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Abstract— Learning the dynamics of complex systems features a large number

of applications in data science. Graph-based modeling and inference under-

pins the most prominent family of approaches to learn complex dynamics due

to their ability to capture the intrinsic sparsity of direct interactions in such

systems. They also provide the user with interpretable graphs that unveil

behavioral patterns and changes. To cope with the time-varying nature of

interactions, this paper develops an estimation criterion and a solver to learn

the parameters of a time-varying vector autoregressive model supported on a

network of time series. The notion of local breakpoint is proposed to accom-

modate changes at individual edges. It contrasts with existing works, which

assume that changes at all nodes are aligned in time. Numerical experiments

validate the proposed schemes.

D.1 Introduction

Understanding the interactions among the parts of a complex dynamic system lies at the

core of data science itself and countless applications in biology, sociology, neuroscience,

finance, as well as engineering realms such as cybernetics, mechatronics, and control of

industrial processes. Successfully learning the presence or evolution of these interactions

allows forecasting and unveils complex behaviors typically by spotting causality rela-

tions [28]. To cope with the ever increasing complexity of the analyzed systems, traditional

model-based paradigms are giving way to the more contemporary data-driven perspec-

tives, where network-based approaches enjoy great popularity due to their ability to both

discern between direct and indirect causality relations as well as to provide interaction

graphs amenable to intuitive human interpretation. In this context, the time-varying na-

ture of these interactions motivates inference schemes capable of handling non-stationarity

multivariate data.

Inference from multiple time series has been traditionally addressed through vector

autoregressive (VAR) models [43]. To cope with non-stationarity, VAR coefficients are

assumed to evolve smoothly over time [71, 72, 73], to vary according to a hidden

Markov model [74], or to remain constant over time intervals separated by structural

breakpoints [75, 76, 77, 78, 79, 42, 80]. Due to the high number of effective degrees of

freedom of their models, these schemes can only satisfactorily estimate VAR coefficients if

the data generating system experiences slow changes over time. To alleviate this difficulty,

a natural approach is to exploit the fact that interactions among different parts of a

complex system are generally mediated. For example, in an industrial plant where tank A

is connected to B, B is connected to C, and C is not connected to A, the pressure of a fluid

in a tank A affects directly the pressure of tank B and indirectly (through B) the pressure

at tank C. Thus, a number of works focused on non-stationary data introduce graphs to
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capture this notion of direct interactions, either relying on graphical models [38, 39, 14, 34]

or structural equation models [26, 40]. Unfortunately, these approaches can only deal with

memoryless interactions, which limits their applicability to many real-world scenarios.

Schemes that do account for memory and graph structure include models based on

VAR [66, 20] and structural VAR models; see [122] and references therein. However,

these methods can not handle non-stationarities. To sum up, none of the aforementioned

schemes identifies interaction graphs in time-varying systems with memory. To the best

of our knowledge, the only exception is [44], but it can only cope with slowly changing

VAR coefficients.

To alleviate these limitations, the present paper relies on a time-varying VAR (TVAR)

model to propose a novel estimation criterion for non-stationary data that accounts for

memory and a network structure in the interactions. The resulting estimates provide

allow forcasting and impulse response causality analysis [43, Ch. 2]. A major novelty is

the notion of local structural breakpoint, which captures the intuitive fact that changes in

the interactions need not be synchronized across the system; in contrast to most existing

works. Furthermore, a low-complexity solver is proposed to minimize the aforementioned

criterion and a windowing technique is proposed to accommodate prior information on

the system dynamics and reduce computational complexity.

The rest of the paper is structured as follows. Sec. D.2 introduces the model and

the proposed criterion, with some practical considerations in Secs. D.2.3 and D.2.4; and

Sec. D.2.5 presents an iterative solver. Numerical experiments are described in Sec. D.3

and conclusions in Sec. D.4.

D.2 Dynamic network identification

After reviewing TVAR models and introducing the notion of time-varying causality graphs,

this section proposes an estimation criterion and an iterative solver. Extensions and gen-

eral considerations are provided subsequently.

D.2.1 Time-varying interaction graphs

A multivariate time series is a collection {yt}Tt=1 of vectors yt := [y1,t, y2,t, . . . , yP,t]
>.

The i-th (scalar) time series comprises the samples {yi,t}Tt=1 and can correspond e.g.

with the activity over time of the i-th region of interest in a brain network, or with the

measurements of the i-th sensor in a sensor network. A customary model for multivariate

time series generated by non-stationary dynamic systems is the so-called L-th order TVAR

model [43, Ch. 1]:

yt =
L∑
`=1

A
(`)
t yt−` + εt (D.1)

where the matrix entries {a(`)
ij,t}i,j∈[1,P ],t∈[1,T ] are the model coefficients and εi,t form the

innovation process. Throughout, the notation [m,n] with m and n integers satisfying

m ≤ n will stand for {m,m+ 1, . . . , n}. A time-invariant VAR model is a special case of

(D.1) where a
(`)
ij,t = a

(`)
ij,t′ ∀(t, t′).
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Figure D.1: Graph associated with a TVAR model.

An insightful interpretation of time-varying VAR models stems from expressing (D.1)

as

yi,t =
∑L

`=1

∑P
j=1 a

(`)
ij,tyj,t−` + εi,t (D.2a)

=
P∑
j=1

[yj,t−1, yj,t−2, . . . , yj,t−L] aij,t + εi,t (D.2b)

where aij,t := [a
(1)
ij,t, a

(2)
ij,t, . . . , a

(L)
ij,t ]
>. From (D.2a), the i-th sequence {yi,t}Tt=1 equals the

innovation plus the sum of all sequences {{yp,t}Tt=1}Pp=1 after being filtered with a linear

time-varying (LTV) filter with coefficients {a(l)
ij,t}Ll=1.

As described in Sec. D.1, interactions between time series are generally indirect (un-

mediated), which translates into many of these LTV filters being identically zero. To

mathematically capture this interaction pattern, previous works consider the notion of

graph associated with a time-invariant VAR process (see e.g. [66]), which is generalized

next to time-varying VAR models (D.1). To this end, identify the i-th time series with

the i-th vertex (or node) in the vertex set V := [1, P ] and define the time-varying edge

set as Et := {(i, j) ∈ V × V : aij,t 6= 0}. Thus, each edge of this time-varying graph can

be thought of as an LTV filter, as depicted in Fig. D.1.
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D.2.2 Proposed estimation criterion

The main goal of this paper is to estimate {{A(`)
t }L`=1}Tt=L+1 given {yt}Tt=1. Without

additional assumptions, reasonable estimates cannot be found because the number of

unknowns is (T − L)P 2L whereas the number of samples is just PL. This difficulty is

typically alleviated by assuming certain structure usually found in real-world dynamic

systems. As detailed next, the structure adopted here embodies both the sparsity of

causal interactions and the spatial locality of changes in those interactions.

The proposed estimation criterion is given by

min
{A(`)

t }

T∑
t=L+1

∥∥∥∥∥yt −
L∑
`=1

A
(`)
t yt−`

∥∥∥∥∥
2

2

(D.3)

+
∑
(i,j)

(
λ

T∑
t=L+1

‖aij,t‖2 + γ

T∑
t=L+2

‖aij,t − aij,t−1‖2

)
where the first term promotes estimates that fit the data and the two regularizers in

parentheses are explained next. The regularization parameters λ > 0 and γ > 0 can be

selected through cross-validation to balance the relative weight of data and prior infor-

mation (addressed in Sec. D.2.4).

The first regularizer is a group-lasso penalty that promotes edge sparsity or, equiva-

lently, that a large number of LTV filters aij,t are 0. As delineated in Secs. D.1 and D.2.1,

this corresponds to the intuitive notion that most interactions in a complex network are

indirect and therefore nodes are connected only with a small fraction of other nodes. This

regularizer generalizes the one in [66] to time-varying graphs.

The second regularizer promotes estimates where the LTV filters remain constant over

time except for a relatively small number of time instants Ti,j := {t : a
(`)
ij,t 6= a

(`)
ij,t−1 for some

`} denoted as local breakpoints. This variant of total-variation regularizer, together with

the notion of local breakpoints, constitutes one of the major novelties of this paper and

contrasts with the notion of structural (or global) breakpoints, defined as T := {t : A
(`)
t 6=

A
(`)
t−1for some `} and adopted in the literature; see e.g. [79, 42, 75, 76, 78]. These works

promote solutions with few global breakpoints, and therefore all the LTV filter estimates

change simultaneously at the same time for all nodes. In contrast, this work advocates

promoting solutions with few local breakpoints, since it is expected that changes in the

underlying dynamic system take place locally. For instance, in a chemical process, closing

a valve between tank A and B affects the future interactions between their pressures, but

does not generally affect interactions between the pressure of tanks C and D.

D.2.3 Data windowing

In practice, the time series are expected to evolve at a faster time scale than the underlying

system that generates them. In many applications, such as control of industrial processes,

the opposite would imply that the sampling rate needs to be increased. If this is the case,

it may be beneficial to assume that A
(`)
t remain constant within a certain window since

this would decrease the number of coefficients to estimate and therefore would improve

estimation performance.
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Figure D.2: Comparison between the estimates of the proposed criterion and the one in

(Tank et al., 2017) [42]

To introduce this windowing technique let {Wn}Nn=1 be a partition of [L+1,T] into

N sub-intervals (windows), and let n(t) denote for each t the (unique) index such that

t ∈ Wn(t). If A
(`)
t = Ã

(`)
n(t) ∀t, then (D.3) becomes

min
{Ã(`)

n }Nn=1

∑T
t=L+1

∥∥∥yt −∑L
`=1 Ã

(`)
n(t)yt−`

∥∥∥2

2
+
∑

(i,j) (D.4)

(
λ

T∑
t=L+1

∥∥ãij,n(t)

∥∥
2

+ γ
T∑

t=L+2

∥∥ãij,n(t) − ãij,n(t−1)

∥∥
2

)

where ãij,t is correspondingly defined in terms of Ã
(`)
t . Absorbing scaling factors in the

regularization parameters, (D.4) boils down to

min
{Ã(`)

n }Nn=1

N∑
n=1

∑
t∈Wn

∥∥∥∥∥yt −
L∑
`=1

Ã(`)
n yt−`

∥∥∥∥∥
2

2

(D.5)

+
∑
(i,j)

(
λ̃

N∑
n=1

‖ãij,n‖2 + γ̃
N∑
n=2

‖ãij,n − ãij,n−1‖2

)
.

Note that, while LP 2(T − L) coefficients need to be estimated in (D.3), this number

reduces to LP 2N in (D.5).

Besides an improvement in the estimation performance (D.5) when the length of the

windows is attuned to the dynamics of the system, it can be shown that the objective

function becomes strongly convex if windows are sufficiently large, which speeds up the

convergence of the algorithm in Sec. D.2.5 (convergence becomes linear). The caveat here

is a loss of temporal resolution: if one wishes to detect local breakpoints and two or more

changes are produced in the same LTV filter within a single window, then the algorithm

will only detect at most a single breakpoint. This effect can be counteracted by applying

a screening techniques along the lines of [79].

D.2.4 Choice of parameters

Regularization parameters, in this case λ and γ, are conventionally set through cross-

validation. However, such a task may be challenging when dealing with non-stationary
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data. If one decides to carry out M -fold cross validation, forming M sets of consecutive

samples is not appealing since the estimate of the fitting error in the validation set will

become artificially high and not informative about whether the algorithm is learning

changes in the VAR coefficients.

To circumvent this limitation, the proposed technique forms the aforementioned sets

by skipping one out of M time samples. The estimator for the m-th fold becomes

min
{Ã(`)

n }Nn=1

N∑
n=1

∑
t∈Wn

t modM 6=m

∥∥∥∥∥yt −
L∑
`=1

Ã(`)
n yt−`

∥∥∥∥∥
2

2

(D.6)

+
∑
(i,j)

(
λ̃

N∑
n=1

‖ãij,n‖2 + γ̃

N∑
n=2

‖ãij,n − ãij,n−1‖2

)
.

Admittedly, all vectors {yt}t will still show up in all folds, but only as regressors in those

folds where they are not target vectors. Indeed, this does not cause any problem from a

theoretical standpoint and the performance observed in the numerical tests supports this

approach.

D.2.5 Iterative solver

This section outlines the derivation of an ADMM-based algorithm proposed to solve (D.3).

Define Z := blkdiag(x>q+1, x
>
q+2, . . . ,x

>
T ), with x>t := [y>t−1 . . .y

>
t−q]; B := [B>q+1, . . . , B

>
T ],

with Bt :=
[
A

(1)
t ,A

(2)
t , . . . ,A

(q)
t

]>
; and Y := [yq+1, . . . ,yT ]>. Then (D.3) can be rewritten

as

arg min
B

1

2
‖Y − ZB‖2

F + λΩGL(B) + γΩGTV (B) (D.7)

where ΩGL(B) =
∑

(i,j)

∑T
t=L+1 ‖aij,t‖2, and ΩGTV (B) =

∑
(i,j)

∑T
t=L+1 ‖aij,t+1 − aij,t‖2.

Upon defining

D :=


−I I 0 . . . 0

0 −I I
...

...
. . . . . . . . .

0 . . . −I I

 ,
ΩGTV (B) can be expressed as ΩGL(DB). This allows to rewrite (D.7) along the lines of

[123] for solving via ADMM

arg min
B,Θ,C

1

2
‖Y − ZB‖2

F + λΩGL(Θ) + γΩGL(C),

s.to DB = Θ, B = C (D.8)

The ADMM for the ρ-augmented Lagrangian with scaled dual variables U and V
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Algorithm 12 ADMM solver for dynamic network ID

Input: λ, γ, data {yt}Tt=1

Output: matrix B containing VAR coefficients

1: for k = 1, . . . until convergence do

2: Update Bt via (D.9a)

3: for t ∈ [L+ 1, T ] do

4: for (i, j) ∈ [1, P ]2 do

5: Update cij,t, θij,t−1 via (D.9b,D.9c)

6: end for

7: end for

8: Update U,V via (D.9d,D.9e)

9: end for

computes for each iteration k:

B[k+1] :=
(
Z>Z/ρ+ I + D>D

)† (
Z>Y/ρ+ C[k] −V[k] + D>(Θ[k] −U[k])

)
(D.9a)

θ
[k+1]
ij,t := proxλ/ρ‖·‖2(b

[k+1]
ij,t − b

[k+1]
ij,t−1 + u

[k+1]
ij,t−1) (D.9b)

c
[k+1]
ij,t := proxλ/ρ‖·‖2(b

[k+1]
ij,t + v

[k+1]
ij,t ) (D.9c)

U[k+1] := U[k] + (DB[k+1] −Θ[k+1]) (D.9d)

V[k+1] := V[k] + (B[k+1] −C[k+1]) (D.9e)

and it is summarized in Proc. 12. The update (D.9a) can be efficiently computed by

exploiting the tri-diagonal strucutre of Z and D. The updates in (D.9b) and (D.9c)

exploit the fact that the resulting prox operators are separable per (i, j) and can be

expressed in terms of a group-soft-thresholding operator [124].

D.3 Numerical experiments

A simple experiment is shown next to validate the proposed estimator. An Erdös-

Rényi [13] random graph G0 is generated with P = 4 nodes and an edge probability

of P
(i,j)
0 := 0.5 if i 6= j and P

(i,j)
0 := 0 if i = j. An (L = 4)-order TVAR model is

generated, with initial VAR coefficients {A(`)
L+1}L`=1 over G0 drawn from a standard normal

distribution and scaled to ensure stability [43, chapter 1]. Local breakpoints are generated

at Nb = 100 uniformly spaced time instants Tb := {tb1, tb2, . . . , tbNb}, and for each tb ∈ Tb
a pair of nodes (ib, jb) is selected uniformly at random, generating a local breakpoint at

the triplet (tb, ib, jb). For each breakpoint b, the VAR coefficients aibjb,tb and the edge set

Et are changed as follows: if (ib, jb) ∈ Etb−1, aibjb,tb is set to 0 with probability Pz := 0.4;

otherwise, a new standard Gaussian coefficient vector aibjb,tb is generated and scaled to

keep stability. A realization of this TVAR process is generated by drawing {y`}L`=1 and

{εt}Tt=L+1 i.i.d from a zero-mean Gaussian distribution with variance σ2
ε := 0.03.

Fig. D.2 compares the true coefficients with the estimates obtained by the proposed

criterion and the one in [42]. The latter only detects global (but not local) breakpoints.

The windowing described in Sec. D.2.3 selects subperiods of length N = 21, and λ and γ
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have been selected using the cross-validation scheme described in Sec. D.2.4, both for the

proposed algorithm and the one in [42] (which only uses λ).

In each subfigure, each horizontal band corresponds to a pair of nodes, and the hori-

zontal axis represents time. The LTV impulse response vectors aij,t/ ‖aij,t‖ are mapped to

colors in an HSV space, being assigned similar hue if their unitary counterparts aij,t/ ‖aij,t‖
are closeby. The value (brightness) is set proportional to ‖aij,t‖, so responses close to 0

appear close to white, whereas impulse responses with a larger `2-norm will appear in

a darker color. The stems appearing between some pairs of breakpoints represent filter

coefficients of aij,t during the segment they lie on.

It is observed that the proposed algorithm could detect most of the local breakpoints

and correctly identifies segments of stationarity. On the other hand, the competing algo-

rithm yields a high number of false positives as expected.

D.4 Conclusions

Dynamic networks can be identified using the notion of local breakpoints, when VAR

coefficient changes appear in a small number of edges. The proposed technique involves

three novelties: a regularized criterion, a windowing technique, and a cross-validation

scheme. Simulation experiments encourage further research along these lines.






