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Abstract

Deep Learning has been successfully used in various applications, and recently,
there has been an increasing interest in applying deep learning in emergency man-
agement. However, there are still many significant challenges that limit the use of
deep learning in the latter application domain. In this thesis, we address some of
these challenges and propose novel deep learning methods and architectures.

The challenges we address fall in these three areas of emergency management:
Detection of the emergency (fire), Analysis of the situation without human interven-
tion and finally Evacuation Planning. In this thesis, we have used computer vision
tasks of image classification and semantic segmentation, as well as sound recog-
nition, for detection and analysis. For evacuation planning, we have used deep
reinforcement learning.

The detection phase involves detecting whether there is a fire emergency or not.
Previous methods proposed for the detection problem have been prone to overfit-
ting, large inference times and requiring tremendous amounts of training data. To
overcome these issues, we propose to use state-of-the-art CNNs with pre-trained
weights. These are trained to distinguish between fire and normal images, by fine-
tuning their parameters on our own custom dataset. To further reduce inference time
and reduce required training time, we also propose a CNN-ELM hybrid model. Fi-
nally, we propose a more general-purpose emergency detection method using audio
signals. For this, we use multiple features extracted by signal processing methods,
proposing a novel attention-based deep separable CNN architecture.

We next propose the first deep learning based semantic segmentation approach
for visual analysis of the emergency environment, in order to provide adequate vi-
sual information an emergency situation. A deep CNN is used to parse the fire
emergency scene and segment most types of objects, including segmentation of
people and the fire itself. The objects are segmented according to their build ma-
terial and their vulnerability to catch fire, which can give a rough estimate of fire
spread. Since people (and other living creatures) are also segmented. We train the
models with multitask learning, so that the encoder/backbone of the segmentation
model can be used to classify fire emergencies and activate the decoder if needed.
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This reduces unnecessary computation.
Evacuation planning involves coming up with an optimal policy to evacuate as

many people as possible in a timely manner. There has been some research in
this area, but no one has been able to tackle the full complexity of the fire evacua-
tion problem. Most works have been limited to either human behaviour modelling,
simple maze environment based path planning or fire spread modelling. We encom-
pass most of the aspects of a fire emergency situation and address the issue in a
wholesome manner. A deep reinforcement learning strategy is proposed to obtain
a near optimal evacuation plan for the whole environment. A novel method in-
volving transfer learning, tabular Q-learning and Deep Q-Networks is used to learn
an evacuation plan which can evacuate all people inside a building in the smallest
number of steps. In order to train this reinforcement learning method, a novel envi-
ronment for fire evacuation is built, using the OpenAI gym framework. The graph
based fire evacuation environment consists of realistic features such as bottlenecks,
fire spread and an exponential decaying reward function to force the reinforcement
learning agent to learn the shortest evacuation paths.

The proposed models are disjoint, but can be easily connected to each other to
pass useful information. Overall, our methods show excellent results on simulation
and/or open sourced data. We therefore believe that they form a promising toolbox
for further exploration in real world emergency management systems. The primary
focus of this thesis has thus been to advance the state-of-the-art for AI models ap-
plied to emergency management or set a new paradigm for problems that have not
been fully addressed by AI before.
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Chapter 1

Introduction

In this chapter, we first give a brief introduction of Emergency Management and its
stages, in relation to this thesis. Then the importance of using Deep Learning in
these stages is highlighted. The motivation of this Ph.D. dissertation is discussed
along with the overview of the research questions. Furthermore, the goals and ap-
proaches are explained and the structure of the dissertation is also outlined.

1.1 Emergency Management

There have been countless natural and man-made disasters that have caused irre-
versible life and property damage to innumerable people across the globe. Accord-
ing to [2], in 2017 alone, more than 11,000 people lost their lives or went missing
during disasters, while millions were left homeless, worldwide. In the same year,
economic losses due to natural and man-made disasters amounted to 337 billion
USD. In 2017, there were 301 natural or man-made disasters worldwide [2]. To
prevent or minimize human and economic losses as much as possible, emergency
management departments has been put in place in almost every country and large
organization. The importance of emergency management is well understood in the
civilized world.
Emergency Management is organized analysis, planning, decision making, and as-
signment of available resources to mitigate, prepare for, respond to, and recover
from the effects of all hazards. The importance of emergency management is well
established. There exists a plethora of emergency management systems, but only a
few leverage deep learning. Even though deep learning has been successfully used
in many different applications, however current deep learning methods suffer from
drawbacks that limit their application in the area of emergency management. So, in
this thesis, we focus on building an AI decision support system for each step of the
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Introduction

emergency. There are several emergency situations that can arise anywhere in the
world including floods, droughts, avalanches, tsunamis, hurricanes, earthquakes,
volcano eruptions, terrorism, pandemics etc. This thesis focuses on addressing lim-
itations of deep learning approaches motivated by fire emergencies.

1.2 Motivation and Research Questions

A detailed and comprehensive survey of artificial intelligence based techniques used
for emergency management problems can be found in [3]. It enlists various AI
based methods used during different phases of the emergency management proce-
dure. There have been various contributions in AI that have led to advances in AI
based emergency management methods. For a detailed overview of these methods,
please refer to sections 3.1.1, 3.1.2, 3.3. However, these methods either suffer from
various shortcomings that hinder performance such as slow training, inference time
and overfitting or fail to focus on some key issues like lack of visual analysis and
reinforcement learning based full-scale evacuation planning. We enlist the research
questions that we answer in this thesis, the motivation behind those questions and
our approach. In doing so, we aim to advance the state-of-the-art for AI methods
on some specific emergency management applications.

Question 1: Can CNNs be efficiently used for detecting fire while reducing
overfitting, and can transfer learning be used to further improve performance?

Motivation: Fire is a highly unlikely scenario in the modern world. So, it
must be treated like one by having training data that is highly imbalanced. Shal-
lower CNN models are prone to overfitting on imbalanced class distribution. While
being a powerful technique, transfer learning has had limited attention in fire detec-
tion.

Approach: To address this limitation, we propose to employ state-of-the-art
CNN models like VGG16 and ResNet50 for the task of fire detection. We use trans-
fer learning to further improve performance. To evaluate the models on imbalanced
data, we create our own dataset with a fire to non-fire images ratio of 1:9.

Question 2: Since state-of-the-art CNNs are quite slow, can we use a novel
hybrid model to boost performance as well as reduce inference time?
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Advances in Deep Learning Towards Fire Emergency Application: Novel
Architectures, Techniques and Applications of Neural Networks

Motivation: Emergency detection is an application in which inference times
matter a lot. Detection an emergency must be performed in the shortest amount of
time with maximum precision. This motivates us to build a model that can achieve
lower inference times while maintaining accurate detection rates of state-of-the-art
models.

Approach: We address this issue by proposing a hybrid model consisting of
state-of-the-art CNN feature extraction and an ELM (Extreme Learning Machine)
classifier, replacing the fully connected layers and the softmax classifier. Most of
the operational complexity of CNN models lies in the fully connected layers and
backpropagation through it. The ELM is a one-shot learning algorithm which does
not require backpropagation that makes it incredibly fast to train. And, since it has
a single layer with lower number of neurons, it has a much lower inference time.

Question 3: Can reinforcement learning be used for evacuation planning in a
highly realistic, dynamic environment in a timeliness manner?

Motivation: Most of the research on evacuation planning has been insufficient
in terms of scale and complexity. There is no standard benchmark environment to
test different approaches. Also, current state-of-the-art RL methods might fail in a
highly dynamic environment with a large state and action space.

Approach: We propose a novel RL method to train agents to evacuate people
in the least number of time-steps. We also propose the first graph-based evacuation
environment to train RL agents. The environment consists of realistic features such
as fire spread, bottlenecks, uncertainty and full action connectivity. A standard RL
method cannot be trained directly on such as complex environment. So, we first
pretrain a DQN agent to learn the shortest path from each node in building graph
to the nearest exit. This information is useful during evacuation planning. Then,
the pretrained agent is trained on the full fire evacuation environment. In order to
scale the technique to real world scenarios, we propose an action importance based
attention mechanism that is able to reduce the action space to a manageable size.

Question 4: Can semantic segmentation be used to detect objects that are vul-
nerable to catch fire and segment other relevant entities to analyse the emer-
gency environment?

5
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Motivation: There has been a lot of research in pre-emergency analysis. How-
ever, analysis is extremely important during an emergency as well. Visual analysis
using computer vision could provide essential information without human interven-
tion.

Approach: We propose to use semantic segmentation for fire emergency
scene parsing. We propose to segment objects based on their build material such
as wood, plastic, cloth etc. along with segmenting fire, smoke and people (to get a
rough head count). To the best of our knowledge, this is the first visual analysis tool
for fire emergencies. Since this is the first visual analysis method, we also create
our own fire scene parsing dataset. In order to reduce unnecessary computation
during inference, we use multitask learning so that the encoder/backbone learns to
classify between fire and normal images and the decoder is activated only if a fire
is detected.

Question 5: Can we further improve environment sound classification by us-
ing multiple feature channels, separable convolutions and an attention mecha-
nism?

Motivation: Current state-of-the-art environment sound classification models
suffer from complexity and not being able to fully extract relevant features from
audio signals. Also, since time and frequency domain features represent different
kinds of information, it might be beneficial to treat them separately.

Approach: To address these limitations, we propose a novel model for envi-
ronment sound classification. We propose to use multiple feature extraction tech-
niques like Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency
Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram
to extract complementary information. This is used as a multiple channel input to
the CNN classifier. Our CNN consists of spatially separable convolution and pool-
ing layers to process time and frequency domain separately. To further improve
performance and keep the parameter count as low as possible, we use depthwise
separable convolutions in a parallel attention block.

Question 6: Can an environment sound classification approach be used as a
general purpose audio based emergency detection system?
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Motivation: Sometimes, visual detection can be prone to false alarms and in-
accuracies. A sound based detection method can be used to complement the visual
detection model. Some information is most readily available visually (e.g., the ex-
tent of a fire), while other information is perhaps best captured through sound (e.g.,
screaming). So, it might be beneficial to use both approaches.

Approach: We use our state-of-the-art environment sound classification
model, for this task. We make a few changes to the model to reduce the number of
parameters. Since this is a binary classification problem, model complexity can be
reduced. This is done by reducing the number of feature maps in the convolution
layers and removing the attention block. The signal feature extraction part is kept
the same with multiple feature channel input to the CNN classifier.

Limitations: In this thesis, the focus is not to build a complete emergency man-
agement system or evaluate it in real-life use. Instead, we seek to advance deep
learning techniques by addressing fundamental weaknesses in current state-of-the-
art methods. The main focus of the thesis lies in addressing issues in AI based
methods used for detection, analysis and evacuation phases of the emergency man-
agement procedure, in a disjoint manner. The scope of this thesis is limited to the
proposal of novel deep learning techniques, architectures and procedures applied to
parts of emergency management. The methods proposed in this thesis haven’t been
tested in the real-world, and we do not claim to reciprocate the simulation results
on real-life examples.
Overall, the whole system is disjoint and versatile and can be adapted for other
types of emergency situations as well. Also, information sharing between differ-
ent (disjoint) modules is also straightforward and can be implemented easily as and
when required. Hence, we propose and employ novel AI methods, architectures and
learning techniques to outperform existing AI based solutions or set a new paradigm
of AI methods with potential application to different parts of the emergency man-
agement process.

1.3 Publications

We solve each of the three stages of the fire emergency management process using
deep learning and neural networks. We employ various areas of AI to solve the
problems of detection, analysis and evacuation. We list the contributions of this
thesis below; each contribution is described in detail in Chapter III and the associ-
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ated papers published are presented in Part II of the thesis. Here, we present a short
summary of our papers:

Paper A We discovered that a traditional CNN performs relatively poorly when evalu-
ated on the more realistically balanced benchmark dataset provided in this pa-
per. We therefore propose to use even deeper Convolutional Neural Networks
for fire detection in images, and enhancing these with fine tuning based on
a fully connected layer. We use two pretrained state-of-the-art Deep CNNs,
VGG16 and Resnet50, to develop our fire detection system. The Deep CNNs
are tested on our imbalanced dataset, which we have assembled to replicate
real world scenarios. It includes images that are particularly difficult to clas-
sify and that are deliberately unbalanced by including significantly more non-
fire images than fire images. The dataset has been made available online. Our
results show that adding fully connected layers for fine tuning indeed does in-
crease accuracy, however, this also increases training time. Overall, we found
that our deeper CNNs give good performance on a more challenging dataset,
with Resnet50 slightly outperforming VGG16. These results may thus lead
to more successful fire detection systems in practice. This paper addresses
Research Question 1.

Paper B In this paper, we propose a hybrid model consisting of a Deep Convolutional
feature extractor followed by a fast and accurate classifier, the Extreme Learn-
ing Machine, for the purpose of fire detection in images. The reason behind
using such a model is that Deep CNNs used for image classification take a
very long time to train. Even with pre-trained models, the fully connected
layers need to be trained with backpropagation, which can be very slow. In
contrast, we propose to employ the Extreme Learning Machine (ELM) as the
final classifier trained on pre-trained Deep CNN feature extractor. We apply
this hybrid model on the problem of fire detection in images. We use state of
the art Deep CNNs: VGG16 and Resnet50 and replace the softmax classifier
with the ELM classifier. For both the VGG16 and Resnet50, the number of
fully connected layers is also reduced. Especially in VGG16, which has 3
fully connected layers of 4096 neurons each followed by a softmax classifier,
we replace two of these with an ELM classifier. The difference in convergence
rate between fine-tuning the fully connected layers of pre-trained models and
training an ELM classifier are enormous, around 20x to 51x speed-up. Also,
we show that using an ELM classifier increases the accuracy of the system
by 2.8% to 7.1% depending on the CNN feature extractor. We also compare
our hybrid architecture with another hybrid architecture, i.e. the CNN-SVM
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model. Using SVM as the classifier does improve accuracy compared to state-
of-the-art deep CNNs. But our Deep CNN-ELM model is able to outperform
the Deep CNN-SVM models. This paper addresses Research Question 2.

Paper C In this paper, we propose the first fire evacuation environment to train rein-
forcement learning agents for evacuation planning. The environment is mod-
elled as a graph capturing the building structure. It consists of realistic fea-
tures like fire spread, uncertainty and bottlenecks. We have implemented the
environment in the OpenAI gym format, to facilitate future research. We also
propose a new reinforcement learning approach that entails pretraining the
network weights of a DQN based agent (DQN/Double-DQN/Dueling-DQN)
to incorporate information on the shortest path to the exit. We achieved this
by using tabular Q-learning to learn the shortest path on the building model’s
graph. This information is transferred to the network by deliberately over-
fitting it on the Q-matrix. Then, the pretrained DQN model is trained on
the fire evacuation environment to generate the optimal evacuation path un-
der time varying conditions due to fire spread, bottlenecks and uncertainty.
We perform comparisons of the proposed approach with state-of-the-art rein-
forcement learning algorithms like DQN, DDQN, Dueling-DQN, PPO, VPG,
SARSA, A2C and ACKTR. The results show that our method is able to out-
perform state-of-the-art models by a huge margin including the original DQN
based models. Finally, we test our model on a large and complex real building
consisting of 91 rooms, with the possibility to move to any other room, hence
giving 8281 actions. In order to reduce the action space, we propose a strat-
egy that involves one step simulation. That is, an action importance vector
is added to the final output of the pretrained DQN and acts like an attention
mechanism. Using this strategy, the action space is reduced by 90.1%. In
this manner, we are able to deal with large action spaces. Hence, our model
achieves near optimal performance on the real world emergency environment.
This paper addresses Research Question 3.

Paper D In this paper, we introduce a novel application of using scene/ semantic im-
age segmentation for emergency situation analysis. During an emergency
state, it is imperative to analyse the situation thoroughly before planning a
response. In this work, we analyse fire emergency situations. To analyse a
fire emergency scene, we propose to use deep convolutional image segmen-
tation networks to identify and classify objects in a scene based on their build
material and their vulnerability to catch fire. We also segment people and
other living beings and fire, obviously. We introduce our own fire emergency
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scene segmentation dataset for this purpose. It consists of real world im-
ages with objects annotated on the basis of their build material. Including
people (and any other living beings) and fire, the dataset consists of 10 seg-
mentation classes. For this task, we propose to use the advanced computer
vision technique of semantic image segmentation. We use state-of-the-art
segmentation models: DeepLabv3, DeepLabv3+, PSPNet, FCN, SegNet and
UNet to compare and evaluate their performance on the fire emergency scene
parsing task. During inference time, we only run the encoder (backbone)
network to determine whether there is a fire or not in the image. If there is
a fire, only then the decoder is activated to segment the emergency scene.
This results in dispensing with unnecessary computation, i.e. the decoder.
We achieve this by using multitask learning. We also experiment with fine-
tuning pretrained models versus training models from scratch. We show the
importance of transfer learning and the difference in performance between
models pretrained on different benchmark datasets. The results show that
segmentation models can accurately analyse an emergency situation, if prop-
erly trained to do so. Our fire emergency scene parsing dataset is available
here: https://github.com/cair.. This paper addresses Research Question 4.

Paper E In this paper, we propose a model for the Environment Sound Classifica-
tion Task (ESC) that consists of multiple feature channels given as input to
a Deep Convolutional Neural Network (CNN) with Attention mechanism.
The novelty of the paper lies in using multiple feature channels consisting of
Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cep-
stral Coefficients (GFCC), the Constant Q-transform (CQT) and Chroma-
gram. And, we employ a deeper CNN (DCNN) compared to previous mod-
els, consisting of spatially separable convolutions working on time and fea-
ture domain separately. Alongside, we use attention modules that perform
channel and spatial attention together. We use the mix-up data augmentation
technique to further boost performance. Our model is able to achieve state-
of-the-art performance on three benchmark environment sound classification
datasets, i.e. the UrbanSound8K (97.52%), ESC-10 (94.75%) and ESC-50
(87.45%). This paper addresses Research Question 5.

Paper F In this paper we propose a generic emergency detection system using only
the sound produced in the environment. For this task, we employ multiple
audio feature extraction techniques like the Mel-Frequency Cepstral Coef-
ficients, Gammatone Frequency Cepstral Coefficients, Constant Q-transform
and Chromagram. After feature extraction, a Deep Convolutional Neural Net-

10
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work (CNN) is used to classify an audio signal as a potential emergency situ-
ation or not. The entire model is based on our previous work that set the new
state-of-the-art in the Environment Sound Classification (ESC) task (Paper
E). We combine the benchmark ESC datasets: UrbanSound8K and ESC-50
(ESC-10 is a subset of ESC-50), and reduce the problem to a binary classi-
fication problem. This is done by aggregating sound classes such as sirens,
fire crackling, glass breaking, gun shot as the emergency class and others as
normal. Even though there are only two classes to distinguish, they are highly
imbalanced. To overcome this difficulty we introduce class weights in calcu-
lating the loss while training the model. Our model is able to achieve 99.56%
emergency detection accuracy. This paper addresses Research Question 6.

Each of the contributions listed above tries to solve a part of the fire emergency
management problem. A pictorial representation of the flow of the content of our
contributions in accordance with the aim of this thesis is shown in Figure 1.1. Our
papers address the problems in the three phases of the fire emergency hazard and
provide a solution that could potentially build a coherent fire emergency manage-
ment system.
As can be seen from Figure 1.1, the modules in each phase are interconnected to
each other, but also act as disjoint modules to provide separate information to the
emergency personnel. The red arrows indicate the information flow within the de-
tection phase. In the same manner, the blue and green arrows show the flow within
the analysis and evacuation phases respectively. The yellow arrows designate inter-
connectivity between the phases and the decisions produced by the detection phase.
Note that, the analysis and evacuation phases initiate execution only if the detec-
tion phase detects an emergency. The detection phase continuously monitors the
environment while the analysis and evacuation phases kick-in once an emergency
is detected.

1.4 Thesis Outline

The dissertation is organized into two parts. Part I contains an overview of the
work carried out throughout this Ph.D. study and Part II includes a collection of
six published or submitted papers, which are mentioned in the list of publications.
In addition to the introduction chapter presented above, the following chapters are
included.

• Chapter II presents some background and preliminary information of vari-
ous techniques and methods used in the thesis, as this thesis involves image
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classification, semantic segmentation, reinforcement learning and sound pro-
cessing and classification.

• Chapter III explains the contributions of this thesis in detail. It is divided into
three sections which are the three stages of fire emergency management. Each
section describes our contributions to each of the three stages, i.e. Detection,
Analysis and Evacuation. The motivation, intuition, novelty, methodology
and results for each contribution are explained extensively.

• Chapter IV concludes the thesis and discusses the implications of the out-
comes of the thesis. It also contains potential future research directions that
can further improve on the work presented in the thesis. This chapter also
concludes Part I of the thesis.

• In Part II of the thesis, all publications pertaining to the thesis are presented in
their entirety. There are six publications labelled as Paper A to F. The papers
are not listed in chronological order, instead they are listed in accordance with
the flow of the thesis and the ordering of the fire emergency management
stages.
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Chapter 2

Background

In this chapter, we briefly describe the background and preliminary information
needed to understand the thesis. We explain concepts that have been used through-
out this thesis. First, Convolutional Neural Networks have been briefly introduced
which have been extensively used in this thesis and are a recurring theme in the
papers associated with this thesis. Next, we move on to signal processing. Some
signal processing methods have been explained here that have been used in this the-
sis. We also include the Extreme Learning Machine algorithm that has been used
to create hybrid image classification methods. Finally, we describe Reinforcement
Learning and Q-learning methods that have been widely used in this thesis.

2.1 Convolutional Neural Networks

The Convolutional Neural Network was first introduced in 1980 by Kunihiko
Fukushima, called Neocognitron [4]. The CNN is designed to take advantage of
two dimensional structures like 2D Images and capture local spatial patterns. This
is achieved with local connections and tied weights. It consists of one or more
convolution layers with pooling layers between them, followed by one or more
fully connected layers, as in a standard multilayer perceptron. CNNs are easier to
train compared to Deep Neural Networks because they have fewer parameters and
local receptive fields.
In CNNs, kernels/filters are used to see where particular features are present in an
image by convolution with the image. The size of the filters gives rise to locally
connected structure which are each convolved with the image to produce feature
maps. The feature maps are usually subsampled using mean or max pooling. The
reduction is parameters is due to the fact that convolution layers share weights. The
reason behind parameter sharing is that we make an assumption, that the statistics
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of a patch of a natural image are the same as any other patch of the image, which
suggests that features learned at a location can also be learned for other locations.
So, we can apply this learned feature detector anywhere in the image. This makes
CNNs ideal feature extractors for images. Deeper CNNs with many layers have
been used for various applications especially image classification where they
perform much better than any other technique. Having more layers enable a larger
receptive field which in turn enables the model to capture higher level abstractions.
The CNNs models used in this thesis comprise of repetitions of Convolution layers
followed by Batch Normalization and finally ReLU as activation function. We give
a brief introduction to these operations used in our models.

2.1.1 Convolution operation

The convolution operation is basically used to calculate the cross-correlation be-
tween the kernel weights and the image pixels (or previous layer output). It is an
element-wise multiplication operation followed by a summation between the kernel
feature map and the input, as shown in the equation 2.1.

y(Ni, Coutj) =

Cin−1∑

k=0

θ(Coutj , k) ∗ x(Ni, k) + b(Coutj) (2.1)

where, x is the input to the convolution layer and y is the output, θ are the ker-
nel weights and b is the bias. The input size is (N,Cin, H,W ) and output size is
(N,Cout, Hout,Wout); N is the batch-size, C are the number of channels, and H,W
are the input height and width.
The idea behind this operation is that the kernel weights are learned using back-
propagation so that they extract relevant features from the input. A kernel’s weights
are spatially shared for all locations in the image. This is because a feature extracted
by a kernel at a particular part in an image is relevant for other parts of the image as
well. This is an important property of CNNs as it reduces the number of parameters.
The convolution operation is performed as a matrix operation rather than an indi-
vidual element-wise multiplication and summation in practice in almost all widely
used deep learning libraries.

2.1.2 Batch Normalization

During the forward pass, the multiplication between weights and the input shifts
the distribution along the direction of the weights. In a deep neural network, sub-
sequent operations result in a huge shift in the distribution, which leads to loss in
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performance. This is called internal covariate shift. In order to tackle this problem,
the batch normalization layer was proposed in [5]. Just like the input to the network
must be normalized with zero mean and unit variance, the batchnorm layer normal-
izes the input to each layer by calculating the mean and variance in a batch-wise
manner.

y =
x− µ(x)√

σ(x)
∗ γ + β (2.2)

where, µ and σ are the running estimates of mean and variance of the input x. And,
γ and β are shifting and translation parameters learned during training. Using Batch
Normalization in deep neural networks enables faster and more stable convergence.
It also allows for higher learning rates and makes the overall learning process less
dependent on weight initialization. Also, since batchnorm adds a little noise to the
network, it provides some regularization effect.

2.1.3 ReLU Activation

The Rectified Linear Unit is an activation function most widely used in deep neural
networks [6]. It is more closely related to the threshold function used in our brain to
whether let a signal pass through a neuron or not. It can be regarded as a truncation
operator applied element-wise on the input.

f(x) = max(x, 0) (2.3)

There is no parameter inside a ReLU layer, hence no need for parameter learning in
this layer. It is used as a nonlinear activation function in neural networks, as shown
in Figure 2.1 (left). In the case of images, the ReLU function will let through fea-
tures that result positive for a certain patterns and will render other negative patterns
to zero. In this way, the ReLU function induces sparsity in the model which reduces

Figure 2.1: ReLU Activation Function
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complexity and memory consumption.
Other popular activation functions such as sigmoid and tanh have a tendency of sat-
urating at their extremas. Also, unlike these functions, ReLU does not suffer from
vanishing gradient problem because its derivative is a step function that produces a
constant 1 for non-zero activation values.

f ′(x) =




1, if x > 0

0, otherwise
(2.4)

Although there are many different versions of ReLU, we use the ReLU6 version [7],
which clips the activation at value equal to 6, as shown in Figure 2.1 (right). It is
defined as:

f(x) = min(max(x, 0), 6) (2.5)

The advantage of using ReLU6 is that since it clips values above 6 passing through
to it, that encourages the model to learn sparse features earlier. The ReLU6 function
can be generalized to ReLUn family of activation functions, where n can be any real
number. Keeping n = 6 works best in practice [7].

2.2 Signal Processing

Signal processing is a subfield of electrical engineering that deals with feature ex-
traction, modification, analysis and synthesis of data that can be represented in form
of signals. Signal processing techniques have been widely used in almost every sci-
entific and non-scientific field. Signal processing techniques can be categorized
based on the types of signals to be processed.
In this thesis, we focus on signal processing techniques pertaining to audio and
speech signals. The techniques used to process audio signals are mostly used for
analysis and feature extraction. We employ some of these techniques to extract
distinguishable features from audio signals. We process audio signals to extract
features using the methods briefly discussed next.

2.2.1 Mel Frequency Cepstral Coefficients

The Mel-Frequency Cepstral Coefficients (MFCC) has been one of the standard sig-
nal/audio feature extraction technique [8] and has been successfully used to bench-
mark applications like speaker recognition [9], music information retrieval [10],
speech recognition [11]. The development of MFCC was propelled by human au-
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ditory perception. MFCCs produce a compact representation of an audio signal. It
differs from other cepstral features in the frequency bands which are on the mel-
scale. The detailed five step procedure to extract MFCCs can be found in [12].

2.2.2 Gammatone Frequency Cepstral Coefficients

The Gammatone Frequency Cepstral Coefficients (GFCC) has also been a popular
choice of feature extraction for audio/signal processing [13]. The gammatone fil-
ter is a linear filter that is outlined by an impulse response which is a product of a
gamma distribution and sinusoidal tone. Hence, the name gammatone. It is espe-
cially advantageous to use GFCC with MFCC as they complement each other, due
to the capability of GFCC being able to proficiently characterize transient sounds
classes such as footsteps and gun-shots [14]. Detailed analysis of the benefits of
combining MFCC and GFCC can be found in [15].

2.2.3 Constant Q-Transform

The Constant Q-transform is a time-frequency analysis technique that is particularly
suitable for music audio signals [16–18]. It is essentially a Gabor wavelet transform,
so unlike STFT, it has higher frequency resolution for lower frequencies and higher
time resolution for higher frequencies. Due to this, it was shown in [19] that CQT
outperformed standard MFCC feature extraction for ESC using CNNs. The results
shown in [20], illustrated CQT’s ability to capture low-to-mid level frequencies
better than MFCC for audio scene classification, which is essentially the same task
as ESC.

2.2.4 Chromagram

Another feature extraction technique that is popular with music information
retrieval and processing is the Chromagram [21]. Chroma based features are
especially useful for pitch analysis of audio signals. They can be used to distin-
guish among audio signals by assigning them pitch class profiles. This makes
chromagrams particularly proficient in audio structure analysis [22]. We use the
STFT (Short-time Fourier Transform) spectrogram to compute chroma features.
The implementation has been derived from [23].

MFCC acts as the backbone by providing rich features, GFCC adds transient
sound features, CQT contributes with better low-to-mid frequency range features
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and finally Chromagram provides pitch category analysis and signal structure
information. Different feature extraction methods interpret audio information in
different ways. The methods mentioned above represent audio information in
contrasting ways with each of them giving distinct information. Some features, like
the MFCC and GFCC, represent that amplitude spikes with high values, whereas
CQT and Chromagram represent it with low values. The representation of MFCC
is completely different as it provides some positive value in every region, with
enough discrimination capabilities. On the other hand, the other features act as
complementary features that eke out some additional distinguishable features.

2.3 Extreme Learning Machine

The Extreme Learning Machine is a supervised learning algorithm for single hid-
den layer feed forward neural networks proposed in [24]. In this method, the input
weights are randomly initialized and the output weights are determined analytically.
It is a non-gradient one-shot learning algorithm that does not require repeated iter-
ations as in backpropagation. It is one of the fastest learning algorithms, however it
is unstable.

2.3.1 The Theory of ELM

The input to the ELM, in this case, are the features extracted by the CNNs. Let it be
represented as xi, ti, where xi is the input feature instance and ti is the correspond-
ing class of the image. The inputs are connected to the hidden layer by randomly
assigned weights w. The product of the inputs and their corresponding weights
act as inputs to the hidden layer activation function. The hidden layer activation
function is a nonlinear non-constant bounded continuous infinitely differentiable
function that maps the input data to the feature space. There is a catalogue of acti-
vation functions from which we can choose according to the problem at hand. We
ran experiments for all activation functions and the best performance was achieved
with the multi-quadratics function:

f(x) =
√
‖xi − µi‖2 + a2 (2.6)

The hidden layer and the output layer are connected via weights β, which are to be
analytically determined. The mapping from the feature space to the output space is
linear. Now, with the inputs, hidden neurons, their activation functions, the weights
connecting the inputs to the hidden layer and the output weights produce the final
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output function:
L∑

i=1

βig(wi.xj + bi) = oj (2.7)

The output in Matrix form is:
Hβ = T (2.8)

The error function used in Extreme Learning Machine is the Mean Squared error
function, written as:

E =
N∑

j=1

(
L∑

i=1

βig(wi.xj + bi)− tj)2 (2.9)

To minimize the error, we need to get the least-squares solution of the above linear
system.

‖Hβ∗ − T‖ = minβ‖Hβ − T‖ (2.10)

The minimum norm least-squares solution to the above linear system is given by:

β̂ = H†T (2.11)

Properties of the above solution:

1. Minimum Training Error: The following equation provides the least-squares
solution, which means the solution for ‖Hβ − T‖, i.e. the error is minimum.
‖Hβ∗ − T‖ = minβ‖Hβ − T‖

2. Smallest Norm of Weights: The minimum norm of least-squares solution is
given by the Moore-Penrose pseudo inverse of H .
β̂ = H†T

3. Unique Solution: The minimum norm least-squares solution of Hβ = T is
unique, which is:
β̂ = H†T

Detailed mathematical proofs of these properties and the ELM algorithm can be
found in [25].

2.4 Reinforcement Learning

Reinforcement Learning (RL) has been a subject of extensive research and applica-
tions in various real world domains such as Robotics, Games, Industrial Automation
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and Control, System Optimization, Quality Control and Maintenance. Reinforce-
ment Learning is a sub-field of Machine Learning which deals with learning to make
appropriate decisions and take actions to achieve a goal. A Reinforcement Learning
agent learns from direct interactions with an environment without requiring explicit
supervision or a complete model of the environment. The agent interacts with the
environment by performing actions. It receives feedback for it’s actions in terms of
reward (or penalty) from the environment and observes changes in the environment
as a result of the actions it performs. These observations are called states of the
environment and the agent interacts with the environment at discrete time intervals
t by performing an action at in a state of the environment st, it transitions to a new
state st+1 (change in the environment) while receiving a reward rt, with probability
P (st+1|st, at). The main aim of the agent is to maximize the cumulative reward
over time through it’s choice of actions.
A pictorial representation of the RL framework is shown in Figure 2.2. In the sub-
sequent subsections, a brief presentation of the concepts and methods used in this
thesis are explained.

Figure 2.2: Reinforcement Learning Framework (the figure is taken from [1])

2.4.1 Markov Decision Process

The Reinforcement learning framework is formalised by Markov Decision Pro-
cesses (MDP) which are used to define the interaction between a learning agent
and its environment in terms of states, actions, and rewards [26]. An MDP consists
of a tuple of 〈S,A, P,R〉 [1], where S is the state space, A is the action space, P is
the transition probability from one state to the next, P : S × A × S 7−→ [0, 1] and
R is the reward function, R : S × A 7−→ R.
When state space S, action space A and rewards R consist of finite number of
elements, st+1 and rt+1 have well-defined discrete probability distributions which
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depend only on the present state and action (Markov Property). This is represented
as p(st+1, rt+1|st, at), where p determines the dynamics of the Markov Decision
Process and where:

∑

st+1∈S

∑

r∈R
p(st+1, rt+1|st, at) = 1,∀st ∈ S, at ∈ A (2.12)

p contains all the information about the MDP, so we can compute important aspects
about the environment from p, like state transition probability and expected rewards
for state-action pairs [1]:

P (st+1|st, at) =
∑

r∈R
p(st+1, rt+1|st, at) (2.13)

r(st, at) = E[rt|st, at] =
∑

r∈R
r

∑

st+1∈S
p(st+1, rt+1|st, at) (2.14)

The equation 3, gives the immediate reward we expect to get when performing
action at from state st. The agent tries to select actions that maximize the sum of
rewards it expects to achieve, as time goes to infinity. But, in a dynamic and/or
continuous Markov Decision Process, the notion of discounted rewards is used [1]:

Gt =
∞∑

k=0

γkrt+k+1 (2.15)

where, γ is the discount factor and is in the range [0, 1]. If γ is near 0, then the
agent puts emphasis on rewards received in the near future and if γ is near 1, then
the agent also cares about rewards in the distant future.
In order to maximize Gt, the agent picks an action at when in a state st according
to a policy function π(st). A policy function is a probabilistic mapping from the
state space to the action space, S → A. The policy function outputs probabilities
for taking each action in give state, so it can also be denoted as π(at|st).

2.4.2 Q-Learning

Most of the Reinforcement Learning algorithms (value based) try to estimate the
value function which gives an estimate of how good a state is for the agent to reside
in. This is estimated according to the expected reward of a state under a policy and
is denoted as vπ(s):

vπ(s) = Eπ[Gt|st] (2.16)
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Q-learning is a value based Reinforcement Learning algorithm that tries to max-
imize the q function [27]. The q function is a state-action value function and is
denoted by Q(st, at). It tries to maximize the expected reward give a state and
action performed on that state:

Q(st, at) = E[Gt|st, at] (2.17)

According the Bellman Optimality equation [1], the optimal q function can be ob-
tained by:

Q∗(st, at) = E[rt+1 + γv∗(st+1)|st, at]
=

∑

st+1,rt

p(st+1, rt|st, at)[rt + γv∗(s)] (2.18)

where, v∗(st+1) = maxat+1 Q
∗(st+1, at+1). And, a∗ is the optimal action which

results in maximum reward, the optimal policy is formed as argmaxat π
∗(at|st) =

a∗. This method was proposed in [27] which is tabular style Q-learning. The update
rule for each time step of Q-learning is as follows:

Qt+1(st, at) = Qt(st, at) + η[rt + γmax
at

Qt(st+1, at+1) − Qt(st, at)] (2.19)

Q-learning is an incremental dynamic programming algorithm that determines the
optimal policy in a step-by-step manner. At each step t, the agent performs the
following operations:

• Observes current state st.

• Selects and performs an action at.

• Observes the next state st+1.

• Receives the reward rt.

• Updates the q-values Qt(st, at) using equation 2.19.

The q value function converges to the optimal value Qt+1(st, at) → Q∗(st, at) as
t→∞. Detailed convergence proof and analysis can be found in [27].
This tabular Q-learning method is used in our proposed approach to generate a Q-
matrix for the shortest path to the exit based on the building model. In order to
incorporate the shortest path information, this Q-matrix is used to pretrain the DQN
models.
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2.4.3 Deep Q Network

The tabular Q-learning approach works well for small environments, but becomes
infeasible for complex environments with large multidimensional discrete or con-
tinuous state-action spaces. To deal with this problem, a parameterized version of
the q function is used for approximation Q(st, at; θ) ≈ Q∗(st, at). This way of
function approximation was first proposed in [28].
Deep Neural Networks (DNNs) have become the predominant method for approx-
imating complex intractable functions. They have become the defacto method for
various applications such as image processing and classification [4, 29–34], speech
recognition [35–41], and natural language processing [42–46]. DNNs have also
been applied to reinforcement learning problems successfully by achieving note-
worthy performance [47, 48].
The most noteworthy research in integrating deep neural networks and Q-learning
in an end-to-end reinforcement learning fashion is the Deep Q-Networks (DQNs)
[49, 50]. To deal with the curse of dimensionality, a neural network is used to ap-
proximate the parameterised Q-function Q(st, at; θ). The neural network takes a
state as input and approximates Q-values for each action based on the input state.
The parameters are updated and the Q-function is refined in every iteration through
an appropriate optimizer like Stochastic Gradient Descent [51], RMSProp [52],
Adagrad [53], Adam [54] etc. The neural network outputs q-values for each ac-
tion for the input state and the action with the highest q-value is selected (There is
another DQN architecture, which is less frequently used, that takes in the state and
action as input and returns it’s q-value as output).
The DQN can be trained by optimizing the following loss function:

Li(θi) = E[(rt + γmax
at+1

Q(st+1, at+1; θi−1)−Q(st, at; θi))2] (2.20)

where, γ is the discount factor, θi and θi−1 are the Q-network parameters at iteration
i and i − 1 respectively. In order to train the Q-network, we require a target to
calculate loss and optimize parameters. The target q-values are obtained by holding
the parameters θi−1 fixed from the previous iteration.

y = rt + γmax
at+1

Q(st+1, at+1; θi−1) (2.21)

where, y is the target for the next iteration to refine the Q-network. Unlike super-
vised learning where the optimal target values are known and fixed prior to learning,
in DQN the approximate target values y, which depend on network parameters, are
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used to train the Q-network. The loss function can be rewritten as:

Li(θi) = E[(y −Q(st, at; θi))2] (2.22)

The process of optimizing the loss function Li(θi) at the ith iteration by holding
the parameters from the previous iteration θi−1 fixed, to get target values, results
in a sequence of well-defined optimization time-steps. By differentiating the loss
function in equation 2.22, we get the following gradient:

∇θiLi(θi) = E[(y −Q(st, at; θi))∇θiQ(st, at; θi)] (2.23)

Instead of computing the full expectation of the above gradient, we optimize
the loss function using an appropriate optimizer. The DQN is a model-free
algorithm since it directly solves tasks without explicitly estimating the environ-
ment dynamics. Also, DQN is an off-policy method as it learns a greedy policy
a = argmaxat+1

Q(s, at+1; θ), while following an ε-greedy policy for sufficient
exploration of the state space. One of the drawbacks of using a nonlinear function
approximator like neural network is that it tends to diverge and is quite unstable
for reinforcement learning. The problem of instability arises mostly due to:
correlations between subsequent observations and that small changes in q-values
can significantly change the policy and the correlations between q-values and target
values.
The most well-known and simple technique to alleviate the problem of instability
is the experience replay [55]. At each time-step, a tuple consisting of the agent’s
experience Et = (st, at, rt, st+1) is stored in a replay memory over many episodes.
A minibatch of these tuples is randomly drawn from the replay memory to update
the DQN parameters. This ensures that the network isn’t trained on a sequence of
observations (avoiding strong correlations between samples and reducing variance
between updates) and it increases sample efficiency. This technique greatly
increases stability of DQN.

2.4.4 Double DQN

Q-learning and DQN are capable of achieving performance beyond the human level
on many occasions. However, in some cases Q-learning performs poorly and so
does its deep neural network counterpart DQN. The main reason behind such poor
performance is that Q-learning tends to overestimate action values. These overes-
timations are caused due to a positive bias that results from the max function in
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Q-learning and DQN updates which outputs the maximum action value as an ap-
proximation of the maximum expected action value.
The Double Q-learning method was proposed in [56] to alleviate this problem and
later extended to DQN [57] to produce the Double DQN (DDQN) method. Since
Q-learning uses the same estimator to select and evaluate an action, which results
in overoptimistic action values, we can interpret it as a single estimator. In Dou-
ble Q-learning, the task of evaluation and selection is decoupled by using double
estimator approach consisting of two functions: QA and QB. The QA function is
updated with a value from the QB function for the next state and the QB function is
updated with a value from the QA function for the next state.
Let,

a∗ = argmax
at

QA
t (st+1, at) (2.24)

b∗ = argmax
at

QB
t (st+1, at) (2.25)

Then,

QA
t+1(st, at) = QA

t (st, at) + η[rt + γQB
t (st+1, a

∗)−QA
t (st, at)] (2.26)

QB
t+1(st, at) = QB

t (st, at) + η[rt + γQA
t (st+1, b

∗)−QB
t (st, at)] (2.27)

where, a∗ is the action with the maximum q-value in state st+1 according to the QA

function and b∗ is the action with the maximum q-value in state st+1 according to
the QB function.
The double estimator technique is unbiased which results in no overestimation of
action values, since action evaluation and action selection is decoupled into two
functions that use separate max function estimates of action values. In fact, thor-
ough analysis of Double Q-learning in [56] shows that it sometimes might underes-
timate action values.
The Double Q-learning algorithm was adapted for large state-action spaces in [57]
by forming the Double DQN method in a similar way as DQN. The two Q-functions
(QA and QB) can be parameterised by two sets of weights θ and θ′. At each step,
one set of weights θ is used to update the greedy policy and the other θ′ to calculate
it’s value. For Double DQN, equation 2.21 can be written as:

y = rt + γQ(st+1, argmax
a

Q(st+1, at; θi); θ
′
i) (2.28)

The first set of weights θ are used to determine the greedy policy just like in DQN.
But, in Double DQN, the second set of weights θ′ is used for an unbiased value
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estimation of the policy. Both sets of weights can be updated symmetrically by
switching between θ and θ′.
The target value network in DQN can be used as the second Q-function instead of
introducing an additional network. So, the weights at the ith iteration are used to
evaluate the greedy policy and the weights at the previous iteration to estimate it’s
value. The update rule remains the same as DQN, while changing the target as:

y = rt + γQ(st+1, argmax
a

Q(st+1, at; θi); θi−1) (2.29)

Note that in both DQN and DDQN, the target network uses the parameters of the
previous iteration i− 1. However, to generalise, the target network can use param-
eters from the any previous (i− k)th iteration. Then, the target network parameters
are updated periodically with the copies of the parameters of the online network.

2.4.5 Dueling DQN

In quite a few RL applications, it is sometimes unnecessary to estimate the value of
each action. In many states, the choice of action has no consequence on the out-
come. A new architecture for model-free Reinforcement Learning, called the duel-
ing architecture, is proposed in [58]. The dueling architecture explicitly separates
state values and action advantage values into two streams which share a common
feature extraction backbone neural network. The architecture is similar to that of the
DQN and DDQN architectures; the difference being that instead of a single stream
of fully connected layers, there are two streams providing estimates of the value
and state-dependent advantage functions. The two streams are combined at the end
producing a single Q-function.
One stream outputs a scalar state value, while the other outputs an advantage vector
having dimensionality equal to number of actions. Both the streams are combined
at the end to produce the Q-function estimate. The combining module at the end
can simply aggregate the value and advantage estimates as:

Q(st, at; θ, α, β) = V (st; θ, β) +A(st, at; θ, α) (2.30)

where, θ are the parameters of the lower layers of the neural network (before streams
are split); α and β are the parameters of the advantage and value function streams.
However, such an aggregation of streams would require V (st; θ, β) to be replicated
as many times as the dimensionality of A(st, at; θ, α). Also, value and advantage
estimates cannot be uniquely recovered given the estimated Q-function.
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One way of addressing these issues, proposed in [58], is to force the advantage
function estimator to have zero value at the selected action. This aggregation is
implemented in the combining module as:

Q(st, at; θ, α, β) = V (st; θ, β)+

(A(st, at; θ, α)− max
at+1∈A

A(st, at+1; θ, α)) (2.31)

Now, for a chosen action (action with max Q-function),
a∗ = argmaxat+1∈AQ(st, at+1; θ, α, β), putting in equation 2.31, we get
Q(st, a

∗; θ, α, β) = V (st; θ, β). Hence, the two streams can be uniquely recovered.
In [58], another way of aggregation is proposed which eliminates the max operator.

Q(st, at; θ, α, β) = V (st; θ, β)+

(A(st, at; θ, α)−
1

|A|
∑

at+1

A(st, at+1; θ, α)) (2.32)

where, |A| is the number of actions. Even though value and advantage estimates
are now off-target by a constant, this way of aggregation improves stability by
capping the changes in the advantage estimates by their mean and enhances overall
performance.

2.5 Summary

In this chapter, we have discussed the several background concepts underlining this
thesis. The thesis consists of core deep learning, reinforcement learning and neu-
ral network concepts, which have been thoroughly explained in this chapter. The
preliminaries described in this chapter have been used throughout the thesis. These
basic and complex concepts of AI act as a base and the contributions of this the-
sis are built upon them. We have described Convolutional Neural Networks (Paper
A, B, D, E, F), Reinforcement Learning, especially Q-learning and variants (Paper
C), the Extreme Learning Machine algorithm (Paper B) and some signal processing
methods (Paper E, F).
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Chapter 3

Contributions

In this chapter, we explain and elaborate on the contributions of this thesis. As
mentioned earlier, we divide the fire emergency management procedure into three
phases: Detection, Analysis and Evacuation. The main contribution of this thesis
is to find AI based solutions for fire emergencies that can replace current methods
by eliminating their shortcomings and outperforming them. Also, we aim to reduce
risk for fire-fighters by providing relevant and necessary information without any
human intervention.
We use image classification for visual detection and sound classification for audio
detection of a fire emergency. In the analysis phase, we use semantic segmenta-
tion to visually analyse the emergency situation by identifying inflammable objects
and people in the environment. And finally, in the evacuation phase, we employ
reinforcement learning to learn shortest paths to the nearest exit from each room to
evacuate all people from the building. We design our own reinforcement learning
simulator that consists of realistic fire scenarios. We elaborate our contributions for
each of these phases in the following sections.

3.1 Detection

In the detection phase, the main task is to detect whether there is an emergency
situation or is everything normal. We propose two ways of doing this. One is using
visual information like images to classify whether there is a fire emergency or not.
Another way is to use audio information to detect an emergency situation. Using
the audio information way, we build a general purpose emergency detection system
since we can classify all sounds that depict an emergency into a single class. On the
other hand, we specialize the visual detection system to only detect fire emergen-
cies.
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Both ways of detection have their own advantages and disadvantages. Some infor-
mation is most readily available visually (e.g., the extent of a fire), while other in-
formation is perhaps best captured through sound (e.g., screaming). In some cases,
changes in audio signal might occur first. Whereas, in other cases, a change in the
visual representation of the environment might take place before any other changes.
We have therefore investigated methods for using both kinds of information in this
thesis.

3.1.1 Visual Detection

Detecting fire in images using image processing and computer vision techniques has
gained a lot of attention from researchers during the past few years. Indeed, with
sufficient accuracy, such systems may outperform traditional fire detection equip-
ment. One of the most promising techniques used in this area is Convolutional
Neural Networks (CNNs). However, the previous research on fire detection with
CNNs has only been evaluated on balanced datasets, which may give misleading
information on real-world performance, where fire is a rare event.
There have been many innovative techniques proposed in the past to build an accu-
rate fire detection system which are broadly based on image processing and com-
puter vision techniques. The state-of-the-art vision-based techniques for fire and
smoke detection have been comprehensively evaluated and compared in [59]. The
colour analysis technique has been widely used in the literature to detect and analyse
fire in images and videos [60–63]. On top of colour analysis, many novel methods
have been used to extract high level features from fire images like texture analy-
sis [61], dynamic temporal analysis with pixel-level filtering and spatial analysis
with envelope decomposition and object labelling [64], fire flicker and irregular fire
shape detection with wavelet transform [62], etc. These techniques give adequate
performance but are outperformed by Machine Learning techniques. A compara-
tive analysis between colour-based models for extraction of rules and a Machine
Learning algorithm is done for the fire detection problem in [65]. The machine
learning technique used in [65] is Logistic Regression which is one of the simplest
techniques in Machine Learning and still outperforms the colour-based algorithms
in almost all scenarios. These scenarios consist of images containing different fire
pixel colours of different intensities, with and without smoke.
Instead of using many different algorithms on top of each other to extract relevant
features, we can use a network that learns relevant features on its own. Neural
networks have been successfully used in many different areas such as Natural Lan-
guage Processing, Speech Recognition, Text Analysis and especially Image Clas-
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sification. Extracting relevant features from images is the key to accurate classi-
fication and analysis which is why the problem of fire detection is ideally suited
for Deep Learning. Deep Neural Networks are used to automatically ’learn’ hier-
archy of pertinent features from data without human intervention and the type of
neural network ideally suited for image classification is the Convolutional Neural
Networks (CNN).
Therefore, our approach is to employ state-of-the-art CNNs to distinguish between
images that containing fire and images that do not and build an accurate fire de-
tection system. To make these models more robust, we use a custom-made image
dataset containing images with numerous scenarios.
We improve our fire detection model further by using hybrid models. We propose
to use hybrid CNN-ELM and CNN-SVM models to outperform Deep CNNs. Such
hybrid models have been used in the past for image classification, but the novelty
of our approach lies in using state-of-the-art Deep CNNs like VGG16 and Resnet50
as feature extractors and then remove some/all fully connected layers with an ELM
classifier. This models outperform Deep CNNs in terms of accuracy, training time
and size of the network. We also compare the CNN-ELM model with another hybrid
model, CNN-SVM and show that the CNN-ELM model gives the best performance.

3.1.1.1 Related Work: CNNs for Fire Detection

There have been many significant contributions from various researchers in devel-
oping a system that can accurately detect fire in the surrounding environment. But,
the most notable research in this field involves Deep Convolutional Neural Net-
works (DCNN). DCNN models are currently among the most successful image
classification models which makes them ideal for a task such as Fire detection in
images. This has been demonstrated by previous research published in this area.
In [66], the authors use CNN for detection of fire and smoke in videos. A simple
sequential CNN architecture, similar to LeNet-5 [32], is used for classification. The
authors quote a testing accuracy of 97.9% with a satisfactory false positive rate.
Whereas in [67], a very innovative cascaded CNN technique is used to detect fire in
an image, followed by fine-grained localisation of patches in the image that contain
the fire pixels. The cascaded CNN consists of AlexNet CNN architecture [34] with
pre-trained ImageNet weights [29] and another small network after the final pool-
ing layer which extracts patch features and labels the patches which contain fire.
Different patch classifiers are compared.
The AlexNet architecture is also used in [68] which is used to detect smoke in im-
ages. It is trained on a fairly large dataset containing smoke and non-smoke images
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for a considerably long time. The quoted accuracies for large and small datasets are
96.88% and 99.4% respectively with relatively low false positive rates.
Another paper that uses the AlexNet architecture is [69]. This paper builds its
own fire image and video dataset by simulating fire in images and videos using
Blender. It adds fire to frames by adding fire properties like shadow, fore-ground
fire, mask etc. separately. The animated fire and video frames are composited using
OpenCV [70]. The model is tested on real world images. The results show reason-
able accuracy with high false positive rate.
As opposed to CNNs which extract features directly from raw images, in some
methods image/video features are extracted using image processing techniques and
then given as input to a neural network. Such an approach has been used in [71].
The fire regions from video frames are obtained by threshold values in the HSV
colour space. The general characteristics of fire are computed using these values
from five continuous frames and their mean and standard deviation is given as input
to a neural network which is trained using back propagation to identify forest fire
regions. This method performs segmentation of images very accurately and the re-
sults show high accuracy and low false positive rates.
In [72], a neural network is used to extract fire features based on the HSI colour
model which gives the fire area in the image as output. The next step is fire area
segmentation where the fire areas are roughly segmented and spurious fire areas like
fire shadows and fire-like objects are removed by image difference. After this the
change in shape of fire is estimated by taking contour image difference and white
pixel ratio to estimate the burning degree of fire, i.e. no-fire, small, medium and
large. The experimental results show that the method is able to detect different fire
scenarios with relatively good accuracy.
All the research work done in this area has been exemplary. But, there are some
issues associated with each of them that we try to alleviate in our work. We use
a dataset that consists of images that we have handpicked from the internet. The
dataset contains images that are extremely hard to classify which results in poor
generalization. The dataset also contains many different scenarios and is highly
unbalanced to replicate real world behaviour. We propose to use state-of-the-art
pre-trained DCNN models. The reason behind using such complex models is ex-
plained in the next section. We also modify these models to improve accuracy at
the cost of training time.
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3.1.1.2 Related Work: Hybrid models for Image classification

The classifier part in a Deep CNN is a simple fully connected perceptron with a
softmax layer at the end to output probabilities for each class. This section of the
CNN has a high scope for improvement. Since it consists of three to four fully
connected layers containing thousands of neurons, it becomes harder and slower to
train it. Even with pre-trained models that require fine tuning of these layers. This
has led to the development of hybrid CNN models, which consist of a specialist
classifier at the end.
Some of the researchers have employed the Support Vector Machine (SVM) as the
final stage classifier [73–77]. In [73], the CNN-SVM hybrid model is applied to
many different problems like object classification, scene classification, bird sub-
categorization, flower recognition etc. A linear SVM is fed ’off the shelf convolu-
tional features’ from the last layer of the CNN. This paper uses the OverFeat net-
work [78] which is a state-of-the-art object classification model. The paper shows,
with exhaustive experimentation, that extraction of convolutional features by a deep
CNN is the best way to obtain relevant characteristics that distinguishes an entity
from another.
The CNN-SVM model is used in [74] and successfully applied to visual learning
and recognition for multi-robot systems and problems like human-swarm interac-
tion and gesture recognition. This hybrid model has also been applied to gender
recognition in [75]. The CNN used here is the AlexNet [34] pre-trained with Ima-
geNet weights. The features extracted from the entire AlexNet are fed to an SVM
classifier. A similar kind of research is done in [76], where the softmax layer and
the cross-entropy loss are replaced by a linear SVM and margin loss. This model is
tested on some of the most well known benchmark datasets like CIFAR-10, MNIST
and Facial Expression Recognition challenge. The results show that this model out-
performs the conventional Deep CNNs.
In 2006, G.B. Huang introduced a new learning algorithm for a single hidden layer
feedforward neural network called the Extreme Learning Machine [24, 25]. This
technique was many times faster than backpropagation and SVM, and outperformed
them on various tasks. The ELM randomly initializes the input weights and ana-
lytically determines the output weights. It produces a minimum norm least squares
solution which always achieves lowest training accuracy, if there are enough num-
ber of hidden neurons. There have been many variants of ELM depending upon a
specific application, which have been summarised in [79].
This led to the advent of CNN-ELM hybrid models, which were able to outperform
the CNN-SVM models on various applications. The major advantage of CNN-
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ELM models is the speed of convergence. In [80], the CNN-ELM model is used for
Wireless Capsule Endoscopy (WCE) image classification. The softmax classifier of
a CNN is replaced by an ELM classifier and trained on the feature extracted by the
CNN feature extractor. This model is able to outperform CNN-based classifiers.
The CNN-ELM model has also been used for handwritten digit classification [81,
82]. In [81], a ’shallow’ CNN is used for feature extraction and ELM for classifi-
cation. The shallow CNN together with ELM speeds up the training process. Also,
various weight initialization strategies have been tested for ELM with different re-
ceptive fields. Finally, two strategies, namely the Constrained ELM (C-ELM) [83]
and Computed Input Weights ELM (CIW-ELM) [84] are combined in a two layer
ELM structure with receptive fields. This model was tested on the MNIST dataset
and achieved 0.83% testing error. In [82], a deep CNN is used for the same appli-
cation and tested on the USPS dataset.
A shallow CNN with ELM is tested on some benchmark datasets like MNIST,
NORB-small, CIFAR-10 and SVHN with various hyper parameter configurations
in [85]. Another similar hybrid model that uses CNN features and Kernel ELM as
classifier is used in [86] for age estimation using facial features. Another applica-
tion where a CNN-ELM hybrid model has been applied is the traffic sign recogni-
tion [87].
A different strategy of combining CNN feature extraction and ELM learning is pro-
posed in [88]. Here, an ELM with single hidden layer is inserted after every con-
volution and pooling layer and at the end as classifier. The ELM is trained by
borrowing values from the next convolutional layer and each ELM is updated after
every iteration using backpropagation. This interesting architecture is applied to the
application of lane detection and achieves excellent performance.
A comparative analysis of the CNN-ELM and CNN-SVM hybrid models for object
recognition from ImageNet has been illustrated in [89]. Both these models were
tested for object recognition from different sources like Amazon, Webcam, Caltech
and DSLR. The final results show that the CNN-ELM model outperforms the CNN-
SVM model on all datasets and using Kernel ELM further increases accuracy.
Using ELM as a final stage classifier does not end at image classification with
CNNs. They have also been used with DBNs for various applications [90, 91].
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3.1.1.3 Fire Images Dataset

Since there is no benchmark dataset for fire detection in images, we created our
own dataset by handpicking images from the internet. 1This dataset consists of 651
images which is quite small in size but it enables us to test the generalization ca-
pabilities and the effectiveness and efficiency of models to extract relevant features
from images when training data is scarce. The dataset is divided into training and
testing sets. The training set consists of 549 images: 59 fire images and 490 non-fire
images. The imbalance is deliberate to replicate real world situations, as the prob-
ability of occurrence of fire hazards is quite small. The datasets used in previous
papers have been balanced which does not imitate the real world environment. The
testing set contains 102 images: 51 images each of fire and non-fire classes. As the
training set is highly unbalanced and the testing set is exactly balanced, it makes a
good test to see whether the models are able to generalize well or not. For a model
with good accuracy, it must be able to extract the distinguishing features from the
small amount of fire images. To extract such features from small amount of data the
model must be deep enough. A poor model would just label all images as non-fire,
which is the case shown in the results.
Apart from being unbalanced, there are a few images that are very hard to classify.
The dataset contains images from all scenarios like fire in a house, room, office,
forest fire, with different illumination intensity and different shades of red, yellow
and orange, small and big fires, fire at night, fire in the morning; non-fire images
contain a few images that are hard to distinguish from fire images like a bright red
room with high illumination, sunset, red coloured houses and vehicles, bright lights
with different shades of yellow and red etc.
The Figures 3.1 show the fire images with different environments: indoor, outdoor,
daytime, night-time, forest fire, big and small fire. And the Figures 3.2 show the
non-fire images that are difficult to classify. Considering these characteristics of
our dataset, detecting fire can be a difficult task. We have made the dataset available
online so that it can be used for future research in this area.

3.1.1.4 Deep Convolutional Neural Networks for Fire Detection

We propose to use two Deep CNN architectures that have outperformed the AlexNet
on the ImageNet dataset, namely VGG16 [30] and Resnet50 [31]. We use these
models with pre-trained ImageNet weights. This helps greatly when there is lack of
training data. So, we just have to fine-tune the fully-connected layers on our dataset.

1The dataset is available here: https://github.com/UIA-CAIR/
Fire-Detection-Image-Dataset
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(a) (b)
(c)

Figure 3.1: Examples of Fire Images

(a)
(b)

(c)

Figure 3.2: Examples of Non-Fire Images that are difficult to classify

VGG16: The VGG16 architecture was proposed by the Visual Geometry Group at the
University of Oxford [30]. The main purpose of the paper was to investigate
the effect of depth in CNN models. They developed a number of models with
different depths ranging from 11 layers to 19 layers and tested them on differ-
ent tasks. The results on these tasks show that increasing depth also increases
performance and accuracy. The 19 layer architecture, VGG19 won the Ima-
geNet challenge in 2014, but the 16 layer architecture, VGG16 achieved an
accuracy which was very close to VGG19. Both the models are simple and
sequential. The 3x3 convolution filters are used in the VGG models which is
the smallest size and thus captures local features. The 1x1 convolutions can
be viewed as linear transformations and can also be used for dimensionality
reduction. We choose the VGG16 over the VGG19 because it takes less time
to train and the classification task in hand is not as complex as ImageNet chal-
lenge. Both the models have the same number of fully connected layers, i.e.
3, but differ in the number of 3x3 filters.

VGG16 (modified): In this work, we also test a modified version of VGG16 which consists of
4 fully connected layers, fine-tuned on the training data, which was able to
increase the accuracy of classification. We also tested with more fully con-
nected layers but the increase in accuracy was overshadowed by the increase
in training time. The Figures 3.3 a and 3.3 b show the original and modified
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(a) VGG16 Architecture

(b) Modified VGG16 Architecture

Figure 3.3

VGG16 architectures respectively.

ResNet50: After the success of the VGG architectures, it was established that deeper
models outperform shallower networks. But, the problem with making mod-
els deeper was the difficulty in training them because model complexity in-
creases as the number of layers increase. This issue was addressed by Mi-
crosoft Research, who proposed extremely deep architectures but with lower
complexity [31]. They introduced a new framework of learning to ease train-
ing of such deep networks. This is called Residual learning and hence the
models that employed this framework are called Residual Networks. Resid-
ual Learning involves learning residual functions. If a few stacked layers
can approximate a complex function, F (x) where, x is the input to the first
layer, then they can also approximate the residual function F (x)− x. So, in-
stead the stacked layers approximate the residual functionG(x) = F (x)− x,
where the original function becomes G(x) + x. Even though both can capa-
ble of approximating the desired function, the ease of training with residual
functions is better. These residual functions are forwarded across layers in the
network using identity mapping shortcut connections. The ImageNet 2015 re-
sults show that Resnet achieves the lowest error rates in image classification.
The Resnet architectures consist of networks of various depths: 18-layers,
34-layers, 50-layers, 101-layers and 152-layers. We choose the architecture
with intermediate depth, i.e. 50 layers. The Resnet consists of 3x3 and 1x1
filters, pooling layers and residual connections and a single softmax layer at
the end.

ResNet50 (modified): We also test a modified Resnet model by adding a fully connected layer fine-
tuned on the training data, which increase accuracy further. We did not add
any more fully connected layers since the model is already quite deep and
takes a long time to train. The Figures 3.4 a and 3.4 b show the original and
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(a) Resnet50 Architecture

(b) Modified Resnet50 Architecture

Figure 3.4

modified Resnet50 architectures respectively.

3.1.1.5 The Hybrid Model: Deep CNN-ELM for Fire Detection

We propose to use a hybrid architecture for fire detection in images. Instead of using
a simple CNN as feature extractor, we employ state-of-the-art Deep CNNs like the
VGG16 and Resnet50. Usually, only the softmax classifier is replaced by another
classifier (ELM or SVM) in a CNN to create a hybrid model. But, we go one step
further by replacing the entire fully connected multi-layer perceptron with a single
hidden layer ELM. This decreases the complexity of the model even further.
Both the VGG16 and Resnet50 extract rich features from the images. These features
are fed to the ELM classifier which finds the minimum norm least squares solution.
With enough number of hidden neurons, the ELM outperforms the original VGG16
and Resnet50 networks. Both VGG16 and Resnet50 are pre-trained with ImageNet
weights. So, only the ELM classifier is trained on the features extracted by the
CNNs.
Apart from fast training and accurate classification, there is another advantage of
this model. This hybrid model does not require large training data. In fact, our
dataset consists of just 651 images, out of which the ELM is trained on 60% of
images only. This shows its robustness towards lack of training data. A nor-
mal Deep CNN would require much higher amount of training data to fine-tune
its fully-connected layers and the softmax classifier. Even the pre-trained VGG16
and Resnet50 models required at least 80% training data to fine-tune their fully-
connected layers.

3.1.2 Audio Detection

Apart from detection using visual information, audio information can also be used
to detect potential emergency situations. A more general purpose emergency detec-
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tion approach is proposed using Environment Sound Classification (ESC). While
building a model for emergency detection using audio signals, we were able to
create a novel CNN model using multiple signal feature channels and an attention
mechanism that set the new state-of-the-art on the most widely used benchmark
ESC datasets. So, we first explain our novel ESC model and then show its applica-
tion to emergency detection.
ESC is one of the most important tasks that deals with distinguishing between
sounds from the real environment. It is a complex task that involves classifying
a sound event into an appropriate class such as siren, dog barking, airplane, people
talking etc.
The most successful ESC models consist of one or more standard audio feature ex-
traction techniques and deep neural networks. We explore the idea of employing
multiple feature extraction techniques like the Mel-frequency Cepstral Coefficients
(MFCC) [8], Gammatone Frequency Cepstral Coefficients (GFCC) [13], Constant
Q-Transform (CQT) [16], Chromagram [21] and stack them to create a multiple
channel input to our classifier.
After feature extraction, the next stage is classification. Many machine learning al-
gorithms have been used to classify sound, music or audio events. However, in the
ESC task, Deep CNNs have been able to outperform other techniques, as evident
from the previous ESC models. We also employ a Deep CNN for classification.
However, we split between time and frequency domain feature processing by using
separable convolutions [92] with different kernel sizes. Also, we use max pooling
across only one of the domains at a time, until after the last set of convolutional lay-
ers to combine time and frequency domain features. This enables processing time
and frequency domain features separately and then combining them at a later stage.
Along with the model, we also design a novel attention module that enables both
spatial and channel attention. In order to achieve both spatial and channel attention
with the same module, we need an attention weight matrix with dimensions equal
to the DCNN block output. So that, each output feature map in each channel has it’s
own attention weights. We use the depthwise separable convolution [93] to achieve
attention with minimal increase in number of parameters.
For the audio detection phase, we use a smaller version of the model proposed
above. We propose a general purpose emergency detector based on our ESC model
that classifies environmental sounds into emergency and non-emergency categories.
The system is emergency type agnostic, so it can be used to detect any kind of crisis
using audio signals from the environment only. To the best of our knowledge, this
is the first general purpose emergency sound detection system.
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3.1.2.1 Related Work: Environment Sound Classification

There have been several innovative and high performance approaches proposed for
the task of environmental sound classification (ESC). In [94], a deep CNN was
shown to give competitive results for the ESC tasks by thorough and exhaustive ex-
perimentation on the three benchmark datasets.
In [95], phase encoded filterbank energies (PEFBEs) was proposed as a novel fea-
ture extraction technique. Finally, a score-level fusion of FBEs and PEFBEs with a
CNN classifier achieved best performance.
In the second version of the EnvNet, called EnvNetv2 [96], the authors employed a
mechanism called Between Class (BC) learning. In BC learning, two audio signals
from different classes are mixed with each other with a random ratio. The CNN
model is then fed the mixed sound as input and trained to output this mixing ratio.
An unsupervised approach of learning a filterbank from raw audio signals was pro-
posed in [97]. Convolutional Restricted Boltzmann Machine (ConvRBM), which is
an unsupervised generative model, was trained to raw audio waveforms. A CNN is
used as a classifier along with ConvRBM filterbank and score-level fusion with Mel
filterbank energies. Their model achieves 86.5% on the ESC-50 dataset.
A novel data augmentation technique, called mixup, was proposed in [98]. It con-
sists of mixing two audio signals and their labels, in a linear interpolation manner,
where the mixing is controlled by a factor λ. In this way, their model achieves
83.7% accuracy on the UrbanSound8K dataset. We employ the mix-up data aug-
mentation in our work to boost our model’s performance.
A complex two stream structure deep CNN model was proposed in [99]. It consists
of two CNN streams. One is the LMCNet which works on the log-mel spectrogram,
chroma, spectral contrast and tonnetz features of audio signals and the other is the
MCNet which takes MFCC, chroma, spectral contrast and tonnetz features as in-
puts. The decisions of the two CNNs are fused to get the final TSDCNN-DS model.
It achieves 97.2% accuracy on the UrbanSound8K dataset.
There have also been a few contributions towards the ESC task that consist of atten-
tion based systems. In [100], a combination of two attention mechanisms, channel
and temporal, was proposed. The temporal attention consists of 1 × 1 convolu-
tion for feature aggregation followed by a small CNN to produce temporal attention
weights. On the other hand, channel attention consists of a bank of fully connected
layers to produce the channel attention map. Using two separate attention mod-
els makes the system very complex and increases the number of parameters by a
lot. We perform spatial and channel attention with just one depthwise convolutional
layer.
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A multi-stream network with temporal attention for the ESC task was proposed
in [101]. The model consists of three streams with each stream receiving one of
the three stacked inputs: raw waveform, STFT (Short-time Fourier Transform) and
delta STFT. A temporal attention model received the inputs directly and propagated
it’s output to the main models intermediate layers. Here, again, the model is too
complex and also, the attention block doesn’t receive any intermediate feedback
from the main model.

3.1.2.2 Related Work: Emergency Audio Classification

Different types of emergencies require different kinds of sensory detection systems.
However, some detection systems are applicable to several types of emergencies.
For example, vision based systems can be used to detect several kinds of emer-
gencies, especially fire [102, 103], flood [104], earthquakes [105], droughts [106],
avalanches [107] etc. A thorough analysis of vision based techniques to detect
emergency situations can be found in [108].
There are also a few specialist detectors that detect specific types of emergencies
that cannot be detected by conventional means. In [109], volatile chemical com-
pounds are identified using a method based on portable gas chromatograph-mass
spectrometer. Another specialist detector was proposed in [110] for human activ-
ity recognition. It used Bayesian networks and rules based stochastic context-free
grammars to detect abnormal behaviours among monitored humans. Another tech-
nique proposed in [111], that monitors human activities was used for fall detection.
It uses sensory data like acceleration and Euler angle with monitored parameters
such as heart-rate and ADLs (activity of daily lives).
A Convolutional Neural Network (CNN) was used in [112] to detect emergency
weather situations by processing data from climate datasets. The method demon-
strated the ability of deep neural networks to learn complex weather patterns to pre-
dict extreme weather conditions. Along with Bayesian hyperparameter optimiza-
tion, the weather model was able to achieve high performance. A very important
work regarding the analysis of reliability of multi-state emergency detection sys-
tems was performed in [113]. Wireless sensor network based approaches to detect
fire emergencies have also been popular in recent years [114–116]. The general
idea uses a distributed system of nodes, where each node is capable of classifying
fire emergencies. Once the fire is detected, the cluster-head is alerted and routed
to other cluster-heads via gateways to alert the firefighters. Each node consists of
a fire detection algorithm and sometimes a neural network that has been trained on
historical fire data.
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A research work similar to our proposed task was proposed in [117]. They use a per-
ception sensor network that detects screaming persons. It also uses audio-visual in-
formation for sound source localization. However, unlike our work, it does not gen-
eralize to all major emergency situations and does not employ deep learning. Also,
our method uses auditory information only. Also, in [118], a core signal process-
ing approach of using mechanical resonant filters is used to detect sirens. A siren
detection for system ambulance using fast fourier transform was proposed in [119].
Another emergency siren and horn detection system was proposed in [120]. They
propose to treat the audio spectrograms as an image and apply semantic segmenta-
tion using the U-net [121] to detect and de-noise sirens in traffic. They use another
CNN to localize the siren sounds, which makes this system very computationally
complex.
Unlike these methods, our proposed system not only detects sirens and screams,
but also other potential dangerous environmental sounds. We test our system on
three benchmark environment sound classification datasets, separately as well as
combined, to perform binary classification between emergency and non-emergency
sounds.

3.1.2.3 Proposed Environment Sound Classification Model

We propose a novel ESC model that consists of multiple feature channels extracted
from the audio signal and a new DCNN architecture consisting of separable con-
volutions, that works on time and frequency domain separately and a depthwise
convolution based attention mechanism.
The feature extraction stage consists of four channels of features, which are: Mel-
Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coeffi-
cients (GFCC), Constant Q-transform (CQT) and Chromagram.
For the classification stage, we propose a CNN architecture that works better for
audio data, as shown in Figure 3.7. We use spatially separable convolutions to
process time and frequency domain features separately and aggregate them at the
end. Also, the downsampling value is different for time and frequency domains
in the maxpooling layers. Along side the main DCNN model, we add spatial and
channel attention using the depthwise convolution. In the subsequent sub-sections,
we explain the feature extraction and classification stages of our model.

Multiple Feature Channels: Here, we use four major audio feature extraction
techniques to create a four channel input for the Deep CNN, namely, Mel-Frequency
Cepstral Coefficients (MFCC) [8], Gammatone Frequency Cepstral Coefficients
(GFCC) [13], Constant Q-Transform [16] and Chromagram [21]. Incorporating
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(a) Audio Signals

(b) Mel Frequency Cepstral Coefficients

(c) Gammatone Frequency Cepstral Coefficients

(d) Constant Q-Transform

(e) Chromagram

Figure 3.5: Multiple Feature Channels
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(a) (b)

Figure 3.6: PCA of Features

different signal processing techniques that extract different types of information
provides the CNN with more distinguishable characteristics and complementary
feature representations to accurately classify audio signals.
The MFCC, GFCC, CQT and Chroma features are stacked together to create a four
channel input for the Deep CNN. Each feature plays it’s part in the classification
task. MFCC acts as the backbone by providing rich features, GFCC adds transient
sound features, CQT contributes with better low-to-mid frequency range features
and finally Chromagram provides pitch category analysis and signal structure infor-
mation. Figure 3.5 shows a graphical representation of the features extracted from
an audio signal (Figure 3.5 a). All features are normalized between 0 and 1 using
min-max normalization. From the figure, we can see the contrast in the values of
each feature.
Figure 3.6 a shows the Principal Component Analysis (PCA) of the features. We
take the first two principal components of the four features we use in our model to
create a 2D visualization of the feature space. From the figure we can see that most
of features are heavily concentrated in the middle region. But, as shown in Figure
3.6 b, we encircle a few regions that different features provide some amount of dif-
ferent information. Indeed some of these regions might contain irrelevant or outlier
information that is not of value to classification. But, as seen in the figure these
feature extraction techniques do provide unique and complementary information.
Chromagram features provide little distinctive information and shown in the results
section, it provides little increase to the performance of the model.

Deep CNN Architecture: Main Block Figure 3.7 shows our proposed Deep
CNN architecture for environmental sound classification. The main block consists
of five repetitions of Conv2D-Conv2D-Conv2D-MaxPool-BatchNorm with different
number of kernels and kernel sizes. Almost all convolutional layers are made up of
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spatially separable convolutions.
In the case of the ESC task, the input are the features extracted from the audio sig-
nals. Each feature set is of the shape (t, f, c), where t is the compressed time domain
(compressed due to window size and hop length) and c is the number of channels.
Each window of time yields f number of features (f = 128 in our model). So, we
treat the time domain and the feature domain separately. The kernels with the form
1×mwork on the feature domain and the ones with n×1 work on the time domain.
Using the 1×m type of convolution operation enables the network to process each
set of features from a time window separately. And, the n × 1 type of convolution
allows the aggregation of a feature along the time domain. Now, c corresponds to
the number of feature extraction methods we adopt (in our model, c = 4). So, each
kernel works on each channel, which means that all different types of features ex-
tracted from the signal feature extraction techniques is aggregated by every kernel.
Each kernel can extract different information from an aggregated combination of
different feature sets.
Another major advantage of using this type of convolution is the reduction in num-
ber of parameters. This is the primary advantage of separable convolutions when
they were used in [92] and have probably been used earlier as well.
In case of standard square kernels like n × n, which are used for computer vision
tasks, the dimensions of the kernel are in accordance to the image’s spatial structure.
The 2D structure of an image represents pixels, i.e. both dimensions of an image
represent the same homogeneous information. Whereas, in case of audio features,
one dimension gives a compact representation of frequency features of a time win-
dow and the other dimension represents the flow of time (or sliding time window).
So, in order to process information accordingly and respect the information from
different dimensions of the input, we use 1×m and n× 1 separable convolutions.
Deep CNN Architecture: Attention Block We achieve spatial and channel wise
attention using a single attention module and dramatically reduce the number of
parameters required for attention by using depthwise convolutions. The attention
block, shown in Figure 3.7, runs in parallel with a main block. The pooling size
and kernel size in the attention block is the same as the pooling and kernel size in
the corresponding parallel main block. Using depthwise convolution reduces the
number of parameters and thus reduces the overhead of adding attention blocks to
the model.
Before the element-wise multiplication of the attention matrix with the main block
output, we add a batch normalization layer to normalize the attention weights.
Normalization is important for smoothing. The batch-norm layer is followed by a
ReLU activation, that makes the attention weight matrix sparse which makes the
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Figure 3.7: Attention based DCNN model

element-wise multiplication computationally efficient.

ai = φ(BatchNorm(f(MaxPool(li−1)))) (3.1)

li = ai � l̂i (3.2)

Equations 3.1 and 3.2 make up the attention module, where f is the depthwise sep-
arable convolution comprising of depthwise and point-wise convolution and φ is
the ReLU activation function. This single attention module performs both spatial
and channel attention. Channel-wise attention requires an attention weight for each
output channel of the main block and spatial attention requires an attention weight
for each spatial location in the output feature map. Our attention module produces c
weights, which enables channel attention, and each weight in c is a matrix of n×m,
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which enables spatial attention. And, using a single depthwise separable convolu-
tion layer we are able to achieve this with considerably less number of parameters
and operations.
An advantage of using attention as a separate module that runs in parallel with every
main block and connected before and after each main block, with less number of
parameters and layers, is that it allows smooth propagation of the gradient like skip
or residual connections [122, 123].

3.1.2.4 Proposed Emergency Audio Classification Model

For the task of emergency sound detection, we use our previously proposed envi-
ronmental sound classification (ESC) model. We adjust the model according to the
problem at hand. We reduce the size of the model and remove the attention block
considering the task to solve. Our model uses the same multiple feature extraction
techniques to create a multi-channel input for the Deep CNN. We apply our model
to the problem of emergency sound detection. We treat the task as a binary sound
classification problem.
We combine the benchmark ESC datasets into a single big dataset consisting of
10,732 audio files in total. Then, divide the classes into two major categories:
Emergency and Non-emergency sounds. Classes that fall under emergency sounds
are sirens, fire crackling, glass breaking, gun shot, and thunderstorm. All the other
sounds are kept under non-emergency sounds. Since the dataset is highly imbal-
anced, due to the task at hand, using class weights is important. The dataset consists
of just 910 sound files that fall under the emergency sounds category, which is just
8.5% of the total audio duration. Class weights help in boosting the performance of
our model.

3.2 Analysis

Emergency analysis requires reliable and accurate information of the environment.
In case of fire emergencies, during the emergency analysis stage, gathering infor-
mation usually does not entail putting the fire personnel in harms way. In [124], the
Institute of Medicine, US, gave an extensive review on data collection capabilities
and information resources in disaster management. It discusses some interesting
guidelines like having a central repository of data, a national emergency informa-
tion system and improving data collection techniques.
We propose a novel solution to the above problem of emergency analysis. It is
not only a data collection technique, but also consists of data analysis. Many such
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guidelines and proposals [125] elaborate on efficient data collection and informa-
tion management, while lacking the crucial step of data analysis.
An analysis of information systems and efficiency in communication during dis-
asters was presented in [126]. It consists of detailed analysis of previous disas-
ters by the Pan-American health organization under the World Health Organization
(WHO). It also enlists guidelines for efficient information gathering and communi-
cation for emergencies.
There hasn’t been much research on using AI and data analytics for the purpose
of emergency situation analysis. We concentrate on fire emergencies, which are
the most common type of hazard. We focus on extracting and accurately providing
insights into the emergency environment in order to help the fire brigade make an
informed evacuation plan. For this purpose, we use the computer vision technique
of semantic segmentation. We propose to analyse a fire emergency situation by
identifying and classifying objects based on their build material to get an idea about
their vulnerability to catch fire.
Since there is no dataset that consists of annotation based on build material, we build
our own dataset which will be freely available to use. We train state-of-the-art seg-
mentation models like U-Net, SegNet, FCN, PSPNet, DeepLabv3 and DeepLabv3+
on our dataset and compare their results. We also use multitask learning to enable
the encoder/backbone to classify between fire and normal images. During inference
time, unnecessary computation is avoided, when the decoder part is only activated if
a fire is detected by the backbone network. We also show the importance of transfer
learning by fine-tuning and testing pretrained PSPNet on our dataset. We also com-
pare different pretrained PSPNet models that are trained on different benchmark
datasets.

3.2.1 Semantic Segmentation for Emergency Analysis

We propose semantic scene parsing as an approach to emergency situation analysis.
To the best of our knowledge, this is the first time emergency analysis has been per-
formed using image segmentation. Specifically, we consider the case of fire related
emergencies. For analysing such situations, we propose to identify and classify ob-
jects based on their build material in order to determine their vulnerability to catch
fire and thereby obtaining useful information about potential fire spread. For ex-
ample, a wooden object is more likely to catch fire than a plastic object, which can
reveal a potential direction of fire spread.
Along with objects, the fire itself is also segmented. The area covered by the seg-
mented fire can show whether the fire has recently been ignited or is it full-blown.
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Since all pixels of a fire are segmented, it could also give information on the di-
rection of the fire, i.e. are the flames bent towards a particular direction (due to
wind or any other factor). Apart from fire, smoke is also identified and segmented.
Before the fire erupts, smoke provides the first signs of an impending fire hazard.
Segmenting smoke could also provide necessary information about the epicentre of
fire and its spread direction.
Also, people and other living beings are identified and classified in the environment,
which helps in getting head count. Including this information, fire fighters have cru-
cial details about the environment which can result in better evacuation planning.
Priority could be given to areas which contain more people for swift evacuation.
Note that the information gained from the analysis stage is readily available to the
fire fighters even before they enter the hazardous environment, which not only re-
sults in better planning but also reduces the risk for fire fighters themselves, since
they enter an unseen and unexplored environment with some important information.
In order to achieve this, we train and test several state-of-the-art segmentation mod-
els on our own dataset. We use the DeepLabv3, DeepLabv3+, PSPNet, FCN, Seg-
Net and UNet with multitask learning for better inference computation. To the best
of our knowledge, this is the first time semantic segmentation has been used to anal-
yse an emergency situation. The following subsections illustrate the design of our
emergency analysis system by describing our fire emergency scene parsing dataset
and the segmentation models benchmarked on the dataset.

3.2.1.1 Fire Emergency Scene Parsing Dataset

We uniquely design our dataset consisting of fire and normal images. We use images
from our previous fire detection dataset which was used in [102,103]. We add more
images consisting of many different objects in order to properly train the models.
The dataset consists of 2065 images which are annotated on the basis of object
material, fire and living beings. The fire emergency scene parsing dataset consists
of nine categories (+1 for background), which are:

Wood: It is arguably the most vulnerable object during a fire emergency. It can catch
fire more easily than other objects and thus spread fire more rapidly.

Plastic: It is one of the less vulnerable objects to catch fire. It can hinder the spread
of fire, which makes it an important object material to identify.

Cloth: It is also one of the objects that is vulnerable to catch fire. It is abundant in
most environments, which makes it important to identify.

51



Contributions

Plants: Trees and vegetation are one of the most vulnerable objects in a fire hazard,
which is evident from forest fires. They can be found in indoor as well as
outdoor environments. Since forest fires are one of the most common and
devastating disasters, it is imperative to identify such objects.

Stone: Identifying and classifying stone objects makes the analysis model generalize
well over indoor and outdoor environments. Also, like plastic, usually stone
based objects are less vulnerable to catch fire.

Fire: Identifying fire is the central idea behind a fire emergency analysis stage.
Segmenting fire can provide information about the nature of fire as well as
the magnitude of the fire hazard.

Smoke: One of the first signs of fire, sometimes revealed even before the fire starts, is
smoke. It is one of the most important objects to identify since it can act as a
signal for an impending fire hazard.

Person: Identifying people and their location is the most important task of the analysis
phase. Segmenting people in the environment reveals head count and the
distribution of people in the environment.

Other: This object class consists of the objects that can’t be identified accurately only
through visual data.

Some examples of images with fire from our dataset are shown in Figure 3.8.
However, in our dataset, we also have images displaying normal circumstances as
well. It allows the models trained on the dataset to have better generalization per-
formance. For instance, if a fire hazard occurs in an office building, most often only
a single room has caught fire. But, all areas of the building must be analysed to
identify objects and more importantly people in the building. Also, proper analysis
could lead to the discovery of a better evacuation path. So, we include images from
many different types of environments like open spaces, offices, homes etc. contain-
ing many different kinds of objects, in order to provide varied information to the
segmentation models to improve generalization performance. Some examples of
such images are shown in Figure 3.9.
To the best of our knowledge, this is the first scene parsing or segmentation dataset
that is based on emergency analysis and segmenting objects based on build mate-
rial. The dataset is imbalanced as the number of instances of each class vary a lot.
Keeping this in mind, we also calculate the frequency weighted mean intersection
over union metric to compare models.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Fire Images, Segmentation Masks and Annotated Images

As the results of state-of-the-art segmentation models suggest, this dataset is dif-
ficult to classify since objects of the same shape might belong to different classes
(different build material) and the shape of fire is usually highly irregular with differ-
ent colour properties. That’s why we choose state-of-the-art segmentation models
instead of a small custom model.

3.2.1.2 Semantic Segmentation Models

For the task of fire emergency scene parsing, we employ four state-of-the-art seg-
mentation models. Namely, U-Net [121], SegNet [127], FCN [128], PSPNet [129],
DeepLabv3 [130] and DeepLabv3+ [131]. We train these networks from scratch on
our dataset. We also fine-tune pretrained versions on the PSPNet to show the effect
of transfer learning. Here, we briefly describe each of the segmentation models used
in our work.

UNet: U-Net is a Deep CNN that was first developed for medical image seg-
mentation [121]. It was one of the first fully convolutional networks for image
segmentation. It consists of contraction and expansion blocks connected via skip
connections resulting in a ’U’ shaped architecture. The remarkable aspect about U-
Net was its ability to achieve good performance by training on very few annotated
images. It was also able to segment a 512× 512 image in less than a second.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Fire Images, Segmentation Masks and Annotated Images

SegNet: Another end-to-end trainable, fully convolutional network for scene
parsing and understanding, called SegNet, was proposed in [127]. SegNet consists
of an encoder-decoder structure. The VGG16 [30] acts as the encoder to extract
features from the input images. The decoder is almost a mirror image of the
encoder and is designed to output a pixel-level classification map. The novelty
of the model lies in upsampling feature maps using the saved indices of the
max-pooled features in the corresponding encoder layers. This produces a sparse
’unpooled’ feature map. Convolutional filters are used to produce dense feature
maps from these unpooled features. Using unpooling layers dispenses with using
trainable upsampling layers. This results in reduced memory consumption and
computation.

FCN: In [128], a family of fully connected network architectures for semantic
image segmentation was proposed. The adaptation of contemporary classification
models like VGG net [30], AlexNet [34], GoogleNet [132] etc. into fully convolu-
tional networks for segmentation was proposed. The dense predictions from clas-
sification models were used as image features. Upsampling layers were changed
to backward strided convolutions, also called transposed convolutions. In this way,
the whole networks consisted of convolutional layers only and hence the name Fully
Convolutional Networks. Features from different depths and strides were combined
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to produce rich segmentation masks. 32, 16 and 8 strided features were combined,
pooled and upsampled (using transposed convolutions) to get the final predictions.
In this way, the model encompassed coarse as well as fine features to produce accu-
rate predictions.

PSPNet: The PSPNet, proposed in [129], held the state-of-the-art model in the
segmentation task in 2017. The main idea behind this model was the Pyramid Pool-
ing module. The features extracted from a backbone network (like the ResNet-50
and ResNet-101 [31] classification models) were used as input to the pyramid pool-
ing module. The module consists of different levels of pooling sizes like 1 × 1,
2 × 2, 3 × 3 and 6 × 6. These pooled features were followed by a convolutional
layer. Finally, the outputs of different levels were upsampled, concatenated and fed
to a convolutional classifier to produce the final predictions. The pyramid pooling
module enabled the model to capture both local and global context information. The
model was trained with deep supervision with auxiliary loss for ResNet-based FCN
network.

DeepLabv3 and DeepLabv3+: In 2017, the DeepLabv3 segmentation model,
proposed in [130], outperformed the PSPNet to set a new state-of-the-art for se-
mantic segmentation. In [130], the usage of atrous convolutions, also called dilated
convolutions, for semantic segmentation was advocated. The main advantage of
using atrous convolutions was the increase in the receptive field of the network and
it allowed to control the spatial density of feature maps. These atrous convolutions,
with different dilation rates, were laid out in a spatial pyramid pooling module, like
in the PSPNet, called atrous spatial pyramid pooling (ASPP). The results of these
atrous convolutions with different rates were then concatenated to get the final log-
its. This model was further improved in [131], by proposing a novel decoder module
to morph the DeepLabv3 model into an encoder-decoder structure. This improved
model is called the DeepLabv3+. The decoder consists of sequential convolutions
and upsampling layers with a skip connection from the ASPP module. In order to
reduce computation, depthwise separable convolutions were also employed.
All the above models have shown exemplary performance on the image segmenta-
tion task. Each one has some advantages and disadvantages over the other models.
To see which of these models is best suited for the task of emergency analysis, we
train and test all the above models on our fire emergency scene parsing dataset and
present our findings in the next chapter.
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3.2.1.3 Multitask Learning

In order to avoid unnecessarily executing the decoder part of the segmentation
model for every image during inference, we propose to use the encoder/backbone
network as a first stage classifier to distinguish between fire and normal images. If
a fire is detecting, only then the decoder is activating to segment the image. So,
instead of training the backbone network and segmentation decoder separately, we
use multitask learning [133] to train the whole model in an end-to-end manner.
This is done by adding a classifier with a sigmoid activation at the end of the back-
bone network for binary classification between fire and normal images. However,
the decoder stage receives the output of the last convolutional feature map of the en-
coder/backbone network. The end-to-end training of the whole model is performed
using a multitask loss which is the combined loss of fire detection and segmenta-
tion.
We use per-image binary cross entropy as the classification loss denoted by Lcls:

Lcls = −y log(p) + (1− y) log(1− p) (3.3)

For the segmentation loss, we use the per-pixel cross entropy, denoted by Lseg:

Lseg = −
1

N

N∑

i=1

M∑

c=1

yi,c log(pi,c) (3.4)

where, N is the number of pixels in the image and M are the number of classes.
The total loss is simply the sum of the above two losses, denoted by Ltotal:

Ltotal = Lcls + Lseg (3.5)

The classification loss is calculated at the end of the encoder/backbone stage, while
the segmentation loss is calculated at the end of the decoder stage. The gradients
for the segmentation loss flow from the decoder to the encoder as well, but we keep
a very small learning rate associated with the segmentation loss for the encoder. So,
the task of segmentation depends on the decoder.
Note that, this way of multitask learning to reduce computation is only effective at
inference time when the model is deployed in the real world. For unbiased compar-
ison, we run the whole model on all the test images.
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3.3 Evacuation

The evacuation stage is probably the most important step in the fire emergency
management procedure. This phase entails using relevant information available to
carefully plan an effective, efficient and quick response for evacuation from the
hazardous environment. We use reinforcement learning (RL) to solve this prob-
lem. In order to train an RL agent an environment is required. There are many
reinforcement learning libraries that contain simulations and game environments to
train reinforcement learning based agents [134–138]. However, currently no realis-
tic learning environment for emergency evacuation has been reported. We build the
first realistic fire evacuation environment specifically designed to train reinforce-
ment learning agents for evacuating people in the safest manner in the least number
of time-steps possible. The environment has the same structure as OpenAI gym
environments, so it can be used easily in the same manner. This environment poses
a high level of difficulty, we argue that incorporating the shortest path information
(shortest path from each room to the nearest exit) in the DQN model(s) by transfer
learning and pretraining the DQN neural network function approximator is neces-
sary. We present a new class of pretrained DQN models called Q-matrix Pretrained
Deep Q-Networks (QMP-DQN).

3.3.1 Related Work

Even though this critical application hasn’t received adequate attention from AI re-
searchers, there have been some noteworthy contributions. One such paper, focus-
ing on assisting decision making for fire brigades, is described in [139]. Here, the
the RoboCup Rescue simulation is used as a fire simulation environment [140]. A
SARSA Agent [141] is used with a new learning strategy called Lesson-by-Lesson
learning, similar to curriculum learning. Results show that the RL agent is able to
perform admirably in the simulator. However, the simulator lacks realistic features
like bottlenecks, fire spread and has a grid structure which is too simplistic to model
realistic environments. Also, the approach seems unstable and needs information
about the state which isn’t readily available in real life scenarios.
In [142], multiple coordinated agents are used for forest fire fighting. The paper
uses a software platform called Pyrosim which is used to create dynamic forest fire
situations. The simulator is mostly used for terrain modeling and a coordinated
multiple agent system is used to extinguish fire and not for evacuation.
The evacuation approach described in [143] is similar to the problem we try to solve
in this thesis. In [143], a fading memory mechanism is proposed with the intuition
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that in dynamic environments less trust should be put on older knowledge for de-
cision making. But arguably, this could be achieved more efficiently by the ’γ’
parameter in Q-learning along with prioritized experience replay. Also, the graph
based environment used in [143] lacks many key features like fire spread, people in
rooms, bottlenecks etc.
The most significant work done on building evacuation using RL is reported in
[144]. The evacuation environment is grid based with multiple rooms and fire. The
fire spread is modelled accurately and uncertainty taken into account. The multi-
agent Q-learning model is shown to work in large spaces as well. Further, the paper
demonstrates a simple environment and strategy for evacuation. However, the ap-
proach proposed in [144] lacks key features like bottlenecks and actual people in
rooms. The grid based environment isn’t able to capture details of the building
model like room locations and paths connecting rooms.
Some interesting research on evacuation planning take a completely different ap-
proach by simulating and modelling human and crowd behaviour under evacua-
tion [145–148]. Our work on evacuation planning is not based on human behaviour
modelling or the BDI (Belief-Desire-Intention) framework for emergency scenar-
ios. These methods are beyond the scope of this paper and not discussed here.

3.3.2 Fire Evacuation Environment

We propose the first benchmark environment for fire evacuation to train reinforce-
ment learning agents. To the best of our knowledge, this is the first environment
of it’s kind. The environment has been specifically designed to simulate realistic
fire dynamics and scenarios that frequently arise in real world fire emergencies. We
have implemented the environment in the OpenAI gym format [134], to facilitate
further research.
The environment has a graph based structure to represent a building model. Let
G = (V,E) be an undirected graph, such that V = {v1, v2, ..., vn} is a set of ver-
tices that represents n rooms and hallways and E = {e1, e2, ..., em} is a set of edges
that represents m paths connecting the rooms and hallways.
To represent the graph consisting of rooms, hallways and connecting paths, we use
the adjacency matrix MA. It is a square matrix consisting of elements [0, 1] that
indicate whether a pair of vertices is connected by an edge or not. The adjacency
matrix is used to represent the structure of the graph and check the validity of ac-
tions performed by the agent. The environment dynamics are defined as follows:

State Each vertex vi of the graph represents a room and each room is associated
with an integer Ni, which is the number of people in that room. The state of the
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environment is given by a vector consisting of the number of people in each room
S = [N1, N2, ..., Nn]. To force the RL agent to learn the environment dynamics by
itself, the environment doesn’t provide any other feedback to the agent apart from
the state (number of people left in each room) and the reward.

Action An agent performs an action by moving a person from one room to the
other and the state is updated after every valid action. Therefore, the action space is
discrete. To keep things simple, we restrict the agent to move one person from one
room at a time step. The agent can move a person from any room to any other room
at any time step, even if the rooms aren’t connected to each other by a path. So, the
number of possible actions at each step is n2.
This action space is necessary so that the agent can easily generalize to any graph
structure. Also, this enables the agent to directly select which room to take people
from and which room to send people to, instead of going through each room in a
serial manner or assigning priorities.
When the agent selects an action, where there is no path between the rooms, the
agent is heavily penalized. Due to this unrestricted action space and penalization,
the agent is able to learn the graph structure (building model) with sufficient training
and only performs valid actions at the end. The adjacency matrix is used to check
the validity of actions.
Note that our graph based fire evacuation environment has n2 possible actions (even
though many of them are illegal moves and incur huge penalties), where n is the
number of rooms. Even for a small toy example of n = 5 rooms, the total number
of possible actions is 25, which is a lot more than almost all of the OpenAI gym
environments and Atari game environments [134].

Reward We design a reward function specifically suited for our environment. We
use an exponential decay function to reward/penalize the agent depending on the
action it takes and to simulate fire spread as well. The reward function looks like
this:

r(vj, t) = −[d(vj, t)]t (3.6)

where, t is the time step, vj is the room where a person is moved to and d(.) is the
degree of fire spread for a room. d(.) returns a positive number and if a room has a
higher value of degree of fire spread, that means that fire is spreading more rapidly
towards that room. We explicitly assign degrees to each room using a degree vector
D = [d(v1, t), d(v2, t), ..., d(vn, t)], where the maximum value belongs to the room
where the fire is located.
Using such a reward function ensures the following: Firstly, the reward values drop
exponentially every time step as the fire increases and spreads. Secondly, the reward
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of an action depends on the room where a person is moved to. The reward function
will penalize an action more heavily if a person is moved to a more dangerous room
(higher degree of fire spread towards that room). This is because the function yields
more rapidly decaying negative rewards. Lastly, the function yields a negative re-
ward for every action which forces the agent to seek the least number of time-steps.
The reward for reaching the exit is a constant [r(vj = exit, t) = +10].

Fire Location(s) and Exit(s) The room where the fire occurs is given the highest
degree, hence the maximum penalty for entering. The direction of fire spread is ran-
domly decided and the degrees are assigned accordingly. The degrees are updated
gradually to simulate fire spread.

d(vj, t+ 1) = d(vj, t) + δj; ∀vj in V (3.7)

where, δj is a small number (0 ≤ δ ≤ 1) associated with vj . δ is assigned to each
room according to fire spread direction. So, δ can be used to determine fire spread
direction, since higher value of δ for a room means that fire is spreading towards
that room more rapidly.
The exit is also treated like a room. The only difference being that the agent gets a
positive reward for moving people to the exit. The number of people at the exit is
reset to zero after every action. The rooms which are exits are stored in a vector E .

Bottleneck Probably one of the most important feature in our proposed fire evac-
uation environment that enhances realism is the bottlenecks in rooms. We put an
upper limit on the number of people that can be in a room at a time step. This restric-
tion ensures congestion control during evacuation, which has been a huge problem
in emergency situations. The bottleneck information is not explicitly provided to
the agent, instead the agent learns about this restriction during training, since a neg-
ative reward is received by the agent if the number of people in a room exceed the
bottleneck value. The bottleneck B is set to 10 in our experiments.

Uncertainty To take into account uncertain behaviour of the crowd and introduce
stochasticity in the environment, a person moves from one room to the other with
probability 1 − p. This means that an action at, selected by the agent at time-step
t, is performed with probability 1− p or ignored with probability p. If the action is
ignored, then there is no change in the state, but the reward received by the agent
is as if the action was performed. This acts like a regularizing parameter and due
to this, the agent is never able to converge to the actual global minimum. In our
experiments, the uncertainty probability p is kept at 0.1.

60



Advances in Deep Learning Towards Fire Emergency Application: Novel
Architectures, Techniques and Applications of Neural Networks

Terminal Condition The terminal/goal is reached once there are no people in any
of the rooms [

∑n
i=1Ni = 0].

Pretraining Environment: We create two instances of our environment: one for
fire evacuation and the other for shortest path pretraining. For the pretraining in-
stance, we consider only the graph structure and the aim is to get to the exit from
every room in the minimum number of time-steps.
The pretraining environment consists of the graph structure only, i.e. the adjacency
matrix MA. The pretraining environment doesn’t contain fire, the number of peo-
ple in each room or bottlenecks. The rewards are static integers: -1 for every path
to force the agent to take minimum time-steps, -10 for illegal actions (where there
is no path) and +1 for reaching the exit. The agent is thus trained to incorporate
shortest path information of the building model.

3.3.3 Q-matrix Pretrained Deep Q-Networks

For the proposed graph based fire evacuation environment, we also present a new
reinforcement learning technique based on the combination of Q-learning and DQN
(and its variants). We apply tabular Q-learning to the simpler pretraining environ-
ment, with a small state space, to learn the shortest paths from each room to the
nearest exit. The output of this stage is an n× n Q-matrix which contains q-values
for state-action pairs according to the shortest path.
This Q-matrix is used to transfer the shortest path information to the DQN agent(s).
This is done by pretraining the agent’s neural network by deliberately overfitting
it to the Q-matrix. After pretraining, the neural network weights have the shortest
path information incorporated in them. Now, the agent is trained on the complete
fire evacuation environment to learn to produce the optimal evacuation plan.
The main purpose of using such a strategy of training an agent by pretraining it first
is to provide the agent with vital information about the environment beforehand,
so that it doesn’t have to learn all the complexities of the environment altogether.
Since, after pretraining, the agent knows the shortest paths to the nearest exits in the
building, dealing with other aspects of the environment like fire, fire spread, number
of people and bottlenecks is made easier.
We provide two instances of our environment: simpler shortest path pretraining in-
stance and complex fire evacuation instance. First, the agent is pretrained on the
simpler instance of the environment (for shortest path pretraining) and then trained
on the more complex instance (for optimal evacuation). This approach of training
the agent on a simpler version of the problem before training it on the actual com-
plex problem is somewhat similar to curriculum learning [149].
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We also add a small amount of noise or offset to the Q-matrix produced by train-
ing on the pretraining environment instance. This is done by adding or subtracting
(depending on the q-value) a small σ to each element of the Q-matrix.

Q(s, a) =




Q(s, a) + σ, if Q(s, a) ≤ 0

Q(s, a)− σ, if Q(s, a) > 0

where, σ can be thought of as a regularization parameter, which is set to 10 in our
experiments. Adding noise to the Q-matrix is necessary because we don’t want
the DQN agent to just memorize all the paths and get stuck at a local minimum.
The actual fire evacuation instance is complex, dynamic and has uncertainty which
means that an optimal path at time-step t might not be the optimal path at time-step
t+ k. The hyperparameter σ acts as a regularizer.
Note that we add σ if the element of the Q-matrix is negative or zero and subtract σ
if the element is positive. This is done to offset the imbalance between good and bad
actions. If we just add or subtract σ then the relative difference between q-values
would remain the same. Conditional addition or subtraction truly avoids the DQN
based agent from being biased to a particular set of actions leading to an exit.

3.3.3.1 Convergence

The paper [150] thoroughly analyses and proves conditions where task transfer Q-
learning will work. We use the proved propositions and theorems from [150] to
show that pretraining works in our case. It states that, if the distance between two
MDPs is small, then the learned Q-function from the pretraining task is closer to
the optimal of the fire evacuation task compared to random initializations and hence
helps in convergence to an optimum and improves the speed of convergence. For
our case, this seems obvious since the two MDPs are instances of the same MDP.
Now, to prove that our method has guaranteed convergence, we need to prove that
the Q-matrix is able to capture the shortest path information accurately. The guaran-
tee of convergence for Q-learning has been discussed and proved in many different
ways and for general as well as unique settings [27, 151]. The convergence of Q-
learning is guaranteed, while using the update rule given in equation 3.8, if the
learning rate η is bounded between 0 ≤ η < 1 and the following conditions hold:

∞∑

t=1

ηt =∞,
∞∑

t=1

[ηt]
2 <∞ (3.8)
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Then, Qt(s, a) −→ Q∗(s, a) as t −→∞, ∀s, a, with probability 1. This means that
for the learning rate conditions to hold with the constraint 0 ≤ η < 1, all state-action
pairs must be visited an infinite number of times. Here, the only complication is that
some state-action pairs might never be visited. We run Q-learning on the pretraining
environment for∼ 1000 episodes so ensure that the Q-matrix converges toQ∗(s, a).

3.3.4 Scalability: Large and Complex Real World Scenario -
University of Agder Building

To prove that our method is capable of performing on large and complex building
models, we simulate a real world building, i.e., the University of Agder A, B, C
and D blocks, and perform evacuation in case of fire in any random room(s). This
task is especially difficult because of the resulting complex graph structure of the
building and the large discrete action space. We consider the A, B, C and D blocks
which are in the same building. The total number of rooms in this case is n = 91,
which means that the number of all possible actions is 8281. This discrete action
space is many times larger than any other OpenAI gym environment or Atari game
environments [134]. Even the Go game has 19× 19 + 1, i.e., 362 actions.
We propose a simple approach to deal with large number of actions. Our method
consists of two stages: One-Step Simulation (OSS) of all actions resulting in an
action importance vector AI and then element-wise addition with the DQN output
for training.

3.3.4.1 One-Step Simulation and Action Importance Vector

We make use of the pretraining environment instance to calculate the action im-
portance vector AI . We simulate all possible actions for each state/room for one
time-step in the pretraining environment. All rewards received for these actions
taken from room s and returns the k best actions for each room s which yield the k
highest rewards.
The k best actions returned by one-step simulation for all rooms s are accumulated
into a single vector of actions.
After we have a unique index for all selected actions in the environment, we form
the action importance vector AI by placing 0 at index l, if the lth action is present
in the vector x, which consists of all the k best actions for each room s, otherwise,
a large negative number (like −9999) at index l.
The action importance vector can be though of as a fixed weight vector which con-
tains weight 0 for good actions and a large negative weight for others. AI is then
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added element-wise with the output of the DQN Q̂ to produce the final output Q∗

on which the DQN is trained on.

Q∗ = Q̂⊕ AI (3.9)

This makes the Q-values of the good actions to remain the same and reduces the
Q-values of other actions to huge negative numbers. This method effectively re-
duces the action space from O(N2) to O(kN), where k � N . Hence, our complete
method consists of shortest path pretraining using Q-matrix transfer learning and
action space reduction by one-step simulation and action importance and finally
DQN based model training and execution. The shortest path pretraining provides
the model with global graph connectivity information and the one-step simulation
and action importance delivers local action selection information.
The action importance vector can also be thought of as an attention mechanism
[35, 152–154]. Most of the attention mechanisms employ a neural network or any
other technique to output an attention vector which is then combined with the in-
put or an intermediate output to convey attention information to a model. Unlike
these methods, our proposed model combines the action importance vector with the
output of the DQN. This means that the current action selection is based on a com-
bination of the Q-values produced by the DQN and the action importance vector,
but the training of the DQN is impacted by the attention vector in the next iteration
of training, as the final output of the ith iteration is used as the label for training the
model at the i+ 1th iteration.
One major advantage of such an attention mechanism used in our method is that,
since the graph based environment has a fixed structure, the attention vector needs
to be calculated just once at the beginning. We test our method on the University of
Agder (UiA), Campus Grimstad building with blocks A, B, C and D consisting of
91 rooms.
Note that, unlike the usual attention based models, we do not perform element-wise
multiplication of the attention vector with the output of a layer. Instead, we add the
attention vector because initially the DQN model will explore the environment and
will have negative Q-values for almost all actions (if not all). This means that if we
use a vector of ones and zeros for good and bad actions respectively and multiply
element-wise with the output of a layer then, the Q-values of good actions will be
copied as it is and the Q-value of other actions will become zero.
If the Q-value of good actions is negative in the beginning due to exploration (and
lack of learning since it is the beginning of training), then the max function in the
Q-value selection equation will select bad actions since they are zeros and good
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actions are negative. This will lead to catastrophic behaviour of the system and it
will never converge. So, instead we use addition with zeros for good actions so that
they remain the same and with large negative numbers for other actions so that their
Q-values become so low that they are never selected.

3.4 Summary

In this chapter, we have presented our contributions in detail. We presented methods
for each stage of the fire emergency management pipeline. For visual detection, we
used state-of-the-art deep convolutional neural networks like VGG16 and ResNet50
for detecting fire in images. We then improved upon this approach by building a
hybrid model consisting of VGG16/ResNet50, acting as feature extractors, and re-
placing the fully connected layers with Extreme Learning Machine classifier. This
improved performance and greatly increased the speed of convergence and infer-
ence, while reducing the number of parameters.
On the other hand, for audio detection, we proposed a novel environment sound
classification model consisting of multiple signal feature channels, deep convolu-
tional neural networks with separable convolutions for time and feature domain and
an attention block. This model was able to achieve state-of-the-art performance on
benchmark ESC datasets. We used a lighter version of this model for performing
binary classification between emergency and non-emergency sounds.
In the analysis phase, the main concern was to get relevant and necessary informa-
tion without putting fire emergency services in harms way. So, we proposed to use
semantic segmentation to identify inflammable objects and people in the emergency
environment. We applied state-of-the-art segmentation models like the U-Net, Seg-
Net, FCN and PSPNet, on our own fire scene parsing dataset consisting of 10 seg-
mentation classes.
For the final and most important phase of fire emergency management, i.e. evac-
uation, we used reinforcement learning to train an agent to evacuate all people in
a building from any location to the nearest exit in the shortest possible time while
avoiding any hazardous situations. To train such an agent we built our own sim-
ulator based on the OpenAI gym framework. The simulator consists of realistic
features such as fire spread, bottleneck, dynamic and random behaviour, and un-
certainty in action. We also proposed a new method that was capable of learning
in such a complex environment. We call it Q-matrix pretrained DQN, which first
uses Q-learning to learn the shortest path from every room to the nearest exit and
incorporates this information in a DQN based agent by transfer learning. Then, the
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pretrained DQN is trained on the fire evacuation environment.
We also show that this method can scale well with a few minor additions. We test
this method on a large scale fire evacuation environment consisting of 91 rooms,
resulting in 8281 actions. In order to reduce the action space, we use one-step sim-
ulation on all nodes to obtain the k best actions and create the action importance
vector. We replace those k actions with zero and set the rest of the actions to a
large negative number. This vector is then added to the final output of the DQN
agent, so that it weighs bad actions with negative values and good actions remain
unchanged. In this way, the action space is reduced drastically and the Q-matrix
pretrained DQN agent is able to learn near optimal evacuation paths in a large scale
realistic fire evacuation environment.
All these contributions give solutions to the research questions formulated in Chap-
ter 1 Section 1.2. Hence, we provide an AI solution to each stage of the fire emer-
gency management process that outperforms existing techniques and in some cases
sets up a completely new paradigm.
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Chapter 4

Experimental Evaluation and Results

This chapter provides details of the exhaustive experimentation performed on the
proposed models and displays the results. We present the experimentation method-
ology for each contribution and subsequently show the results. This chapter is or-
ganized in the same manner as Chapter 3, where we give a detailed account of our
contributions. Here, we show the results obtained for each of our contributions and
the setup of our experiments.

4.1 Detection

Here, we show the experiments and results of the contributions proposed in Section
3.1. We show the results of our models for both visual and audio detection.

4.1.1 Visual Detection

We proposed two ways of detecting fire in images using Deep CNNs as presented
in Sections 3.1.1.4 and 3.1.1.5. First, we used state-of-the-art Deep CNNs, VGG16
and ResNet50 to detect fire in images. Then, we further improve performance and
reduce training and inference time of these models by removing the fully connected
layers and replacing them with the ELM classifier. We use our own fire dataset,
details to which can be found in Section 3.1.1.3.

4.1.1.1 Deep Convolutional Neural Networks for Fire Detection

Experimental Setup: We conducted our experiments to compare training and
testing accuracies and execution times of the VGG16 and Resnet50 models includ-
ing modifications. We also trained a simple CNN which is used in [66] and compare
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with much deeper models to show why deeper and more complex models are nec-
essary for fire detection on our dataset. We also train the modified VGG16 and
Resnet50 models and compare the performance. We used pre-trained Keras [155]
models and fine-tuned the fully-connected layers on our dataset. The training of
the models was done on the following hardware specifications: Intel i5 2.5GHz,
8GB RAM and Nvidia Geforce GTX 820 2GB GPU. Each model was trained on
the dataset for 10 training epochs with the ADAM optimizer [54] with default pa-
rameters α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.

Results: Table 4.1 shows the results of our experiments. The simple CNN model
labels all images as non-fire which means that it is unable to extract relevant features
from the dataset and cannot handle unbalanced datasets, which we can see from the
training accuracy which is exactly equal to the percentage of non-fire images in the
training set. So, the simple CNN overfits on the majority class of the unbalanced
training dataset. Since, the training and fine-tuning methods for all models used
here are the same, at the end it comes down to the architecture of the model. This
justifies the use of deeper models like VGG16 and Resnet50. The simple CNN
tested on our dataset is similar to the one used in [66].

The deep models achieve testing accuracy greater than 90%. And, the modified

Table 4.1: Comparison between CNN models

Model
Training
accuracy

Training
time

Testing
accuracy

Testing
time

(in sec) (in sec)

VGG16 100 7149 90.19 121
VGG16 (modified) 100 7320 91.18 122
Resnet50 100 15995 91.18 105
Resnet50 (modified) 100 16098 92.15 107
Simple CNN [66] 89.25 112 50.00 2

VGG16 and Resnet50 models outperform the base models by a small margin with
slightly higher training time. It seems obvious that adding fully-connected layers
to a network would increase accuracy. But on such a small dataset, the trade-off
between accuracy and training time is quite poor, so we stop after adding just one
fully connected layer. We also tested for more fully-connected layers (which is
feasible since the model is pre-trained) but the increase in accuracy compared to
increase in training time was too small.
Overall, the deep models perform well on this dataset. This shows that these models
generalize well even when there is lack of training data. This means that if we want
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to slightly alter what the model does, we do not require large amount of data for
retraining.

4.1.1.2 The Hybrid Model: Deep CNN-ELM for Fire Detection

Experimental Setup: The experimental setup is the same as 4.1.1.1.

Results: Our ELM hybrid models are tested on our dataset and compared with
SVM hybrid models and the original VGG16 and Resnet50 Deep CNN models.
Table 4.2 and Table 4.3 show the results of the experiments. The dataset was ran-
domly split into training and testing sets. Two cases were considered depending on
the amount of training data. The Deep CNN models (VGG16 and Resnet50) were
trained only on 80% training data, since 60% is too less for these models. All the
hybrid models have been trained on both 60% and 80% of training data.
One point to be noted here is that, the SVM hybrid models contain an additional

Table 4.2: Accuracy and Execution time

Model DT Acctrain Ttrain TCtrain Acctest Ttest

VGG16 (pre-
trained)

80 100 7149 6089 90.19 121

VGG16 (modified) 80 100 7320 6260 91.176 122
Resnet50 (pre-
trained)

80 100 15995 13916 91.176 105

Resnet50 (modified) 80 100 16098 13919 92.15 107
VGG16+SVM 60 99.6 2411 1352 87.4 89
VGG16+SVM 80 100 2843 1784 93.9 81
VGG16+ELM 60 100 1340 281 93.9 24
VGG16+ELM 80 100 1356 297 96.15 21
Resnet50+SVM 60 100 3524 1345 88.7 97
Resnet50+SVM 80 100 4039 1860 94.6 86
Resnet50+ELM 60 100 2430 251 98.9 32
Resnet50+ELM 80 100 2452 272 99.2 26

DT is the percentage of total data used for training the models.
Acctrain and Acctest are the training and testing accuracies respectively.
Ttrain and Ttest are the training and testing times for the models.
TCtrain is the time required to train the classifier part of the models.

fully-connected layer of 4096 neurons, while the ELM is directly connected to the
last pooling layer. The results in Table 4.2 show that the ELM hybrid models
outperform the VGG16, Resnet50 and SVM hybrid models by achieving higher
accuracy and learning much faster. In general, we can see that the hybrid models
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outperform the state-of-the-art Deep CNNs in terms of both accuracy and training
time.
Apart from accuracy and training time, another important point drawn from the re-
sults is the amount of training data required. As we already know, Deep Neural
Networks (DNN) require huge amount of training data. So, using pre-trained mod-
els can be highly beneficial, as we only need to fine-tune the fully-connected layers.
But, with models like VGG16 and Resnet50 which have large fully-connected lay-
ers, even fine-tuning requires large amount of training data. We had to train the
VGG16 and Resnet50 on at least 80% training data otherwise they were overfitting
on the majority class, resulting in 50% accuracy.
But in case of hybrid models, especially ELM hybrid models, the amount of training
data required is much less. Even after being trained on 60% training data, the ELM
models were able to outperform the original VGG16 and Resnet50 models which
were trained on 80% training data. This shows that reducing the fully-connected
layers, or replacing them with a better classifier can reduce the amount of training
data required. Also, the ELM is more robust towards lack of training data which
adds to this advantage.
Among the hybrid models, the ELM hybrid models outperform the SVM hybrid
models both in terms of testing accuracy and training time. Also, we can see that
the hybrid models with Resnet50 as the feature extractor achieves better results than
the hybrid models with VGG16 as the feature extractor. This is due to the depth and
the residual connections in Resnet50 in contrast to the simple, shallower (compared
to Resnet50) and sequential nature of VGG16.
Table 4.3 compares results between different number of hidden neurons used by

Table 4.3: Number of Hidden Neurons in ELM

CNN Features # hidden neurons Testing accuracy
VGG16 Feature Extractor 4096 93.9
VGG16 Feature Extractor 8192 94.2
VGG16 Feature Extractor 16384 91.1 (Overfitting)
Resnet50 Feature Extractor 4096 98.9
Resnet50 Feature Extractor 8192 99.2
Resnet50 Feature Extractor 16384 96.9 (Overfitting)

ELM. The accuracy increases as the number of hidden neurons increase. The mod-
els are tested for 212, 213 and 214 number of neurons. The testing accuracy starts to
decrease for 214 neurons, which means the model overfits. All the tests in Table 4.3
were conducted with 60% training data.
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4.1.2 Audio Detection

We propose general purpose emergency detection system using audio signals that
can be used to complement visual detection. For this task, we first propose a novel
Environment Sound Classification (ESC) model that sets a new state-of-the-art on
benchmark ESC datasets as discussed in Section 3.1.2.3. We use a reduced version
of this model to perform emergency detection using sound. The benchmark datasets
used for the ESC task are ESC-10, ESC-50 [156] and UrbanSound8K [157]. For the
emergency detection task, we simply combine these datasets and assign the classes
sirens, fire crackling, glass breaking, gun shot, and thunderstorm to the emergency
class and the rest to the non-emergency class.

4.1.2.1 Proposed Environment Sound Classification Model

Experimental Setup: We report state-of-the-art results on ESC benchmark
datasets, i.e. UrbanSound8K, ESC-10 and ESC-50, using the proposed model.
The ESC-10 and ESC-50 contain 2000 audio files of 5 seconds length each,
while UrbanSound8K consists of 8732 audio files of 4 seconds each. ESC-10 and
UrbanSound8K contain audio from 10 classes while ESC-50 has 50 classes. We
use k-fold cross-validation on the specified folds and report the average accuracy
across the folds. For ESC-10 and ESC-50, k = 5 and for UrbanSound8K, k = 10.
We use Tensorflow and Keras to implement our CNN classifier and Librosa [158]
and the Matlab Signal Processing Toolbox [159] for audio processing and feature
extraction. In terms of hardware, we use the NVIDIA DGX-2 consisting of 16

NVIDIA Tesla V 100 GPUs with 32 Gigabytes of VRAM each and a system
memory of 1.5 Terabytes.
For every feature extraction technique, we extract 128 features for each window of
length 1024 (3.2 ms) with a hop length of 512 (1.6 ms) at 32kHz. We normalize
all feature vectors using min-max normalization. Our DCNN model is trained
to minimize the categorical cross-entropy loss using the Adam optimizer with
Nestorov momentum, along with Dropout of 0.25 after the dense layer. and weight
decay of λ = 0.1. We run our model for 500 epochs per fold. We set the initial
learning rate of training to 0.01 and decrease it by a factor of 10 every 150 epochs.
As shown in [98], mix-up data augmentation plays a very important role in improv-
ing performance, especially when the model is large and data is scarce. We use a
mini-batch size of 200. Table 4.4 displays the results of previous state-of-the-art
ESC models that tested their methods on one or more of the three benchmark
datasets. All of these models have been briefly described in Section 3.1.2.1. The
last row of the table shows the results of our proposed model on the three datasets.
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Table 4.4: Previous state-of-the-art ESC models vs Proposed model

Model ESC-10 ESC-50 US8K
EnvNetv2+strong augment [96] 91.30 84.70 78.30

PiczakCNN [94] 90.20 64.50 73.70
CNN+Mixup [98] 91.70 83.90 83.70

FBEs⊕ConvRBM-BANK [97] - 86.50 -
CRNN+channel & temporal

Attention [100] 94.20 86.50 -

Multi-stream+temporal
Attention [101] 94.20 84.00 -

TSCNN-DS [99] - - 97.20
Multiple Feature Channel

+ Deep CNN with Attention
(Proposed)

94.75 87.45 97.52

Results: We show the advantages of using multiple features, data augmentation,
depthwise convolutions and attention mechanism from our experiments on the three
benchmark datasets. Table 4.9 containing the results of our experiments with dif-
ferent combination of features and the effect of data augmentation.
Using separable convolutions (spatial or depthwise), has the advantage of reducing
the number of parameters in the model. We use spatially separable convolutions in
our main block and depthwise separable convolutions in the attention block. In Ta-
ble 4.5, we show the effect of using separable convolutions in terms of the number
of parameters and model performance. The DCNN-5 is the model without attention
and DCNN-5 SC is with standard convolutions instead of separable convolutions.
The separable convolutions, 1 × 3 and 5 × 1, is replaced by 5 × 3 convolution op-
eration. We use padding when necessary to keep the model depth valid according
to the input, since standard rectangular convolutions reduce the output dimensions
more quickly.
From Table 4.5, we can see that, for the task of environment sound classification,

the spatially separable convolutions have less number of parameters and perform
better than standard convolutions. DCNN-5 SC has 130K more parameters than
DCNN-5 and obtains 3.25% lower accuracy than DCNN-5 on the ESC-50. Adding
the attention mechanism just adds 20K more parameters and increases the perfor-
mance by 2.7%, courtesy of depthwise convolutions. Using standard convolutions
to build the attention model results in an increase of 90K parameters and 0.4% ac-
curacy.
These findings are consistent with the UrbanSound8K dataset. The difference in the
number of parameters between the datasets for the same models is because of the
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Table 4.5: Performance Comparison of Number of Parameters on ESC-50 and
UrbanSound8K

Model Parameters
ESC-50 ESC-50 Parameters

US8K US8K

DCNN-5 1.27M 84.75 0.87M 94.25
ADCNN-5 1.29M 87.45 0.89M 97.52

DCNN-5 SC 1.40M 81.50 1.04M 91.25
ADCNN-5

(without Depthwise
Sep. Conv.)

1.36M 87.05 0.97M 96.35

Table 4.6: Performance of different number of feature coefficients on ESC-50 and Urban-
Sound8K

Model # Features ESC-50 US8K
48 80.12 89.25

ADCNN-5 64 85.25 94.25
96 86.15 95.50

128 87.45 97.52

difference in input shapes. UrbanSound8K has 4 seconds long audio files, whereas,
ESC-50 has 5 seconds long. So, both of them sampled at 32kHz produce different
number of time windows. The input shape for ESC-50 is 〈313, 128, 4〉 and for Ur-
banSound8K is 〈250, 128, 4〉 represented as 〈time-windows, features, channels〉.
We also test our model with fewer number of features extracted by the audio fea-

ture extraction methods. Table 4.6 shows the results when the number of features
are reduced. The model accuracy monotonically increases with the increase in the
number of features. We stop at 128 features, which produces the best results, to
avoid increasing the complexity of the model.
The same tests were conducted on the ESC-10 dataset. The results were consistent
with the findings shown above. ESC-10 is a subset of the ESC-50 dataset. We also
report state-of-the-art performance on the ESC-10 dataset with 94.75% accuracy.

4.1.2.2 Proposed Emergency Audio Classification Model

Experimental Setup: To test our model for this task we consider two benchmark
environmental sound datasets, the ESC-50 [156] and UrbanSound8K [157]. We
combine these datasets into a single big dataset consisting of 10,732 audio files in
total. Then, divide the classes into two major categories: Emergency and Non-
emergency sounds. Classes that fall under emergency sounds are sirens, fire crack-
ling, glass breaking, gun shot, and thunderstorm. All the other sounds are kept
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under non-emergency sounds.
The implementation and setup is similar to 4.1.2.1The loss is calculated using class
weights for each training instance. Class weights are not used for testing. We use
k-fold cross validation, with k = 5 and present the average test accuracy of the folds
as the final performance metric.

Table 4.7: Effect of Class weights

Model Class weights Accuracy
DCNN-5 No 94.09
DCNN-5 Yes 99.56

Results: Table 4.7 shows the effect of class weights on the performance of the
model. Since the dataset is highly imbalanced, due to the task at hand, using class
weights is important. The dataset consists of just 910 sound files that fall under the
emergency sounds category, which is just 8.5% of the total audio duration. Due to
this, even though the accuracy of the model without class weights is above 90%,
still it does not perform well on this task. It overfits on the non-emergency class
which has 91.5% of the total instances.
We also test different architectures based on size of the Deep CNN as shown in
Table 4.8. All the models in table are trained with class weights. DCNN-6 and
DCNN-7 tend to overfit the training data while DCNN-3 and DCNN-4 does not
contain enough layers/parameters to learn the data patterns. Therefore, DCNN-5 is
the best performing architecture. Hence, our model with five repetitions of Conv2D-
Conv2D-MaxPool-BatchNorm and four channel input consisting of MFCC, GFCC,
CQT and Chromagram features is able to achieve 99.56% accuracy for the task
of emergency sound detection on the combination of ESC-50 and UrbanSound8K
datasets.

Table 4.8: Deep CNN Architecture Performance

Model No. of Layers Accuracy
DCNN-3 15 92.49
DCNN-4 19 95.25
DCNN-5 23 99.56
DCNN-6 27 99.25
DCNN-7 31 98.45
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Table 4.9: Performance on the ESC-50 and UrbanSound8K
Impact of combinations of different feature sets with and without augmentation

Model DA* MFCC GFCC CQT Chroma ESC-50 US8K
X 80.25 88.45

X 78.15 87.12

X 79.92 87.75

X 72.45 82.20

X X 83.25 92.50

X X 83.50 94.35

X X 81.75 89.65

ADCNN-5 Yes X X 81.52 90.86

X X 79.95 88.56

X X 80.65 89.75

X X X 86.05 96.85

X X X 84.35 94.90

X X X 85.65 95.55

X X X 84.15 93.25

X X X X 87.45 97.52
X 75.65 85.50

X 73.50 83.85

X 74.25 84.75

X 69.35 79.25

X X 79.12 88.25

X X 78.55 89.50

X X 76.30 86.15

ADCNN-5 No X X 77.62 86.32

X X 74.75 84.45

X X 75.15 85.22

X X X 82.95 92.90

X X X 82.22 89.85

X X X 83.02 90.65

X X X 79.10 88.32

X X X X 84.50 94.25
*DA stands for Data Augmentation.
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4.2 Analysis

In this section, we show the experiments and results of the contributions proposed
in Section 3.2. We show the results of state-of-the-art segmentation models shown
in Section 3.2.1 on our own fire scene parsing dataset proposed in Section 3.2.1.1.

4.2.1 Semantic Segmentation for Emergency Analysis

Experimental Setup: We test the performance of the above mentioned segmen-
tation models on our fire emergency scene parsing dataset. For a fair comparison,
we split our dataset into training and testing sets which is kept the same for all
the models. Out of the 2065 images, we use 1665 images for training and 400

images for testing. We train all the models for 250 epochs on our dataset. To ef-
fectively compare the performance of the segmentation models, we use the same
backbone/encoder network for all models. We set the ImageNet pretrained ResNet-
50 [31] as the backbone network. Since the encoder/backbone is the same for all
segmentation models, the fire image classification accuracy is also relatively the
same, i.e. around 94.5%. However, to evaluate the segmentation models indepen-
dently of the encoder/backbone fire detection accuracy, we run the whole model on
all test images. The main purpose of multitask learning is to optimize computations
during inference.
We have tested the models while conditionally running the decoder conditioned on
the backbone classifier, which produced similar final results since all models have
the same ResNet-50 backbone network that achieves high fire detection accuracy
(94.5%).
Also, to better understand the segmentation results of these models on our unique
dataset, we also calculate the frequency weighted mIOU of each model. The fre-
quency weighted mIOU weighs the IOU score by taking into account the number
of data points in each class [160]. It can be calculated as:

(
k∑

i=1

ti)
−1

k∑

i=1

ti.nii

ti − nii +
∑k

j=1 nij
∈ [0, 1] (4.1)

where, ti are the number of pixels belonging to class i in the ground truth segmen-
tation mask. nii are the number of pixels belonging to class i and are predicted as
class i and nij are the number of pixels belonging to class i and are predicted as
class j. The dataset consists of images of different sizes in the RGB format, so we
resize all images to 473 × 473, which are fed as the input to the models. We train
the models using the Adam optimizer [54]. The batch-size is set to 16 images per
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batch. We use standard data augmentation techniques to improve generalization
performance on the test set, such as random scaling, gaussian blur, random rotation
and horizontal flipping. The scaling factor ranges from [0.75, 1.0, 1.25, 1.5] with
the randomness of scaling, rotation and flipping set to 0.5.
We implement the segmentation models using Keras [155] and Tensorflow [161]
with the help of the Keras segmentation library [162]. The images are pre-processed
using OpenCV and the image augmentations are implemented using the imgaug
library [163].

Results: The performance of the segmentation models on our dataset is shown
in Table 1. SegNet, FCN-8, PSPNet, DeepLabv3 and DeepLabv3+ achieve high
mIOU scores, with the DeepLabv3+ scoring the highest, nearing 88% mIOU. The
U-Net scored a moderate mIOU of 74.8%. However, the U-Net achieves a com-
petitive frequency weighted mIOU of 82.2%. Table 1 shows that all the segmenta-
tion models achieve expected performance results according to their results on the
benchmark datasets of Cityscapes [164], MIT ADE20K [165] and Pascal VOC 2012
[166]. Table 4.10 shows that all the segmentation models achieve expected perfor-

Table 4.10: Performance Evaluation of Segmentation Models

Model Frequency weighted mIOU mIOU
U-Net 0.822 0.748
SegNet 0.876 0.852
FCN-8 0.891 0.862
PSPNet 0.899 0.871

DeepLabv3 0.909 0.879
DeepLabv3+ 0.913 0.884

mance results according to their results on the benchmark datasets of Cityscapes
[164], MIT ADE20K [165] and Pascal VOC 2012 [166].
We also test the effect of transfer learning on the task of emergency analysis with fire
emergency scene parsing dataset. We use pretrained versions of the PSPNet with
trained weights of the Cityscapes, MIT ADE20K and Pascal VOC 2012 datasets.
Then, we fine-tune these pretrained models on our fire emergency scene parsing
dataset. We use the same experimental setup for these pretrained models. We test
different pretrained models to compare their performance and find out whether pre-

77



Experimental Evaluation and Results

training on some benchmark datasets yields better performance than others.
Our findings are shown in Table 4.11. All the pretrained models give relatively the
same performance in terms of mIOU and frequency weighted mIOU scores, with
some minute differences. The PSPNet pretrained on the Cityscapes dataset give
slightly better performance compared to the other two pretrained models. However,
the performance comparison of these pretrained models is highly dependent on the
experimental setup and training methodology. So, we believe that the results shown
in Table 4.11 should be taken with a grain of salt.

Table 4.11: Performance Evaluation of Pre-trained Segmentation Models

Model Pretrained on Frequency weighted mIOU mIOU
PSPNet MIT ADE20K 0.918 0.901
PSPNet CityScapes 0.921 0.903
PSPNet PASCAL VOC 2012 0.912 0.892

We plot the class-wise IOU distribution shown in Figure 4.1. As we can see from
Figure 4.1, the pretrained models score slightly higher than other models in most
of the classes. But, the major difference in performance can be seen in the ’Stone’,
’Wood’, ’Plastic’ and ’Cloth’ classes. Especially in the ’Stone’ class, the U-Net
performs poorly, since the ’Stone’ class has the lowest number of instances in our
dataset (that’s why U-Net scores higher in frequency weighted mIOU and low on
the mIOU scores).
Other than that, we can see the same trend in all class IOU scores: Pretrained models
> Other models and DeepLabv3+ > DeepLabv3 > PSPNet > FCN > SegNet > U-
Net, with the exception of the ’Stone’ class, where the SegNet scores higher. This
could be because SegNet can deal with class imbalance problem better than other
models. Overall, the models score less on the classes ’Plants’, ’Stone’ and ’Other’.
This is because the classes ’Stone’ and ’Plants’ have the least number of instances.
However, the ’Others’ class has one of the higher number of class instances, but
since it contains many different types of objects (where the build material cannot be
determined with high confidence), it becomes difficult to classify accurately. Some
resulting output images of the segmentation models from our fire emergency scene
parsing dataset are displayed in Paper D.
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Figure 4.1: Class-wise IOU Distribution

4.3 Evacuation

In this section, we show the results of the reinforcement learning agent proposed in
Section 3.3 on the our fire evacuation environment from Section 3.3.2.

4.3.1 Q-matrix Pretrained Deep Q-Networks on the Fire Evac-
uation Environment

Experimental Setup: We perform unbiased experiments on the fire evacuation
environment and compare our proposed approach with state-of-the-art reinforce-
ment learning algorithms. We test different configurations of hyperparameters and
show the results with best performing hyperparameters for these algorithms on our
environment. The main intuition behind using Q-learning pretrained DQN model
was to provide it with important information before hand, to increase stability and
convergence. The results confirms our intuition empirically.

The Agent’s Network: Unlike the convolutional neural networks [4] used in DQN [49, 50], DDQN
[56,57] and Dueling DQN [58], we implement a fully connected feedforward
neural network. The network consists of 5 layers. The ReLU function [167]
is used for all layers, except the output layer, where a linear activation is used
to produce the output.

Environment: The state of the environment is given as : S = [10, 10, 10, 10, 0] with bot-
tleneck B = 10. All rooms contain 10 people (the exit is empty), which is
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the maximum possible number of people. We do this to test the agents under
maximum stress. The fire starts in room 2 and the fire spread is more towards
room 1 than room 3. Room 4 is the exit. The total number of actions possible
for this environment is 25. So, the agent has to pick one out of 25 actions at
each step.

Training: The Adam optimizer [54] with default parameters and a learning rate η of
0.001 is used for training for all the agents. Each agent is trained for 500
episodes. Training was performed on a 4GB NVIDIA GTX 1050Ti GPU.
The models were developed in Python with the help of Tensorflow [168] and
Keras [155].

Implementation: Initially, the graph connections were represented as 2D arrays of the adja-
cency matrix MA. But, when the building model’s graphs get bigger, the
adjacency matrices become more and more sparse, which makes the 2D array
representation inefficient. So, the most efficient and easiest way to implement
a graph is as a dictionary, where the keys represent rooms and their values are
an array that lists all the rooms that are connected to it.

dictgraph = {roomi : [roomj; ∀j in MAi,j
= 1]}

Results: We first compare the Q-matrix pretrained versions of the DQN and its
variants with the original models. The graph based comparisons between models
consists of number of time-steps for evacuating all people on the y-axis and episode
number on the x-axis. We put an upper-limit of 1000 time-steps for an episode due
to computational reasons. The training loop breaks and a new episode begins once
this limit is reached.
The graph comparing DQN with our proposed Q-matrix pretrained DQN (QMP-

DQN) in Figure 4.2 shows the difference in their performance on the fire evacuation
environment. Although the DQN reaches the optimal number of time-steps quickly,
it isn’t able to stay there. The DQN drastically diverges from the solution and is
highly unstable.
It’s the same case with DDQN (Figure 4.3) and Dueling DQN (Figure 4.4), which,

although perform better that DQN with less fluctuations and spend more time near
the optimal solution. Our results clearly shows a big performance lag compared
to the pretrained versions. As these results suggest that pretraining ensures con-
vergence and stability. We show that having some important information about the
environment prior to training reduces the complexity of the learning task for an
agent.
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Figure 4.2: Q-matrix pretrained DQN vs DQN

Figure 4.3: Q-matrix pretrained DDQN vs DDQN
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Figure 4.4: Q-matrix pretrained Dueling DQN vs Dueling DQN

Table 4.12: Performance

Model Avg.
Steps

Avg.
Steps

with PT

Min.
Steps

Min.
Steps

with PT

Training
Time

Training
time

with PT
DQN 228.2 76.356 63 61 10.117 6.87

DDQN 134.62 71.118 61 60 12.437 8.11
Dueling DQN 127.572 68.754 61 60 12.956 9.02

The original Q-learning based models aren’t able to cope with the dynamic and
stochastic behaviour of the environment. And since they don’t posses pretrained in-
formation, their learning process is made even more difficult. Table 4.12 displays a
few numerical results, comparing DQN, DDQN and Dueling DQN, with and with-
out the Q-matrix pretraining on the basis of average number of time-steps for all 500
episodes, minimum number of time-steps reached during training and the training
time per episode.

As it was also clear from the Figures 4.2, 4.3 and 4.4, the average number of
time-steps is greatly reduced with pretraining, as it makes the models more stable
by reducing variance. All the DQN based models are able to come close to this, but
pretraining pushes these models further and achieves the minimum possible num-
ber of time-steps. Even though the difference seems small, in emergency situations
even the smallest differences could mean a lot at the end. The training time is also
reduced with pretraining, as the number of time-steps taken during training is re-
duced and pretrained models get a better starting position nearer to the optimum.
Next, we make comparisons between our proposed approach and state-of-the-art
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Figure 4.5: Proposed method vs Random Agent

Figure 4.6: Proposed method vs State-Action-Reward-State-Action method

reinforcement learning algorithms. For these comparisons, we use the Q-matrix
pretrained Dueling DQN model, abbreviated QMP-DQN. We also compare it with
a random agent, shown in Figure 4.5. The random agent performs random actions
at each step, without any exploration. The random agent’s poor performance of
956.33 average time-steps shows that finding the optimal or even evacuating all the
people isn’t a simple task.

The State-Action-Reward-State-Action (SARSA) algorithm is an on-policy rein-
forcement learning agent introduced in [141]. While Q-learning follows a greedy
policy, SARSA takes the policy into account and incorporates it into its updates.
It updates values by considering the policy’s previous actions. On-policy methods
like SARSA have a downside of getting trapped in local minima if a sub-optimal
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Figure 4.7: Proposed method vs Policy based methods (PPO and VPG)

policy is judged as the best. On the other hand, off-policy methods like Q-learning
are flexible and simple as they follow a greedy approach. As it is clear from Figure
4.6, that SARSA behaves in a highly unstable manner and isn’t able to reach the
optimal solution and shows high variance.
Policy gradient methods are highly preferred in many applications, however they

aren’t able to perform optimally on our fire evacuation environment. Since the op-
timal policy could change in a few time-steps in our dynamic environment, greedy
action selection is probably the best approach. An evacuation path that seems best
at a particular time step could be extremely dangerous after the next few time-
steps and a strict policy of routing cannot be followed continuously due to fire
spread and/or bottleneck. These facts are evident from Figure 4.7, where we com-
pare our approach to policy gradient methods like Proximal Policy Optimization
(PPO) [169] and Vanilla Policy Gradient (VPG) [170]. Even though PPO shows
promising movement, it isn’t able to reach the optimum.

Another major type of reinforcement learning algorithms are the actor-critic
methods. It is a hybrid approach consisting of two neural networks: an actor which
controls the policy (policy based) and a critic which estimates action values (value
based). To further stabilize the model, an advantage function is introduced which
gives the improvement of an action compared to an average action used in a partic-
ular state. Apart from the previously mentioned shortcomings of using policy based
methods on the fire evacuation environment, the advantage function would have
high variance since the best action at a particular state could change rapidly leading
to unstable performance. This is apparent from Figure 4.8, where we compare the
synchronous advantage actor critic method (A2C) [171] with our proposed method.
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Figure 4.8: Proposed method vs Synchronous Advantage Actor Critic method (A2C)

Figure 4.9: Proposed method vs Actor Critic using Kronecker-Factored Trust Region
(ACKTR)
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Table 4.13: Comparison with State-of-the-art RL Algorithms

Model Avg. steps Min. steps Training Time
(per episode)

SARSA 642.21 65 19.709
PPO 343.75 112 16.821
VPG 723.47 434 21.359
A2C 585.92 64 25.174

ACKTR 476.56 79 29.359
Random Agent 956.33 741 -

QMP-DQN
(Dueling DQN Backbone) 68.754 60 9.02

The A2C gives near optimal performance in the beginning but diverges and rapidly
fluctuates.
We do not compare our proposed method with the asynchronous advantage actor
critic method (A3C) [172], because A3C is just an asynchronous version of A2C,
which is more complex as it creates many parallel versions of the environment and
gives relatively the same performance, but is not as sample efficient as claimed
in [173]. The only advantage of A3C is that it exploits parallel and distributed CPU
and GPU architectures which boosts learning speed as it can update asynchronously.
However, the main focus of this paper is not learning speed. Hence, we think that
the comparison with A2C is sufficient for actor-critic models.
Probably the best performing Actor Critic based model is the ACKTR (Actor Critic
with Kronecker-factored Trust Region) [174]. The algorithm based on applying
trust region optimization using Kronecker-factored approximation, which is the
first scalable trust region natural gradient method for actor critic models that can
be applied to both continuous and discrete action spaces. The Kronecker-factored
Approximate Curvature (K-FAC) [175], is used to approximate the Fisher Matrix
to perform approximate natural gradient updates. We compare our method to the
ACKTR algorithm, shown in Figure 4.9. The results suggest that the ACKTR is not
able to converge (within 500 episodes, due to slow convergence rate) and is suscep-
tible to the dynamic changes in the environment as evident from the fluctuations.
ACKTR is far too complex compared to our proposed method, which converges
much faster and deals with the dynamic behaviour of the fire evacuation environ-
ment efficiently.
We summarize our results in Table 4.13. All the RL agents use the same network
configuration mentioned in Table 1 for unbiased comparison. The training time for
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the QMP-DQN is much lower compared to other algorithms because pretraining
provides it with a better starting point, so it requires less number of time-steps and
memory updates to reach the terminal state. Also, SARSA and A2C come really
close to the minimum number of time-steps, but as the average number of time-steps
suggests, they aren’t able to converge and exhibit highly unstable performance. Our
proposed method, Q-matrix pretrained Dueling Deep Q-network gives the best per-
formance on the fire evacuation environment by a huge margin.
Note that, in all the comparison graphs, our proposed method comes close to the
global optimum, but isn’t able to completely converge to it. This is because of the
uncertainty probability p, which decides whether an action is performed or not and
is set to 0.15. This uncertainty probability is used to map the uncertain crowd be-
haviour. Even though, p, does not allow complete convergence, it also prevents the
model from memorizing an optimal path which might change as the fire spreads.

4.3.2 Scalability: Large and Complex Real World Scenario -
University of Agder Building

Here, we show the results of using our model with the one-step simulation and ac-
tion importance attention mechanism, proposed in Section 3.3.4, on the UiA build-
ing.

Experimental Setup: The graph for UiA’s building model is based on the actual
structure of the 2nd floor of blocks A, B, C and D1. The graph for the building model
can be found in Paper C. It consists of 91 rooms (from room 0 to room 90) out of
which there are 10 exits. We simulate the fire evacuation environment in which
there are multiple distributed fires in rooms 14, 29, 59 and 80. The fire spread for
each fire is individually simulated in a random direction as shown by the yellow
nodes in the graph.
The building connectivity can be quite complex and there has been limited research
work that deals with this aspect. The graph structure shows that these connections
between rooms cannot possibly be captured by a grid based or maze environment.
Also, note that, the double sided arrows in the graph enable transitions back and
forth between rooms. This makes the environment more complicated for the agent
since the agent could just go back and forth between ’safe’ rooms and get stuck in
a loop and may never converge. This point makes pretraining even more indispens-

1UiA building map can be found here: https://use.mazemap.com/#v=1&zlevel=
2&left=8.5746533&right=8.5803711&top=58.3348318&bottom=58.3334208&
campusid=225
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Figure 4.10: Proposed method applied on the UiA Building

able.
Since, the proposed method is able to reduce the action space by a lot, the neural
network doesn’t need to be made too large. Note that the addition layer does not
require any trainable parameters. The neural network is trained using the Adam op-
timizer [54] with default hyperparameter settings and a learning rate η = 0.001 for
5000 episodes. The training was performed on the NVIDIA DGX-2. The optimal
number of steps for evacuation in the UiA building graph is around ∼ 2000.

Results: The results of our proposed method consisting of shortest path Q-matrix
transfer learning to Dueling-DQN model with one-step simulation and action im-
portance vector acting as an attention mechanism applied on the University of
Agder’s A,B,C and D blocks consisting of 91 rooms and 8281 actions (whose graph
is shown in Fig. 13) is shown in Fig. 14. The performance numbers are given
below:

• Average number of time-steps: 2234.5

•Minimum number of time-steps: ∼2000

• Training time (per episode): 32.18 s

The graph in Figure 4.10 shows the convergence of our method with evacuation
time-steps on the y-axis and the episode number on the x-axis. It takes slightly
longer to converge compared to the convergence in previous small example envi-
ronments. This is obviously due to the size of the environment and complex con-
nectivity. But overall the performance of our model is excellent.
After ∼ 1900 episodes, the algorithm has almost converged. There are a few spikes
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suggesting fluctuations from the optimal behaviour due to the dynamic nature of the
environment and the uncertainty in actions. After ∼ 3300 episodes, the algorithm
completely converges in the range (2000 − 2070) times-steps for total evacuation.
The method cannot converge to the minimum possible time-steps = 2000 because
of the fire spread dynamics, encountering bottleneck conditions and action uncer-
tainty.
The results clearly suggest that even though the proposed fire evacuation environ-
ment is dynamic, uncertain and full of constraints, our proposed method using novel
action reduction technique with attention based mechanism and transfer learning of
shortest path information is able to achieve excellent performance on a large and
complex real world building model. This further confirms that, with a minute added
overhead of one-step simulation and action importance vector, our method is scal-
able to much larger and complex building models.

4.4 Summary

In summary, this chapter shows the results of our proposed models for detection,
analysis and evacuation phases. We show that for visual detection, transfer learning
with state-of-the-art deep CNN models gives good performance which is further
boosted by using ELM as the classifier. In case of audio detection, our proposed
attention based deep CNN model with multiple feature channels sets a new state-of-
the-art on three benchmark ESC datasets. We use a reduced version of this model to
perform sound based emergency detection that achieves near optimal performance.
For the analysis stage, our proposed way of analysis using semantic segmentation
with state-of-the-art models achieves excellent results, especially with models pre-
trained on benchmark segmentation datasets. Finally, for the evacuation step, the
proposed method of Q-matrix pretrained DQN agent outperforms other state-of-
the-art reinforcement learning techniques by a large margin. Also, our proposed
one-step simulation and action importance attention mechanism combined with the
Q-matrix pretrained DQN is able to achieve near optimal performance on the large
and complex real world UiA evacuation problem. Hence, we are able to experimen-
tally show that our proposed models for the fire emergency management stages are
either able to outperform currently used methods or set a new paradigm of methods
that have never been used before.
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Chapter 5

Conclusion and Future Work

In this thesis, we propose novel deep learning and neural network methods and
architectures to solve the shortcomings of stages of fire emergency management.
We divide the problem of fire emergencies into three stages: Detection, Analysis
and Evacuation. Detection stage deals with detecting whether there is an (fire)
emergency or not. The emergency situation is analysed to retrieve relevant
information in the analysis stage. Finally, in the evacuation stage, the aim is to
evacuate maximum number of people in the minimum number of time steps.

5.1 Conclusion to Research Questions

In this section, we conclude the findings of our proposed methods in accordance to
the research questions in Chapter 1.

Research Question 1: We validate using state-of-the-art CNNs on our fire detec-
tion dataset. Our experiments show that a shallow CNN overfits on the majority
class, while VGG16 and ResNet50 with transfer learning do not overfit. We also
experiment with the number of fully connected layers in the VGG16 and ResNet50
models with pretrained ImageNet weights. They are able to achieve 91.18% and
92.15% accuracy respectively.

Research Question 2: We compare our proposed CNN-ELM hybrid model for
fire detection, with the standard CNN and CNN-SVM hybrid models. The results
show that the VGG16-ELM and ResNet50-ELM models require less training data
and much lower training time. Also, there is an increase in accuracy of about 2.8%
to 7.1% across the models and an inference time speed-up of 5x to 6x.
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Research Question 3: The experiments conducted on the fire evacuation environ-
ment show that pretraining the DQN agent is highly advantageous. Our pretrained
DQN based agents are able to outperform state-of-the-art RL techniques such as
DQN, DDQN, Dueling DQN, PPO, VPG, A2C, ACKTR, SARSA etc. in terms
of time-steps required to evacuate people. Using the action importance attention
mechanism, we are able to scale the model to work on a real world large scale evac-
uation scenario based on the UiA building by reducing the action space from 8281
to 819 actions.

Research Question 4: We use state-of-the-art semantic segmentation models like
U-Net, SegNet, FCN, PSPNet, DeepLabv3 and DeepLabv3+ to segment objects
based on their build material in the emergency environment. The fire scene parsing
dataset consists of 10 object classes. We also test the effects of transfer learn-
ing from different sets of pretraining weights. Our results show that, pretrained
models from different benchmark datasets have relatively the same effect. We also
compare models based on the frequency weighted mIOU scores to balance the ef-
fects of imbalance in classification. The U-Net, SegNet, FCN, PSPNet, DeepLabv3
and DeepLabv3+ achieve 0.822, 0.876, 0.891, 0.899, 0.909 and 0.913 frequency
weighted mIOU respectively. Transfer learning is able to further boost the per-
formance of the PSPNet to 0.921 frequency weighted mIOU, pretrained on the
Cityscapes dataset.

Research Question 5: The proposed novel ESC model is compared with previous
state-of-the-art environment sound classification models. We also show results for
different feature combinations and ablations to the CNN architecture to justify our
design choices. By achieving 94.75%, 87.45% and 97.52% accuracy on the ESC-
10, ESC-50 and UrbanSound8K benchmark datasets respectively, our model sets a
new state-of-the-art performance for environment sound classification.

Research Question 6: Our proposed model is tested on a combination of the
benchmark ESC and UrbanSound8K datasets. The sound classes are arranged into
two categories: emergency and non-emergency sounds. The emergency sounds
consist of sirens, fire crackling, glass breaking, gun shot etc. and the rest fall in
the non-emergency category. Since the dataset is highly imbalanced, we use class
weights while calculating the cost function. The model is able to achieve a 99.56%
emergency detection rate.

In the next sections, we elaborate on our concluding remarks for the proposed
models for detection, analysis and evacuation and discuss some future research
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work that might improve our methods and the overall system.

5.2 Detection

5.2.1 Visual Detection

For visual detection, we have proposed to use two state-of-the-art Deep Convolu-
tional Neural Networks for fire detection in images, VGG16 and Resnet50. We test
these models on our dataset which is made specifically to replicate real world en-
vironment. The dataset includes images that are difficult to classify and is highly
unbalanced by including less fire images and more non-fire images since fire is a
rare occurrence in the real world. We rationalize the use of such deep and complex
models by showing that a simple CNN performs poorly on our dataset. To further
increase accuracy, we added fully connected layers to both VGG16 and Resnet50.
Results show that adding fully connected layers does improve the accuracy of the
detector but also increases its training time. In practice, increasing the number
of fully connected layers by more than one results in minute increase in accuracy
compared to the large increase in training time, even if the models are pre-trained.
We found that deep CNNs provide good performance on a diverse and highly im-
balanced dataset of small size, with Resnet50 slightly outperforming VGG16 and
adding fully connected layers slightly improves accuracy but takes longer to train.
To further improve visual detection, training time and inference speed, we have
proposed a hybrid model for fire detection. The hybrid model combines the feature
extraction capabilities of the Deep CNNs mentioned above and the classification
ability of ELM. The fully connected layers are removed completely and replaced by
a single hidden layer feedforward neural network trained using the ELM algorithm.
This decreases complexity of the network and increases speed of convergence. We
test our model on our fire dataset. Our hybrid model is compared with the original
VGG16 and Resnet50 models and also with SVM hybrid models. Our Deep CNN-
ELM model is able to outperform all other models in terms of accuracy by 2.8% to
7.1% and training time by a speed up of 20x to 51x and requires less training data
to achieve higher accuracy for the problem of fire detection.

5.2.2 Audio Detection

In order to build a model for emergency detection using sounds, we develop a novel
model for the environment sound classification task. It consists of multiple feature
channels and attention based deep convolutional neural network with domain wise
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convolutions. We combine feature extraction methods like the MFCC, GFCC, CQT
and Chromagram to create a multi channel input for the CNN classifier. The model
consists of two block: Main block and Attention block. We employ a Deep CNN
consisting of separable convolutions in the main block. The separable convolutions
work on the time and feature domains separately. Parallel to the main blocks, we
also use an attention mechanism that consists of depthwise separable convolution.
Both channel and spatial attention are achieved using a small increase in number
of parameters. We test our model on the three benchmark datasets: ESC-10, ESC-
50 and UrbanSound8K. We use mix-up data augmentation techniques to further
improve performance. Our model achieves 94.75%, 87.45% and 97.52% accuracy
on ESC-10, ESC-50 and UrbanSound8K respectively, which sets the new state-of-
the-art on all three datasets.
We use a reduced version of this model for emergency detection using audio signals.
We reduce the size of the model by removing the attention block and reducing
the number of feature channels in the model. We test our model by combining
the ESC-50 and UrbanSound8K benchmark datasets and categorizing emergency
sound related classes in one category and the rest in another category to make a
binary classification problem. We also use class weights since the data is quite
imbalanced. Our model achieves 99.56% accuracy on the combination of the ESC-
50 and UrbanSound8K datasets.

5.3 Analysis

For the analysis step, we have proposed a new approach towards fire emergency
analysis using image segmentation. To analyse a fire emergency situation, we pro-
pose to identify and classify objects based on their build material in order to display
inflammable and non-inflammable objects. For this purpose, we built our own fire
scene parsing dataset consisting of 10 object classes in 2065 images. To segment
images based on object build materials, we employed state-of-the-art segmentation
models: U-Net, SegNet, FCN, PSPNet, DeepLabv3 and DeepLabv3+. Compar-
ison between these models shows that SegNet, FCN-8, PSPNet, DeepLabv3 and
DeepLabv3+ give good performance, with DeepLabv3+ scoring slightly more than
others. To reduce computation during inference, we use multitask learning to use th
encoder/backbone as a preliminary classifier. If it detects fire in an image, only then
the decoder is activated to segment the image. We also showed the importance of
transfer learning by fine-tuning pretrained PSPNet models on our dataset. We also
compared pretrained models based on the benchmark dataset that they have been
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trained on. Results show that the PSPNet pretrained on the Cityscapes dataset gives
slightly better performance compared to the model trained on MIT ADE20K and
Pascal VOC 2012. However, we would like to point out that since there is a very
small difference in performance, the results might differ for different training sets
and schemes.

5.4 Evacuation

For the final stage of evacuation, we propose a novel reinforcement learning ap-
proach. We build the first realistic fire evacuation environment to train reinforce-
ment learning agents. The environment is implemented in OpenAI gym format.
The environment has been developed to simulate realistic fire scenarios. It includes
features like fire spread with the help of exponential decay reward functions and de-
gree functions, bottlenecks, uncertainty in performing an action and a graph based
environment for accurately mapping a building model.
We also propose a new reinforcement learning method for training on our environ-
ment. We use tabular Q-learning to generate q-values for shortest path to the exit
using the adjacency matrix of the graph based environment. Then, the result of Q-
learning (after being offset by a σ) is used to pretrain the DQN network weights to
incorporate shortest path information in the agent. Finally, the pretrained weights
of the DQN based agents are trained on the fire evacuation environment.
We prove the faster convergence of our method using Task Transfer Q-learning
theorems and the convergence of Q-learning for the shortest path task. The Q-
matrix pretrained DQN agents (QMP-DQN) are compared with state-of-the-art re-
inforcement learning algorithms like DQN, DDQN, Dueling-DQN, PPO, VPG,
A2C, ACKTR and SARSA on the fire evacuation environment. The proposed
method is able to outperform all these models on our environment on the basis
of convergence, training time and stability. Also, the comparisons of QMP-DQN
with original DQN based models show clear improvements over the latter.
Finally, we show the scalability of our method by testing it on a real world large and
complex building model. In order to reduce the large action space (8281 actions),
we use the one-step simulation technique on the pretraining environment instance
to calculate the action importance vector, which can be thought of as an attention
based mechanism. The action importance vector gives the best k actions a weight
of 0 and the rest are assigned a large negative weight of −9999 (to render the Q-
values of these too low to be selected by the Q-function). This reduces the action
space by ∼ 90% and our proposed method, QMP-DQN model, is applied on this
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reduced action space. We test this method on the UiA, Campus Grimstad building,
with the environment consisting of 91 rooms. The results show that this combina-
tion of methods works really well in a large real world fire evacuation emergency
environment.

5.5 Future Work

The models proposed in this thesis pertain to each fire emergency stage separately.
They have been designed in a disjoint manner to support each phase of the process
as a stand alone model. However, to truly create an AI based fire emergency system,
we would like to combine all these separate models into one large neural network
that is able to assist through the whole process without having to transition between
different models at different steps.
We would like to work on creating the first ever end-to-end trainable deep neural
network model with combined computer vision and reinforcement learning capa-
bilities. There are a lot of issues that need to be addressed in building such a model,
especially in terms of data. Also, using different characteristic loss functions for
each stage. However, deep supervision and auxiliary losses can be used to deal with
this obstacle.
Another dilemma that we might encounter during integration of these phases is the
information flow between different application modules. Since the outputs of each
stage are non-gradient variables, they cannot be trained end-to-end by simply com-
bining them since gradient cannot flow through these output variables. But, we can
use the reparametrization trick introduced in [176] that might prove helpful in this
case. Also, a thorough individual stage analysis and performance improvement is
certainly possible that we would like to carry out in the future.
We would also like to test the whole fire emergency management system on a real
emergency case. And, integrate the system into the existing fire emergency depart-
ment systems. In order to do this, each phase must be able to work in real-time. So,
another future task would be to efficiently implement and/or modify these models
in hardware devices (Raspberry Pi, Camera systems) to reduce inference time.
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W. Duch, P. Érdi, F. Masulli, and G. Palm, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 58–65.

[93] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1251–1258.

[94] K. J. Piczak, “Environmental sound classification with convolutional neural
networks,” in 2015 IEEE 25th International Workshop on Machine Learning
for Signal Processing (MLSP), Sep. 2015, pp. 1–6.

106

http://dx.doi.org/10.1007/978-3-319-23989-7_28
http://www.sciencedirect.com/science/article/pii/S0893608016301885
http://www.sciencedirect.com/science/article/pii/S0893608016301885
http://arxiv.org/abs/1506.02509
http://dx.doi.org/10.1007/978-3-319-14063-6_13
http://dx.doi.org/10.1007/978-3-319-14063-6_13
http://dx.doi.org/10.1007/978-3-642-41822-8_23


Advances in Deep Learning Towards Fire Emergency Application: Novel
Architectures, Techniques and Applications of Neural Networks

[95] R. N. Tak, D. M. Agrawal, and H. A. Patil, “Novel phase encoded mel filter-
bank energies for environmental sound classification,” in Pattern Recognition
and Machine Intelligence, B. U. Shankar, K. Ghosh, D. P. Mandal, S. S. Ray,
D. Zhang, and S. K. Pal, Eds. Cham: Springer International Publishing,
2017, pp. 317–325.

[96] Y. Tokozume, Y. Ushiku, and T. Harada, “Learning from between-class
examples for deep sound recognition,” CoRR, vol. abs/1711.10282, 2017.
[Online]. Available: http://arxiv.org/abs/1711.10282

[97] J. Salamon and J. P. Bello, “Unsupervised feature learning for urban sound
classification,” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 2015, pp. 171–175.

[98] Z. Zhang, S. Xu, S. Cao, and S. Zhang, “Deep convolutional neural net-
work with mixup for environmental sound classification,” in Pattern Recog-
nition and Computer Vision, J.-H. Lai, C.-L. Liu, X. Chen, J. Zhou, T. Tan,
N. Zheng, and H. Zha, Eds. Cham: Springer International Publishing, 2018,
pp. 356–367.

[99] Y. Su, K. Zhang, J. Wang, and K. Madani, “Environment sound classification
using a two-stream cnn based on decision-level fusion,” Sensors, vol. 19,
no. 7, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/7/
1733

[100] Z. Zhang, S. Xu, S. Zhang, T. Qiao, and S. Cao, “Learning attentive repre-
sentations for environmental sound classification,” IEEE Access, vol. 7, pp.
130 327–130 339, 2019.

[101] X. Li, V. Chebiyyam, and K. Kirchhoff, “Multi-stream network with
temporal attention for environmental sound classification,” CoRR, vol.
abs/1901.08608, 2019. [Online]. Available: http://arxiv.org/abs/1901.08608

[102] J. Sharma, O.-C. Granmo, M. Goodwin, and J. T. Fidje, “Deep convolutional
neural networks for fire detection in images,” in Engineering Applications
of Neural Networks. Cham: Springer International Publishing, 2017, pp.
183–193.

[103] J. Sharma, O.-C. Granmo, and M. Goodwin, “Deep cnn-elm hybrid mod-
els for fire detection in images,” in Artificial Neural Networks and Machine
Learning – ICANN 2018. Cham: Springer International Publishing, 2018,
pp. 245–259.

107

http://arxiv.org/abs/1711.10282
https://www.mdpi.com/1424-8220/19/7/1733
https://www.mdpi.com/1424-8220/19/7/1733
http://arxiv.org/abs/1901.08608


REFERENCES

[104] R. Narayanan, V. M. Lekshmy, S. Rao, and K. Sasidhar, “A novel approach to
urban flood monitoring using computer vision,” in Fifth International Con-
ference on Computing, Communications and Networking Technologies (IC-
CCNT), July 2014, pp. 1–7.

[105] T. Perol, M. Gharbi, and M. Denolle, “Convolutional neural network for
earthquake detection and location,” Science Advances, vol. 4, no. 2, 2018.
[Online]. Available: https://advances.sciencemag.org/content/4/2/e1700578

[106] S. Srivastava, S. Bhugra, B. Lall, and S. Chaudhury, “Drought stress
classification using 3d plant models,” CoRR, vol. abs/1709.09496, 2017.
[Online]. Available: http://arxiv.org/abs/1709.09496

[107] A. U. Waldeland, J. H. Reksten, and A.-B. Salberg, “Avalanche detection in
sar images using deep learning,” IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium, pp. 2386–2389, 2018.

[108] L. Lopez-Fuentes, J. van de Weijer, M. G. Hidalgo, H. Skinnemoen,
and A. D. Bagdanov, “Review on computer vision techniques in
emergency situation,” CoRR, vol. abs/1708.07455, 2017. [Online]. Available:
http://arxiv.org/abs/1708.07455

[109] J. D. Fair, W. F. Bailey, R. A. Felty, A. E. Gifford, B. Shultes, and L. H.
Volles, “Quantitation by portable gas chromatography: mass spectrometry
of vocs associated with vapor intrusion,” International journal of analytical
chemistry, vol. 2010, 2010.

[110] I. Mocanu and A. M. Florea, “A model for activity recognition and emer-
gency detection in smart environments,” in The First International Confer-
ence on Ambient Computing, Applications, Services and Technologies, 2011,
pp. 23–29.

[111] A. Mao, X. Ma, Y. He, and J. Luo, “Highly portable, sensor-based system for
human fall monitoring,” Sensors, vol. 17, no. 9, p. 2096, 2017.

[112] Y. Liu, E. Racah, Prabhat, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel,
M. F. Wehner, and W. D. Collins, “Application of deep convolutional neural
networks for detecting extreme weather in climate datasets,” CoRR, vol.
abs/1605.01156, 2016. [Online]. Available: http://arxiv.org/abs/1605.01156

[113] M. Nadjafi, M. A. Farsi, and H. Jabbari, “Reliability analysis of multi-state
emergency detection system using simulation approach based on fuzzy

108

https://advances.sciencemag.org/content/4/2/e1700578
http://arxiv.org/abs/1709.09496
http://arxiv.org/abs/1708.07455
http://arxiv.org/abs/1605.01156


Advances in Deep Learning Towards Fire Emergency Application: Novel
Architectures, Techniques and Applications of Neural Networks

failure rate,” International Journal of System Assurance Engineering and
Management, vol. 8, no. 3, pp. 532–541, Sep 2017. [Online]. Available:
https://doi.org/10.1007/s13198-016-0563-7

[114] M. Dener, Y. Ozkok, and C. Bostancioglu, “Fire detection systems in
wireless sensor networks,” Procedia - Social and Behavioral Sciences, vol.
195, pp. 1846 – 1850, 2015, world Conference on Technology, Innovation
and Entrepreneurship. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877042815038872

[115] J. Zhang, W. Li, Z. Yin, S. Liu, and X. Guo, “Forest fire detection system
based on wireless sensor network,” in 2009 4th IEEE Conference on Indus-
trial Electronics and Applications, May 2009, pp. 520–523.

[116] A. Khadivi and M. Hasler, “Fire detection and localization using wireless
sensor networks,” in Sensor Applications, Experimentation, and Logistics,
N. Komninos, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 16–26.

[117] Q. Nguyen, S. Yun, and J. Choi, “Detection of audio-based emergency situ-
ations using perception sensor network,” in 2016 13th International Confer-
ence on Ubiquitous Robots and Ambient Intelligence (URAI), Aug 2016, pp.
763–766.

[118] D. K. Fragoulis and J. Avaritsiotis, “A siren detection system based on me-
chanical resonant filters,” Sensors, vol. 1, 09 2001.

[119] T. Miyazaki, Y. Kitazono, and M. Shimakawa, “Ambulance siren detector
using fft on dspic,” in ICIS 2013, 2013.

[120] L. Marchegiani and P. Newman, “Listening for sirens: Locating and
classifying acoustic alarms in city scenes,” CoRR, vol. abs/1810.04989,
2018. [Online]. Available: http://arxiv.org/abs/1810.04989

[121] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical
image computing and computer-assisted intervention. Springer, 2015, pp.
234–241.

[122] M. S. Ebrahimi and H. K. Abadi, “Study of residual networks for
image recognition,” CoRR, vol. abs/1805.00325, 2018. [Online]. Available:
http://arxiv.org/abs/1805.00325

109

https://doi.org/10.1007/s13198-016-0563-7
http://www.sciencedirect.com/science/article/pii/S1877042815038872
http://www.sciencedirect.com/science/article/pii/S1877042815038872
http://arxiv.org/abs/1810.04989
http://arxiv.org/abs/1805.00325


REFERENCES

[123] A. E. Orhan, “Skip connections as effective symmetry-breaking,” CoRR, vol.
abs/1701.09175, 2017. [Online]. Available: http://arxiv.org/abs/1701.09175

[124] T. W. Megan Reeve and B. Altevogt, Improving Data Collection Capabilities
and Information Resources. National Academies Press (US), April 2015.

[125] M. O. Columb, P. Haji-Michael, and P. Nightingale, “Data collection in
the emergency setting,” Emergency Medicine Journal, vol. 20, no. 5, pp.
459–463, 2003. [Online]. Available: https://emj.bmj.com/content/20/5/459

[126] R. P. Susana Arroyo Barrantes, Martha Rodriguez, Ed., Information man-
agement and communication in emergencies and disasters. World Health
Organization (WHO), 2009.

[127] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp.
2481–2495, Dec 2017.

[128] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[129] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 2881–2890.

[130] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” CoRR, vol. abs/1706.05587,
2017. [Online]. Available: http://arxiv.org/abs/1706.05587

[131] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” CoRR,
vol. abs/1802.02611, 2018. [Online]. Available: http://arxiv.org/abs/1802.
02611

[132] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

110

http://arxiv.org/abs/1701.09175
https://emj.bmj.com/content/20/5/459
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1802.02611
http://arxiv.org/abs/1802.02611
http://arxiv.org/abs/1409.4842


Advances in Deep Learning Towards Fire Emergency Application: Novel
Architectures, Techniques and Applications of Neural Networks

[133] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–
75, 1997.

[134] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540, 2016.
[Online]. Available: http://arxiv.org/abs/1606.01540

[135] A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” CoRR, vol.
abs/1809.02627, 2018. [Online]. Available: http://arxiv.org/abs/1809.02627

[136] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
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[151] C. Szepesvári, “The asymptotic convergence-rate of q-learning,” in Advances
in Neural Information Processing Systems, 1998, pp. 1064–1070.

[152] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR, vol.
abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

[153] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov,
R. S. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” CoRR, vol. abs/1502.03044, 2015.
[Online]. Available: http://arxiv.org/abs/1502.03044

[154] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, cite arxiv:1409.0473Comment:
Accepted at ICLR 2015 as oral presentation. [Online]. Available:
http://arxiv.org/abs/1409.0473

[155] F. Chollet, “Keras,” 2015. [Online]. Available: https://github.com/fchollet/
keras

[156] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in
Proceedings of the 23rd Annual ACM Conference on Multimedia. ACM
Press, pp. 1015–1018. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2733373.2806390

[157] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban
sound research,” in Proceedings of the 22Nd ACM International Conference
on Multimedia, ser. MM ’14. New York, NY, USA: ACM, 2014, pp. 1041–
1044. [Online]. Available: http://doi.acm.org/10.1145/2647868.2655045

[158] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and
O. Nieto, “librosa: Audio and music signal analysis in python,” 2015.

[159] MATLAB Signal Processing Toolbox 2019. Natick, Massachusetts, United
States: The MathWorks Inc., 2019.

[160] M. Thoma, “A survey of semantic segmentation,” CoRR, vol.
abs/1602.06541, 2016. [Online]. Available: http://arxiv.org/abs/1602.06541

[161] M. Abadi, A. Agarwal, P. Barham, and Others, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

113

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1409.0473
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://doi.acm.org/10.1145/2647868.2655045
http://arxiv.org/abs/1602.06541
https://www.tensorflow.org/


REFERENCES

[162] P. Yakubovskiy, “Segmentation models,” https://github.com/qubvel/
segmentation models, 2019.

[163] A. B. Jung, “imgaug,” https://github.com/aleju/imgaug, 2018, [Online; ac-
cessed 30-Oct-2018].

[164] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[165] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene
parsing through ade20k dataset,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[166] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[167] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, G. Gordon, D. Dunson, and M. Dudik, Eds., vol. 15. Fort
Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323. [Online].
Available: http://proceedings.mlr.press/v15/glorot11a.html

[168] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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ADeep Convolutional Neural Networks for Fire
Detection in Images

Jivitesh Sharma, Ole-Christoffer Granmo, Morten Goodwin
and Jahn Thomas Fidje

University of Agder (UiA), Norway

Abstract. Detecting fire in images using image processing and com-
puter vision techniques has gained a lot of attention from researchers
during the past few years. Indeed, with sufficient accuracy, such systems
may outperform traditional fire detection equipment. One of the most
promising techniques used in this area is Convolutional Neural Networks
(CNNs). However, the previous research on fire detection with CNNs has
only been evaluated on balanced datasets, which may give misleading in-
formation on real-world performance, where fire is a rare event. Actually,
as demonstrated in this paper, it turns out that a traditional CNN per-
forms relatively poorly when evaluated on the more realistically balanced
benchmark dataset provided in this paper. We therefore propose to use
even deeper Convolutional Neural Networks for fire detection in images,
and enhancing these with fine tuning based on a fully connected layer. We
use two pretrained state-of-the-art Deep CNNs, VGG16 and Resnet50,
to develop our fire detection system. The Deep CNNs are tested on our
imbalanced dataset, which we have assembled to replicate real world sce-
narios. It includes images that are particularly difficult to classify and
that are deliberately unbalanced by including significantly more non-fire
images than fire images. The dataset has been made available online.
Our results show that adding fully connected layers for fine tuning in-
deed does increase accuracy, however, this also increases training time.
Overall, we found that our deeper CNNs give good performance on a
more challenging dataset, with Resnet50 slightly outperforming VGG16.
These results may thus lead to more successful fire detection systems in
practice.

Keywords: Fire Detection, Deep Convolutional Neural Networks, VGG16, Resnet50.

1 Introduction

Emergency situations like floods, earthquakes and fires pose a big threat to pub-
lic health and safety, property and environment. Fire related disasters are the
most common type of Emergency situation which requires thorough analysis of
the situation required for a quick and precise response. The first step involved
in this process is to detect fire in the environment as quickly and accurately as



A possible.
Fire Detection in most places employs equipment like temperature detectors,
smoke detectors, thermal cameras etc. which is expensive and not available to
all [14]. But, after the advent of advanced image processing and computer vision
techniques, detection of fire may not require any equipment other than cameras.
Due to this expeditious development in vision-based fire detection models, there
is a particular inclination towards replacing the traditional fire detection tools
with vision-based models. These models have many advantages over their hard-
ware based counterparts like accuracy, more detailed view of the situation, less
prone to errors, robustness towards the environment, considerably lower cost
and the ability to work on existing camera surveillance systems.
There have been many innovative techniques proposed in the past to build an
accurate fire detection system which are broadly based on image processing and
computer vision techniques. The state-of-the-art vision-based techniques for fire
and smoke detection have been comprehensively evaluated and compared in [21].
The colour analysis technique has been widely used in the literature to detect and
analyse fire in images and videos [2, 13, 16, 20]. On top of colour analysis, many
novel methods have been used to extract high level features from fire images
like texture analysis [2], dynamic temporal analysis with pixel-level filtering and
spatial analysis with envelope decomposition and object labelling [22], fire flicker
and irregular fire shape detection with wavelet transform [20], etc. These tech-
niques give adequate performance but are outperformed by Machine Learning
techniques. A comparative analysis between colour-based models for extraction
of rules and a Machine Learning algorithm is done for the fire detection problem
in [19]. The machine learning technique used in [19] is Logistic Regression which
is one of the simplest techniques in Machine Learning and still outperforms the
colour-based algorithms in almost all scenarios. These scenarios consist of images
containing different fire pixel colours of different intensities, with and without
smoke.
Instead of using many different algorithms on top of each other to extract rel-
evant features, we can use a network that learns relevant features on its own.
Neural networks have been successfully used in many different areas such as
Natural Language Processing, Speech Recognition, Text Analysis and especially
Image Classification. Extracting relevant features from images is the key to ac-
curate classification and analysis which is why the problem of fire detection is
ideally suited for Deep Learning. Deep Neural Networks are used to automati-
cally ’learn’ hierarchy of pertinent features from data without human interven-
tion and the type of neural network ideally suited for image classification is the
Convolutional Neural Networks (CNN).
Therefore, our approach is to employ state-of-the-art CNNs to distinguish be-
tween images that containing fire and images that do not and build an accurate
fire detection system. To make these models more robust, we use a custom-made
image dataset containing images with numerous scenarios.
The rest of paper is organised in the following manner: Section 2 briefly describes
the previous research that uses CNNs for detecting fire. In Section 3 give a de-



Ascription of our proposed work. Section 4 gives the experimental results along
with an illustration of our dataset, which is available online for the research
community. Finally, Section 5 concludes our paper.

2 Related Work

There have been many significant contributions from various researchers in de-
veloping a system that can accurately detect fire in the surrounding environment.
But, the most notable research in this field involves Deep Convolutional Neu-
ral Networks (DCNN). DCNN models are currently among the most successful
image classification models which makes them ideal for a task such as Fire de-
tection in images. This has been demonstrated by previous research published
in this area.
In [5], the authors use CNN for detection of fire and smoke in videos. A simple
sequential CNN architecture, similar to LeNet-5 [11], is used for classification.
The authors quote a testing accuracy of 97.9% with a satisfactory false positive
rate.
Whereas in [23], a very innovative cascaded CNN technique is used to detect
fire in an image, followed by fine-grained localisation of patches in the image
that contain the fire pixels. The cascaded CNN consists of AlexNet CNN archi-
tecture [10] with pre-trained ImageNet weights [15] and another small network
after the final pooling layer which extracts patch features and labels the patches
which contain fire. Different patch classifiers are compared.
The AlexNet architecture is also used in [18] which is used to detect smoke in
images. It is trained on a fairly large dataset containing smoke and non-smoke
images for a considerably long time. The quoted accuracies for large and small
datasets are 96.88% and 99.4% respectively with relatively low false positive
rates.
Another paper that uses the AlexNet architecture is [12]. This paper builds its
own fire image and video dataset by simulating fire in images and videos using
Blender. It adds fire to frames by adding fire properties like shadow, fore-ground
fire, mask etc. separately. The animated fire and video frames are composited
using OpenCV [1]. The model is tested on real world images. The results show
reasonable accuracy with high false positive rate.
As opposed to CNNs which extract features directly from raw images, in some
methods image/video features are extracted using image processing techniques
and then given as input to a neural network. Such an approach has been used
in [4]. The fire regions from video frames are obtained by threshold values in the
HSV colour space. The general characteristics of fire are computed using these
values from five continuous frames and their mean and standard deviation is
given as input to a neural network which is trained using back propagation to
identify forest fire regions. This method performs segmentation of images very
accurately and the results show high accuracy and low false positive rates.
In [8], a neural network is used to extract fire features based on the HSI colour
model which gives the fire area in the image as output. The next step is fire area



A segmentation where the fire areas are roughly segmented and spurious fire areas
like fire shadows and fire-like objects are removed by image difference. After
this the change in shape of fire is estimated by taking contour image difference
and white pixel ratio to estimate the burning degree of fire, i.e. no-fire, small,
medium and large. The experimental results show that the method is able to
detect different fire scenarios with relatively good accuracy.
All the research work done in this area has been exemplary. But, there are some
issues associated with each of them that we try to alleviate in this paper. We
use a dataset that consists of images that we have handpicked from the internet.
The dataset contains images that are extremely hard to classify which results in
poor generalization. The dataset also contains many different scenarios and is
highly unbalanced to replicate real world behaviour. In this paper, we propose
to use state-of-the-art pre-trained DCNN models. The reason behind using such
complex models is explained in the next section. We also modify these models
to improve accuracy at the cost of training time.

3 The Fire Detector

In this paper, we propose to employ Deep Convolutional Neural Networks instead
of simple and shallow CNN models. The AlexNet has been used by researchers
in the past for fire detection which has produced satisfactory results. We propose
to use two Deep CNN architectures that have outperformed the AlexNet on the
ImageNet dataset, namely VGG16 [17] and Resnet50 [7]. We use these models
with pre-trained ImageNet weights. This helps greatly when there is lack of
training data. So, we just have to fine-tune the fully-connected layers on our
dataset.

3.1 Deep ConvNet Models

The Convolutional Neural Network was first introduced in 1980 by Kunihiko
Fukushima [6]. The CNN is designed to take advantage of two dimensional struc-
tures like 2D Images and capture local spatial patterns. This is achieved with
local connections and tied weights. It consists of one or more convolution layers
with pooling layers between them, followed by one or more fully connected lay-
ers, as in a standard multilayer perceptron. CNNs are easier to train compared
to Deep Neural Networks because they have fewer parameters and local recep-
tive fields.
In CNNs, kernels/filters are used to see where particular features are present in
an image by convolution with the image. The size of the filters gives rise to locally
connected structure which are each convolved with the image to produce feature
maps. The feature maps are usually subsampled using mean or max pooling. The
reduction is parameters is due to the fact that convolution layers share weights.
The reason behind parameter sharing is that we make an assumption, that the
statistics of a patch of a natural image are the same as any other patch of the
image, which suggests that features learned at a location can also be learned for



Aother locations. So, we can apply this learned feature detector anywhere in the
image. This makes CNNs ideal feature extractors for images.
The CNNs with many layers have been used for various applications especially
image classification. In this paper, we use two state-of-the-art Deep CNNs that
have achieved one of the lowest errors in image classification tasks.

VGG16: The VGG16 architecture was proposed by the Visual Geometry Group
at the University of Oxford [17]. The main purpose of the paper was to inves-
tigate the effect of depth in CNN models. They developed a number of models
with different depths ranging from 11 layers to 19 layers and tested them on dif-
ferent tasks. The results on these tasks show that increasing depth also increases
performance and accuracy. The 19 layer architecture, VGG19 won the ImageNet
challenge in 2014, but the 16 layer architecture, VGG16 achieved an accuracy
which was very close to VGG19. Both the models are simple and sequential. The
3x3 convolution filters are used in the VGG models which is the smallest size
and thus captures local features. The 1x1 convolutions can be viewed as linear
transformations and can also be used for dimensionality reduction. We choose
the VGG16 over the VGG19 because it takes less time to train and the classifi-
cation task in hand is not as complex as ImageNet challenge. Both the models
have the same number of fully connected layers, i.e. 3, but differ in the number
of 3x3 filters.

VGG16 (modified): In this work, we also test a modified version of VGG16
which consists of 4 fully connected layers, fine-tuned on the training data, which
was able to increase the accuracy of classification. We also tested with more fully
connected layers but the increase in accuracy was overshadowed by the increase
in training time. The figures 1(a) and 1(b) show the original and modified VGG16
architectures respectively.

(a) VGG16 Architecture

(b) Modified VGG16 Architecture

Fig. 1



A Resnet50: After the success of the VGG architectures, it was established that
deeper models outperform shallower networks. But, the problem with making
models deeper was the difficulty in training them because model complexity
increases as the number of layers increase. This issue was addressed by Microsoft
Research, who proposed extremely deep architectures but with lower complexity
[7]. They introduced a new framework of learning to ease training of such deep
networks. This is called Residual learning and hence the models that employed
this framework are called Residual Networks. Residual Learning involves learning
residual functions. If a few stacked layers can approximate a complex function,
F (x) where, x is the input to the first layer, then they can also approximate
the residual function F (x) − x. So, instead the stacked layers approximate the
residual functionG(x) = F (x)−x, where the original function becomes G(x)+x.
Even though both can capable of approximating the desired function, the ease of
training with residual functions is better. These residual functions are forwarded
across layers in the network using identity mapping shortcut connections. The
ImageNet 2015 results show that Resnet achieves the lowest error rates in image
classification. The Resnet architectures consist of networks of various depths: 18-
layers, 34-layers, 50-layers, 101-layers and 152-layers. We choose the architecture
with intermediate depth, i.e. 50 layers. The Resnet consists of 3x3 and 1x1 filters,
pooling layers and residual connections and a single softmax layer at the end.

Resnet50 (modified): We also test a modified Resnet model by adding a fully
connected layer fine-tuned on the training data, which increase accuracy further.
We did not add any more fully connected layers since the model is already quite
deep and takes a long time to train. The figures 2(a) and 2(b) show the original
and modified Resnet50 architectures respectively.

(a) Resnet50 Architecture

(b) Modified Resnet50 Architecture

Fig. 2

4 Experiments

We conducted our experiments to compare training and testing accuracies and
execution times of the VGG16 and Resnet50 models including modifications.



AWe also trained a simple CNN which is used in [5] and compare with much
deeper models to show why deeper and more complex models are necessary for
fire detection on our dataset. We also train the modified VGG16 and Resnet50
models and compare the performance. We used pre-trained Keras [3] models
and fine-tuned the fully-connected layers on our dataset. The training of the
models was done on the following hardware specifications: Intel i5 2.5GHz, 8GB
RAM and Nvidia Geforce GTX 820 2GB GPU. Each model was trained on
the dataset for 10 training epochs with the ADAM optimizer [9] with default
parameters α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. The details of the
dataset are given in the next subsection.

4.1 The Dataset

Since there is no benchmark dataset for fire detection in images, we created our
own dataset by handpicking images from the internet. 1This dataset consists of
651 images which is quite small in size but it enables us to test the generaliza-
tion capabilities and the effectiveness and efficiency of models to extract relevant
features from images when training data is scarce. The dataset is divided into
training and testing sets. The training set consists of 549 images: 59 fire im-
ages and 490 non-fire images. The imbalance is delibrate to replicate real world
situations, as the probability of occurrence of fire hazards is quite small. The
datasets used in previous papers have been balanced which does not imitate the
real world environment. The testing set contains 102 images: 51 images each of
fire and non-fire classes. As the training set is highly unbalanced and the testing
set is exactly balanced, it makes a good test to see whether the models are able
to generalize well or not. For a model with good accuracy, it must be able to
extract the distinguishing features from the small amount of fire images. To ex-
tract such features from small amount of data the model must be deep enough.
A poor model would just label all images as non-fire, which is the case shown in
the results.
Apart from being unbalanced, there are a few images that are very hard to clas-
sify. The dataset contains images from all scenarios like fire in a house, room,
office, forest fire, with different illumination intensity and different shades of red,
yellow and orange, small and big fires, fire at night, fire in the morning; non-fire
images contain a few images that are hard to distinguish from fire images like a
bright red room with high illumination, sunset, red coloured houses and vehicles,
bright lights with different shades of yellow and red etc.
The figures 3(a) to 3(f) show the fire images with different environments: indoor,
outdoor, daytime, nighttime, forest fire, big and small fire. And the figures 4(a)
to 4(f) show the non-fire images that are difficult to classify. Considering these
characteristics of our dataset, detecting fire can be a difficult task. We have made
the dataset available online so that it can be used for future research in this area.

1 The dataset is available here: https://github.com/UIA-CAIR/

Fire-Detection-Image-Dataset
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(a) (b)
(c)

(d) (e) (f)

Fig. 3: Examples of Fire Images

(a)
(b)

(c)

(d) (e) (f)

Fig. 4: Examples of Non-Fire Images that are difficult to classify



A4.2 Results

Table 1. shows the results of our experiments. The simple CNN model labels
all images as non-fire which means that it is unable to extract relevant features
from the dataset and cannot handle unbalanced datasets, which we can see from
the training accuracy which is exactly equal to the percentage of non-fire images
in the training set. So, the simple CNN overfits on the majority class of the
unbalanced training dataset. Since, the training and fine-tuning methods for all
models used here are the same, at the end it comes down to the architecture
of the model. This justifies the use of deeper models like VGG16 and Resnet50.
The simple CNN tested on our dataset is similar to the one used in [5]. The deep

Table 1: Comparison between CNN models

Model Training accuracy Training time Testing accuracy Testing time
(in sec) (in sec)

VGG16 100 7149 90.19 121
VGG16 (modified) 100 7320 91.18 122
Resnet50 100 15995 91.18 105
Resnet50 (modified) 100 16098 92.15 107
Simple CNN [5] 89.25 112 50.00 2

models achieve testing accuracy greater than 90%. And, the modified VGG16
and Resnet50 models outperform the base models by a small margin with slightly
higher training time. It seems obvious that adding fully-connected layers to a
network would increase accuracy. But on such a small dataset, the trade-off
between accuracy and training time is quite poor, so we stop after adding just
one fully connected layer. We also tested for more fully-connected layers(which
is feasible since the model is pre-trained) but the increase in accuracy compared
to increase in training time was too small.
Overall, the deep models perform well on this dataset. This shows that these
models generalize well even when there is lack of training data. This means that
if we want to slightly alter what the model does, we do not require large amount
of data for retraining.

5 Conclusion

In this paper, we have proposed to use two state-of-the-art Deep Convolutional
Neural Networks for fire detection in images, VGG16 and Resnet50. We test
these models on our dataset which is made specifically to replicate real world
environment. The dataset includes images that are difficult to classify and is
highly unbalanced by including less fire images and more non-fire images since
fire is a rare occurrence in the real world. We rationalize the use of such deep and
complex models by showing that a simple CNN performs poorly on our dataset.



A To further increase accuracy, we added fully connected layers to both VGG16
and Resnet50. Results show that adding fully connected layers does improve
the accuracy of the detector but also increases its training time. In practice,
increasing the number of fully connected layers by more than one results in
minute increase in accuracy compared to the large increase in training time, even
if the models are pre-trained. To conclude, we found that deep CNNs provide
good performance on a diverse and highly imbalanced dataset of small size,
with Resnet50 slightly outperforming VGG16 and adding fully connected layers
slightly improves accuracy but takes longer to train.
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Abstract. In this paper, we propose a hybrid model consisting of a
Deep Convolutional feature extractor followed by a fast and accurate
classifier, the Extreme Learning Machine, for the purpose of fire detec-
tion in images. The reason behind using such a model is that Deep CNNs
used for image classification take a very long time to train. Even with
pre-trained models, the fully connected layers need to be trained with
backpropagation, which can be very slow. In contrast, we propose to em-
ploy the Extreme Learning Machine (ELM) as the final classifier trained
on pre-trained Deep CNN feature extractor. We apply this hybrid model
on the problem of fire detection in images. We use state of the art Deep
CNNs: VGG16 and Resnet50 and replace the softmax classifier with the
ELM classifier. For both the VGG16 and Resnet50, the number of fully
connected layers is also reduced. Especially in VGG16, which has 3 fully
connected layers of 4096 neurons each followed by a softmax classifier,
we replace two of these with an ELM classifier. The difference in conver-
gence rate between fine-tuning the fully connected layers of pre-trained
models and training an ELM classifier are enormous, around 20x to 51x
speed-up. Also, we show that using an ELM classifier increases the ac-
curacy of the system by 2.8% to 7.1% depending on the CNN feature
extractor. We also compare our hybrid architecture with another hybrid
architecture, i.e. the CNN-SVM model. Using SVM as the classifier does
improve accuracy compared to state-of-the-art deep CNNs. But our Deep
CNN-ELM model is able to outperform the Deep CNN-SVM models. 1

Keywords: Deep Convolutional Neural Networks, Extreme Learning
Machine, Image Classification, Fire Detection

1 Introduction

The problem of fire detection in images has received a lot of attention in the
past by researchers from computer vision, image processing and deep learning.

1 Preliminary version of some of the results of this paper appear in Deep Convolutional
Neural Networks for Fire Detection in Images, Springer Proceedings Engineering
Applications of Neural Networks 2017 (EANN’17), Athens, Greece, 25-27 August
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This is a problem that needs to be solved without any compromise. Fire can
cause massive and irrevocable damage to health, life and property. It has led to
over a 1000 deaths a year in the US alone, with property damage in access of
one billion dollars. Besides, the fire detectors currently in use require different
kinds of expensive hardware equipment for different types of fire [27].
What makes this problem even more interesting is the changing background en-
vironment due to varying luminous intensity of the fire, fire of different shades,
different sizes etc. Also, the false alarms due to the environment resembling fire
pixels, like room with bright red/orange background and bright lights. Further-
more, the probability of occurrence of fire is quite low, so the system must be
trained to handle imbalance classification.
Various techniques have been used to classify between images that contain fire
and images that do not. The state-of-the-art vision-based techniques for fire and
smoke detection have been comprehensively evaluated and compared in [39]. The
colour analysis technique has been widely used in the literature to detect and
analyse fire in images and videos [4, 24, 31, 37]. On top of colour analysis, many
novel methods have been used to extract high level features from fire images
like texture analysis [4], dynamic temporal analysis with pixel-level filtering and
spatial analysis with envelope decomposition and object labelling [40], fire flicker
and irregular fire shape detection with wavelet transform [37], etc.
These techniques give adequate performance but are currently outperformed
by Machine Learning techniques. A comparative analysis between colour-based
models for extraction of rules and a Machine Learning algorithm is done for the
fire detection problem in [36]. The machine learning technique used in [36] is
Logistic Regression which is one of the simplest techniques in Machine Learning
and still outperforms the colour-based algorithms in almost all scenarios. These
scenarios consist of images containing different fire pixel colours of different in-
tensities, with and without smoke.
Instead of explicitly designing features by using image processing techniques,
deep neural networks can be used to extract and learn relevant features from
images. The Convolutional Neural Networks (CNNs) are the most suitable choice
for the task of image processing and classification.
In this paper, we employ state-of-the-art Deep CNNs for fire detection and then
propose to use hybrid CNN-ELM and CNN-SVM models to outperform Deep
CNNs. Such hybrid models have been used in the past for image classification,
but the novelty of our approach lies in using state-of-the-art Deep CNNs like
VGG16 and Resnet50 as feature extractors and then remove some/all fully con-
nected layers with an ELM classifier. This models outperform Deep CNNs in
terms of accuracy, training time and size of the network. We also compare the
CNN-ELM model with another hybrid model, CNN-SVM and show that the
CNN-ELM model gives the best performance.
The rest of the paper is organized in the following manner: Section 2 briefly
describes the related work with CNNs for fire detection and Hybrid models for
image classification. Section 3 explains our work in detail and section 4 gives
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details of our experiments and presents the results. Section 5 summarizes and
concludes our work.

2 Related Work

In this paper, we integrate state-of-the-art CNN hybrid models and apply it to
the problem of fire detection in images. To the best of our knowledge, hybrid
models have never been applied to fire detection. So, we present a brief overview
of previous research done in CNNs used for fire detection and hybrid models
separately in the next two sub-sections.

2.1 CNNs for Fire detection

There have been many significant contributions from various researchers in de-
veloping a system that can accurately detect fire in the surrounding environment.
But, the most notable research in this field involves Deep Convolutional Neu-
ral Networks (Deep CNN). Deep CNN models are currently among the most
successful image classification models which makes them ideal for a task such
as Fire detection in images. This has been demonstrated by previous research
published in this area.
In [7], the authors use CNN for detection of fire and smoke in videos. A simple
sequential CNN architecture, similar to LeNet-5 [18], is used for classification.
The authors quote a testing accuracy of 97.9% with a satisfactory false positive
rate.
Whereas in [43], a very innovative cascaded CNN technique is used to detect
fire in an image, followed by fine-grained localisation of patches in the image
that contain the fire pixels. The cascaded CNN consists of AlexNet CNN archi-
tecture [17] with pre-trained ImageNet weights [28] and another small network
after the final pooling layer which extracts patch features and labels the patches
which contain fire. Different patch classifiers are compared.
The AlexNet architecture is also used in [34] which is used to detect smoke in
images. It is trained on a fairly large dataset containing smoke and non-smoke
images for a considerably long time. The quoted accuracies for large and small
datasets are 96.88% and 99.4% respectively with relatively low false positive
rates.
Another paper that uses the AlexNet architecture is [23]. This paper builds its
own fire image and video dataset by simulating fire in images and videos using
Blender. It adds fire to frames by adding fire properties like shadow, fore-ground
fire, mask etc. separately. The animated fire and video frames are composited
using OpenCV [2]. The model is tested on real world images. The results show
reasonable accuracy with high false positive rate.
As opposed to CNNs which extract features directly from raw images, in some
methods image/video features are extracted using image processing techniques
and then given as input to a neural network. Such an approach has been used
in [6]. The fire regions from video frames are obtained by threshold values in the
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HSV colour space. The general characteristics of fire are computed using these
values from five continuous frames and their mean and standard deviation is
given as input to a neural network which is trained using back propagation to
identify forest fire regions. This method performs segmentation of images very
accurately and the results show high accuracy and low false positive rates.
In [11], a neural network is used to extract fire features based on the HSI colour
model which gives the fire area in the image as output. The next step is fire area
segmentation where the fire areas are roughly segmented and spurious fire areas
like fire shadows and fire-like objects are removed by image difference. After
this the change in shape of fire is estimated by taking contour image difference
and white pixel ratio to estimate the burning degree of fire, i.e. no-fire, small,
medium and large. The experimental results show that the method is able to
detect different fire scenarios with relatively good accuracy.

2.2 Hybrid models for Image classification

The classifier part in a Deep CNN is a simple fully connected perceptron with
a softmax layer at the end to output probabilities for each class. This section
of the CNN has a high scope for improvement. Since it consists of three to four
fully connected layers containing thousands of neurons, it becomes harder and
slower to train it. Even with pre-trained models that require fine tuning of these
layers. This has led to the development of hybrid CNN models, which consist of
a specialist classifier at the end.
Some of the researchers have employed the Support Vector Machine (SVM) as
the final stage classifier [1, 21, 25, 33, 38]. In [25], the CNN-SVM hybrid model
is applied to many different problems like object classification, scene classifica-
tion, bird sub-categorization, flower recognition etc. A linear SVM is fed ’off the
shelf convolutional features’ from the last layer of the CNN. This paper uses the
OverFeat network [30] which is a state-of-the-art object classification model. The
paper shows, with exhaustive experimentation, that extraction of convolutional
features by a deep CNN is the best way to obtain relevant characteristics that
distinguishes an entity from another.
The CNN-SVM model is used in [21] and successfully applied to visual learn-
ing and recognition for multi-robot systems and problems like human-swarm
interaction and gesture recognition. This hybrid model has also been applied to
gender recognition in [38]. The CNN used here is the AlexNet [17] pre-trained
with ImageNet weights. The features extracted from the entire AlexNet are fed
to an SVM classifier. A similar kind of research is done in [33], where the soft-
max layer and the cross-entropy loss are replaced by a linear SVM and margin
loss. This model is tested on some of the most well known benchmark datasets
like CIFAR-10, MNIST and Facial Expression Recognition challenge. The results
show that this model outperforms the conventional Deep CNNs.
In 2006, G.B. Huang introduced a new learning algorithm for a single hidden
layer feedforward neural network called the Extreme Learning Machine [13,14].
This technique was many times faster than backpropagation and SVM, and
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outperformed them on various tasks. The ELM randomly initializes the input
weights and analytically determines the output weights. It produces a minimum
norm least squares solution which always achieves lowest training accuracy, if
there are enough number of hidden neurons. There have been many variants of
ELM depending upon a specific application, which have been summarised in [12].
This led to the advent of CNN-ELM hybrid models, which were able to outper-
form the CNN-SVM models on various applications. The major advantage of
CNN-ELM models is the speed of convergence. In [29], the CNN-ELM model is
used for Wireless Capsule Endoscopy (WCE) image classification. The softmax
classifier of a CNN is replaced by an ELM classifier and trained on the feature
extracted by the CNN feature extractor. This model is able to outperform CNN-
based classifiers.
The CNN-ELM model has also been used for handwritten digit classification
[19, 22]. In [19], a ’shallow’ CNN is used for feature extraction and ELM for
classification. The shallow CNN together with ELM speeds up the training pro-
cess. Also, various weight initialization strategies have been tested for ELM with
different receptive fields. Finally, two strategies, namely the Constrained ELM
(C-ELM) [44] and Computed Input Weights ELM (CIW-ELM) [35] are com-
bined in a two layer ELM structure with receptive fields. This model was tested
on the MNIST dataset and achieved 0.83% testing error. In [22], a deep CNN is
used for the same application and tested on the USPS dataset.
A shallow CNN with ELM is tested on some benchmark datasets like MNIST,
NORB-small, CIFAR-10 and SVHN with various hyper parameter configura-
tions in [20]. Another similar hybrid model that uses CNN features and Kernel
ELM as classifier is used in [9] for age estimation using facial features. Another
application where a CNN-ELM hybrid model has been applied is the traffic sign
recognition [41].
A different strategy of combining CNN feature extraction and ELM learning is
proposed in [15]. Here, an ELM with single hidden layer is inserted after every
convolution and pooling layer and at the end as classifier. The ELM is trained
by borrowing values from the next convolutional layer and each ELM is updated
after every iteration using backpropagation. This interesting architecture is ap-
plied to the application of lane detection and achieves excellent performance.
A comparative analysis of the CNN-ELM and CNN-SVM hybrid models for ob-
ject recognition from ImageNet has been illustrated in [42]. Both these models
were tested for object recognition from different sources like Amazon, Webcam,
Caltech and DSLR. The final results show that the CNN-ELM model outper-
forms the CNN-SVM model on all datasets and using Kernel ELM further in-
creases accuracy.
Using ELM as a final stage classifier does not end at image classification with
CNNs. They have also been used with DBNs for various applications [3, 26].
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3 The Fire Detector

In this paper, we propose to employ hybrid deep CNN models to perform fire
detection. The AlexNet has been used by researchers in the past for fire detection
which has produced satisfactory results. We propose to use two Deep CNN archi-
tectures that have outperformed the AlexNet on the ImageNet dataset, namely
VGG16 [32] and Resnet50 [10]. We use these models with pre-trained ImageNet
weights. This helps greatly when there is lack of training data. So, we fine-tune
the ELM classifier on our dataset, which is fed the features extracted by the
Deep CNNs.

3.1 Deep ConvNet Models

The Convolutional Neural Network was first introduced in 1980 by Kunihiko
Fukushima [8]. The CNN is designed to take advantage of two dimensional struc-
tures like 2D Images and capture local spatial patterns. This is achieved with
local connections and tied weights. It consists of one or more convolution layers
with pooling layers between them, followed by one or more fully connected lay-
ers, as in a standard multilayer perceptron. CNNs are easier to train compared
to Deep Neural Networks because they have fewer parameters and local recep-
tive fields.
In CNNs, kernels/filters are used to see where particular features are present
in an image by convolution with the image. The size of the filters gives rise to
locally connected structure which are each convolved with the image to produce
feature maps. The feature maps are usually sub-sampled using mean or max
pooling. The reduction in parameters is due to the fact that convolution layers
share weights.
The reason behind parameter sharing is that we make an assumption, that the
statistics of a patch of a natural image are the same as any other patch of the
image. This suggests that features learned at one location can also be learned
for other locations. So, we can apply this learned feature detector anywhere in
the image. This makes CNNs ideal feature extractors for images.
The CNNs with many layers have been used for various applications especially
image classification. In this paper, we use two state-of-the-art Deep CNNs that
have achieved one of the lowest error rates in image classification tasks.
In this work, we use VGG16 and Resnet50, pre-trained on the ImageNet dataset,
along with a few modifications. We also compare our modified and hybrid mod-
els with the original ones. The VGG16 architecture was proposed by the Visual
Geometry Group at the University of Oxford [32], which was deep, simple, se-
quential network whereas the Resnet50, proposed by Microsoft research [10], was
an extremely deep graphical network with residual connections (which avoids the
vanishing gradients problem and residual functions are easier to train).
We also test slightly modified versions of both these networks by adding a fully-
connected layer and fine-tuning on our dataset. We also tested with more fully
connected layers but the increase in accuracy was overshadowed by the increase
in training time.
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3.2 The Hybrid Model

We propose to use a hybrid architecture for fire detection in images. In this
paper, instead of using a simple CNN as feature extractor, we employ state-of-
the-art Deep CNNs like the VGG16 and Resnet50.
Figure 3(a) and 3(b) show the architecture of the VGG16-ELM and Resnet50-
ELM hybrid models respectively. Usually, only the softmax classifier is replaced
by another classifier (ELM or SVM) in a CNN to create a hybrid model. But, we
go one step further by replacing the entire fully connected multi-layer perceptron
with a single hidden layer ELM. This decreases the complexity of the model even
further.

The Theory of Extreme Learning Machine: The Extreme Learning Ma-
chine is a supervised learning algorithm [13]. The input to the ELM, in this case,
are the features extracted by the CNNs. Let it be represented as xi, ti, where
xi is the input feature instance and ti is the corresponding class of the image.
The inputs are connected to the hidden layer by randomly assigned weights w.
The product of the inputs and their corresponding weights act as inputs to the
hidden layer activation function. The hidden layer activation function is a non-
linear non-constant bounded continuous infinitely differentiable function that
maps the input data to the feature space. There is a catalogue of activation
functions from which we can choose according to the problem at hand. We ran
experiments for all activation functions and the best performance was achieved
with the multiquadratics function:

f(x) =
√
‖xi − µi‖2 + a2 (1)

The hidden layer and the output layer are connected via weights β, which are to
be analytically determined. The mapping from the feature space to the output
space is linear. Now, with the inputs, hidden neurons, their activation functions,
the weights connecting the inputs to the hidden layer and the output weights
produce the final output function:

L∑

i=1

βig(wi.xj + bi) = oj (2)

The output in Matrix form is:
Hβ = T (3)

The error function used in Extreme Learning Machine is the Mean Squared error
function, written as:

E =
N∑

j=1

(
L∑

i=1

βig(wi.xj + bi)− tj)2 (4)

To minimize the error, we need to get the least-squares solution of the above
linear system.

‖Hβ∗ − T‖ = minβ‖Hβ − T‖ (5)
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The minimum norm least-squares solution to the above linear system is given
by:

β̂ = H†T (6)

Properties of the above solution:

1. Minimum Training Error: The following equation provides the least-squares
solution, which means the solution for ‖Hβ − T‖, i.e. the error is minimum.
‖Hβ∗ − T‖ = minβ‖Hβ − T‖

2. Smallest Norm of Weights: The minimum norm of least-squares solution is
given by the Moore-Penrose pseudo inverse of H.
β̂ = H†T

3. Unique Solution: The minimum norm least-squares solution of Hβ = T is
unique, which is:
β̂ = H†T

Detailed mathematical proofs of these properties and the ELM algorithm can be
found in [14]. Both the VGG16 and Resnet50 extract rich features from the im-
ages. These features are fed to the ELM classifier which finds the minimum norm
least squares solution. With enough number of hidden neurons, the ELM outper-
forms the original VGG16 and Resnet50 networks. Both VGG16 and Resnet50
are pre-trained with ImageNet weights. So, only the ELM classifier is trained on
the features extracted by the CNNs.
Apart from fast training and accurate classification, there is another advantage
of this model. This hybrid model does not require large training data. In fact,
our dataset consists of just 651 images, out of which the ELM is trained on 60%
of images only. This shows its robustness towards lack of training data. A normal
Deep CNN would require much higher amount of training data to fine-tune its
fully-connected layers and the softmax classifier. Even the pre-trained VGG16
and Resnet50 models required at least 80% training data to fine-tune their fully-
connected layers.
And, as we will show in the next section, a hybrid CNN-ELM trained with 60%
training data outperforms pre-trained VGG16 and Resnet50, fine-tuned on 80%
training data.

3.3 Paper Contributions

1. The previous hybrid models have used simple CNNs for feature extraction.
We employ state-of-the-art Deep CNNs to make feature extraction more
efficient and obtain relevant features since the dataset is difficult to classify.

2. Other hybrid models simply replace the softmax classifier with SVM or some-
times ELM. We completely remove the fully connected layers to increase
speed of convergence since no fine-tuning is needed and also reduce the com-
plexity of the architecture. Since VGG16 and Resnet50 extract rich features
and the ELM is an accurate classifier, we do not need the fully-connected
layers. This decreases the number of layers by 2 in VGG16 and by 1 in
Resnet50, which is 8192 and 4096 neurons respectively.



B

Deep CNN-ELM Hybrid models for Fire Detection in Images 9

3. The above point also justifies the use of complex features extractors like
VGG16 and Resnet50. If we used a simple CNN then, we might not be able
to remove the fully-connected layers since the features might not be rich
enough. Due to this, the fully-connected layers would have to be fine-tuned
on the dataset which would increase training time and network complexity.

4. Also, we see that the data required for training the ELM classifier is lower
than the data required for fine-tuning the fully-connected layers of a pre-
trained Deep CNN.

5. We apply our hybrid model on the problem of fire detection in images (on
our own dataset). And, to the best of our knowledge, this is the first time a
hybrid ELM model has been applied to this problem.

4 Experiments

We conducted our experiments to compare training and testing accuracies and
execution times of: the VGG16 and Resnet50 models including modifications,
Hybrid VGG16 and Resnet50 models with ELM classifier. We also compare
our hybrid VGG16-ELM and Resnet50-ELM models with VGG16-SVM and
Resnet50-SVM as well. We used pre-trained Keras [5] models and fine-tune the
fully-connected layers on our dataset. The training of the models was done on
the following hardware specifications: Intel i5 2.5GHz, 8GB RAM and Nvidia
Geforce GTX 820 2GB GPU. Each model was trained on the dataset for 10
training epochs. The ADAM optimizer [16] with default parameters α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−8 was used to fine-tune the fully-connected
layers for VGG16 and Resnet50 and their modified versions. The details of the
dataset are given in the next subsection.

4.1 The Real World Fire Dataset

Since there is no benchmark dataset for fire detection in images, we created our
own dataset by handpicking images from the internet. 2This dataset consists of
651 images which is quite small in size but it enables us to test the generaliza-
tion capabilities and the effectiveness and efficiency of models to extract relevant
features from images when training data is scarce. The dataset is divided into
training and testing sets. The training set consists of 549 images: 59 fire im-
ages and 490 non-fire images. The imbalance is deliberate to replicate real world
situations, as the probability of occurrence of fire hazards is quite small. The
datasets used in previous papers have been balanced which does not imitate the
real world environment. The testing set contains 102 images: 51 images each of
fire and non-fire classes. As the training set is highly unbalanced and the testing
set is exactly balanced, it makes a good test to see whether the models are able
to generalize well or not. For a model with good accuracy, it must be able to

2 The dataset is available here: https://github.com/UIA-CAIR/

Fire-Detection-Image-Dataset
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extract the distinguishing features from the small amount of fire images. To ex-
tract such features from small amount of data the model must be deep enough.
A poor model would just label all images as non-fire, which is exemplified in the
results.
Apart from being unbalanced, there are a few images that are very hard to clas-
sify. The dataset contains images from all scenarios like fire in a house, room,
office, forest fire, with different illumination intensity and different shades of red,
yellow and orange, small and big fires, fire at night, fire in the morning. Non-fire
images contain a few images that are hard to distinguish from fire images like a
bright red room with high illumination, sunset, red coloured houses and vehicles,
bright lights with different shades of yellow and red etc.
The figures 4(a) to 4(f) show fire images in different environments: indoor, out-
door, daytime, nighttime, forest fire, big and small fire. And the figures 5(a)
to 5(f) show the non-fire images that are difficult to classify. Considering these
characteristics of our dataset, detecting fire can be a difficult task. We have made
the dataset available online so that it can be used for future research in this area.

(a) (b)
(c)

(d) (e) (f)

Fig. 1: Examples of Fire Images

4.2 Results

Our ELM hybrid models are tested on our dataset and compared with SVM
hybrid models and the original VGG16 and Resnet50 Deep CNN models. Table
1 and Table 2 show the results of the experiments. The dataset was randomly
split into training and testing sets. Two cases were considered depending on the
amount of training data. The Deep CNN models (VGG16 and Resnet50) were
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(a)
(b)

(c)

(d) (e) (f)

Fig. 2: Examples of Non-Fire Images that are difficult to classify

Table 1: Accuracy and Execution time

Model DT Acctrain Ttrain TC
train Acctest Ttest

VGG16 (pre-trained) 80 100 7149 6089 90.19 121
VGG16 (modified) 80 100 7320 6260 91.176 122
Resnet50 (pre-trained) 80 100 15995 13916 91.176 105
Resnet50 (modified) 80 100 16098 13919 92.15 107
VGG16+SVM 60 99.6 2411 1352 87.4 89
VGG16+SVM 80 100 2843 1784 93.9 81
VGG16+ELM 60 100 1340 281 93.9 24
VGG16+ELM 80 100 1356 297 96.15 21
Resnet50+SVM 60 100 3524 1345 88.7 97
Resnet50+SVM 80 100 4039 1860 94.6 86
Resnet50+ELM 60 100 2430 251 98.9 32
Resnet50+ELM 80 100 2452 272 99.2 26

DT is the percentage of total data used for training the models.
Acctrain and Acctest are the training and testing accuracies respectively.
Ttrain and Ttest are the training and testing times for the models.
TC
train is the time required to train the classifier part of the models.

trained only on 80% training data, since 60% is too less for these models. All
the hybrid models have been trained on both 60% and 80% of training data.
One point to be noted here is that, the SVM hybrid models contain an additional
fully-connected layer of 4096 neurons, while the ELM is directly connected to
the last pooling layer.
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Table 2: Number of Hidden Neurons in ELM

CNN Features # hidden neurons Testing accuracy

VGG16 Feature Extractor 4096 93.9
VGG16 Feature Extractor 8192 94.2
VGG16 Feature Extractor 16384 91.1 (Overfitting)
Resnet50 Feature Extractor 4096 98.9
Resnet50 Feature Extractor 8192 99.2
Resnet50 Feature Extractor 16384 96.9 (Overfitting)

The results in Table 1 show that the ELM hybrid models outperform the VGG16,
Resnet50 and SVM hybrid models by achieving higher accuracy and learning
much faster. In general, we can see that the hybrid models outperform the state-
of-the-art Deep CNNs in terms of both accuracy and training time.
Apart from accuracy and training time, another important point drawn from
the results is the amount of training data required. As we already know, Deep
Neural Networks (DNN) require huge amount of training data. So, using pre-
trained models can be highly beneficial, as we only need to fine-tune the fully-
connected layers. But, with models like VGG16 and Resnet50 which have large
fully-connected layers, even fine-tuning requires large amount of training data.
We had to train the VGG16 and Resnet50 on at least 80% training data otherwise
they were overfitting on the majority class, resulting in 50% accuracy.
But in case of hybrid models, especially ELM hybrid models, the amount of
training data required is much less. Even after being trained on 60% training
data, the ELM models were able to outperform the original VGG16 and Resnet50
models which were trained on 80% training data. This shows that reducing the
fully-connected layers, or replacing them with a better classifier can reduce the
amount of training data required. Also, the ELM is more robust towards lack of
training data which adds to this advantage.
Among the hybrid models, the ELM hybrid models outperform the SVM hybrid
models both in terms of testing accuracy and training time. Also, we can see
that the hybrid models with Resnet50 as the feature extractor achieves better
results than the hybrid models with VGG16 as the feature extractor. This is due
to the depth and the residual connections in Resnet50 in contrast to the simple,
shallower (compared to Resnet50) and sequential nature of VGG16.
Table 2 compares results between different number of hidden neurons used by
ELM. The accuracy increases as the number of hidden neurons increase. The
models are tested for 212, 213 and 214 number of neurons. The testing accuracy
starts to decrease for 214 neurons, which means the model overfits. All the tests
in Table 2 were conducted with 60% training data.
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5 Conclusion

In this paper, we have proposed a hybrid model for fire detection. The hybrid
model combines the feature extraction capabilities of Deep CNNs and the classi-
fication ability of ELM. The Deep CNNs used for creating the hybrid models are
the VGG16 and Resnet50 instead of a simple Deep CNN. The fully connected
layers are removed completely and replaced by a single hidden layer feedforward
neural network trained using the ELM algorithm. This decreases complexity
of the network and increases speed of convergence. We test our model on our
own dataset which has been created to replicate a realistic view of the envi-
ronment which includes different scenarios, imbalance due to lower likelihood of
occurrence of fire. The dataset is small in size to check the robustness of models
towards lack of training data, since deep networks require a considerable amount
of training data. Our hybrid model is compared with the original VGG16 and
Resnet50 models and also with SVM hybrid models. Our Deep CNN-ELM model
is able to outperform all other models in terms of accuracy by 2.8% to 7.1% and
training time by a speed up of 20x to 51x and requires less training data to
achieve higher accuracy for the problem of fire detection.
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Abstract—Deep Reinforcement Learning is achieving signifi-
cant success in various applications like control, robotics, games,
resource management, and scheduling. However, the important
problem of emergency evacuation, which clearly could benefit
from reinforcement learning, has been largely unaddressed.
Indeed, emergency evacuation is a complex task which is difficult
to solve with reinforcement learning. An emergency situation is
highly dynamic, with a lot of changing variables and complex
constraints that make it challenging to solve. Also, there is no
standard benchmark environment available that can be used to
train Reinforcement Learning agents for evacuation. A realistic
environment can be complex to design. In this paper, we propose
the first fire evacuation environment to train reinforcement
learning agents for evacuation planning. The environment is
modelled as a graph capturing the building structure. It consists
of realistic features like fire spread, uncertainty and bottlenecks.
We have implemented the environment in the OpenAI gym
format, to facilitate future research. We also propose a new
reinforcement learning approach that entails pretraining the net-
work weights of a DQN based agent (DQN/Double-DQN/Dueling-
DQN) to incorporate information on the shortest path to the
exit. We achieved this by using tabular Q-learning to learn the
shortest path on the building model’s graph. This information is
transferred to the network by deliberately overfitting it on the
Q-matrix. Then, the pretrained DQN model is trained on the fire
evacuation environment to generate the optimal evacuation path
under time varying conditions due to fire spread, bottlenecks and
uncertainty. We perform comparisons of the proposed approach
with state-of-the-art reinforcement learning algorithms like DQN,
DDQN, Dueling-DQN, PPO, VPG, SARSA, A2C and ACKTR.
The results show that our method is able to outperform state-
of-the-art models by a huge margin including the original DQN
based models. Finally, we test our model on a large and complex
real building consisting of 91 rooms, with the possibility to move
to any other room, hence giving 8281 actions. In order to reduce
the action space, we propose a strategy that involves one step
simulation. That is, an action importance vector is added to the
final output of the pretrained DQN and acts like an attention
mechanism. Using this strategy, the action space is reduced by
90.1%. In this manner, we are able to deal with large action
spaces. Hence, our model achieves near optimal performance on
the real world emergency environment.

Index Terms—Reinforcement Learning, Deep Q-Networks,
DQN, Double DQN, Dueling DQN, Pretraining, Transfer Learn-
ing, Fire Evacuation Environment, Emergency Management,
Evacuation.

I. INTRODUCTION

REINFORCEMENT Learning (RL) has been a subject of
extensive research and applications in various real world

domains such as Robotics, Games, Industrial Automation

and Control, System Optimization, Quality Control and
Maintenance. But, some extremely important areas, where
Reinforcement Learning could be immensely vital, have not
received adequate attention from researchers. We turn our
attention to the major problem of evacuation in case of fire
emergencies.
Fire related disasters are the most common type of Emergency
situation. They require thorough analysis of the situation
for quick and precise response. Even though this critical
application hasn’t received adequate attention from AI
researchers, there have been some noteworthy contributions.
One such paper, focusing on assisting decision making for fire
brigades, is described in [1]. Here, the the RoboCup Rescue
simulation is used as a fire simulation environment [2]. A
SARSA Agent [3] is used with a new learning strategy called
Lesson-by-Lesson learning, similar to curriculum learning.
Results show that the RL agent is able to perform admirably
in the simulator. However, the simulator lacks realistic
features like bottlenecks, fire spread and has a grid structure
which is too simplistic to model realistic environments. Also,
the approach seems unstable and needs information about the
state which isn’t readily available in real life scenarios.
In [4], multiple coordinated agents are used for forest fire
fighting. The paper uses a software platform called Pyrosim
which is used to create dynamic forest fire situations.
The simulator is mostly used for terrain modeling and a
coordinated multiple agent system is used to extinguish fire
and not for evacuation.
The evacuation approach described in [5] is similar to the
problem we try to solve in this paper. In [5], a fading memory
mechanism is proposed with the intuition that in dynamic
environments less trust should be put on older knowledge
for decision making. But arguably, this could be achieved
more efficiently by the ’γ’ parameter in Q-learning along
with prioritized experience replay. Also, the graph based
environment used in [5] lacks many key features like fire
spread, people in rooms, bottlenecks etc.
The most significant work done on building evacuation
using RL is reported in [6]. The evacuation environment
is grid based with multiple rooms and fire. The fire spread
is modelled accurately and uncertainty taken into account.
The multi-agent Q-learning model is shown to work in
large spaces as well. Further, the paper demonstrates a
simple environment and strategy for evacuation. However, the
approach proposed in [6] lacks key features like bottlenecks



C

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

and actual people in rooms. The grid based environment
isn’t able to capture details of the building model like room
locations and paths connecting rooms.
Some interesting research on evacuation planning take a
completely different approach by simulating and modelling
human and crowd behaviour under evacuation [7]–[10]. Our
work on evacuation planning is not based on human behaviour
modelling or the BDI (Belief-Desire-Intention) framework for
emergency scenarios. These methods are beyond the scope of
this paper and not discussed here.

Proposed Environment: There are many reinforcement
learning libraries that contain simulations and game
environments to train reinforcement learning based
agents [11]–[15]. However, currently no realistic learning
environment for emergency evacuation has been reported.
In our paper, we build the first realistic fire evacuation
environment specifically designed to train reinforcement
learning agents for evacuating people in the safest manner in
the least number of time-steps possible. The environment has
the same structure as OpenAI gym environments, so it can
be used easily in the same manner.
The proposed fire evacuation environment is graph based,
which requires complex decision making such as routing,
scheduling and dealing with bottlenecks, crowd behaviour
uncertainty and fire spread. This problem falls in the domain
of discrete control. The evacuation is performed inside a
building model, which is represented as a graph. The agent
needs to evacuate all persons in all rooms through any
available exits using the shortest path in the least number
of time-steps, while avoiding any perilous situations like the
fire, bottlenecks and other hazardous situations.
Some previous research papers focus on modelling fire spread
and prediction, mostly using cellular automata [16] and other
novel AI techniques [17]–[19]. An effective and innovative
way of modelling fire spread is to use spatial reinforcement
learning, as proposed in [20]. However, our way of simulating
fire spread is far less complex and leverages rewarding
system of the RL framework. In our proposed environment,
we simply use an exponential decay reward function to model
the fire spread and direction. To keep in tune with the RL
framework, the feedback from the environment sent back to
the agent should convey enough information. So, we design
the reward function in such a manner that the agent can learn
about the fire spread and take measures accordingly.

Proposed Method: Since this environment poses a high
level of difficulty, we argue that incorporating the shortest
path information (shortest path from each room to the nearest
exit) in the DQN model(s) by transfer learning and pretraining
the DQN neural network function approximator is necessary.
Transfer learning has been used extensively in computer vision
tasks for many years, recently vastly expanded for many
computer vision problems in [21]. Lately, it has been utilized
in Natural Language models [22], [23]. In reinforcement
learning, pretrained models have started to appear as well
[24], [25]. In fact, we use the convergence analysis of
[25], which provides a general theoretical perspective of

task transfer learning, to prove that our method guarantees
convergence.
In this paper, we present a new class of pretrained DQN
models called Q-matrix Pretrained Deep Q-Networks (QMP-
DQN). We employ Q-learning to learn a Q-matrix representing
the shortest paths from each room to the exit. We perform
multiple random episodic starts and ε-greedy exploration
of the building model graph environment. Q-learning is
applied on a pretraining instance of the environment that
consists of only the building model graph. Then, we transfer
the Q-matrix to a DQN model, by pretraining the DQN to
reproduce the Q-matrix. Finally, we train the pretrained DQN
agent on the complete fire evacuation task. We compare
our proposed pretrained DQN models (QMP-DQN) against
regular DQN models and show that pretraining for our
fire evacuation environment is necessary. We also compare
our QMP-DQN models with state-of-the-art Reinforcement
Learning algorithms and show that off-policy Q-learning
techniques perform better than other policy based methods as
well as actor-critic models.
Finally, in Section 5, we show that our method can perform
optimal evacuation planning on a large and complex real
world building model by dealing with the large discrete action
space in a new and simple way by using an attention based
mechanism.

Contributions: This paper contributes to the field of rein-
forcement learning, emergency evacuation and management in
the following manner:

1) We propose the first reinforcement learning based fire
evacuation environment with OpenAI Gym structure.

2) We build a graph based environment to accurately model
the building structure, which is more efficient than a maze
structure.

3) The environment can consist of a large discrete action
space with n2 number of actions (for all possibilities),
where n is the number of rooms in the building. That is,
the action space size increases exponentially with respect
to the rooms.

4) Our proposed environment contains realistic features such
as multiple fires and dynamic fire spread which is mod-
elled by the exponential decay reward function.

5) We further improve the realism of our environment by
restricting the number of people allowed in each room to
model over-crowded hazardous situations.

6) We also include uncertainty about action performed in the
environment to model uncertain crowd behaviour, which
also acts as a method of regularization.

7) We use the Q-matrix to transfer learned knowledge of the
shortest path by pretraining a DQN agent to reproduce the
Q-matrix.

8) We also introduce a small amount of noise in the Q-
matrix, to avoid stagnation of the DQN agent in a local
optimum.

9) We perform exhaustive comparisons with other state-
of-the-art reinforcement learning algorithms like DQN,
DDQN, Dueling DQN, VPG, PPO, SARSA, A2C and
ACKTR.
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10) We test our model on a large and complex real world
scenario, which is the University of Agder Building,
which consists of 91 nodes, and 8281 actions.

11) We propose a new and simple way to deal with large
discrete action spaces in our proposed environment, by
employing an attention mechanism based technique.

The rest of the paper is organized as follows: Section 2
summarizes the RL concepts used in this paper. Section 3
gives a detailed explanation of the proposed Fire Emergency
Evacuation System with each module of the system described
in subsequent sub-sections. Section 4 reports our exhaustive
experimental results. Section 5 presents the real world appli-
cation of our model in a large and complex environment, and
finally Section 6 concludes the paper.

II. PRELIMINARIES

Reinforcement Learning is a sub-field of Machine Learning
which deals with learning to make appropriate decisions and
take actions to achieve a goal. A Reinforcement Learning
agent learns from direct interactions with an environment
without requiring explicit supervision or a complete model
of the environment. The agent interacts with the environment
by performing actions. It receives feedback for it’s actions
in terms of reward (or penalty) from the environment and
observes changes in the environment as a result of the ac-
tions it performs. These observations are called states of the
environment and the agent interacts with the environment at
discrete time intervals t by performing an action at in a state of
the environment st, it transitions to a new state st+1 (change in
the environment) while receiving a reward rt, with probability
P (st+1|st, at). The main aim of the agent is to maximize the
cumulative reward over time through it’s choice of actions. A
pictorial representation of the RL framework is shown in Fig.
1.
In the subsequent subsections, a brief presentation of the
concepts and methods used in this paper are explained.

Fig. 1: Reinforcement Learning Framework (the figure is taken
from [26])

A. Markov Decision Process
The Reinforcement learning framework is formalised by

Markov Decision Processes (MDP) which are used to define
the interaction between a learning agent and its environment
in terms of states, actions, and rewards [27]. An MDP consists

of a tuple of 〈S,A, P,R〉 [26], where S is the state space, A
is the action space, P is the transition probability from one
state to the next, P : S×A×S 7−→ [0, 1] and R is the reward
function, R : S ×A 7−→ R.
When state space S, action space A and rewards R consist
of finite number of elements, st+1 and rt+1 have well-defined
discrete probability distributions which depend only on the
present state and action (Markov Property). This is represented
as p(st+1, rt+1|st, at), where p determines the dynamics of the
Markov Decision Process and where:

∑

st+1∈S

∑

r∈R
p(st+1, rt+1|st, at) = 1,∀st ∈ S, at ∈ A (1)

p contains all the information about the MDP, so we can
compute important aspects about the environment from p,
like state transition probability and expected rewards for state-
action pairs [26]:

P (st+1|st, at) =
∑

r∈R
p(st+1, rt+1|st, at) (2)

r(st, at) = E[rt|st, at] =
∑

r∈R
r

∑

st+1∈S
p(st+1, rt+1|st, at)

(3)
The equation 3, gives the immediate reward we expect to get
when performing action at from state st. The agent tries to
select actions that maximize the sum of rewards it expects
to achieve, as time goes to infinity. But, in a dynamic and/or
continuous Markov Decision Process, the notion of discounted
rewards is used [26]:

Gt =
∞∑

k=0

γkrt+k+1 (4)

where, γ is the discount factor and is in the range [0, 1]. If γ
is near 0, then the agent puts emphasis on rewards received
in the near future and if γ is near 1, then the agent also cares
about rewards in the distant future.
In order to maximize Gt, the agent picks an action at when
in a state st according to a policy function π(st). A policy
function is a probabilistic mapping from the state space to the
action space, S → A. The policy function outputs probabilities
for taking each action in give state, so it can also be denoted
as π(at|st).

B. Q-Learning
Most of the Reinforcement Learning algorithms (value

based) try to estimate the value function which gives an
estimate of how good a state is for the agent to reside in.
This is estimated according to the expected reward of a state
under a policy and is denoted as vπ(s):

vπ(s) = Eπ[Gt|st] (5)

Q-learning is a value based Reinforcement Learning algorithm
that tries to maximize the q function [28]. The q function is
a state-action value function and is denoted by Q(st, at). It
tries to maximize the expected reward give a state and action
performed on that state:

Q(st, at) = E[Gt|st, at] (6)
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According the Bellman Optimality equation [26], the optimal
q function can be obtained by:

Q∗(st, at) = E[rt+1 + γv∗(st+1)|st, at]
=

∑

st+1,rt

p(st+1, rt|st, at)[rt + γv∗(s)] (7)

where, v∗(st+1) = maxat+1 Q
∗(st+1, at+1). And, a∗ is the

optimal action which results in maximum reward, the optimal
policy is formed as arg maxat π

∗(at|st) = a∗. This method
was proposed in [28] which is tabular style Q-learning. The
update rule for each time step of Q-learning is as follows:

Qt+1(st, at) = Qt(st, at) + η[rt + γmax
at

Qt(st+1, at+1)

−Qt(st, at)] (8)

Q-learning is an incremental dynamic programming algorithm
that determines the optimal policy in a step-by-step manner.
At each step t, the agent performs the following operations:
• Observes current state st.
• Selects and performs an action at.
• Observes the next state st+1.
• Receives the reward rt.
• Updates the q-values Qt(st, at) using equation 8.

The q value function converges to the optimal value
Qt+1(st, at) → Q∗(st, at) as t → ∞. Detailed convergence
proof and analysis can be found in [28].
This tabular Q-learning method is used in our proposed
approach to generate a Q-matrix for the shortest path to the
exit based on the building model. In order to incorporate the
shortest path information, this Q-matrix is used to pretrain the
DQN models.

C. Deep Q Network
The tabular Q-learning approach works well for small en-

vironments, but becomes infeasible for complex environments
with large multidimensional discrete or continuous state-action
spaces. To deal with this problem, a parameterized version
of the q function is used for approximation Q(st, at; θ) ≈
Q∗(st, at). This way of function approximation was first
proposed in [29].
Deep Neural Networks (DNNs) have become the predominant
method for approximating complex intractable functions. They
have become the defacto method for various applications
such as image processing and classification [30]–[36], speech
recognition [37]–[43], and natural language processing [44]–
[48]. DNNs have also been applied to reinforcement learning
problems successfully by achieving noteworthy performance
[49], [50].
The most noteworthy research in integrating deep neural net-
works and Q-learning in an end-to-end reinforcement learning
fashion is the Deep Q-Networks (DQNs) [51], [52]. To deal
with the curse of dimensionality, a neural network is used
to approximate the parameterised Q-function Q(st, at; θ). The
neural network takes a state as input and approximates Q-
values for each action based on the input state. The parameters
are updated and the Q-function is refined in every iteration
through an appropriate optimizer like Stochastic Gradient

Descent [53], RMSProp [54], Adagrad [55], Adam [56] etc.
The neural network outputs q-values for each action for the
input state and the action with the highest q-value is selected
(There is another DQN architecture, which is less frequently
used, that takes in the state and action as input and returns it’s
q-value as output).
The DQN can be trained by optimizing the following loss
function:

Li(θi) = E[(rt + γmax
at+1

Q(st+1, at+1; θi−1)−Q(st, at; θi))
2]

(9)
where, γ is the discount factor, θi and θi−1 are the Q-network
parameters at iteration i and i − 1 respectively. In order to
train the Q-network, we require a target to calculate loss
and optimize parameters. The target q-values are obtained by
holding the parameters θi−1 fixed from the previous iteration.

y = rt + γmax
at+1

Q(st+1, at+1; θi−1) (10)

where, y is the target for the next iteration to refine the
Q-network. Unlike supervised learning where the optimal
target values are known and fixed prior to learning, in DQN
the approximate target values y, which depend on network
parameters, are used to train the Q-network. The loss function
can be rewritten as:

Li(θi) = E[(y −Q(st, at; θi))
2] (11)

The process of optimizing the loss function Li(θi) at the ith

iteration by holding the parameters from the previous iteration
θi−1 fixed, to get target values, results in a sequence of well-
defined optimization time-steps. By differentiating the loss
function in equation 11, we get the following gradient:

∇θiLi(θi) = E[(y −Q(st, at; θi))∇θiQ(st, at; θi)] (12)

Instead of computing the full expectation of the above
gradient, we optimize the loss function using an appropriate
optimizer (in this paper we use the Adam optimizer [56]).
The DQN is a model-free algorithm since it directly solves
tasks without explicitly estimating the environment dynamics.
Also, DQN is an off-policy method as it learns a greedy policy
a = arg maxat+1

Q(s, at+1; θ), while following an ε-greedy
policy for sufficient exploration of the state space. One of
the drawbacks of using a nonlinear function approximator like
neural network is that it tends to diverge and is quite unstable
for reinforcement learning. The problem of instability arises
mostly due to: correlations between subsequent observations
and that small changes in q-values can significantly change
the policy and the correlations between q-values and target
values.
The most well-known and simple technique to alleviate the
problem of instability is the experience replay [57]. At each
time-step, a tuple consisting of the agent’s experience Et =
(st, at, rt, st+1) is stored in a replay memory over many
episodes. A minibatch of these tuples is randomly drawn
from the replay memory to update the DQN parameters. This
ensures that the network isn’t trained on a sequence of ob-
servations (avoiding strong correlations between samples and
reducing variance between updates) and it increases sample
efficiency. This technique greatly increases stability of DQN.
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D. Double DQN
Q-learning and DQN are capable of achieving performance

beyond the human level on many occasions. However, in some
cases Q-learning performs poorly and so does its deep neural
network counterpart DQN. The main reason behind such poor
performance is that Q-learning tends to overestimate action
values. These overestimations are caused due to a positive
bias that results from the max function in Q-learning and
DQN updates which outputs the maximum action value as
an approximation of the maximum expected action value.
The Double Q-learning method was proposed in [58] to
alleviate this problem and later extended to DQN [59] to
produce the Double DQN (DDQN) method. Since Q-learning
uses the same estimator to select and evaluate an action, which
results in overoptimistic action values, we can interpret it as a
single estimator. In Double Q-learning, the task of evaluation
and selection is decoupled by using double estimator approach
consisting of two functions: QA and QB . The QA function is
updated with a value from the QB function for the next state
and the QB function is updated with a value from the QA

function for the next state.
Let,

a∗ = arg max
at

QAt (st+1, at) (13)

b∗ = arg max
at

QBt (st+1, at) (14)

Then,

QAt+1(st, at) = QAt (st, at)+η[rt+γQ
B
t (st+1, a

∗)−QAt (st, at)]
(15)

QBt+1(st, at) = QBt (st, at)+η[rt+γQ
A
t (st+1, b

∗)−QBt (st, at)]
(16)

where, a∗ is the action with the maximum q-value in state st+1

according to the QA function and b∗ is the action with the
maximum q-value in state st+1 according to the QB function.
The double estimator technique is unbiased which results in
no overestimation of action values, since action evaluation
and action selection is decoupled into two functions that use
separate max function estimates of action values. In fact,
thorough analysis of Double Q-learning in [58] shows that
it sometimes might underestimate action values.
The Double Q-learning algorithm was adapted for large state-
action spaces in [59] by forming the Double DQN method in a
similar way as DQN. The two Q-functions (QA and QB) can
be parameterised by two sets of weights θ and θ′. At each step,
one set of weights θ is used to update the greedy policy and
the other θ′ to calculate it’s value. For Double DQN, equation
10 can be written as:

y = rt + γQ(st+1, arg max
a

Q(st+1, at; θi); θ
′
i) (17)

The first set of weights θ are used to determine the greedy
policy just like in DQN. But, in Double DQN, the second set
of weights θ′ is used for an unbiased value estimation of the
policy. Both sets of weights can be updated symmetrically by
switching between θ and θ′.
The target value network in DQN can be used as the second
Q-function instead of introducing an additional network. So,

the weights at the ith iteration are used to evaluate the greedy
policy and the weights at the previous iteration to estimate
it’s value. The update rule remains the same as DQN, while
changing the target as:

y = rt + γQ(st+1, arg max
a

Q(st+1, at; θi); θi−1) (18)

Note that in both DQN and DDQN, the target network uses
the parameters of the previous iteration i − 1. However, to
generalise, the target network can use parameters from the
any previous (i − k)th iteration. Then, the target network
parameters are updated periodically with the copies of the
parameters of the online network.

E. Dueling DQN

In quite a few RL applications, it is sometimes unnecessary
to estimate the value of each action. In many states, the choice
of action has no consequence on the outcome. A new architec-
ture for model-free Reinforcement Learning, called the dueling
architecture, is proposed in [60]. The dueling architecture
explicitly separates state values and action advantage values
into two streams which share a common feature extraction
backbone neural network. The architecture is similar to that
of the DQN and DDQN architectures; the difference being
that instead of a single stream of fully connected layers, there
are two streams providing estimates of the value and state-
dependent advantage functions. The two streams are combined
at the end producing a single Q-function.
One stream outputs a scalar state value, while the other outputs
an advantage vector having dimensionality equal to number of
actions. Both the streams are combined at the end to produce
the Q-function estimate. The combining module at the end can
simply aggregate the value and advantage estimates as:

Q(st, at; θ, α, β) = V (st; θ, β) +A(st, at; θ, α) (19)

where, θ are the parameters of the lower layers of the neural
network (before streams are split); α and β are the parame-
ters of the advantage and value function streams. However,
such an aggregation of streams would require V (st; θ, β)
to be replicated as many times as the dimensionality of
A(st, at; θ, α). Also, value and advantage estimates cannot be
uniquely recovered given the estimated Q-function.
One way of addressing these issues, proposed in [60], is to
force the advantage function estimator to have zero value at
the selected action. This aggregation is implemented in the
combining module as:

Q(st, at; θ, α, β) = V (st; θ, β)+

(A(st, at; θ, α)− max
at+1∈A

A(st, at+1; θ, α)) (20)

Now, for a chosen action (action with max Q-function),
a∗ = arg maxat+1∈AQ(st, at+1; θ, α, β), putting in equation
20, we get Q(st, a

∗; θ, α, β) = V (st; θ, β). Hence, the two
streams can be uniquely recovered.
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In [60], another way of aggregation is proposed which elimi-
nates the max operator.

Q(st, at; θ, α, β) = V (st; θ, β)+

(A(st, at; θ, α)− 1

|A|
∑

at+1

A(st, at+1; θ, α)) (21)

where, |A| is the number of actions. Even though value and
advantage estimates are now off-target by a constant, this way
of aggregation improves stability by capping the changes in
the advantage estimates by their mean and enhances overall
performance.
In this paper, we use above mentioned off-policy, model-
free algorithms on our novel fire evacuation environment
and significantly improve performance for each of the above
methods by transferring tabular Q-learning knowledge of the
building structure into these methods.

III. FIRE EMERGENCY EVACUATION SYSTEM

In this paper, we propose the first fire evacuation environ-
ment to train reinforcement learning agents and a new transfer
learning based tabular Q-learning+DQN method that outper-
forms state-of-the-art RL agents on the proposed environment.
The fire evacuation environment consists of realistic dynamics
that simulate real-world fire scenarios. For such a complex
environment, an out-of-the-box RL agent doesn’t suffice. We
incorporate crucial information in the agent before training it,
like the shortest path to the exit from each room. The rest of
the section explains the entire system in detail.

A. The Fire Evacuation Environment

We propose the first benchmark environment for fire evac-
uation to train reinforcement learning agents. To the best
of our knowledge, this is the first environment of it’s kind.
The environment has been specifically designed to simulate
realistic fire dynamics and scenarios that frequently arise
in real world fire emergencies. We have implemented the
environment in the OpenAI gym format [11], to facilitate
further research.
The environment has a graph based structure to represent a
building model. Let G = (V,E) be an undirected graph, such
that V = {v1, v2, ..., vn} is a set of vertices that represents n
rooms and hallways and E = {e1, e2, ..., em} is a set of edges
that represents m paths connecting the rooms and hallways.
A simple fire evacuation environment consisting of 5 rooms
and paths connecting these rooms is shown in Fig. 2.
To represent the graph consisting of rooms, hallways and

connecting paths, we use the adjacency matrix MA. It is
a square matrix consisting of elements [0, 1] that indicate
whether a pair of vertices is connected by an edge or not.
The adjacency matrix is used to represent the structure of the
graph and check the validity of actions performed by the agent.
The adjacency matrix for the building model in Fig. 2 is given
by:

Fig. 2: A Simple Fire Evacuation Environment
The red vertex indicates fire in that room and the green vertex is exit.
The orange arrows show the fire spread direction (more towards 1
compared to 3).

MA =




0 1 1 1 0
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
0 0 0 0 0




The environment dynamics are defined as follows:
a) State: Each vertex vi of the graph represents a room

and each room is associated with an integer Ni, which is the
number of people in that room. The state of the environment is
given by a vector consisting of the number of people in each
room S = [N1, N2, ..., Nn]. To force the RL agent to learn
the environment dynamics by itself, the environment doesn’t
provide any other feedback to the agent apart from the state
(number of people left in each room) and the reward.

b) Action: An agent performs an action by moving a
person from one room to the other and the state is updated after
every valid action. Therefore, the action space is discrete. To
keep things simple, we restrict the agent to move one person
from one room at a time step. The agent can move a person
from any room to any other room at any time step, even if
the rooms aren’t connected to each other by a path. So, the
number of possible actions at each step is n2.
This action space is necessary so that the agent can easily
generalize to any graph structure. Also, this enables the agent
to directly select which room to take people from and which
room to send people to, instead of going through each room
in a serial manner or assigning priorities.
When the agent selects an action, where there is no path
between the rooms, the agent is heavily penalized. Due to this
unrestricted action space and penalization, the agent is able
to learn the graph structure (building model) with sufficient
training and only performs valid actions at the end. The
adjacency matrix is used to check the validity of actions.
Note that our graph based fire evacuation environment has n2

possible actions (even though many of them are illegal moves
and incur huge penalties), where n is the number of rooms.
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Even for a small toy example of n = 5 rooms, the total number
of possible actions is 25, which is a lot more than almost all of
the OpenAI gym environments and Atari game environments
[11].

c) Reward: We design a reward function specifically
suited for our environment. We use an exponential decay
function to reward/penalize the agent depending on the action
it takes and to simulate fire spread as well. The reward function
looks like this:

r(vj , t) = −[d(vj , t)]
t (22)

where, t is the time step, vj is the room where a person
is moved to and d(.) is the degree of fire spread for a
room. d(.) returns a positive number and if a room has
a higher value of degree of fire spread, that means that
fire is spreading more rapidly towards that room. We ex-
plicitly assign degrees to each room using a degree vector
D = [d(v1, t), d(v2, t), ..., d(vn, t)], where the maximum value
belongs to the room where the fire is located.
Using such a reward function ensures the following: Firstly,
the reward values drop exponentially every time step as the
fire increases and spreads. Secondly, the reward of an action
depends on the room where a person is moved to. The reward
function will penalize an action more heavily if a person is
moved to a more dangerous room (higher degree of fire spread
towards that room). This is because the function yields more
rapidly decaying negative rewards. Lastly, the function yields
a negative reward for every action which forces the agent to
seek the least number of time-steps. The reward for reaching
the exit is a constant [r(vj = exit, t) = +10].

d) Fire Location(s) and Exit(s): The room where the
fire occurs is given the highest degree, hence the maximum
penalty for entering. The direction of fire spread is randomly
decided and the degrees are assigned accordingly. The degrees
are updated gradually to simulate fire spread.

d(vj , t+ 1) = d(vj , t) + δj ; ∀vj in V (23)

where, δj is a small number (0 ≤ δ ≤ 1) associated with vj . δ
is assigned to each room according to fire spread direction. So,
δ can be used to determine fire spread direction, since higher
value of δ for a room means that fire is spreading towards that
room more rapidly.
As shown in Fig. 2, the fire spread is randomly and indepen-
dently decided for all rooms vj . The exit is also treated like a
room. The only difference being that the agent gets a positive
reward for moving people to the exit. The number of people
at the exit is reset to zero after every action. The rooms which
are exits are stored in a vector E .

e) Bottleneck: Probably one of the most important fea-
ture in our proposed fire evacuation environment that enhances
realism is the bottlenecks in rooms. We put an upper limit on
the number of people that can be in a room at a time step.
This restriction ensures congestion control during evacuation,
which has been a huge problem in emergency situations.
The bottleneck information is not explicitly provided to the
agent, instead the agent learns about this restriction during
training, since a negative reward is received by the agent if
the number of people in a room exceed the bottleneck value.
The bottleneck B is set to 10 in our experiments.

f) Uncertainty: To take into account uncertain behaviour
of the crowd and introduce stochasticity in the environment,
a person moves from one room to the other with probability
1 − p. This means that an action at, selected by the agent at
time-step t, is performed with probability 1−p or ignored with
probability p. If the action is ignored, then there is no change
in the state, but the reward received by the agent is as if the
action was performed. This acts like a regularizing parameter
and due to this, the agent is never able to converge to the
actual global minimum. In our experiments, the uncertainty
probability p is kept at 0.1.

g) Terminal Condition: The terminal/goal is reached
once there are no people in any of the rooms [

∑n
i=1Ni = 0].

The pseudocode for the proposed environment is given in
Algorithm 1. From Algorithm 1, we can see that a heavier

Environment variables: MA, B, E , D, p
Input: S = [N1, N2, ...Nn]
t = 0;
while not Terminal do

t = t+ 1;
a = agent.action(S);
vi = a%n;
vj = a/n;
if p ≥ random.uniform(0, 1) then

r = −D[vj ]
t;

end
else

if SUM(S) == 0 then
Terminal;

end
else if MA[vi, vj ] == 1 and vj in E then

r = +10;
S[vi] = S[vi]− 1;

end
else if MA[vi, vj ] == 0 then

r = −2(max(D)t);
end
else if S[vj ] ≥ B then

r = −0.5(max(D)t);
end
else

r = −D[vj ]
t;

S[vi] = S[vi]− 1;
S[vj ] = S[vj ] + 1;

end
end
Update D according to δ

end
Algorithm 1: Fire Evacuation Environment Pseudocode

penalty is received by the agent for an illegal move compared
to bottleneck restriction violation and moving towards fire. In
a way, rewards are used to assign priorities to scenarios. It can
easily be changes if needed.

Pretraining Environment: We create two instances of our
environment: one for fire evacuation and the other for shortest
path pretraining. For the pretraining instance, we consider only
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the graph structure and the aim is to get to the exit from every
room in the minimum number of time-steps.
The pretraining environment consists of the graph structure
only, i.e. the adjacency matrix MA. The pretraining environ-
ment doesn’t contain fire, the number of people in each room
or bottlenecks. The rewards are static integers: -1 for every
path to force the agent to take minimum time-steps, -10 for
illegal actions (where there is no path) and +1 for reaching
the exit. The agent is thus trained to incorporate shortest path
information of the building model.
The pseudocode for the pretraining environment is given
in Algorithm 2. The procedure is repeated until the agent

Environment variables: MA, E
Input: V = [v1, v2, ...vn]
t = 0;
s = RandomSelection(V );
while not Exit do

t = t+ 1;
a = agent.action(s);
vi = a%n;
vj = a/n;
if MA[vi, vj ] == 1 and vj in E then

r = +1;
Exit;

end
else if MA[vi, vj ] == 0 then

r = −10;
end
else

r = −1;
s = vj ;

end
end

Algorithm 2: Shortest Path Pretraining Environment Pseu-
docode

converges to the shortest path from any room to the exit.

B. Similarities and Differences with Other Environments
The fire evacuation environment is implemented in the Ope-

nAI gym format [11], to enable future research on the topic.
OpenAI gym environments consists of four basic methods:
init, step, render and reset. Our environment consists of the
same four methods.
The init method consists of the initialization conditions of the
environment. In our case, it contains the action space size, A,
the state space size, |S|, the starting state S which is an array
consisting of the number of people in each room (vertex),
the adjacency matrix of the graph based building model, MA

and the fire location(s), F . The reset method simply sets the
environment back to the initial conditions.
The step method is like the Algorithm 1, without the while
loop. The step method takes in the action at performed at time-
step t as the argument and returns the next state st+1, boolean
variable for terminal T (indicating whether the terminal state
was reached with the action performed or not) and the reward
rt+1 for performing the action. The next state, reward and

terminal depend on the conditions of the environment as shown
in Algorithm 1. The render method simply returns the current
state st.
The pretraining environment instance has the same structure
of methods. The only difference is in the step method, shown
in Algorithm 2 excluding the while loop, where the reward
system is changed with fewer conditions and the state S is
represented as the set of empty vertices (rooms with no people)
of the graph.
Even though our environment might have the same structure as
any OpenAI gym environment, it differs a lot in functionality
from other environments or any game-based environments. In
some ways, it might look like the mouse maze game in which
the player (mouse) needs to reach the goal (cheeze) in the least
possible steps through a maze. But, it is drastically different
in many ways:

• Our environment is a graph based environment with
much less connectivity then the maze environment, which
makes finding the optimal route difficult.

• The optimal path(s) might change dynamically from one
episode to the next or within a few time-steps due to fire
spread and uncertainty in the fire evacuation environment,
while the optimal path(s) for the mouse maze game
remains the same.

• All the people in all the rooms must be evacuated to
the nearest exit in the minimum number of time-steps
under dynamic and uncertain conditions with bottlenecks,
whereas in the mouse maze environment an optimal path
only from the starting point to the goal needs to be found.

• The fire evacuation problem is a problem in which
multiple optimal paths for all people in all rooms must
be found while avoiding penalizing conditions like fire,
bottlenecks and fire spread, whereas the mouse maze
problem is a simple point-to-point problem.

• The mouse maze environment is static and lacks any
variations, uncertainty or dynamics. On the other hand,
the fire evacuation environment is dynamic, variable and
uncertain.

• In the maze environment, the shortest path to the goal
state is always the best. But, in the fire evacuation
environment, even though the DQN agent is pretrained
on the shortest path information, the shortest path to the
exit might not be the best due to fire, fire spread and
bottlenecks.

• The fire evacuation environment has a much larger action
space n2 than the maze environment (four actions: up,
down, left, right) because all actions can be performed
even if they are illegal (which will yield high penalties)
to make the RL agent learn the building structure (graph
model).

• Finally, a graph is a much better way to model a build-
ing’s structure than a maze, since connectivity can be
better described with a graph rather than a maze. It’s
what graphs were made for, to depict the relationships
(connections) between entities (vertices).

Hence, the fire evacuation problem is a much more complex
and dramatically different problem than the mouse maze
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problem or any other game based problem. Even the Go
game has 19× 19 + 1, i.e, 362 possible actions, whereas the
fire evacuation environment has n2 possible actions, i.e., as
the number of rooms increase, the possible actions increase
exponentially (although the Go game rules are quite complex
to interpret by an RL agent).

C. Q-matrix Pretrained Deep Q-Networks
For the proposed graph based fire evacuation environment,

we also present a new reinforcement learning technique based
on the combination of Q-learning and DQN (and its variants).
We apply tabular Q-learning to the simpler pretraining envi-
ronment, with a small state space, to learn the shortest paths
from each room to the nearest exit. The output of this stage
is an n× n Q-matrix which contains q-values for state-action
pairs according to the shortest path.
This Q-matrix is used to transfer the shortest path information
to the DQN agent(s). This is done by pretraining the agent’s
neural network by deliberately overfitting it to the Q-matrix.
After pretraining, the neural network weights have the shortest
path information incorporated in them. Now, the agent is
trained on the complete fire evacuation environment to learn
to produce the optimal evacuation plan.
The main purpose of using such a strategy of training an agent
by pretraining it first is to provide the agent with vital informa-
tion about the environment beforehand, so that it doesn’t have
to learn all the complexities of the environment altogether.
Since, after pretraining, the agent knows the shortest paths to
the nearest exits in the building, dealing with other aspects of
the environment like fire, fire spread, number of people and
bottlenecks is made easier.
We provide two instances of our environment: simpler shortest
path pretraining instance and complex fire evacuation instance.
First, the agent is pretrained on the simpler instance of the
environment (for shortest path pretraining) and then trained
on the more complex instance (for optimal evacuation). This
approach of training the agent on a simpler version of the
problem before training it on the actual complex problem is
somewhat similar to curriculum learning [61].
We also add a small amount of noise or offset to the Q-matrix
produced by training on the pretraining environment instance.
This is done by adding or subtracting (depending on the q-
value) a small σ to each element of the Q-matrix.

Q(s, a) =

{
Q(s, a) + σ, if Q(s, a) ≤ 0

Q(s, a)− σ, if Q(s, a) > 0

where, σ can be thought of as a regularization parameter,
which is set to 10 in our experiments. Adding noise to the Q-
matrix is necessary because we don’t want the DQN agent to
just memorize all the paths and get stuck at a local minimum.
The actual fire evacuation instance is complex, dynamic and
has uncertainty which means that an optimal path at time-
step t might not be the optimal path at time-step t + k. The
hyperparameter σ acts as a regularizer.
Note that we add σ if the element of the Q-matrix is negative
or zero and subtract σ if the element is positive. This is done to
offset the imbalance between good and bad actions. If we just

add or subtract σ then the relative difference between q-values
would remain the same. Conditional addition or subtraction
truly avoids the DQN agent from being biased to a particular
set of actions leading to an exit.
Even though pretraining adds some overhead to the system,
there are several advantages including:
• Better Conditioning Pretraining provides the neural net-

work with a better starting position of weights for training
compared to random initializations.

• Faster Convergence Since the neural network weights are
better conditioned due to pretraining, training starts closer
to the optimum and hence rate of convergence is faster.

• Crucial Information Especially in the case of fire evacua-
tion, pretraining with shortest path information provides
the agent with crucial information about the environment
before training begins.

• Increased Stability As pretraining restricts the weights in
a better basin of attraction in the parameter space, the
probability of divergence is reduced which makes the
model stable.

• Fewer number of updates As the weights are near the
optimal on the error surface, the number of updates
required to reach the optimum is lower, which results in
fewer memory updates and requiring less training epochs.

The pseudocode for the proposed Q-matrix pretrained DQN
algorithm is given in Algorithm 3. The algorithm 3 con-
sists of 3 functions: Qlearning() for tabular Q-learning on
the pretraining environment instance for finding optimal q-
values for shortest path from each room to the nearest exit;
Agentpretrain() for overfitting the shortest path Q-matrix to
incorporate the information in the DQN Agent’s network;
Main() for using the pretrained DQN Agent to learn the
optimal evacuation plan by training it on the fire evacuation
environment.
Modifying the final training part to include Double DQN and
Dueling DQN Agents is straightforward.

D. Pretraining Convergence
The paper [25] thoroughly analyses and proves conditions

where task transfer Q-learning will work. We use the proved
propositions and theorems from [25] to show that pretraining
works in our case.
Let the pretraining instance and the fire evacuation instance
be represented by two MDPs: M1 = 〈S,A,R1, P1, γ1〉 for
pretraining instance and M2 = 〈S,A,R2, P2, γ2〉 for fire
evacuation instance. So, according to proposition 1 in [25]:

∆(M1,M2) =‖ Q∗1 −Q∗2 ‖,
‖ R1 −R2 ‖∞

1− γ′

+
γ′′ ‖ R′ ‖∞
(1− γ′′)2 ‖ P1−P2 ‖∞ +

|γ1 − γ2|
(1− γ1)(1− γ2)

‖ R′′ ‖∞
(24)

where ∆(M1,M2) is the distance between MDPs and Q∗1 and
Q∗2 are the corresponding optimal Q-functions. In our case,
γ1 = γ2 and P1 = P2 = 1 since our environments are
deterministic MDPs, i.e., taking an action a at state s will
always lead to a specific next state s′ and no other state, with
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Environment instances: Pretraining Env(),
Fire Evacuation()

Environment variables: MA, B, E , D, V , S
SP = Shortest Path();
FE = Fire Evacuation();
Function Qlearning()

for i← 0 to TQ do
si = SP .state();
while not terminal do

if Random(0, 1) < ε then
ai = Random Action();

end
else

ai = arg max(Qi[si]);
end
si+1, ri, terminal = agent.act(ai);
Update Qi(si, ai) using eq 8;
si = si+1;

end
end
return Q∗

End Function
Function Agentpretrain()

s0 = FE .empty state();
for j ← 0 to TPretrain do

Oj = agent.predict(s0);
L(θj) = 1

2 (Oj −Q∗)2;
θj+1 = θj + η∇L(θj);

end
return θ∗

End Function
Function Main()

DQN = load weights(θ∗);
for t← 0 to T do

st = FE .state();
while not terminal do

st+1, rt, terminal = DQNAgent.act(st);
Train the DQNAgent by:

Calculate Lt(θt) using eq. 11;
Calculate ∇θtLt(θt) using eq. 12;
Update weights: θt+1 = θt + η∇Lt(θt);
st = st+1;

end
end
return DQNAgent

End Function
Algorithm 3: Q-Matrix Pretrained DQN

probability p(s′|s, a) = 1. This makes the second and third
term of equation 24 to zero. So, the distance between the two
instances of our environment is reduced to the first term only.
So, according to proposition 1, if the distance between two
MDPs is small, then the learned Q-function from the pretrain-
ing task is closer to the optimal of the fire evacuation task
compared to random initializations and hence helps in conver-
gence to an optimum and improves the speed of convergence.
Also, convergence is guaranteed according to theorem 4 in

[25], if the safe condition is met:

(1− γ)∆(M1,M2)

BE(Q(s, a))
≤ 1 (25)

where, BE(Q(s, a)) = |[R + γQ(s′, a′)] − Q(s, a)| is the
Bellman error. In our case, ∆(M1,M2) is small and that
multiplied by 1−γ, which is less than 0.1 since γ > 0.9, is less
than 1. For our case, this seems obvious since the two MDPs
are instances of the same MDP. This means that convergence
is guaranteed, as long as the shortest path Q-matrix obtained
from the pretraining environment converges.
Now, to prove that our method has guaranteed convergence, we
need to prove that the Q-matrix is able to capture the shortest
path information accurately.

E. Convergence Analysis of Q-learning for finding shortest
path

The guarantee of convergence for Q-learning has been
discussed and proved in many different ways and for general
as well as unique settings [28], [62]. The convergence of
Q-learning is guaranteed, while using the update rule given
in equation 8, if the learning rate η is bounded between
0 ≤ η < 1 and the following conditions hold:

∞∑

t=1

ηt =∞,
∞∑

t=1

[ηt]
2 <∞ (26)

Then, Qt(s, a) −→ Q∗(s, a) as t −→ ∞, ∀s, a, with
probability 1. This means that for the learning rate conditions
to hold with the constraint 0 ≤ η < 1, all state-action pairs
must be visited an infinite number of times. Here, the only
complication is that some state-action pairs might never be
visited.
In our pretraining environment, which is an episodic task, we
can make sure that all state-action pairs are visited by starting
episodes at random start states which is shown in Algorithm
2. Apart from this we use an ε-greedy exploration policy to
explore all state-action pairs. The initial value of ε and the
decay rate are set according to the size of the graph based
environment.
We run Q-learning on the pretraining environment for ∼ 1000
episodes so ensure that the Q-matrix converges to Q∗(s, a).
Since we have an action space of 25 actions for 5 rooms,
running for more episodes is convenient. But, for large build-
ing models (8281 actions for the large real world building
scenario, in Section 5), running for many episodes could
become computationally too expensive. So, we use a type
of early stopping criteria, in which we stop training the Q-
matrix if there is a very small change in it’s elements from
one episode to the next.
However, as we shall see in Section 5, that we do not require
early stopping at all. We are able to reduce the action space
drastically and hence the Q-matrix can be trained in the same
way as it was trained for smaller action spaces.
In [63], the proof of convergence of Q-learning is given
for stochastic processes, but in our case, the environment is
deterministic. Also, in [64], a more general convergence proof
for Q-learning is provided using convergence properties of
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stochastic approximation algorithms and their asynchronous
versions. The asymptotic bounds for the error 4t(s, a) =
|Qt(s, a) − Q∗(s, a)| has been shown to be bound by the
number of visits to state-action pairs and t:

4t(s, a) ∝ 1

tR(1−γ) (27)

where, R =
mins,aP (s,a)
maxs,aP (s,a) and P (s, a) is the sampling probabil-

ity of (s, a). So, it is necessary to run the Q-learning algorithm
for as many episodes as possible. Hence, we device a strategy
to reduce the action space for large discrete action spaces,
which are as a result of real world building models, so that it
becomes feasible to train the Q-matrix for a large number of
episodes.

F. Discussion on alternative Transfer Learning techniques

There are a few ways of pretraining an agent, some of
which have been discussed and evaluated in [65]. A naive
approach would be to preload the experience replay memory
with demonstration data before hand. This method, however,
isn’t actually pretraining. The agent trains normally with the
benefit of being able to learn good transitions immediately.
Our method of pretraining beckons the question of pretraining
the agent’s network directly. Pretraining a DQN network’s
weights on the pretraining environment would require more
time compared to tabular Q-learning. The DQN would require
more time to converge. Also, in the next step where the Q-
matrix is used as a fixed output to train the network’s weights
to overfit on the q-values requires much less time. Also,
for a smaller state space (like the pretraining environment)
tabular Q-learning is much more efficient than DQN. The
total time taken for pretraining using the proposed method is
5.15s (3.1s for tabular Q-learning and 2.05s for overfitting
the agent’s weights on the Q-matrix) compared to 9.8s
for pretraining DQN directly. It’s because using the direct
pretraining method would effectively require the DQN to be
trained twice overall (once on the pretraining environment and
then on the fire evacuation environment), which is inefficient
and computationally expensive.
Also, this complexity will grow exponentially when we train
it on a large real world building model, which is shown in
Section 5. For an environment with n = 91 rooms and 8281
actions, training a DQN agent twice would be extremely
inefficient and computationally infeasible, due to the size
of the neural network and computations required and the
expense of backpropagation. Whereas, training the Q-matrix
would only require computing equation 8.
One of the most successful algorithms in pretraining
deep reinforcement learning is the Deep Q-learning from
Demonstrations (DQfD) [66], [67]. It pretrains the agent using
a combination of Temporal Difference (TD) and supervised
losses on demonstration data in the replay memory. During
training, the agent trains its network using prioritized replay
mechanism between demonstration data and interactions
with the environment to optimize a complex combination
of four loss functions (Q-loss, n-step return, large margin
classification loss and L2 regularization loss).

The DQfD uses a complex loss function and the drawback
of using demonstration data is that it isn’t able to capture the
complete dynamics of the environment as it covers a very
small part of the state space. Also, prioritized replay adds
more overhead. Our approach is far simpler and because we
create a separate pretraining instance to incorporate essential
information about the environment instead of the full
environment dynamics, it is more efficient than demonstration
data.

IV. EXPERIMENTS AND RESULTS

We perform unbiased experiments on the fire evacuation
environment and compare our proposed approach with state-
of-the-art reinforcement learning algorithms. We test different
configurations of hyperparameters and show the results with
best performing hyperparameters for these algorithms on our
environment. The main intuition behind using Q-learning
pretrained DQN model was to provide it with important
information before hand, to increase stability and convergence.
The results confirms our intuition empirically.

The Agent’s Network: Unlike the convolutional neural
networks [31] used in DQN [51], [52], DDQN [58], [59]
and Dueling DQN [60], we implement a fully connected
feedforward neural network. The network configuration is
given in Table 1. The network consists of 5 layers. The ReLU
function [68] is used for all layers, except the output layer,
where a linear activation is used to produce the output.

Environment: The environment given in Fig. 2 is used
for all unbiased comparisons. The state of the environment
is given as : S = [10, 10, 10, 10, 0] with bottleneck B = 10.
All rooms contain 10 people (the exit is empty), which is the
maximum possible number of people. We do this to test the
agents under maximum stress. The fire starts in room 2 and
the fire spread is more towards room 1 than room 3 (as shown
in Fig. 2 with orange arrows). Room 4 is the exit. The total
number of actions possible for this environment is 25. So, the
agent has to pick one out of 25 actions at each step.

Training: The Adam optimizer [56] with default parameters
and a learning rate η of 0.001 is used for training for all the
agents. Each agent is trained for 500 episodes. Training was
performed on a 4GB NVIDIA GTX 1050Ti GPU. The models
were developed in Python with the help of Tensorflow [69] and
Keras [70].

Implementation: Initially, the graph connections were rep-
resented as 2D arrays of the adjacency matrix MA. But, when
the building model’s graphs get bigger, the adjacency matrices
become more and more sparse, which makes the 2D array
representation inefficient. So, the most efficient and easiest
way to implement a graph is as a dictionary, where the keys
represent rooms and their values are an array that lists all the
rooms that are connected to it.

dictgraph = {roomi : [roomj ; ∀j in MAi,j
= 1]}

Comparison Graphs: The comparison graphs shown from
Fig. 3 to Fig. 10 have the total number of time-steps required
for complete evacuation for an episode on the y-axis and the
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Fig. 3: Q-matrix pretrained DQN vs DQN

number of episodes on the x-axis. The comparisons shown
in the graphs are different runs of our proposed agents with
exactly the same environment settings used for all the other
agents as well.
We first compare the Q-matrix pretrained versions of the DQN

TABLE I: Network Configuration

Type Size Activation

Dense 128 ReLU
Dense 256 ReLU
Dense 256 ReLU
Dense 256 ReLU
Dense No. of actions Linear

and its variants with the original models. The graph based
comparisons between models consists of number of time-steps
for evacuating all people on the y-axis and episode number on
the x-axis. We put an upper-limit of 1000 time-steps for an
episode due to computational reasons. The training loop breaks
and a new episode begins once this limit is reached.

The graph comparing DQN with our proposed Q-matrix
pretrained DQN (QMP-DQN) in Fig. 3 shows the difference
in their performance on the fire evacuation environment.
Although the DQN reaches the optimal number of time-
steps quickly, it isn’t able to stay there. The DQN drastically
diverges from the solution and is highly unstable.
It’s the same case with DDQN (Fig. 4) and Dueling DQN

(Fig. 5), which, although perform better that DQN with less
fluctuations and spend more time near the optimal solution.
Our results clearly shows a big performance lag compared to
the pretrained versions. As these results suggest that pretrain-
ing ensures convergence and stability. We show that having
some important information about the environment prior to
training reduces the complexity of the learning task for an
agent.
The original Q-learning based models aren’t able to cope with

the dynamic and stochastic behaviour of the environment. And
since they don’t posses pretrained information, their learning
process is made even more difficult. Table 2 displays a few

Fig. 4: Q-matrix pretrained DDQN vs DDQN

Fig. 5: Q-matrix pretrained Dueling DQN vs Dueling DQN

numerical results, comparing DQN, DDQN and Dueling DQN,
with and without the Q-matrix pretraining on the basis of
average number of time-steps for all 500 episodes, minimum
number of time-steps reached during training and the training
time per episode.
As it was also clear from the Figs. 3, 4 and 5, the average

number of time-steps is greatly reduced with pretraining, as
it makes the models more stable by reducing variance. Based
on the environment given in Fig. 2, the minimum possible
number of time-steps is 60. All the DQN based models are
able to come close to this, but pretraining pushes these models
further and achieves the minimum possible number of time-
steps. Even though the difference seems small, in emergency
situations even the smallest differences could mean a lot at
the end. The training time is also reduced with pretraining, as
the number of time-steps taken during training is reduced and
pretrained models get a better starting position nearer to the
optimum.
Next, we make comparisons between our proposed approach

and state-of-the-art reinforcement learning algorithms. For
these comparisons, we use the Q-matrix pretrained Dueling
DQN model, abbreviated QMP-DQN. We also compare it with
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TABLE II: Performance

Model Average Time-Steps Average Time-Steps
with Pretraining Minimum Time-Steps Minimum Time-Steps

with Pretraining
Training Time
(per episode)

Training time
with Pretraining

(per episode)

DQN 228.2 76.356 63 61 10.117 6.87

DDQN 134.62 71.118 61 60 12.437 8.11

Dueling DQN 127.572 68.754 61 60 12.956 9.02

Fig. 6: Proposed method vs Random Agent

Fig. 7: Proposed method vs State-Action-Reward-State-Action
method

a random agent, shown in Fig. 6. The random agent performs
random actions at each step, without any exploration. The
random agent’s poor performance of 956.33 average time-
steps shows that finding the optimal or even evacuating all
the people isn’t a simple task.
The State-Action-Reward-State-Action (SARSA) algorithm is

an on-policy reinforcement learning agent introduced in [3].
While Q-learning follows a greedy policy, SARSA takes the
policy into account and incorporates it into its updates. It
updates values by considering the policy’s previous actions.
On-policy methods like SARSA have a downside of getting
trapped in local minima if a sub-optimal policy is judged as

Fig. 8: Proposed method vs Policy based methods (PPO and
VPG)

the best. On the other hand, off-policy methods like Q-learning
are flexible and simple as they follow a greedy approach. As it
is clear from Fig. 7, that SARSA behaves in a highly unstable
manner and isn’t able to reach the optimal solution and shows
high variance.
Policy gradient methods are highly preferred in many applica-

tions, however they aren’t able to perform optimally on our fire
evacuation environment. Since the optimal policy could change
in a few time-steps in our dynamic environment, greedy action
selection is probably the best approach. An evacuation path
that seems best at a particular time step could be extremely
dangerous after the next few time-steps and a strict policy of
routing cannot be followed continuously due to fire spread
and/or bottleneck. These facts are evident from Fig. 8, where
we compare our approach to policy gradient methods like
Proximal Policy Optimization (PPO) [71] and Vanilla Policy
Gradient (VPG) [72]. Even though PPO shows promising
movement, it isn’t able to reach the optimum.

Another major type of reinforcement learning algorithms
are the actor-critic methods. It is a hybrid approach consisting
of two neural networks: an actor which controls the policy
(policy based) and a critic which estimates action values
(value based). To further stabilize the model, an advantage
function is introduced which gives the improvement of an
action compared to an average action used in a particular state.
Apart from the previously mentioned shortcomings of using
policy based methods on the fire evacuation environment, the
advantage function would have high variance since the best
action at a particular state could change rapidly leading to
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TABLE III: Comparison with State-of-the-art RL Algorithms

Model Average Time-Steps Minimum Time-Steps Training Time
(per episode)

SARSA 642.21 65 19.709

PPO 343.75 112 16.821

VPG 723.47 434 21.359

A2C 585.92 64 25.174

ACKTR 476.56 79 29.359

Random Agent 956.33 741 -
QMP-DQN

(Dueling DQN Backbone) 68.754 60 9.02

Fig. 9: Proposed method vs Synchronous Advantage Actor
Critic method (A2C)

Fig. 10: Proposed method vs Actor Critic using Kronecker-
Factored Trust Region (ACKTR)

unstable performance. This is apparent from Fig. 9, where
we compare the synchronous advantage actor critic method
(A2C) [73] with our proposed method. The A2C gives near
optimal performance in the beginning but diverges and rapidly
fluctuates.
We do not compare our proposed method with the asyn-
chronous advantage actor critic method (A3C) [74], because
A3C is just an asynchronous version of A2C, which is more
complex as it creates many parallel versions of the environ-
ment and gives relatively the same performance, but is not
as sample efficient as claimed in [75]. The only advantage
of A3C is that it exploits parallel and distributed CPU and
GPU architectures which boosts learning speed as it can update
asynchronously. However, the main focus of this paper is not
learning speed. Hence, we think that the comparison with A2C
is sufficient for actor-critic models.
Probably the best performing Actor Critic based model is the
ACKTR (Actor Critic with Kronecker-factored Trust Region)
[76]. The algorithm based on applying trust region optimiza-
tion using Kronecker-factored approximation, which is the first
scalable trust region natural gradient method for actor critic
models that can be applied to both continuous and discrete
action spaces. The Kronecker-factored Approximate Curvature
(K-FAC) [77], is used to approximate the Fisher Matrix to
perform approximate natural gradient updates. We compare
our method to the ACKTR algorithm, shown in Fig. 10. The
results suggest that the ACKTR is not able to converge (within
500 episodes, due to slow convergence rate) and is susceptible
to the dynamic changes in the environment as evident from
the fluctuations. ACKTR is far too complex compared to our
proposed method, which converges much faster and deals with
the dynamic behaviour of the fire evacuation environment
efficiently.
We summarize our results in Table 3. All the RL agents
use the same network configuration mentioned in Table 1
for unbiased comparison. The training time for the QMP-
DQN is much lower compared to other algorithms because
pretraining provides it with a better starting point, so it requires
less number of time-steps and memory updates to reach the
terminal state. Also, SARSA and A2C come really close to
the minimum number of time-steps, but as the average number
of time-steps suggests, they aren’t able to converge and
exhibit highly unstable performance. Our proposed method,
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Fig. 11: A Multiple Fire Evacuation Environment

Q-matrix pretrained Dueling Deep Q-network gives the best
performance on the fire evacuation environment by a huge
margin.
Note that, in all the comparison graphs, our proposed method
comes close to the global optimum, but isn’t able to completely
converge to it. This is because of the uncertainty probability
p, which decides whether an action is performed or not and
is set to 0.15. This uncertainty probability is used to map
the uncertain crowd behaviour. Even though, p, does not
allow complete convergence, it also prevents the model from
memorizing an optimal path which might change as the fire
spreads.

Multiple Fires Scenario
Now that we have shown that the proposed method is

able to outperform state-of-the-art reinforcement learning al-
gorithms, we test our model on a more complex and difficult
environment setup. The environment configuration consists of
multiple fires in different rooms and a more complex graph
structure consisting of 8 rooms. The environment is shown
in Fig. 10. The green node is the exit, the red nodes are the
rooms where the fire is located and the orange arrows depict
the direction of fire spread.
As we can see from Fig. 10, the fire spreads in different
directions from different fire locations. This makes things
especially difficult because as the fire spreads, the paths to
the exit could be blocked. We do not change the configuration
of our approach, except the output layer of the network,
since the number of possible actions is 64 now. The State
of the environment and Bottleneck given as input is: S =
[10, 10, 10, 10, 10, 10, 10, 0] and B = 10.
We employ the Q-matrix pretrained Dueling DQN model. Fig.
11 shows the graphical results on the multiple fires scenario.
The initial fluctuations are due to ε-greedy exploration. Since
this configuration of the environment is bigger and more
complex, the agent explores the environment a little longer.
As the results suggest from Fig. 11, the proposed model is

able to converge very quickly. A few metrics for the proposed
method on the multiple fires environment is given below:
• Average number of time-steps: 119.244
• Minimum number of time-steps: 110
• Training time (per episode): 15.628
Note that, there is a difference of ≈ 9 time-steps between the
minimum number of time-steps and average number of time-

Fig. 12: Q-matrix pretrained Dueling DQN in Multiple Fire
Scenario

steps. This is because the average of all 500 episodes is taken
which includes the initial fluctuations due to exploration and
the uncertainty probability p.

V. SCALABILITY: LARGE AND COMPLEX REAL WORLD
SCENARIO - UNIVERSITY OF AGDER BUILDING

To prove that our method is capable of performing on
large and complex building models, we simulate a real world
building, i.e., the University of Agder A, B, C and D blocks,
and perform evacuation in case of fire in any random room(s).
This task is especially difficult because of the resulting com-
plex graph structure of the building and the large discrete
action space. We consider the A, B, C and D blocks which are
in the same building. The total number of rooms in this case is
n = 91, which means that the number of all possible actions is
8281. This discrete action space is many times larger than any
other OpenAI gym environment or Atari game environments
[11]. Even the Go game has 19× 19 + 1, i.e., 362 actions.
Dealing with such a large action space would require a huge
agent model or moving towards to a multi-agent approach
and dividing the environment into subsets, with each sub-
environment for each agent to deal with. These techniques
for dealing with the large discrete action space would be
computationally complex and difficult to implement for the
fire evacuation environment.
Another way could be to use a policy gradient method which
are much more effective in dealing with large action spaces
compared to value based methods. But, dealing with such
large action spaces would require an ensemble of neural
networks and tree search algorithms like in [78] or extensive
training from human interactions like in [79]. However, in a
fire emergency environment we obviously can’t have human
interactions and we would like to solve the issue of large action
space without having to use dramatically huge models. Also
we saw in the previous section that even though PPO performs
much better compared to other algorithms, it wasn’t able to
outperform our QMP-DQN methods.
In [80], a new method to deal with extremely large discrete
action spaces (∼1 million actions) was proposed. The novel
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method, called the Wolpertinger policy algorithm, uses a type
of actor-critic architecture, in which the actor proposes a proto-
action in an action embedding space from which k most
similar actions are selected using the k-nearest neighbour
algorithm. These k actions are received by the critic which
makes a greedy selection based on the learned q-values.
This technique shows promising results, however, it is highly
complex.
We propose a much simpler approach to deal with large
number of actions. Our method consists of two stages: One-
Step Simulation (OSS) of all actions resulting in an action
importance vector AI and then element-wise addition with
the DQN output for training. We explain our method in the
following subsections.

A. One-Step Simulation and Action Importance Vector
We make use of the pretraining environment instance shown

in Algorithm 2 to calculate the action importance vector AI ,
as shown in Algorithm 4. The one step sim(s, k) function
is implemented in the environment itself to enable the envi-
ronment object to use the method and the function to use the
environment variables.
The one step sim(s, k) function simulates all possible ac-
tions for each state/room for one time-step in the pretraining
environment. It stores all rewards received for these actions
taken from room s and returns the k best actions for each
room s which yield the k highest rewards.
The one step sim(s, k) function is run for each room s in N ,
which is the total number of rooms in the environment. The
equation x[j] ←− env.one step sim(j, k) ∗ N + j, is used
to convert the k best actions returned by one step sim(s, k)
function for all rooms s, into a single vector of actions. This
is necessary because the DQN agent can take any appropriate
action from any room at a particular time-step. So, it outputs
a single vector consisting of Q-values for all actions at each
time-step.
After we have a unique index for all selected actions in the
environment, we form the action importance vector AI by
placing 0 at index l, if the lth action is present in the vector
x, which consists of all the k best actions for each room s,
otherwise, a large negative number (like −9999) at index l.
The action importance vector can be though of as a fixed
weight vector which contains weight 0 for good actions and
a large negative weight for others. AI is then added element-
wise with the output of the DQN Q̂ to produce the final output
Q∗ on which the DQN is trained on.

Q∗ = Q̂⊕AI (28)

This makes the Q-values of the good actions to remain the
same and reduces the Q-values of other actions to huge nega-
tive numbers. This method effectively reduces the action space
from O(N2) to O(kN), where k � N . In our experiments, we
set the hyperparameter k as the maximum degree of vertices
in the building model’s graph, i.e. k = 9. So, in our model,
the action space is effectively reduced from 8281 actions to
819 actions, which is a 90.1% decrease.
Hence, our complete method consists of shortest path pretrain-
ing using Q-matrix transfer learning and action space reduction

Environment instances: Pretraining Env()
Environment variables: N ←− Number of rooms
env = Pretraining Env();
Function one step sim(s, k)

for i in action space do
st+1, r, terminal = env.step(i);
rewards[i]←− r;

end
return rewards.argsort(k);

End Function
for j in N do

x[j]←− env.one step sim(j, k) ∗N + j;
end
for l in action space do

if l in x then
AI [l] = 0;

end
else

AI [l] = −9999;
end

end
Algorithm 4: One-Step Simulation and AI

by one-step simulation and action importance and finally
DQN based model training and execution. The shortest path
pretraining provides the model with global graph connectivity
information and the one-step simulation and action importance
delivers local action selection information.
The action importance vector can also be thought of as an
attention mechanism [37], [81]–[83]. Most of the attention
mechanisms employ a neural network or any other technique
to output an attention vector which is then combined with
the input or an intermediate output to convey attention in-
formation to a model. Unlike these methods, our proposed
model combines the action importance vector with the output
of the DQN. This means that the current action selection is
based on a combination of the Q-values produced by the DQN
and the action importance vector, but the training of the DQN
is impacted by the attention vector in the next iteration of
training, as the final output of the ith iteration is used as the
label for training the model at the i+ 1th iteration.
One major advantage of such an attention mechanism used in
our method is that, since the graph based environment has a
fixed structure, the attention vector needs to be calculated just
once at the beginning. We test our method on the University
of Agder (UiA), Campus Grimstad building with blocks A, B,
C and D consisting of 91 rooms.
Note that, unlike the usual attention based models, we do not
perform element-wise multiplication of the attention vector
with the output of a layer. Instead, we add the attention vector
because initially the DQN model will explore the environment
and will have negative Q-values for almost all actions (if not
all). This means that if we use a vector of ones and zeros for
good and bad actions respectively and multiply element-wise
with the output of a layer then, the Q-values of good actions
will be copied as it is and the Q-value of other actions will
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Fig. 13: University of Agder Graph
The red vertices indicate fire in that room and the green vertices are exits. The yellow vertices show the fire spread towards that room.
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become zero. If the Q-value of good actions is negative in
the beginning due to exploration (and lack of learning since
it is the beginning of training), then the max function in
the Q-value selection equation will select bad actions since
they are zeros and good actions are negative. This will lead
to catastrophic behaviour of the system and it will never
converge. So, instead we use addition with zeros for good
actions so that they remain the same and with large negative
numbers for other actions so that their Q-values become so
low that they are never selected.

B. Fire Evacuation in the UiA building

The graph for UiA’s building model is based on the actual
structure of the 2nd floor of blocks A, B, C and D1. The graph
for the building model is shown in Fig. 13. It consists of 91
rooms (from room 0 to room 90) out of which there are 10
exits. We simulate the fire evacuation environment in which
there are multiple distributed fires in rooms 14, 29, 59 and
80. The fire spread for each fire is individually simulated in a
random direction as shown by the yellow nodes in the graph.
As shown in Fig. 13, the building connectivity can be quite
complex and there has been limited research work that deals
with this aspect. The graph structure shows that these connec-
tions between rooms cannot possibly be captured by a grid
based or maze environment.
Also, note that, the double sided arrows in the graph enable
transitions back and forth between rooms. This makes the
environment more complicated for the agent since the agent
could just go back and forth between ’safe’ rooms and get
stuck in a loop and may never converge. This point makes
pretraining even more indispensable.
Since, the proposed method is able to reduce the action space
by a lot, the neural network doesn’t need to be made too large.
The network configuration is given in Table 4. Note that the
addition layer does not require any trainable parameters. The

TABLE IV: Network Configuration

Type Size Activation

Dense 512 ReLU
Dense 1024 ReLU
Dense 1024 ReLU
Dense 1024 ReLU
Dense 8281 Linear
Addition - -

neural network is trained using the Adam optimizer [56] with
default hyperparameter settings and a learning rate η = 0.001
for 5000 episodes. The training was performed on the NVIDIA
DGX-2. The optimal number of steps for evacuation in the
UiA building graph is around ∼ 2000.

C. Results
The results of our proposed method consisting of shortest

path Q-matrix transfer learning to Dueling-DQN model with
one-step simulation and action importance vector acting as
an attention mechanism applied on the University of Agder’s
A,B,C and D blocks consisting of 91 rooms and 8281 actions
(whose graph is shown in Fig. 13) is shown in Fig. 14. The
performance numbers are given below:

• Average number of time-steps: 2234.5
• Minimum number of time-steps: ∼2000
• Training time (per episode): 32.18 s
The graph in Fig. 14 shows the convergence of our method
with evacuation time-steps on the y-axis and the episode
number on the x-axis. It takes slightly longer to converge
compared to the convergence in previous small example envi-
ronments. This is obviously due to the size of the environment
and complex connectivity. But overall the performance of our
model is excellent.
After ∼ 1900 episodes, the algorithm has almost converged.
There are a few spikes suggesting fluctuations from the optimal
behaviour due to the dynamic nature of the environment
and the uncertainty in actions. After ∼ 3300 episodes, the
algorithm completely converges in the range (2000 − 2070)
times-steps for total evacuation. The method cannot converge
to the minimum possible time-steps = 2000 because of the
fire spread dynamics, encountering bottleneck conditions and
action uncertainty.
The results clearly suggest that even though the proposed
fire evacuation environment is dynamic, uncertain and full
of constraints, our proposed method using novel action re-
duction technique with attention based mechanism and trans-
fer learning of shortest path information is able to achieve
excellent performance on a large and complex real world
building model. This further confirms that, with a minute
added overhead of one-step simulation and action importance
vector, our method is scalable to much larger and complex
building models.

VI. CONCLUSION

In this paper, we propose the first realistic fire evacua-
tion environment to train reinforcement learning agents. The
environment is implemented in OpenAI gym format. The
environment has been developed to simulate realistic fire
scenarios. It includes features like fire spread with the help
of exponential decay reward functions and degree functions,
bottlenecks, uncertainty in performing an action and a graph
based environment for accurately mapping a building model.
We also propose a new reinforcement learning method for
training on our environment. We use tabular Q-learning to
generate q-values for shortest path to the exit using the
adjacency matrix of the graph based environment. Then, the
result of Q-learning (after being offset by a σ) is used to
pretrain the DQN network weights to incorporate shortest

1UiA building map can be found here: https://use.mazemap.com/#v=1&
zlevel=2&left=8.5746533&right=8.5803711&top=58.3348318&bottom=58.
3334208&campusid=225
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Fig. 14: Proposed method applied on the UiA Building

path information in the agent. Finally, the pretrained weights
of the DQN based agents are trained on the fire evacuation
environment.
We prove the faster convergence of our method using Task
Transfer Q-learning theorems and the convergence of Q-
learning for the shortest path task. The Q-matrix pretrained
DQN agents (QMP-DQN) are compared with state-of-the-art
reinforcement learning algorithms like DQN, DDQN, Dueling-
DQN, PPO, VPG, A2C, ACKTR and SARSA on the fire
evacuation environment. The proposed method is able to
outperform all these models on our environment on the basis of
convergence, training time and stability. Also, the comparisons
of QMP-DQN with original DQN based models show clear
improvements over the latter.
Finally, we show the scalability of our method by testing it
on a real world large and complex building model. In order
to reduce the large action space (8281 actions), we use the
one-step simulation technique on the pretraining environment
instance to calculate the action importance vector, which can
be thought of as an attention based mechanism. The action
importance vector gives the best k actions a weight of 0
and the rest are assigned a large negative weight of −9999
(to render the Q-values of these too low to be selected by
the Q-function). This reduces the action space by ∼ 90%
and our proposed method, QMP-DQN model, is applied on
this reduced action space. We test this method on the UiA,
Campus Grimstad building, with the environment consisting
of 91 rooms. The results show that this combination of
methods works really well in a large real world fire evacuation
emergency environment.
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Abstract
In this paper, we propose a model for the Environment Sound
Classification Task (ESC) that consists of multiple feature chan-
nels given as input to a Deep Convolutional Neural Network
(CNN) with Attention mechanism. The novelty of the paper lies
in using multiple feature channels consisting of Mel-Frequency
Cepstral Coefficients (MFCC), Gammatone Frequency Cep-
stral Coefficients (GFCC), the Constant Q-transform (CQT)
and Chromagram. And, we employ a deeper CNN (DCNN)
compared to previous models, consisting of spatially separable
convolutions working on time and feature domain separately.
Alongside, we use attention modules that perform channel and
spatial attention together. We use the mix-up data augmentation
technique to further boost performance. Our model is able to
achieve state-of-the-art performance on three benchmark envi-
ronment sound classification datasets, i.e. the UrbanSound8K
(97.52%), ESC-10 (94.75%) and ESC-50 (87.45%).
Index Terms: Convolutional Neural Networks, Attention, Mul-
tiple Feature Channels, Environment Sound Classification

1. Introduction
One of the most important application is the Environment
Sound Classification (ESC) that deals with distinguishing be-
tween sounds from the real environment. It is a complex task
that involves classifying a sound event into an appropriate class
such as siren, dog barking, airplane, people talking etc.
The most successful ESC models consist of one or more stan-
dard audio feature extraction techniques and deep neural net-
works. In this paper, we explore the idea of employing multiple
feature extraction techniques like the Mel-frequency Cepstral
Coefficients (MFCC) [1], Gammatone Frequency Cepstral Co-
efficients (GFCC) [2], Constant Q-Transform (CQT) [3], Chro-
magram [4] and stack them to create a multiple channel input to
our classifier.
After feature extraction, the next stage is classification. Many
machine learning algorithms have been used to classify sound,
music or audio events. However, in the ESC task, Deep CNNs
have been able to outperform other techniques, as evident from
the previous ESC models. In this paper, we also employ a Deep
CNN for classification. However, we split between time and
frequency domain feature processing by using separable convo-
lutions [5] with different kernel sizes. Also, we use max pooling
across only one of the domains at a time, until after the last set
of convolutional layers to combine time and frequency domain
features. This enables processing time and frequency domain
features separately and then combining them at a later stage.
Along with the model, we also design a novel attention mod-
ule that enables both spatial and channel attention. In order to
achieve both spatial and channel attention with the same mod-

ule, we need an attention weight matrix with dimensions equal
to the DCNN block output. So that, each output feature map in
each channel has it’s own attention weights. We use the depth-
wise separable convolution [6] to achieve attention with mini-
mal increase in number of parameters.
Using these techniques allows our model to achieve state-of-
the-art performance on three benchmark datasets for environ-
ment sound classification task, namely, ESC-10, ESC-50 [7]
and UrbanSound8K [8].

2. Related Work

There have been several innovative and high performance ap-
proaches proposed for the task of environmental sound classi-
fication (ESC). In [9], a deep CNN was shown to give com-
petitive results for the ESC tasks by thorough and exhaustive
experimentation on the three benchmark datasets.
In [10], phase encoded filterbank energies (PEFBEs) was pro-
posed as a novel feature extraction technique. Finally, a
score-level fusion of FBEs and PEFBEs with a CNN classifier
achieved best performance.
In the second version of the EnvNet, called EnvNetv2 [11],
the authors employed a mechanism called Between Class (BC)
learning. In BC learning, two audio signals from different
classes are mixed with each other with a random ratio. The
CNN model is then fed the mixed sound as input and trained to
output this mixing ratio.
An unsupervised approach of learning a filterbank from raw
audio signals was proposed in [12]. Convolutional Restricted
Boltzmann Machine (ConvRBM), which is an unsupervised
generative model, was trained to raw audio waveforms. A
CNN is used as a classifier along with ConvRBM filterbank and
score-level fusion with Mel filterbank energies. Their model
achieves 86.5% on the ESC-50 dataset.
A novel data augmentation technique, called mixup, was pro-
posed in [13]. It consists of mixing two audio signals and their
labels, in a linear interpolation manner, where the mixing is con-
trolled by a factor λ. In this way, their model achieves 83.7%
accuracy on the UrbanSound8K dataset. We employ the mix-
up data augmentation in our work to boost our model’s perfor-
mance.
A complex two stream structure deep CNN model was proposed
in [14]. It consists of two CNN streams. One is the LMC-
Net which works on the log-mel spectrogram, chroma, spectral
contrast and tonnetz features of audio signals and the other is
the MCNet which takes MFCC, chroma, spectral contrast and
tonnetz features as inputs. The decisions of the two CNNs are
fused to get the final TSDCNN-DS model. It achieves 97.2%
accuracy on the UrbanSound8K dataset.
There have also been a few contributions towards the ESC task
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that consist of attention based systems. In [15], a combination
of two attention mechanisms, channel and temporal, was pro-
posed. The temporal attention consists of 1× 1 convolution for
feature aggregation followed by a small CNN to produce tem-
poral attention weights. On the other hand, channel attention
consists of a bank of fully connected layers to produce the chan-
nel attention map. Using two separate attention models makes
the system very complex and increases the number of parame-
ters by a lot. We perform spatial and channel attention with just
one depthwise convolutional layer.
A multi-stream network with temporal attention for the ESC
task was proposed in [16]. The model consists of three streams
with each stream receiving one of the three stacked inputs:
raw waveform, STFT (Short-time Fourier Transform) and delta
STFT. A temporal attention model received the inputs directly
and propagated it’s output to the main models intermediate lay-
ers. Here, again, the model is too complex and also, the atten-
tion block doesn’t receive any intermediate feedback from the
main model.
The research works mentioned above and many others provide
us with many insights by achieving high performance on diffi-
cult datasets. But, they also suffer from issues regarding feature
extraction, computational complexity and CNN model architec-
ture. In this paper, we try to address these issues and in doing
so, achieve state-of-the-art performance.

3. Proposed Environment Sound
Classification Model

We propose a novel ESC model that consists of multiple feature
channels extracted from the audio signal and a new DCNN ar-
chitecture consisting of separable convolutions, that works on
time and frequency domain separately and a depthwise convo-
lution based attention mechanism.
The feature extraction stage consists of four channels
of features, which are: Mel-Frequency Cepstral Coeffi-
cients (MFCC), Gammatone Frequency Cepstral Coefficients
(GFCC), Constant Q-transform (CQT) and Chromagram.
For the classification stage, we propose a CNN architecture that
works better for audio data, as shown in Fig. 3. We use spa-
tially separable convolutions to process time and frequency do-
main features separately and aggregate them at the end. Also,
the downsampling value is different for time and frequency do-
mains in the maxpooling layers. Along side the main DCNN
model, we add spatial and channel attention using the depth-
wise convolution. In the subsequent sub-sections, we explain
the feature extraction and classification stages of our model.

3.1. Multiple Feature Channels

In this paper, we employ four major audio feature extrac-
tion techniques to create a four channel input for the Deep
CNN, namely, Mel-Frequency Cepstral Coefficients (MFCC)
[1], Gammatone Frequency Cepstral Coefficients (GFCC) [2],
Constant Q-Transform [3] and Chromagram [4]. Incorporat-
ing different signal processing techniques that extract different
types of information provides the CNN with more distinguish-
able characteristics and complementary feature representations
to accurately classify audio signals.
The MFCC, GFCC, CQT and Chroma features are stacked to-
gether to create a four channel input for the Deep CNN. Each
feature plays it’s part in the classification task. MFCC acts as
the backbone by providing rich features, GFCC adds transient
sound features, CQT contributes with better low-to-mid fre-

(a) Audio Signal

(b) Mel Frequency Cepstral
Coefficients

(c) Gammatone Frequency
Cepstral Coefficients

(d) Constant Q-Transform (e) Chromagram

Figure 1: Multiple Feature Channels

(a) (b)

Figure 2: PCA of Features

quency range features and finally Chromagram provides pitch
category analysis and signal structure information. Fig. 1 shows
a graphical representation of the features extracted from an au-
dio signal (Fig. 1(a)). All features are normalized between 0
and 1 using min-max normalization. From the figure, we can
see the contrast in the values of each feature.
Fig. 2(a) shows the Principal Component Analysis (PCA) of
the features. We take the first two principal components of the
four features we use in our model to create a 2D visualization
of the feature space. From the figure we can see that most of
features are heavily concentrated in the middle region. But, as
shown in Fig. 2(b), we encircle a few regions that different
features provide some amount of different information. Indeed
some of these regions might contain irrelevant or outlier infor-
mation that is not of value to classification. But, as seen in the
figure these feature extraction techniques do provide unique and
complementary information. Chromagram features provide lit-
tle distinctive information and shown in the results section, it
provides little increase to the performance of the model.

3.2. Deep CNN Architecture: Main Block

Fig. 3 shows our proposed Deep CNN architecture for environ-
mental sound classification. The main block consists of five
repetitions of Conv2D-Conv2D-Conv2D-MaxPool-BatchNorm
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with different number of kernels and kernel sizes. Almost all
convolutional layers are made up of spatially separable convo-
lutions.
In the case of the ESC task, the input are the features extracted
from the audio signals. Each feature set is of the shape (t, f, c),
where t is the compressed time domain (compressed due to win-
dow size and hop length) and c is the number of channels. Each
window of time yields f number of features (f = 128 in our
model). So, we treat the time domain and the feature domain
separately. The kernels with the form 1 ×m work on the fea-
ture domain and the ones with n× 1 work on the time domain.
Using the 1×m type of convolution operation enables the net-
work to process each set of features from a time window sep-
arately. And, the n × 1 type of convolution allows the aggre-
gation of a feature along the time domain. Now, c corresponds
to the number of feature extraction methods we adopt (in our
model, c = 4). So, each kernel works on each channel, which
means that all different types of features extracted from the sig-
nal feature extraction techniques is aggregated by every kernel.
Each kernel can extract different information from an aggre-
gated combination of different feature sets.
Another major advantage of using this type of convolution is the
reduction in number of parameters. This is the primary advan-
tage of separable convolutions when they were used in [5] and
have probably been used earlier as well.
In case of standard square kernels like n×n, which are used for
computer vision tasks, the dimensions of the kernel are in accor-
dance to the image’s spatial structure. The 2D structure of an
image represents pixels, i.e. both dimensions of an image rep-
resent the same homogeneous information. Whereas, in case of
audio features, one dimension gives a compact representation
of frequency features of a time window and the other dimen-
sion represents the flow of time (or sliding time window). So,
in order to process information accordingly and respect the in-
formation from different dimensions of the input, we use 1×m
and n× 1 separable convolutions.

3.3. Deep CNN Architecture: Attention Block

In this paper, we achieve spatial and channel wise attention
using a single attention module and dramatically reduce the
number of parameters required for attention by using depthwise
convolutions. The attention block, shown in Fig. 3, runs in
parallel with a main block. The pooling size and kernel size
in the attention block is the same as the pooling and kernel
size in the corresponding parallel main block. Using depthwise
convolution reduces the number of parameters and thus reduces
the overhead of adding attention blocks to the model.
Before the element-wise multiplication of the attention matrix
with the main block output, we add a batch normalization layer
to normalize the attention weights. Normalization is important
for smoothing. The batch-norm layer is followed by a ReLU
activation, that makes the attention weight matrix sparse
which makes the element-wise multiplication computationally
efficient.

ai = φ(BatchNorm(f(MaxPool(li−1)))) (1)

li = ai � l̂i (2)

Equations 3 and 4 make up the attention module, where f is
the depthwise separable convolution comprising of depthwise
and point-wise convolution and φ is the ReLU activation func-
tion. This single attention module performs both spatial and
channel attention. Channel-wise attention requires an attention

Conv 2D
(1 x 3/ 5 x 1/ 5 x 3, 

s = 1, c)

Conv 2D
(1 x 3/ 5 x 1/ 5 x 3, 

s = 1, c)

Conv 2D
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MaxPool 2D
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li

li-1
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Figure 3: Attention based DCNN model

weight for each output channel of the main block and spatial
attention requires an attention weight for each spatial location
in the output feature map. Our attention module produces c
weights, which enables channel attention, and each weight in c
is a matrix of n×m, which enables spatial attention. And, us-
ing a single depthwise separable convolution layer we are able
to achieve this with considerably less number of parameters and
operations.
An advantage of using attention as a separate module that runs
in parallel with every main block and connected before and af-
ter each main block, with less number of parameters and layers,
is that it allows smooth propagation of the gradient like skip or
residual connections [17, 18].

4. Experimental Setup
We report state-of-the-art results on ESC benchmark datasets,
i.e. UrbanSound8K, ESC-10 and ESC-50, using the proposed
model. The ESC-10 and ESC-50 contain 2000 audio files of
5 seconds length each, while UrbanSound8K consists of 8732
audio files of 4 seconds each. ESC-10 and UrbanSound8K con-
tain audio from 10 classes while ESC-50 has 50 classes. We
use k-fold cross-validation on the specified folds and report the
average accuracy across the folds. For ESC-10 and ESC-50,
k = 5 and for UrbanSound8K, k = 10.
We use Tensorflow and Keras to implement our CNN classifier
and Librosa [19] and the Matlab Signal Processing Toolbox [20]
for audio processing and feature extraction. In terms of hard-
ware, we use the NVIDIA DGX-2 consisting of 16 NVIDIA
Tesla V 100 GPUs with 32 Gigabytes of VRAM each and a sys-
tem memory of 1.5 Terabytes.
For every feature extraction technique, we extract 128 features
for each window of length 1024 (3.2 ms) with a hop length of
512 (1.6 ms) at 32kHz. We normalize all feature vectors us-
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ing min-max normalization. Our DCNN model is trained to
minimize the categorical cross-entropy loss using the Adam op-
timizer with Nestorov momentum, along with Dropout of 0.25
after the dense layer. and weight decay of λ = 0.1. We run our
model for 500 epochs per fold. We set the initial learning rate
of training to 0.01 and decrease it by a factor of 10 every 150
epochs.
As shown in [13], mix-up data augmentation plays a very im-
portant role in improving performance, especially when the
model is large and data is scarce. We use a mini-batch size
of 200. Table 1 displays the results of previous state-of-the-
art ESC models that tested their methods on one or more of the
three benchmark datasets. All of these models have been briefly
described in Section 2. The last row of the table shows the re-
sults of our proposed model on the three datasets.

Table 1: Previous state-of-the-art ESC models vs Proposed model

Model ESC-10 ESC-50 US8K
EnvNetv2+strong augment [11] 91.30 84.70 78.30

PiczakCNN [9] 90.20 64.50 73.70
CNN+Mixup [13] 91.70 83.90 83.70

FBEs⊕ConvRBM-BANK [12] - 86.50 -
CRNN+channel & temporal

Attention [15] 94.20 86.50 -

Multi-stream+temporal
Attention [16] 94.20 84.00 -

TSCNN-DS [14] - - 97.20
Multiple Feature Channel

+ Deep CNN with Attention
(Proposed)

94.75 87.45 97.52

5. Results
We show the advantages of using multiple features, data aug-
mentation, depthwise convolutions and attention mechanism
from our experiments on the three benchmark datasets1. Using
separable convolutions (spatial or depthwise), has the advantage
of reducing the number of parameters in the model. We use spa-
tially separable convolutions in our main block and depthwise
separable convolutions in the attention block. In Table 2, we
show the effect of using separable convolutions in terms of the
number of parameters and model performance. The DCNN-5 is
the model without attention and DCNN-5 SC is with standard
convolutions instead of separable convolutions. The separable
convolutions, 1× 3 and 5× 1, is replaced by 5× 3 convolution
operation. We use padding when necessary to keep the model
depth valid according to the input, since standard rectangular
convolutions reduce the output dimensions more quickly.

From Table 2, we can see that, for the task of environment
sound classification, the spatially separable convolutions have
less number of parameters and perform better than standard
convolutions. DCNN-5 SC has 130K more parameters than
DCNN-5 and obtains 3.25% lower accuracy than DCNN-5 on
the ESC-50. Adding the attention mechanism just adds 20K
more parameters and increases the performance by 2.7%, cour-
tesy of depthwise convolutions. Using standard convolutions to
build the attention model results in an increase of 90K parame-
ters and 0.4% accuracy.
These findings are consistent with the UrbanSound8K dataset.
The difference in the number of parameters between the

1The Table containing the results of our experiments with different
combination of features and the effect of data augmentation is attached
as supplementary material, due to lack of space

Table 2: Performance Comparison of Number of Parameters on ESC-50
and UrbanSound8K

Model Parameters
ESC-50 ESC-50 Parameters

US8K US8K

DCNN-5 1.27M 84.75 0.87M 94.25

ADCNN-5 1.29M 87.45 0.89M 97.52

DCNN-5 SC 1.40M 81.50 1.04M 91.25
ADCNN-5

(without Depthwise
Sep. Conv.)

1.36M 87.05 0.97M 96.35

Table 3: Performance of different number of feature
coefficients on ESC-50 and UrbanSound8K

Model # Features ESC-50 US8K
48 80.12 89.25

ADCNN-5 64 85.25 94.25
96 86.15 95.50

128 87.45 97.52

datasets for the same models is because of the difference in
input shapes. UrbanSound8K has 4 seconds long audio files,
whereas, ESC-50 has 5 seconds long. So, both of them sam-
pled at 32kHz produce different number of time windows.
The input shape for ESC-50 is 〈313, 128, 4〉 and for Urban-
Sound8K is 〈250, 128, 4〉 represented as 〈time-windows, fea-
tures, channels〉. We also test our model with fewer number of
features extracted by the audio feature extraction methods. Ta-
ble 3 shows the results when the number of features are reduced.
The model accuracy monotonically increases with the increase
in the number of features. We stop at 128 features, which pro-
duces the best results, to avoid increasing the complexity of the
model.
The same tests were conducted on the ESC-10 dataset. The re-
sults were consistent with the findings shown above. ESC-10 is
a subset of the ESC-50 dataset. We also report state-of-the-art
performance on the ESC-10 dataset with 94.75% accuracy.

6. Conclusions

We propose a novel approach for environmental sound clas-
sification that consists of multiple feature channels and atten-
tion based deep convolutional neural network with domain wise
convolutions. We combine feature extraction methods like the
MFCC, GFCC, CQT and Chromagram to create a multi chan-
nel input for the CNN classifier. The model consists of two
block: Main block and Attention block. We employ a Deep
CNN consisting of separable convolutions in the main block.
The separable convolutions work on the time and feature do-
mains separately. Parallel to the main blocks, we also use an
attention mechanism that consists of depthwise separable con-
volution. Both channel and spatial attention are achieved us-
ing a small increase in number of parameters. We test our
model on the three benchmark datasets: ESC-10, ESC-50 and
UrbanSound8K. We use mix-up data augmentation techniques
to further improve performance. Our model achieves 94.75%,
87.45% and 97.52% accuracy on ESC-10, ESC-50 and Urban-
Sound8K respectively, which is state-of-the-art performance on
all three datasets.
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