich
enough. Due to this, the fully-connected layers would have to be fine-tuned
on the dataset which would increase training time and network complexity.

4. Also, we see that the data required for training the ELM classifier is lower
than the data required for fine-tuning the fully-connected layers of a pre-
trained Deep CNN.

5. We apply our hybrid model on the problem of fire detection in images (on
our own dataset). And, to the best of our knowledge, this is the first time a
hybrid ELM model has been applied to this problem.

4 Experiments

We conducted our experiments to compare training and testing accuracies and
execution times of: the VGG16 and Resnet50 models including modifications,
Hybrid VGG16 and Resnet50 models with ELM classifier. We also compare
our hybrid VGG16-ELM and Resnet50-ELM models with VGG16-SVM and
Resnet50-SVM as well. We used pre-trained Keras [5] models and fine-tune the
fully-connected layers on our dataset. The training of the models was done on
the following hardware specifications: Intel i5 2.5GHz, 8GB RAM and Nvidia
Geforce GTX 820 2GB GPU. Each model was trained on the dataset for 10
training epochs. The ADAM optimizer [16] with default parameters α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−8 was used to fine-tune the fully-connected
layers for VGG16 and Resnet50 and their modified versions. The details of the
dataset are given in the next subsection.

4.1 The Real World Fire Dataset

Since there is no benchmark dataset for fire detection in images, we created our
own dataset by handpicking images from the internet. 2This dataset consists of
651 images which is quite small in size but it enables us to test the generaliza-
tion capabilities and the effectiveness and efficiency of models to extract relevant
features from images when training data is scarce. The dataset is divided into
training and testing sets. The training set consists of 549 images: 59 fire im-
ages and 490 non-fire images. The imbalance is deliberate to replicate real world
situations, as the probability of occurrence of fire hazards is quite small. The
datasets used in previous papers have been balanced which does not imitate the
real world environment. The testing set contains 102 images: 51 images each of
fire and non-fire classes. As the training set is highly unbalanced and the testing
set is exactly balanced, it makes a good test to see whether the models are able
to generalize well or not. For a model with good accuracy, it must be able to

2 The dataset is available here: https://github.com/UIA-CAIR/

Fire-Detection-Image-Dataset



B

10 Jivitesh Sharma, Ole-Christopher Granmo, and Morten Goodwin

extract the distinguishing features from the small amount of fire images. To ex-
tract such features from small amount of data the model must be deep enough.
A poor model would just label all images as non-fire, which is exemplified in the
results.
Apart from being unbalanced, there are a few images that are very hard to clas-
sify. The dataset contains images from all scenarios like fire in a house, room,
office, forest fire, with different illumination intensity and different shades of red,
yellow and orange, small and big fires, fire at night, fire in the morning. Non-fire
images contain a few images that are hard to distinguish from fire images like a
bright red room with high illumination, sunset, red coloured houses and vehicles,
bright lights with different shades of yellow and red etc.
The figures 4(a) to 4(f) show fire images in different environments: indoor, out-
door, daytime, nighttime, forest fire, big and small fire. And the figures 5(a)
to 5(f) show the non-fire images that are difficult to classify. Considering these
characteristics of our dataset, detecting fire can be a difficult task. We have made
the dataset available online so that it can be used for future research in this area.

(a) (b)
(c)

(d) (e) (f)

Fig. 1: Examples of Fire Images

4.2 Results

Our ELM hybrid models are tested on our dataset and compared with SVM
hybrid models and the original VGG16 and Resnet50 Deep CNN models. Table
1 and Table 2 show the results of the experiments. The dataset was randomly
split into training and testing sets. Two cases were considered depending on the
amount of training data. The Deep CNN models (VGG16 and Resnet50) were
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(a)
(b)

(c)

(d) (e) (f)

Fig. 2: Examples of Non-Fire Images that are difficult to classify

Table 1: Accuracy and Execution time

Model DT Acctrain Ttrain TC
train Acctest Ttest

VGG16 (pre-trained) 80 100 7149 6089 90.19 121
VGG16 (modified) 80 100 7320 6260 91.176 122
Resnet50 (pre-trained) 80 100 15995 13916 91.176 105
Resnet50 (modified) 80 100 16098 13919 92.15 107
VGG16+SVM 60 99.6 2411 1352 87.4 89
VGG16+SVM 80 100 2843 1784 93.9 81
VGG16+ELM 60 100 1340 281 93.9 24
VGG16+ELM 80 100 1356 297 96.15 21
Resnet50+SVM 60 100 3524 1345 88.7 97
Resnet50+SVM 80 100 4039 1860 94.6 86
Resnet50+ELM 60 100 2430 251 98.9 32
Resnet50+ELM 80 100 2452 272 99.2 26

DT is the percentage of total data used for training the models.
Acctrain and Acctest are the training and testing accuracies respectively.
Ttrain and Ttest are the training and testing times for the models.
TC
train is the time required to train the classifier part of the models.

trained only on 80% training data, since 60% is too less for these models. All
the hybrid models have been trained on both 60% and 80% of training data.
One point to be noted here is that, the SVM hybrid models contain an additional
fully-connected layer of 4096 neurons, while the ELM is directly connected to
the last pooling layer.
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Table 2: Number of Hidden Neurons in ELM

CNN Features # hidden neurons Testing accuracy

VGG16 Feature Extractor 4096 93.9
VGG16 Feature Extractor 8192 94.2
VGG16 Feature Extractor 16384 91.1 (Overfitting)
Resnet50 Feature Extractor 4096 98.9
Resnet50 Feature Extractor 8192 99.2
Resnet50 Feature Extractor 16384 96.9 (Overfitting)

The results in Table 1 show that the ELM hybrid models outperform the VGG16,
Resnet50 and SVM hybrid models by achieving higher accuracy and learning
much faster. In general, we can see that the hybrid models outperform the state-
of-the-art Deep CNNs in terms of both accuracy and training time.
Apart from accuracy and training time, another important point drawn from
the results is the amount of training data required. As we already know, Deep
Neural Networks (DNN) require huge amount of training data. So, using pre-
trained models can be highly beneficial, as we only need to fine-tune the fully-
connected layers. But, with models like VGG16 and Resnet50 which have large
fully-connected layers, even fine-tuning requires large amount of training data.
We had to train the VGG16 and Resnet50 on at least 80% training data otherwise
they were overfitting on the majority class, resulting in 50% accuracy.
But in case of hybrid models, especially ELM hybrid models, the amount of
training data required is much less. Even after being trained on 60% training
data, the ELM models were able to outperform the original VGG16 and Resnet50
models which were trained on 80% training data. This shows that reducing the
fully-connected layers, or replacing them with a better classifier can reduce the
amount of training data required. Also, the ELM is more robust towards lack of
training data which adds to this advantage.
Among the hybrid models, the ELM hybrid models outperform the SVM hybrid
models both in terms of testing accuracy and training time. Also, we can see
that the hybrid models with Resnet50 as the feature extractor achieves better
results than the hybrid models with VGG16 as the feature extractor. This is due
to the depth and the residual connections in Resnet50 in contrast to the simple,
shallower (compared to Resnet50) and sequential nature of VGG16.
Table 2 compares results between different number of hidden neurons used by
ELM. The accuracy increases as the number of hidden neurons increase. The
models are tested for 212, 213 and 214 number of neurons. The testing accuracy
starts to decrease for 214 neurons, which means the model overfits. All the tests
in Table 2 were conducted with 60% training data.
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5 Conclusion

In this paper, we have proposed a hybrid model for fire detection. The hybrid
model combines the feature extraction capabilities of Deep CNNs and the classi-
fication ability of ELM. The Deep CNNs used for creating the hybrid models are
the VGG16 and Resnet50 instead of a simple Deep CNN. The fully connected
layers are removed completely and replaced by a single hidden layer feedforward
neural network trained using the ELM algorithm. This decreases complexity
of the network and increases speed of convergence. We test our model on our
own dataset which has been created to replicate a realistic view of the envi-
ronment which includes different scenarios, imbalance due to lower likelihood of
occurrence of fire. The dataset is small in size to check the robustness of models
towards lack of training data, since deep networks require a considerable amount
of training data. Our hybrid model is compared with the original VGG16 and
Resnet50 models and also with SVM hybrid models. Our Deep CNN-ELM model
is able to outperform all other models in terms of accuracy by 2.8% to 7.1% and
training time by a speed up of 20x to 51x and requires less training data to
achieve higher accuracy for the problem of fire detection.
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