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Abstract— An important problem in data sciences pertains to inferring causal

interactions among a collection of time series. Upon modeling these as a vec-

tor autoregressive (VAR) process, this paper deals with estimating the model

parameters to identify the underlying causality graph. To exploit the sparse

connectivity of causality graphs, the proposed estimators minimize a group-

Lasso regularized functional. To cope with real-time applications, big data

setups, and possibly time-varying topologies, two online algorithms are pre-

sented to recover the sparse coefficients when observations are received se-

quentially. The proposed algorithms are inspired by the classic recursive least

squares (RLS) algorithm and offer complementary benefits in terms of com-

putational efficiency. Numerical results showcase the merits of the proposed

schemes in both estimation and prediction tasks.

A.1 Introduction

Network data analysis emerges naturally in a plethora of applications such as wireless

sensor networks, transportation, social, and biological networks, to name a few. A promi-

nent task in this context is inferring graphs that provide the causal relations among a

collection of time series such as those encountered in econometrics and sensor data anal-

ysis. Identifying these causal interactions is a central problem in many disciplines such

as neuroscience, econometrics, bio-informatics, meteorology. Revealing these interactions

facilitates tasks such as prediction of time series and data completion.

The problem of inferring graphs capturing dependencies among variables has recently

received a great attention in the literature. The simplest approach is to place an edge

between two vertices if the sample correlation between the associated variables exceeds a

threshold [13]. However, such an approach cannot distinguish mediated from unmediated

interactions, thus motivating the methods of partial correlations [13], [14]. Since these

methods are still unable to determine directionality in the dependencies, Granger proposed

a means to infer the direction of causation by building upon the principle that the cause

precedes the effect [28]. An alternative notion of interaction is adopted in the literature of

structural equation models by incorporating the influence of exogenous variables; see e.g.

[25],[26] and references therein. Unfortunately, these models do not generally capture the

temporal structure present in time series. Further approaches for topology identification

include [29, 30, 31] though their batch nature cannot track temporal changes in the

topology.

The goal of this paper is to track the temporal dynamics of causal relations among

time series associated with different variables. To this end, the framework of vector

autoregressive (VAR) processes is invoked. These processes are extensively adopted to

model linear dependencies among time series [43]. In a P -th order VAR model, the
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current data are a noisy superposition of the data at the P previous time instants. The

parameters of the VAR model reveal the topology of the causality graph, which motivates

their estimation. An estimator based on minimizing a convex criterion regularized by a

group-Lasso penalty is presented in [66] to estimate VAR parameters and hence the graph

topology. This approach relies on the assumption that the connectivity is sparse, in the

sense that the number of edges is small.

When the samples of the time series become available one by one, or when the size of

the data challenges the available processing and memory capabilities, online estimation of

the model parameters offers a great advantage compared to batch approaches as presented

in [97], [98]. Online estimation is also advantageous when the data model is time-varying.

Some authors have addressed estimation of time-varying AR models [89, 90, 91]. However,

to the best of our knowledge, no online approach for tracking VAR parameters, and thus

the associated network topology, has been considered in the literature.

This paper proposes two online estimators for the parameters of a VAR signal model

to track the topology of the causality graph. Sparse estimates, where each time series

is influenced by a small number of other time series, are enforced by means of a group-

Lasso regularized objective in [66]. The first algorithm applies the approximate recursive

least squares (RLS) approach in [99], whereas the second solves an optimization problem

at each time instant by means of block coordinate descent (BCD). The complexity of

these algorithms grows at different rates with the problem size (P and the number of

time series), so that their benefits are complementary depending on the specific problem

setting.

The contribution of this paper is twofold:

• Online estimation of the group-sparse parameters of VAR process by means of two

algorithms with different orders of computational complexity.

• A performance comparison of the different approaches through numerical simula-

tions.

The remainder of this paper is structured as follows: Section A.2 introduces the model

and formulates the problem, and the proposed algorithms are presented in Section B.2.2.

Section A.4 provides numerical tests and wraps up the paper.

A.2 Model and problem formulation

Consider a collection of N time series, where fn[t], t = 0, 1, . . . , T − 1, denotes the value

of the n-th time series at time t. The goal is to determine a directed graph G , (V ,E ),

where V = {1, . . . , N} is the vertex set and E ⊂ V × V is the edge set capturing the

causation relations among time series. Specifically, (n, n′) ∈ E iff fn′ [t] causes fn[t + τ ]

for some τ ∈ [1, P ]. To this end, the VAR model is adopted, which prescribes that

f [t] , [f1[t], . . . , fN [t]]> = u[t] +
P∑
p=1

Apf [t− p], (A.1)
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where u[t] ,
[
u1[t], u2[t], ..., uN [t]

]>
denotes noise and Ap ∈ RN×N , p = 1, . . . , P , are the

VAR parameters. From this expression, it follows that

fn[t] = un[t] +
N∑

n′=1

P∑
p=1

a
(p)
n,n′fn′ [t− p], n = 1...N. (A.2)

Then, if fn′ [t] does not cause fn[t+ τ ] for any τ ∈ [1, P ], it holds that a
(p)
n,n′ = 0 ∀p, where

a
(p)
n,n′ stands for the (n, n′)-th entry of Ap. This implies that (A.2) can be equivalently

expressed as

fn[t] = un[t] +
∑

n′:(n,n′)∈E

P∑
p=1

a
(p)
n,n′fn′ [t− p], n = 1 . . . N. (A.3)

Therefore, one can trivially obtain E , and consequently G, if {Ap}Pp=1 are known. From

(E.2), it follows that fn[t] is the result of filtering the neighboring time series through a

linear time-invariant (LTI) filter and adding these filtered signals together with noise. One

can therefore interpret a sparse VAR model in terms of a graph whose edges correspond

to an LTI filter between the adjacent vertices. The problem of topology identification

reduces therefore to estimating {Ap}Pp=1 given {f [t]}T−1
t=0 .

A.3 Online topology identification

After presenting the estimation criterion in Sec. A.3.0.1, this section describes the pro-

posed algorithms in Secs. A.3.1 and A.3.2.

A.3.0.1 Estimation criterion

A natural approach to estimate {Ap}Pp=1 is to minimize the following objective:

arg min
{Ap}Pp=1

L
(
{Ap}Pp=1

)
+ λ

N∑
n=1

N∑
n′=1
n′ 6=n

1

{ P∑
p=1

|a(p)
n,n′ |

}
, (A.4)

where L(·) is given by

L
(
{Ap}Pp=1

)
,

T−1∑
τ=P

∥∥∥∥∥f [τ ]−
P∑
p=1

Apf [τ − p]

∥∥∥∥∥
2

2

=
N∑
n=1

T−1∑
τ=P

(
fn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′fn′ [τ − p]

)2

and it is a quadratic empirical loss function promoting data fit; and 1 is an indicator

function satisfying 1{x} = 0 if x = 0 and 1{x} = 1 if x 6= 0. The second term in

(A.4) equals the cardinality of E , i.e., the number of edges, times the regularization

parameter λ > 0; and therefore promotes a group-sparse structure in {Ap}Pp=1 to exploit

thus the prior information that the number of edges in E is small. Self-connections are

46



PAPER A

not regularized. The parameter λ controls the tradeoff between the data fit and sparsity,

and can be adjusted e.g. via cross-validation [11].

For notational convenience, let us introduce the variables an,n′ , [a
(1)
n,n′ , a

(2)
n,n′ , ..., a

(P )
n,n′ ]

> ∈
R
P , an , [a>n,1,a

>
n,2, ...,a

>
n,N ]> ∈ RNP , as well as

g[τ ] , vec
([
f [τ − 1], . . . ,f [τ − P ]

]>) ∈ RNP . (A.5)

Then, L
(
{Ap}Pp=1

)
can be expressed as

∑N
n=1 L(n)(an), where

L(n)(an) ,
T∑

τ=P

(
fn[τ ]− g>[τ ]an

)2
. (A.6)

With this notation, (A.4) can be expressed as

{ân}Nn=1 = arg min
{an}Nn=1

N∑
n=1

[
L(n)(an) + λ

N∑
n′=1
n′ 6=n

1{‖an,n′‖2}
]
.

Since the above problem is non-convex, [66] proposed recovering sparse coefficients by

minimizing the following group-Lasso regularized functional

{ân}Nn=1 = arg min
{an}Nn=1

N∑
n=1

[
L(n)(an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2

]
(A.7)

which clearly separates across an as

ân = arg min
an

L(n)(an) + λ
N∑

n′=1
n′ 6=n

‖an,n′‖2 . (A.8)

The batch estimation criterion in (A.8) requires all data {f [t]}T−1
t=0 before an estimate

can be obtained. The rest of this section proposes an online criterion that provides an

estimate per each time-slot when new data is received, and furthermore enables tracking

topology changes. To this end, the objective in (A.8) is replaced with a time-dependent

objective as follows:

ân[t] = arg min
an[t]

L(n)(an[t], t) + λ
N∑

n′=1
n′ 6=n

‖an,n′ [t]‖2 , (A.9)

where ân[t] is the estimate of an at time t,

an[t] , [a>n,1[t],a>n,2[t], ...,a>n,N [t]]> ∈ RNP (A.10)

contains the optimization variables at time t, and

L(n)(an[t], t) ,
t∑

τ=P

γt−τ
(
fn[τ ]− g>[τ ]an[t]

)2
(A.11)
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is a time-dependent version of the empirical loss function in (A.6), where 0 < γ ≤ 1 is a

user-selected forgetting factor. The latter weights recent samples more heavily than the

older ones and is introduced to facilitate tracking topology changes. Observe that (A.11),

and therefore (A.9), only depend on data up to time t, and therefore ân[t] can be obtained

right after {f [τ ]}tτ=0 have been received. The rest of this section proposes two algorithms

to solve (A.9) in an online fashion.

A.3.1 Regularized RLS (R-RLS)

A solver based on RLS is proposed in this section. To this end, consider the following

valid subgradient of the (non differentiable) regularization term in (A.9)

h(an[t]) , [∇s>
an,1[t] ‖an,1[t]‖2 , . . . ,∇

s>
an,n−1[t] ‖an,n−1[t]‖2 ,0,∇

s>
an,n+1[t] ‖an,n+1[t]‖2 ,

. . . ,∇s>
an,N [t] ‖an,N [t]‖2]>, (A.12)

where

∇s
x ‖x‖2 =

{
x
‖x‖2

, x 6= 0

0, x = 0.
(A.13)

On the other hand, let

Φ[t] ,
t∑

τ=P

γt−τg[τ ]g>[τ ], (A.14)

rn[t] ,
t∑

τ=P

γt−τfn[τ ]g[τ ], (A.15)

respectively denote a weighted sample auto-correlation matrix of g[τ ] and a weighted

sample cross-correlation of fn[τ ] and g[τ ]. Note that Φ[t] and rn[t] can be updated

recursively as

Φ[t] = γΦ[t− 1] + g[t]g>[t], (A.16)

rn[t] = γrn[t− 1] + fn[t]g[t]. (A.17)

In view of these equations, it can be shown that the algorithm in [99] reduces to Al-

gorithm 6 when solving (A.9). This algorithm offers an approximate solution since it

relies on the assumption that the estimated coefficients do not change abruptly between

consecutive time steps.

The complexity of Algorithm 6 is dominated by the N computations of Q[t]h(ân[t−
1]) (which are O(N2P 2)), and therefore the overall complexity is O(N3P 2).

A.3.2 Online Block Coordinate Descent (OBCD)

When N is very large, the computational burden of Algorithm 6 can become prohibitive

given its cubic-order complexity with respect to N . To alleviate this limitation, this

section proposes an online method with quadratic complexity in N . The proposed method

is based on performing a single iteration of BCD to minimize (A.9). A related approach
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Algorithm 6 Group-sparse R-RLS algorithm

Input: σ, P, λ, γ, {f [τ ]}tτ=0

Output: {ân[t]}Nn=1

Initialization: ân[P − 1] = 0,Q[P − 1] = σ−1I

1: for t = P, P + 1, . . . , do

2: k[t] =
Q[t− 1]g[t]

γ + g>[t]Q[t− 1]g[t]
3: Q[t] = γ−1Q[t− 1]− γ−1k[t]g>[t]Q[t− 1]

4: for n = 1, 2, . . . , N do

5: en[t] = fn[t]− g>[t]ân[t− 1]

6: ân[t] = ân[t− 1] + en[t]k[t] + λ(γ − 1)Q[t]h(ân[t− 1])

7: end for

8: end for

for solving batch group-Lasso problems was proposed in [100]. Note that although (A.9)

can be solved directly by off-the-shelf convex optimization solvers, their complexity is

high and therefore an algorithm tailored to (A.9) is preferable.

Block coordinate descent is based on iteratively minimizing a given objective with

respect to a group of variables while keeping the rest of groups fixed to their values in

previous iterations. Fortunately, at each minimization step the function is differentiable

in all points except the zero, while the minimization step at the zero vector is simple to

be performed.

The right-hand side of (A.9) can be rewritten in terms of the recursively computed

Φ[t] and rn[t] as

arg min
an[t]

a>n [t]Φ[t]an[t]− 2r>n [t]an[t] + λ
N∑

n′=1
n′ 6=n

‖an,n′ [t]‖2

For each t and n, the proposed algorithm performs N block updates: the i-th update

modifies the i-th group an,i[t] whereas all other entries in an[t] are kept fixed.

Upon appropriately permuting the entries of an[t],Φ[t], and rn[t], the minimization

of the above objective with respect to the i-th group can be expressed as

ân,i[t] = arg min
an,i[t]

[
a>n,̄i[t] a

>
n,i[t]

][Φī̄i[t] Φīi[t]

Φīi[t] Φii[t]

][
an,̄i[t]

an,i[t]

]
− 2

[
r>n,i[t] r>n,̄i[t]

] [an,̄i[t]
an,i[t]

]
+ λ
( N∑
n′=1

‖an,n′ [t]‖2

)
1{i− n} (A.18)

where ân,i[t] collects the entries of the i-th group in ân[t]; an,̄i[t] collects the entries in

the complementary set of i-th group; and similar definitions apply for rn,̄i[t], Φī̄i[t], and

Φīi[t] (= Φ>īi [t] because of symmetry). Ignoring the constant terms, the right-hand side

of (A.18) can be rewritten as

ân,i[t] = arg min
an,i[t]

a>n,i[t]Φii[t]an,i[t] + 2(Φīi[t]an,̄i[t]− rn,i[t])
>an,i[t] +λ ‖an,i[t]‖2 (A.19)
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When i = n, the last term is zero and therefore (A.19) constitutes a conventional

least-squares equation and its solution is ân,n[t] = Φ†nnpn, where Mi , Φii and pi ,
Φīian,̄i − r>n,i[t].

Conversely, when i 6= n, we solve the optimization using Newton’s method. This

requires the cost function to be twice differentiable at every point. In our case, this holds

at every point except the zero vector; fortunately, when solving (A.19) this case can be

circumvented. Note first that it can be proven [100] that 0 will be an optimizer of (A.19)

iff ‖p‖2 ≤ λ. Second, if Newton’s method is initialized at an a(0) that yields a negative

objective and every iteration effectively reduces the objective, then the optimization is

done over a sub-level set where the gradient and the Hessian are always well defined.

Consequently, the proposed solver first checks if 0 is the optimal solution to (A.19),

and if it is not, a(0) is initialized as a(0) =
(
(λ ‖p‖2 − ‖p‖

2
2)/(p>Mp)

)
p which is the

solution to a line search over the half line that starts at 0 in the steepest descent direction.

Afterwards, standard Newton iterations are performed until convergence as detailed in

Algorithm 8.

Algorithm 7 further generalizes [101, Algorithm 3] which can only accommodate

groups of size 1 (regular Lasso). Regarding complexity, Algorithm 8 is called N(N − 1)

times and its complexity is dominated by the inversion of the P×P Hessian. Consequently,

OBCD entails a complexity of O(N2P 3) per time instant.

Algorithm 7 Online Block Coordinate Descent

Input: λ, γ, σ, {f [τ ]}tτ=0,

Output: {ân[t]}Nn=1

Initialization: ân[P − 1] = 0,Φ[P − 1] = σ2I, rn[P − 1] = 0, and g[P − 1] as in

(B.4)

1: for t = P, P + 1, . . . , do

2: Obtain Φ[t] as in (A.16)

3: for n = 1, 2, . . . , N do

4: for i = 1, 2, . . . , N do

5: Obtain rn[t] as in (A.17)

6: Set an,j[t] = an,j[t− 1]∀j 6= i

7: Update an,i[t] via (A.19)

8: end for

9: end for

10: end for

11: end for

A.4 Numerical Experiments

The performance of the proposed online algorithms is compared with the batch group-

Lasso approach by numerical tests in this section. A network is simulated by a random

graph with N = 15 nodes, and an edge set randomly generated by an Erdos-Renyi model

with edge probability pe constant for every pair of nodes except for self-loops, which have
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Algorithm 8 Solve (A.19) via Newton’s method

Input: Φii[t],Φīi[t], λ, rn,i[t],an,̄i[t] Output: ân,i[t]

1: M = Φii[t]; p = Φīi[t]an,̄i − rn,i[t]

2: if ‖p‖2 ≤ λ then return ân[t] = 0

3: else a(0) =
(
(λ ‖p‖2 − ‖p‖

2
2)/(p>Mp)

)
p

4: for k = 0, 1, . . . until convergence do

5: H = M + λ

(
I

‖a(k)‖2

− a
(k)a>(k)

‖a(k)‖3
2

)
6: g = Ma(k) + p +

λa(k)

‖a(k)‖2

7: a(k+1) = a(k) −H†g

8: end forreturn ân,i[t] = a(k)

edge probability one. A VAR process with order P = 5 is generated by drawing the

active coefficients of Ap from a Gaussian distribution, setting the rest of the coefficients

to zero, and normalizing the result so that the largest-magnitude eigenvalue of Ap is less

than 1/P , thus guaranteeing a stable VAR process. A time series of T time instants

is generated according to (E.1) with u ∼ N (0, 0.02I). The regularization parameter is

chosen as λ = 0.02.

Two error measures are used to compare the performance of the developed methods.

In the first case, the estimated VAR coefficients {ân[t]} are directly compared to the true

coefficients and the evolution of the normalized mean squared deviation (NMSD) defined

as E[‖
∑

n(ân[t] − an)‖2
2]/E[

∑
n‖an‖2

2] is represented in the top pane of Fig. A.1. In the

second case, the coefficients are used to predict the process in the next time instant and

the normalized mean square error (NMSE) is depicted in the bottom pane. To reduce

computational burden, the two error measures for the batch approach are evaluated for

T = 50, 100, 150, . . . , 650, considering all available data up to time T . The dashed line is

added to improve visualization. These results suggest that both algorithms have similar

convergence rates and their estimate approaches the batch solution after processing a large

number of samples. Although OBCD shows a slight advantage over R-RLS, a main factor

to choose one approach or the other is the computational efficiency. As a short wrap-up,

recall that OBCD has O(N2P 3) computation, and R-RLS has O(N3P 2). This makes the

former more suitable for large networks, whereas the latter enjoys fast performance for

large filter order.
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Figure A.1: Normalized Mean Squared Deviation (top) and Normalized Mean Squared

Error (bottom).
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