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ABSTRACT
An integration formula for generating indefinite integrals which was
presented in Conway JT [A Lagrangian method for deriving new
indefinite integrals of special functions. Integral Transforms Spec
Funct. 2015;26(10):812–824], which involves an arbitrary function
h (x), is generalized to include two arbitrary functions s (x) and h (x).
In the new formula the Lagrangian factor f (x) of the original formula
is replaced by a new factor f̄ (x), which is derived from s (x). The use
of the new formula is illustrated by deriving a number of integrals
for cylinder and Whittaker functions, with several integrals combin-
ing Whittaker functions with cylinder and modified cylinder func-
tions. Some of these integrals are among the best known results for
these functions, whereas others are believed to be new. A number of
new integrals of Whittaker functions are also presented which came
directly fromthederivativesneeded toapply the integration formula.
All results presented have been checked using Mathematica.
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1. Introduction

Many special functions obey the homogeneous second-order linear differential equation

y′′ (x) + p (x) y′ (x) + q (x) y (x) = 0 (1.1)

and in [1,2] an integration theorem was presented for any solution y(x) of Equation (1.1).
The integration formula given was∫

f (x)
(
h′′ (x) + p (x) h′ (x) + q (x) h′ (x)

)
y (x) dx = f (x)

(
h′ (x) y (x) − h (x) y′ (x)

)
(1.2)

where h(x) is an arbitrary twice-differentiable function and f (x) obeys the equation

f ′ (x) = p (x) f (x) (1.3)

so that

f (x) = exp
(∫

p (x) dx
)
. (1.4)
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Suitable choices of the arbitrary function h(x) in Equation (1.2) yield a large number of
interesting integrals. The purpose of this paper is to generalize Equation (1.2) by intro-
ducing an additional arbitrary differentiable function s(x). This is achieved by replacing
Equation (1.3) with the equation

f̄ ′ (x) = s (x) f̄ (x) (1.5)

so that

f̄ (x) = exp
(∫

s (x) dx
)
. (1.6)

Theorem 1.1:∫
f̄ (x)

(
h′′ (x) + [

2s (x) − p (x)
]
h′ (x)

+ [
s′ (x) − p′ (x) + s2 (x) − s (x) p (x) + q (x)

]
h (x)

)
y (x) dx

= f̄ (x)
(
h′ (x) y (x) − h (x) y′ (x) + h (x)

(
s (x) − p (x)

)
y (x)

)
(1.7)

where f̄ (x) and y(x) obey the respective differential equations:

f̄ ′ (x) = s (x) f̄ (x) (1.8)

y′′ (x) + p (x) y′ (x) + q (x) y (x) = 0 (1.9)

and h(x), s(x), p(x) and q(x) are arbitrary complex-valued differentiable functions of x ∈ R,
with h(x) being at least twice-differentiable.

Proof: Arbitrary functions h(x) and y(x) satisfy the elementary differential identity

h′′ (x) y (x) − h (x) y′′ (x) = (
h′ (x) y (x) − h (x) y′ (x)

)′ (1.10)

and eliminating y′′(x) from Equation (1.10) using Equation (1.9) gives

h′′ (x) y (x) + h (x)
[
p (x) y′ (x) + q (x) y (x)

] = (
h′ (x) y (x) − h (x) y′ (x)

)′ . (1.11)

Multiplying Equation (1.11) by f̄ (x) and employing Equation (1.8) gives

f̄ (x)
(
h′′ (x) y (x) + h (x)

[
p (x) y′ (x) + q (x) y (x)

])
= [

f̄ (x)
(
h′ (x) y (x) − h (x) y′ (x)

)]′ − s (x) f̄ (x)
(
h′ (x) y (x) − h (x) y′ (x)

)
(1.12)

which is equivalent to

f̄ (x)
[
h′′ (x) + s (x) h′ (x) + q (x)

]
y (x) = [

f̄ (x)
(
h′ (x) y (x) − h (x) y′ (x)

)]′
+ f (x) h (x)

(
s (x) − p (x)

)
y′ (x) . (1.13)

The right-hand side of Equation (1.13) can be transformed to give

f̄ (x)
[
h′′ (x) + s (x) h′ (x) + q (x)

]
y (x)

= [
f̄ (x)

(
h′ (x) y (x) − h (x) y′ (x)

)]′
+ [

f (x) h (x)
(
s (x) − p (x)

)
y (x)

]′ − (
f̄ (x) h (x)

(
s (x) − p (x)

))′ y (x) . (1.14)
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The rightmost term in Equation (1.14) can be expanded, simplified with Equation (1.8),
and taken over to the other side of the equation to give

f̄ (x)
[
h′′ (x) + s (x) h′ (x) + q (x)

]
y (x)

+ f̄ (x)
[
h (x)

(
s′ (x) − p′ (x)

)+ h′ (x)
(
s (x) − p (x)

)]
y (x)

= [
f̄ (x)

(
h′ (x) y (x) − h (x) y′ (x)

)]′ + [
f (x) h (x)

(
s (x) − p (x)

)
y (x)

]′ (1.15)

and on collecting terms and integrating both sides of Equation (1.15), the theorem is
proven. �

The differential equation embedded in the integration formula (1.2) is

h′′ (x) + p (x) h′ (x) + q (x) h (x) = 0 (1.16)

and as this equation is identical to Equation (1.1), if h(x) is chosen to be a solution of
Equation (1.1), the integrand vanishes and no integral is generated. Instead, integrals are
generated by taking h(x) to be fragments of Equation (1.1) [1,2], where a fragment is
derived from Equation (1.16) by deleting (or adding) one or more terms. The same proce-
dure can be applied to Equation (1.7). The solution of the differential equation embedded
in Equation (1.7) is easily obtained in terms of y(x), as is proven below.

Theorem 1.2: The solution of the differential equation

h′′ (x) + (
2s (x) − p (x)

)
h′ (x) + (

s′ (x) − p′ (x) + s2 (x) − s (x) p (x) + q (x)
)
h (x) = 0

(1.17)
is

h (x) = f (x)
f̄ (x)

y (x) (1.18)

where y(x) obeys Equation (1.1) and f (x) and f̄ (x) obey Equations (1.3)–(1.6).

Proof: A function a(x) relating the general solutions of Equations (1.1) and (1.17) can be
defined by

h (x) = a (x) y (x) (1.19)

where the explicit form of a(x) is to be determined. Substituting y(x) = h(x)/a(x) into
Equation (1.1) gives the equation to be obeyed by h(x) as

h′′ (x) +
(
p (x) − 2

a′ (x)
a (x)

)
h′ (x)

+
((

a′ (x)
a (x)

)2
−
(
a′ (x)
a (x)

)′
− p (x)

a′ (x)
a (x)

+ q (x)

)
h (x) = 0. (1.20)

For Equation (1.20) to match Equation (1.17), the coefficients of h′(x) and h(x) must both
match. For the coefficients of h′(x) to match. then

a′ (x)
a (x)

= p (x) − s (x) (1.21)
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which is sufficient to determine a(x) by quadrature to within an arbitrary multiplicative
constant. As Equations (1.1) and (1.17) are both linear, this arbitrary constant is of no
significance. From (1.21) the function a(x) is given by

a (x) = exp
(∫ (

p (x) − s (x)
)
dx
)

(1.22)

which from Equations (1.4) and (1.6) gives

a (x) = f (x)
f̄ (x)

. (1.23)

Substituting Equation (1.21) into Equation (1.20) gives the coefficient of h(x) in
Equation (1.20) as

(
a′ (x)
a (x)

)2
−
(
a′ (x)
a (x)

)′
− p (x)

a′ (x)
a (x)

+ q (x)

= s′ (x) − p′ (x) + s2 (x) − p (x) s (x) + q (x) (1.24)

and as both coefficients match, the theorem is proven. �

1.1. Riccati equations

For any specific special function, either s(x) or h(x) are first specified in Equation (1.7),
and fragments of the remaining function are then chosen to give an interesting integral.
Fragments of the equation obeyed by h(x) are always linear, but fragments of the equation
obeyed by s(x) are often simple Riccati equations, chosen to tailor the function s(x) to suit
the specific special function. This often involves making the coefficient of the term in h(x)
in Equation (1.7) relatively simple. This coefficient is

s′ (x) + s2 (x) − s (x) p (x) + q (x) − p′ (x)

and fragments of this coefficient equated to zero give simple Riccati equations to determine
s(x) and hence f̄ (x).

The new method is illustrated with sample results for known and new integrals in the
following sections. Cylinder functions are considered in Section 2 and Whittaker func-
tions in Section 3. A number of new integrals forWhittaker functions are presented which
do not come directly from Equation (1.7), but arose naturally when considering the var-
ious formulas for the derivatives of Whittaker functions, which are needed to implement
Equation (1.7). All results have been checked with Mathematica [3].

2. Cylinder functions

The general cylinder function Zn(x) ≡ C1Jn(x) + C2Yn(x) obeys the Bessel equation

y′′ (x) + 1
x
y′ (x) +

(
1 − n2

x2

)
y (x) = 0 (2.1)
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and for Equation (2.1), the integration formula (1.7) becomes∫
f̄ (x)

(
h′′ (x) +

(
2s (x) − 1

x

)
h′ (x) +

(
s′ (x) + s2 (x) − s (x)

x
+ 1 − n2 − 1

x2

)
h (x)

)

× Zn (x) dx = f̄ (x)
(
h′ (x)Zn (x) − h (x)Z′

n (x) + h (x)
(
s (x) − 1

x

)
Zn (x)

)
. (2.2)

The fragment

s′ (x) + s2 (x) + 1 = 0 (2.3)

has the solution

s (x) = − tan (x + φ) (2.4)

where φ is an arbitrary phase factor, with the principal special cases being

s (x) = − tan (x) ⇒ f̄ (x) = cos (x) (2.5)

s (x) = cot (x) ⇒ f̄ (x) = sin (x) . (2.6)

The integration formula corresponding to Equation (2.5) is∫
cos (x)

(
h′′ (x) −

(
2 tan (x) + 1

x

)
h′ (x) +

(
1
x
tan (x) − n2 − 1

x2

)
h (x)

)
Zn (x) dx

= cos (x)
(
h′ (x)Zn (x) − h (x)Z′

n (x) − h (x)
(
tan (x) + 1

x

)
Zn (x)

)
. (2.7)

The obvious fragments to choose for Equation (2.7) are those which separate the trigono-
metric and non-trigonometric terms, and these are

− 2 tan (x) h′ (x) + 1
x
tan (x) h (x) = 0 (2.8)

h′′ (x) − 1
x
h′ (x) − n2 − 1

x2
h (x) = 0. (2.9)

Equation (2.8) has the solution

h (x) = √
x (2.10)

which gives the integral∫
cos (x)Zn (x)

x3/2
dx = 4

√
x

4n2 − 1

(
cos (x)

(
1
2x

Zn (x) + Z′
n (x)

)
+ sin (x)Zn (x)

)
(2.11)

and the equivalent result for s(x) = cot(x) is∫
sin (x)Zn (x)

x3/2
dx = 4

√
x

4n2 − 1

(
sin (x)

(
1
2x

Zn (x) + Z′
n (x)

)
− cos (x)Zn (x)

)
.

(2.12)
Equation (2.9) has the solutions

h (x) = x1±n (2.13)
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which gives the integrals
∫

x±n sin (x)Zn (x) dx = x±n

1 ± 2n
(
cos (x)

(∓nZn (x) + xZ′
n (x)

)+ x sin (x)Zn (x)
)

(2.14)∫
x±n cos (x)Zn (x) dx = x±n

1 ± 2n
(
sin (x)

(±nZn (x) − xZ′
n (x)

)+ x cos (x)Zn (x)
)
.

(2.15)

These trigonometric integrals are well known [4] and can be derived in many different
ways.

In Equation (2.2), we can take s(x) to be

s (x) = a
x

+ b ⇒ f̄ (x) = xaebx (2.16)

where a and b are constants which can be chosen arbitrarily. For this choice of s(x),
Equation (2.2) becomes∫

xaebx
(
h′′ (x) +

(
2a − 1

x
+ 2b

)
h′ (x)

+
(

(a − 1)2 − n2

x2
+ (2a − 1) b

x
+ b2 + 1

)
h (x)

)
Zn (x) dx

= xaebx
(
h′ (x)Zn (x) − h (x)Z′

n (x) + h (x)
(
a − 1
x

+ b
)
Zn (x)

)
(2.17)

and the constants a and b can be chosen so that any two of the terms in the coefficient of
h(x) in this equation can be set to zero. For the choices

h (x) = 1; a = 1 ± n; b = 0 (2.18)

Equation (2.17) reduces to the elementary integrals∫
x1±nZn (x) dx = ±x1±nZn±1 (x) . (2.19)

For the choices

h (x) = 1; a = 1 ± n; b = ±i (2.20)

where the ± signs are independent. For b = i, Equation (2.17) becomes
∫

x±neixZn (x) dx = x1±neix

1 ± 2n
(∓iZn±1 (x) + Zn (x)) (2.21)

and for b = −i the equation becomes
∫

x±ne−ixZn (x) dx = x1±ne−ix

1 ± 2n
(±iZn±1 (x) + Zn (x)) . (2.22)
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For the choices

h (x) = 1; a = 1
2
n; b = ±i (2.23)

Equation (2.17) becomes∫
e±ix

x3/2
Zn (x) dx = 4

√
xe±ix

4n2 − 1

(
Z′
n (x) +

(
1
2x

∓ i
)
Zn (x)

)
(2.24)

which is equivalent to Equations (2.11) and (2.12).
Instead of Equation (2.16), we can take s(x) to be of the form

s (x) = a
x

+ bx ⇒ f̄ (x) = xa exp
(
bx2

2

)
(2.25)

and for this case with h(x) = 1, Equation (2.2) becomes
∫

xa exp
(
bx2

2

)(
(a − 1)2 − n2

x2
+ 2ab + 1 + bx2

)
Zn (x) dx

= xa exp
(
bx2

2

)(
−Z′

n (x) +
(
a − 1
x

+ bx
)
Zn (x)

)
(2.26)

and for the choices

a = 1 ± n; b = − 1
2 (1 ± n)

(2.27)

this gives the integral
∫

x3±n exp
(

− x2

4 (1 ± n)

)
Zn (x) dx = 2 (1 ± n) x2±n exp

(
− x2

4 (1 ± n)

)
Zn±2 (x)

(2.28)
which was derived recently in [5,6] by quite different methods.

It is sometimes possible to choose s(x) so as to include specific factors in integrals
through the factor f̄ (x). For example, for f̄ (x) = ln(x) we must choose

s (x) = 1
x ln (x)

. (2.29)

For this choice, Equation (2.2) becomes∫
ln (x)

(
h′′ (x) +

(
2

x ln (x)
− 1

x

)
h′ (x) +

(
1 − 2

x2 ln (x)
− n2 − 1

x2

)
h (x)

)

× Zn (x) dx = ln (x)
(
h′ (x)Zn (x) − h (x)Z′

n (x) + h (x)
(

1
x ln (x)

− 1
x

)
Zn (x)

)
(2.30)

and we can choose
2

x ln (x)
h′ (x) − 2

x2 ln (x)
= 0 (2.31)
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which gives h(x) = x and Equation (2.30) reduces to∫
ln (x)
x

(
x2 − n2

)
Zn (x) dx = ln (x)

(
Zn (x) − xZ′

n (x)
)+ (1 − ln (x))Zn (x) (2.32)

which appears to be new.
For the choices

s = ±1 ⇒ f (x) = e±x (2.33)

Equation (2.2) reduces to

∫
e±x

(
h′′ (x) +

(
±2 − 1

x

)
h′ (x) +

(
2 ∓ 1

x
− n2 − 1

x2

)
h (x)

)
Z1 (x)

= e±x
(
h′ (x)Z1 (x) − h (x)Z′

1 (x) + h (x)
(

±1 − 1
x

)
Zn (x)

)
. (2.34)

For both signs of the exponential, Equation (2.34) has the fragment

h′′ (x) − 1
x
h′ (x) − n2 − 1

x2
= 0 (2.35)

which has a solution h(x) = x1±n and substituting this in Equation (2.2) gives, with some
simplification, the integrals∫

(2x ± 2n + 1) x±nexZn (x) dx = x1±nex (Zn (x) ± Zn±1 (x)) (2.36)∫
(2x ∓ 2n − 1) x±ne−xZn (x) dx = x1±ne−x (±Zn±1 (x) − Zn (x)) (2.37)

which appear to be new.

3. Whittaker functions

The Whittaker functions Mλ,μ(x) and Wλ,μ(x) are two independent solutions of the
differential equation

y′′ (x) +
(

−1
4

+ λ

x
+

1
4 − μ2

x2

)
y (x) = 0 (3.1)

and here the general solution of this equation will be denoted by Ŵλ,μ(x) ≡ C1Mλ,μ(x) +
C2Wλ,μ(x). For Equation (3.1) the integration theorem (1.7) becomes

∫
f̄ (x)

(
h′′ (x) + 2s (x) h′ (x) +

[
s′ (x) + s2 (x) − 1

4
+ λ

x
+

1
4 − μ2

x2

]
h (x)

)

× Ŵλ,μ (x) dx = f̄ (x)
([
h′ (x) + h (x) s (x)

]
Ŵλ,μ (x) − h (x) Ŵ′

λ,μ (x)
)

(3.2)
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and in Equation (3.2) we can take s(x) = 0 and h(x) = Ŵσ ,ρ(x) ≡ C3Mσ ,ρ(x) +
C4Wσ ,ρ(x), which gives

∫ (
λ − σ

x
+ ρ2 − μ2

x2

)
Ŵσ ,ρ (x) Ŵλ,μ (x) dx

= Ŵ′
σ ,ρ (x) Ŵλ,μ (x) − Ŵσ ,ρ (x) Ŵ′

λ,μ (x) . (3.3)

and Equation (3.3) has the two special cases

∫
Ŵλ,ρ (x) Ŵλ,μ (x)

x2
dx = Ŵ′

λ,ρ (x) Ŵλ,μ (x) − Ŵλ,ρ (x) Ŵ′
λ,μ (x)

ρ2 − μ2 (3.4)

∫
Ŵσ ,μ (x) Ŵλ,μ (x)

x
dx = Ŵ′

σ ,μ (x) Ŵλ,μ (x) − Ŵσ ,μ (x) Ŵ′
λ,μ (x)

λ − σ
(3.5)

which are given in [7]. A complication in turning equations such as (3.4) and (3.5) into
specific formulas is that the recurrence relations for Mλ,μ(x) and Wλ,μ(x) are different.
Differential relations forMλ,μ(x) andWλ,μ(x) are given in [8] in the forms

d
dx

[
e(1/2)xxμ−1/2Mλ,μ (x)

]
= 2μe(1/2)xxμ−1Mλ−1/2,μ−1/2 (x) (3.6)

d
dx

[
e(1/2)xx−μ−1/2Mλ,μ (x)

]
=

1
2 + μ − λ

1 + 2μ
e(1/2)xx−μ−1Mλ−1/2,μ+1/2 (x) (3.7)

d
dx

[
e(1/2)xx−λMλ,μ (x)

]
=
(
1
2

+ μ − λ

)
e(1/2)xx−λ−1Mλ−1,μ (x) (3.8)

d
dx

[
e−(1/2)xxμ−1/2Mλ,μ (x)

]
= 2μe−(1/2)xxμ−1Mλ+1/2,μ−1/2 (x) (3.9)

d
dx

[
e−(1/2)xx−μ−1/2Mλ,μ (x)

]
= −

1
2 + μ + λ

1 + 2μ
e−(1/2)xx−μ−1Mλ+1/2,μ+1/2 (x) (3.10)

d
dx

[
e−(1/2)xxλMλ,μ (x)

]
=
(
1
2

+ μ + λ

)
e−(1/2)xxλ−1Mλ+1,μ (x) (3.11)

d
dx

[
e(1/2)xx−μ−1/2Wλ,μ (x)

]
= −

(
1
2

+ μ − λ

)
e(1/2)xx−μ−1Wλ−1/2,μ+1/2 (x)

(3.12)

d
dx

[
e(1/2)xxμ−1/2Wλ,μ (x)

]
= −

(
1
2

− μ − λ

)
e(1/2)xxμ−1Wλ−1/2,μ−1/2 (x) (3.13)

d
dx

[
e(1/2)xx−λWλ,μ (x)

]
=
(
1
2

+ μ − λ

)(
1
2

− μ − λ

)
e(1/2)xx−λ−1Wλ−1,μ (x)

(3.14)

d
dx

[
e−(1/2)xx−μ−1/2Wλ,μ (x)

]
= −e−(1/2)xx−μ−1Wλ+1/2,μ+1/2 (x) (3.15)

d
dx

[
e−(1/2)xxμ−1/2Wλ,μ (x)

]
= −e−(1/2)xxμ−1Wλ+1/2,μ−1/2 (x) (3.16)
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d
dx

[
e−(1/2)xxλWλ,μ (x)

]
= −e−(1/2)xxλ−1Wλ+1,μ (x) (3.17)

These relations give explicit expressions for the derivativesM′
λ,x(x) andW′

λ,μ(x) as

M′
λ,μ (x) = −

(
1
2

+ μ − 1
2

x

)
Mλ,μ (x) + 2μ√

x
Mλ−1/2,μ−1/2 (x) (3.18)

M′
λ,μ (x) =

(
μ + 1

2
x

− 1
2

)
Mλ,μ (x) +

1
2 + μ − λ

(1 + 2μ)
√
x
Mλ−1/2,μ+1/2 (x) (3.19)

M′
λ,μ (x) =

(
λ

x
− 1

2

)
Mλ,μ (x) +

(
1
2

+ μ − λ

)
Mλ−1,μ (x)

x
(3.20)

M′
λ,μ (x) =

(
1
2

− μ − 1
2

x

)
Mλ,μ (x) + 2μ√

x
Mλ+1/2,μ−1/2 (x) (3.21)

M′
λ,μ (x) =

(
μ + 1

2
x

+ 1
2

)
Mλ,μ (x) −

1
2 + μ + λ

(1 + 2μ)
√
x
Mλ+1/2,μ+1/2 (x) (3.22)

M′
λ,μ (x) =

(
1
2

− λ

x

)
Mλ,μ (x) +

(
1
2

+ μ + λ

)
Mλ+1,μ (x)

x
(3.23)

W′
λ,μ (x) =

(
μ + 1

2
x

− 1
2

)
Wλ,μ (x) −

(
1
2

+ μ − λ

)
Wλ−1/2,μ+1/2 (x)√

x
(3.24)

W′
λ,μ (x) = −

(
1
2

+ μ − 1
2

x

)
Wλ,μ (x) −

(
1
2

− μ − λ

)
Wλ−1/2,μ−1/2 (x)√

x
(3.25)

W′
λ,μ (x) =

(
λ

x
− 1

2

)
Wλ,μ (x) +

(
1
2

+ μ − λ

)(
1
2

− μ − λ

)
Wλ−1,μ (x)

x
(3.26)

W′
λ,μ (x) =

(
1
2

+ μ + 1
2

x

)
Wλ,μ (x) − Wλ+1/2,μ+1/2 (x)√

x
(3.27)

W′
λ,μ (x) =

(
1
2

− μ − 1
2

x

)
Wλ,μ (x) − Wλ+1/2,μ−1/2 (x)√

x
(3.28)

W′
λ,μ (x) =

(
1
2

− λ

x

)
Wλ,μ (x) − Wλ+1,μ (x)

x
. (3.29)

In Mathematica [3], the defaults forM′
λ,μ(x) andW′

λ,μ(x) are Equations (3.23) and (3.29),
respectively. When evaluating the derivative Ŵλ,μ(x) of a general Whittaker function, any
one of the appropriate derivative formulas can be used for M′

λ,μ(x) and W′
λ,μ(x), which

means there are 36 equally valid formulas for Ŵλ,μ(x).
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3.1. Generalized integrals

The relations (3.6)–(3.17) are all of the form

u′ (x) = v (x) (3.30)

where u(x) and v(x) are simple factors involving a single Whittaker function. Multiplying
both sides of Equation (3.30) bymu(x)m−1, wherem ∈ C, and integrating both sides gives
integrals of the form ∫

um−1 (x) v (x) dx = um (x)
m

form �= 0. (3.31)

Integrals of this type were given for cylinder functions in [9]. Applying Equation (3.31)
to Equations (3.6)–(3.17), and shifting the parameters as appropriate, gives the respective
generalized integrals form �= 0∫

emx/2xmμ−1/2Mm−1
λ+1/2,μ+1/2 (x)Mλ,μ (x) dx = emx/2xmμ

Mm
λ+1/2,μ+1/2 (x)
(2μ + 1)m

(3.32)

∫
emx/2x−mμ−1/2Mm−1

λ+1/2,μ−1/2 (x)Mλ,μ (x) dx = emx/2x−mμ
2μMm

λ+1/2,μ−1/2 (x)(
μ − λ − 1

2
)
m

(3.33)∫
emx/2x−m(λ+1)−1Mm−1

λ+1,μ (x)Mλ,μ (x) dx = emx/2x−m(λ+1) Mm
λ+1,μ (x)(

μ − λ − 1
2
)
m

(3.34)

∫
e−(mx/2)xmμ−1/2Mm−1

λ−1/2,μ+1/2 (x)Mλ,μ (x) dx = e−(mx/2)xmμ
Mm

λ−1/2,μ+1/2 (x)
(2μ + 1)m

(3.35)∫
e−(mx/2)x−mμ−1/2Mm−1

λ−1/2,μ−1/2 (x)Mλ,μ (x) dx

= −e−(mx/2)x−mμ
2μMm

λ−1/2,μ−1/2 (x)(
μ + λ − 1

2
)
m

(3.36)

∫
e−(mx/2)xm(λ−1)−1Mm−1

λ−1,μ (x)Mλ,μ (x) dx = e−(mx/2)xm(λ−1) Mm
λ−1,μ (x)(

μ + λ − 1
2
)
m

(3.37)

∫
emx/2x−mμ−1/2Wm−1

λ+1/2,μ−1/2 (x)Wλ,μ (x) dx = emx/2x−mμ
Wm

λ+1/2,μ−1/2 (x)(
λ − μ + 1

2
)
m

(3.38)

∫
emx/2xmμ−1/2Wm−1

λ+1/2,μ+1/2 (x)Wλ,μ (x) dx = emx/2xmμ
Wm

λ+1/2,μ+1/2 (x)(
μ + λ + 1

2
)
m

(3.39)

∫
emx/2x−m(λ+1)−1Wm−1

λ+1,μ (x)Wλ,μ (x) dx = emx/2x−m(λ+1)Wm
λ+1,μ (x)(

λ − μ + 1
2
) (

λ + μ + 1
2
)
m

(3.40)

∫
e−(mx/2)x−mμ−1/2Wm−1

λ−1/2,μ−1/2 (x)Wλ,μ (x) dx = −e−(mx/2)x−mμ
Wm

λ−1/2,μ−1/2 (x)
m

(3.41)
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∫
e−(mx/2)xmμ−1/2Wm−1

λ−1/2,μ+1/2 (x)Wλ,μ (x) dx = −e−(mx/2)xmμ
Wm

λ−1/2,μ+1/2 (x)
m

(3.42)∫
e−(mx/2)xm(λ−1)−1Wm−1

λ−1,μ (x)Wλ,μ (x) dx = −e−(mx/2)xm(λ−1)W
m
λ−1,μ (x)
m

. (3.43)

Equations (3.32)–(3.43) for m = 1 are given in [7], though there are typographical errors
in the equivalents of (3.32) and (3.33).

Dividing both sides of Equations (3.18)–(3.29) by Mλ,μ(x) or Wλ,μ(x) as appropriate,
and integrating both sides of the resulting equations give the logarithmic quotient integrals

∫
Mλ,μ (x)√

xMλ+1/2,μ+1/2 (x)
dx = 1

2μ + 1
ln
(
xμex/2Mλ+1/2,μ+1/2 (x)

)
(3.44)

∫
Mλ,μ (x)√

xMλ+1/2,μ−1/2 (x)
dx = 2μ

μ − λ − 1
2
ln
(
x−μex/2Mλ+1/2,μ−1/2 (x)

)
(3.45)

∫
Mλ,μ (x)

xMλ+1,μ (x)
dx = ln

(
x−λ−1ex/2Mλ+1,μ (x)

)
μ − λ − 1

2
(3.46)

∫
Mλ,μ (x)√

xMλ−1/2,μ+1/2 (x)
dx = 1

2μ + 1
ln
(
xμe−(x/2)Mλ−1/2,μ+1/2 (x)

)
(3.47)

∫
Mλ,μ (x)√

xMλ−1/2,μ−1/2 (x)
dx = − 2μ

μ + λ − 1
2
ln
(
x−μe−(x/2)Mλ−1/2,μ−1/2 (x)

)
(3.48)

∫
Mλ,μ (x)

xMλ−1,μ (x)
dx = ln

(
xλ−1e−(x/2)Mλ−1,μ (x)

)
μ + λ − 1

2
. (3.49)

∫
Wλ,μ (x)√

xWλ+1/2,μ−1/2 (x)
dx = ln

(
x−μex/2Wλ+1/2,μ−1/2 (x)

)
λ − μ + 1

2
(3.50)

∫
Wλ,μ (x)√

xWλ+1/2,μ+1/2 (x)
dx = ln

(
xμex/2Wλ+1/2,μ+1/2 (x)

)
μ + λ + 1

2
(3.51)

∫
Wλ,μ (x)

xWλ+1,μ (x)
dx = ln

(
x−λ−1ex/2Wλ+1,μ (x)

)
(
λ − μ + 1

2
) (

λ + μ + 1
2
) (3.52)

∫
Wλ,μ (x)√

xWλ−1/2,μ−1/2 (x)
dx = − ln

(
x−μe−(x/2)Wλ−1/2,μ−1/2 (x)

)
(3.53)

∫
Wλ,μ (x)√

xWλ−1/2,μ+1/2 (x)
dx = − ln

(
xμe−(x/2)Wλ−1/2,μ+1/2 (x)

)
(3.54)

∫
Wλ,μ (x)

xWλ−1,μ (x)
dx = − ln

(
xλ−1e−(x/2)Wλ−1,μ (x)

)
. (3.55)

The logarithmic integrals (3.44)–(3.55) are the equivalent of the integrals (3.32)–(3.43) for
the forbidden valuem = 0.
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3.2. Integrals from the integration formula

The choice of the arbitrary function s(x) in Equation (2.16) for cylinder functions is also
useful for Whittaker functions. For this choice the terms within the square bracket in
Equation (3.2) become (

a − 1
2
)2 − μ2

x2
+ 2ab + λ

x
+ b2 − 1

4
(3.56)

and a and b can be chosen such that any two terms in (3.56) are zero. For h(x) = 1,
Equation (3.2) reduces to

∫
xaebx

((
a − 1

2
)2 − μ2

x2
+ 2ab + λ

x
+ b2 − 1

4

)
Ŵλ,μ (x) dx

= xaebx
((a

x
+ b

)
Ŵλ,μ (x) − Ŵ′

λ,μ (x)
)
. (3.57)

The choices a = 1
2 ± μ and b = ± 1

2 , where the ± signs are independent, give the four
integrals

∫
x±μ−1/2e±x/2Ŵλ,μ (x) dx = x±μ+1/2e±x/2

λ ± ( 1
2 ± μ

)
((

1
2 ± μ

x
± 1

2

)
Ŵλ,μ (x) − Ŵ′

λ,μ (x)

)

(3.58)
The choices b = ± 1

2and a = ∓λ, where the ± and ∓ signs are not independent, give the
two integrals∫

x∓λ−2e±x/2Ŵλ,μ (x) dx = x∓λe±x/2(±λ + 1
2
)2 − μ2

((
∓λ

x
± 1

2

)
Ŵλ,μ (x) − Ŵ′

λ,μ (x)
)
.

(3.59)

Equations (3.58) and (3.59) give the 12 integrals for m = 1 in Equations (3.32)–(3.43),
generalized to an arbitrary Whittaker function. The choices a = 1

2 ± μ and b = −λ/(1 ±
2μ), where the ± signs are not independent, give the two integrals∫

x1/2±μe−λx/(1±2μ)Ŵλ,μ (x) dx

= x1/2±μe−λx/(1±2μ)

λ2

(1±2μ)2
− 1

4

((
1
2 ± μ

x
− λ

1 ± 2μ

)
Ŵλ,μ (x) − Ŵ′

λ,μ (x)

)
(3.60)

which appear to be new.

3.3. Integrals involvingWhittaker functions with cylinder andmodified cylinder
functions

For the choice

s (x) = 1
2x

⇒ f̄ (x) = √
x (3.61)
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Equation (3.2) becomes
∫ √

x
(
h′′ (x) + 1

x
h′ (x) +

(
−1
4

+ λ

x
− μ2

x2

)
h (x)

)
Ŵλ,μ (x) dx

= √
x
((

h′ (x) + 1
2x

h (x)
)
Ŵλ,μ (x) − h (x) Ŵ′

λ,μ (x)
)

(3.62)

Taking h(x) in Equation (3.62) to be the general cylinder function Zμ(x), which is the
solution of the equation

h′′ (x) + 1
x
h′ (x) +

(
1 − μ2

x2

)
h (x) (3.63)

gives the integral∫
4λ − 5x√

x
Zμ (x) Ŵλ,μ (x) dx

= 4
√
x
((

Z′
μ (x) + Zμ (x)

2x

)
Ŵλ,μ (x) − Zμ (x) Ŵ′

λ,μ (x)
)
. (3.64)

For the choices

s (x) = ±1
2

⇒ f̄ (x) = e±x/2 (3.65)

Equation (3.2) becomes

∫
e±x/2

(
h′′ (x) ± h′ (x) +

(
λ

x
+

1
4 − μ2

x2

)
h (x)

)
Ŵλ,μ (x) dx

= e±x/2
((

h′ (x) ± h (x)
2

)
Ŵλ,μ (x) − h (x) Ŵ′

λ,μ (x)
)

(3.66)

The fragments

d2h
dx2

± dh
dx

+
1
4 − μ2

x2
h = 0 (3.67)

have the general solutions

h (x) = √
xK̂μ

(x
2

)
e∓x/2 (3.68)

where K̂μ(x) ≡ C3Kμ(x) + C4Iμ(x) is the generalmodified cylinder function. Substituting
Equation (3.68) into Equation (3.66) gives, for both signs in Equations (3.65)–(3.68) the
integral∫

1√
x
K̂μ

(x
2

)
Ŵλ,μ (x) dx = 1

λ

((√
xK̂μ

(x
2

))′
Ŵλ,μ (x) − √

xK̂μ

(x
2

)
Ŵ′

λ,μ (x)
)
.

(3.69)
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