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Abstract

High dimensional time series data are observed in many complex systems. In networked

data, some of the time series are influenced by other time series. Identifying these re-

lations encoded in a graph structure or topology among the time series is of paramount

interest in certain applications since the identified structure can provide insights about the

underlying system and can assist in inference tasks. In practice, the underlying topology

is usually sparse, that is, not all the participating time series influence each other. The

goal of this dissertation pertains to study the problem of sparse topology identification

under various settings.

Topology identification from time series is a challenging task. The first major challenge

in topology identification is that the assumption of static topology does not hold always

in practice since most of the practical systems are evolving with time. For instance, in

econometrics, social networks, etc., the relations among the time series can change over

time. Identifying the topologies of such dynamic networks is a major challenge.

The second major challenge is that in most practical scenarios, the data is not available

at once - it is coming in a streaming fashion. Hence, batch approaches are either not

applicable or they become computationally expensive since a batch algorithm is needed

to be run when a new datum becomes available.

The third challenge is that the multi-dimensional time series data can contain missing

values due faulty sensors, privacy and security reasons, or due to saving energy.

We address the aforementioned challenges in this dissertation by proposing online/-

batch algorithms to solve the problem of time-varying topology identification. A model

based on vector autoregressive (VAR) process is adopted initially. The parameters of the

VAR model reveal the topology of the underlying network. First, two online algorithms

are proposed for the case of streaming data. Next, using the same VAR model, two on-

line algorithms under the framework of online optimization are presented to track the

time-varying topologies. To evaluate the performance of propose online algorithms, we

show that both the proposed algorithms incur a sublinear static regret. To characterize

the performance theoretically in time-varying scenarios, a bound on the dynamic regret

for one of the proposed algorithms (TIRSO) is derived. Next, using a structural equation

model (SEM) for topology identification, an online algorithm for tracking time-varying

topologies is proposed, and a bound on the dynamic regret is also derived for the pro-

posed algorithm. Moreover, using a non-stationary VAR model, an algorithm for dynamic

topology identification and breakpoint detection is also proposed, where the notion of lo-

cal structural breakpoint is introduced to accommodate the concept of breakpoint where

instead of the whole topology, only a few edges vary. Finally, the problem of tracking
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VAR-based time-varying topologies with missing data is investigated. Online algorithms

are proposed where the joint signal and topology estimation is carried out. Dynamic regret

analysis is also presented for the proposed algorithm. For all the previously mentioned

works, simulation tests about the proposed algorithms are also presented and discussed

in this dissertation. The numerical results of the proposed algorithms corroborate with

the theoretical analysis presented in this dissertation.
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Chapter 1

Introduction

1.1 Motivation

In many applications such as transportation networks, industrial environments equipped

with sensors, social networks, stock exchanges, and meteorology, data are continuously

generated and stored. Much of these data are observed merely for monitoring purposes;

on the other hand, it is becoming conventional wisdom that data in sufficient amount can

be considered as valuable as physical assets for many sectors of industry. State-of-the-art

algorithms are continuously developed to perform inference tasks in this multiverse of

data. Despite an ever-growing corpus of theoretical and applied results being developed

nowadays to make these data analysis algorithms more efficient, the enormous amount of

data generated in some applications (e.g. social networking) still makes it challenging to

extract knowledge in real time from it. Dealing with the so-called ‘big data’ poses many

challenges, not only in terms of memory requirements and computational complexity, but

also because the systems underlying the data are continuously evolving.

Networks, broadly understood as systems where the aggregation of local effects re-

sults into global behavior, are studied not only in electrical engineering applications (e.g.

wireless sensor networks) but also in other scientific and technical fields where the notion

of connectivity appears both in physical and virtual ways. Data generated at multiple

elements of a network (nodes) emerge naturally in a variety of applications such as wire-

Figure 1.1: A simplified network of multiple time series. An edge in the network denotes

a certain notion of causality between two time series. The direction of an edge represents

the direction of causality between the two time series.

1
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less sensor networks, transportation, social, and biological networks, to name a few. In

these applications, multiple data time-series are jointly observed across network nodes.

In the context of sensor networks, each time series corresponds to a network element that

monitors a physical parameter of a process. A prominent task in this context is inferring

causality graphs that provide the causal relations among a collection of time series (see

Fig. 1.1 for a simplified network of multiple time series). Causality graphs often reveal the

network structure (also termed topology) of e.g. an underlying social, biological, or brain

network. Each node of the graph corresponds to a time series, and connections (edges)

appear whenever one time series is inferred to influence another. Identifying their causal

interactions is a central problem in many disciplines such as networked cyber-physical

systems, sensor and actuator networks, neuroscience, econometrics, bio-informatics and

meteorology. Revealing these interactions may offer insights about the dynamics of a

given system and may facilitate data processing tasks such as forecasting [1], anomaly

detection [2], signal reconstruction [3], clustering [4], [5], filtering [6], [7], sampling [8],

dimensionality reduction [9], [10], to name a few.

Consider a sensor and actuator network in a real industrial environment, i.e., Lundin’s

offshore oil and gas (O&G) platform Edvard-Grieg1. A simplified diagram of the decanta-

tion system is given in Fig. 1.2, where each node corresponds to either temperature,

pressure, or oil-level sensor placed in the system that separates oil, gas, and water. Given

the time series data observed in this system, a topology of the network can be estimated

that shows the dependencies among the involving time series. Once, the underlying topol-

ogy is learned, it can be used to predict the future values of the parameters in the system.

The topology of the network can also be leveraged to predict the occurrence of certain

events. Moreover, the topology can provide insights about inter-relations among the pro-

cess parameters that govern the dynamics of the system.

In some cases, different causality graphs can be obtained using domain knowledge, see

e.g. [11, Ch. 8]; however, such prior domain knowledge is not always available, or the large

dimensionality of the data makes such an approach intractable. Such situations call for

data-driven approaches, which rely on models that may seem simple when connections are

examined one by one, but may be surprisingly expensive when the whole set of connections

is applied as a whole.

Many works in the literature related to estimating causality graphs or network topology

consider batch approaches, which require the whole data before an estimate is computed.

However, in most practical scenarios (weather prediction, industrial sensor data, energy

networks, etc.), data are generated in real time and made available in a sequential fashion.

For such streaming data, classical batch algorithms have limited applicability due to the

data availability constraints or computational bottlenecks. Online learning algorithms, on

the other hand, yield an estimate every time a new data sample is received. In addition,

advantages such as low computational complexity and capability to deal with sequential

data makes them extremely interesting as a tool to tackle streaming data.

In some other applications, the assumption of static model does not hold and the

underlying causality graph can change over time. To estimate time-varying topologies

1 https://www.lundin-petroleum.com/operations/production/norway-edvard-grieg
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Figure 1.2: A network of separators in an Oil and Gas Platform (Diagram of Edvard-

Grieg Platform, Lundin Norway). There are various sensors (labelled according to the

NORSOK standard2) to monitor temperature, pressure, oil level. A time series is observed

at each sensor. The light green thick arrows show the direction of the flow of the fluid in

the system.

in a dynamic setting, online algorithms have proven their ability to track time-varying

topologies [12].

When a huge amount of data are collected, the data may contain missing values due

to certain reasons. For instance, in social networks, there may be missing values in the

data due to security or privacy concerns. In a wireless sensor network, observations may

be not recorded due to faulty sensors or the effects of lossy compression schemes aimed

at saving energy or bandwidth.

To address all the aforementioned challenges, this dissertation develops algorithms and

analyze their performance via theoretical results and numerical tests on synthetic and real

data.

1.2 Literature Review

The problem of inferring graphs capturing dependencies among multiple time series has

recently received a great attention in the literature. The simplest approach to construct

a graph from the data looks for all the possible edges among the nodes by placing an

edge between two nodes if the sample correlation between the associated time series

exceeds a certain threshold [13]. However, such an approach cannot distinguish mediated

from unmediated interactions. In order to distinguish between them, one may resort to

1https://www.standard.no/en/sectors/energi-og-klima/petroleum/norsok-standards/
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conditional independence, partial correlations, or Markov random fields [13, 14, 15, 16, 11,

15, 17]. Recently, many approaches under the framework of graph signal processing [18]

are presented; see e.g. [19, 20, 21, 22] for topology identification approaches. In [23], the

problem of topology identification is divided into two parts, for which efficient solutions

are known. However, these approaches cannot determine the direction of the interactions

among variables.

For directed interactions, an alternative notion of interaction is adopted in the lit-

erature of structural equation modeling (SEM) [24] by incorporating the influence of

exogenous variables; see e.g. [25], [26] and references therein. One may also employ

Bayesian networks [11, Sec. 8.1], [27, Sec. 1.2]. However, these models do not generally

capture the temporal structure present in time series and account only for memoryless

interactions, i.e., they cannot accommodate memory-aware interactions where the value

of a time series at a given time instant is related to the past values of other time series.

One of the foremost notions of causality to determine directed relations among multiple

time series is Granger causality. Granger [28] proposed a means to infer the direction of

causality by building upon the principles that the cause precedes the effect in time and

that the cause has a unique information about the effect. However, it turns out that

Granger causality is based on optimal prediction error, which is often difficult to compute

in practice. Further approaches for topology identification include [29, 30, 31] though

their batch nature cannot track temporal changes in the topology.

All methods mentioned in the previous paragraphs work in a batch mode, that is, all

the data from all the sensor variables must be available before the learning stage can be

started. This calls for the development of online algorithms for topology identification,

and this dissertation specifically covers this gap. The goal of this PhD Dissertation

is to estimate both the spatial and temporal dynamics of causal relations among time

series associated with different variables under various online settings. Existing online

topology identification algorithms include [32, 33] for undirected topology identification

and [34, 26, 35, 36, 37] for directed topology identification.

Regarding topology identification from non-stationary data, a number of works intro-

duce graphs to capture this notion of time-varying direct interactions, either relying on

graphical models [38, 39, 14, 34] or structural equation models [26, 40]. Unfortunately,

the aforementioned approaches can only deal with memoryless interactions, which limits

their applicability to many real-world scenarios.

Only recently, approaches to identify time-varying topologies having the notion of

memory into account have been developed [41, 42]. In this dissertation we have developed

an approach to identifying models accounting for memory in the interactions, extending

the the concept of structural breaks to express the locality of the changes in the underlying

models.

Throughout this dissertation, two types of modeling approaches are taken into account:

namely structural equation models (SEM) and vector autoregressive (VAR) processes.

These models will be described in the next chapter, but a short description is provided

here to help introducing the problem statements.

Modeling instantaneous causal relations is usually accomplished based on SEM. Static

SEM has been adopted in many works for directed topology identification. However,
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the underlying topology may be time-varying and the data may be coming sequentially.

Using SEM to model interactions in time series is interesting when the timescale at which

interactions occur is shorter than the sampling period.

The framework of VAR process has been extensively adopted to model linear depen-

dencies among time series [43]. In a P -th order VAR model, the current data at multiple

variables are assumed to be a noisy superposition of the data from the same variables at

the P previous time instants.

Time-varying VAR models are used to track changes in networks where the time scale

of the interactions is longer than the sampling period, but still shorter than the timescale

at which the changes in the model are produced. We will consider two cases depending

on how the model changes are assumed to occur. If the changes are smooth in time, then

online algorithms have the potential of doing a good job in tracking the dynamic models.

On the other hand, when the changes are assumed to be abrupt, the concept of structural

break can be used to detect them, as it can be understood as a form of sparsity.

1.3 Problem Statement

In this dissertation, we consider four types of problems related to topology identification

from time series:

• VAR-based online topology identification. In this type of problem, we are

interested in a memory-aware causality graph based on vector autoregressive (VAR)

processes. The framework of VAR process has been extensively adopted to model

linear dependencies among time series [43]. The parameters of the VAR model reveal

the topology of the causality graph (inter-dependencies among the different variables

across both space and time), which motivates their estimation. The statement of

the problem in the case of streaming data is, given the observation from a VAR

process at time instant t and filter order P , compute an online estimate of the

memory-aware causality graph.

• Dynamic SEM-based topology identification. An important type of instan-

taneous causal relations is based on SEM. Static SEM has been adopted in many

works for directed topology identification. However, the underlying topology may

be time-varying and the data may be coming sequentially. To this end, the problem

of tracking SEM-based topologies is investigated. The problem statement is: given

the sequentially available observations from the dynamic SEM, estimate the time-

varying SEM-based sparse topologies in an online fashion with certain convergence

guarantees.

• Dynamic network identification using non-stationary VAR processes. In

many works, it is considered that the topology remain constant over time intervals

separated by structural breakpoints, where the topology makes a transition from one

model to another. However, in certain applications, e.g., in an industrial network,

only a few links may change. This motivates detecting these break points where
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only a few links change. The problem statement is: given the non-stationary time

series observations, detect the breaking point where some of the edges are changed.

• Online tracking VAR-based time-varying topologies in the presence of

missing data. The fourth main problem investigated in this dissertation is track-

ing dynamic VAR-based topologies with missing data. As discussed earlier in this

chapter, the missing values in the data occur in certain scenarios and applications.

The problem statement is: given the streaming noisy data with missing values,

estimate the time-varying VAR-based sparse topologies.

1.4 Contributions and Outline of the Dissertation

This dissertation is organized by including five papers, which are appended at as Appen-

dices A-E. The organization and the contributions of the dissertation are as follows:

• Chapter 2 contains the theoretical background of the work in this dissertation.

Specifically, Chapter 2 details the topology identification models adopted in this

dissertation. A brief discussion about online learning/optimization is also presented.

To analyze the performance of online algorithms, static regret and dynamic regret

are introduced.

• Chapter 3 summarizes Paper A [44]. The problem of online estimation of VAR-

based causality graphs is under consideration in this paper. In [44], a static VAR

model is considered. Two online algorithms are proposed to solve the problem in

the case of streaming data. The contributions of the paper are a) online estimation

of sparse VAR-based topologies via two algorithms with complementary benefits in

terms of the computational complexity and numerical performance. b) The numer-

ical performance of the proposed algorithms show that they converge to the batch

solution.

• Chapter 4 discusses Paper B [45]. In this paper using a VAR model, two online

algorithms under the framework of online learning [46] are derived for the problem

of topology identification. The contributions of [45] are: (C1) An online algorithm,

termed Topology Identification via Sparse Online learning (TISO), which estimates

directed VAR causality graphs. Sparse and (possibly) time-varying topologies are

tracked while promoting sparse updates with constant computational complexity

and memory requirements per iteration. Although, TISO is a simple low complex-

ity online algorithm, it has the limitations of sensitivity to noise and input variabil-

ity. (C2) A second algorithm, named Topology Identification via Recursive Sparse

Online learning (TIRSO), which improves the tracking performance of TISO and

robustness to input variability by minimizing a novel estimation criterion inspired

by recursive least squares (RLS) where the instantaneous loss function accounts for

past samples. (C3) In terms of performance analysis: (i) it is established that the

hindsight solution of TISO and TIRSO are asymptotically the same. (ii) The conver-

gence of TISO and TIRSO is established by deriving sublinear static regret bounds.
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(iii) A logarithmic regret bound is proved for TIRSO. (iv) For dynamic settings, a

dynamic regret bound for TIRSO is derived. Moreover, the steady-state error of

TIRSO in time-varying scenarios is quantified in terms of the data properties. (C4)

Finally, performance is empirically validated through extensive experiments with

synthetic and real data sets.

• Chapter 5 outlines Paper C [37]. In this paper, an important model for topology

identification namely SEM is used. The contributions of [37] are: a) an online al-

gorithm for tracking time-varying SEM-based topologies is proposed; b) to evaluate

the performance of the proposed algorithm to track time-varying topologies, the

dynamic regret analysis is presented for the proposed algorithm and c) the track-

ing capabilities of the algorithm have been numerically validated for a time-varying

scenario under two different assumptions on the model variation.

• Chapter 6 consists of Paper D [47]. In this paper, a dynamic model based on time-

varying VAR process for topology identification is considered. The concept of struc-

tural breakpoints is extended towards local structural breakpoint, which captures

the intuitive fact that changes in the interactions are not needed to be synchronized

across the system. An algorithm is proposed to identify the topology as well as de-

tect the local breakpoint. Moreover, the simulation results show that the proposed

algorithm can identify the topology and the breakpoints.

• Chapter 7 discusses Paper E [48]. In this paper, a dynamic VAR model is used

to identify the time-varying topologies when the data is streaming and the noisy

observations contain missing values. Online algorithms are proposed to estimate

the time-varying topologies with missing values by jointly identifying the topology

and estimating the signal from noisy observations. To assess the performance of the

proposed online algorithm, a dynamic regret bound is derived. This dynamic regret

bound depends on the parameters of the data, the error due to the missing values

and noise, the path length, and the parameters of the algorithm.

• Chapter 8 concludes the thesis. The key conclusions of the works presented in this

dissertation are discussed. The various possible directions for extending the work

in this dissertation are also listed and discussed.







Chapter 2

Background Theory

2.1 Topology Identification Models

To address the problem of topology identification, a number of models have been adopted

in the related literature. Every model has its own attributes and comes with certain

advantages and limitations. To choose a specific model for a problem at hand, it mostly

depends on the type of application, data, and the underlying objective of topology iden-

tification. Therefore, no single model can be embraced and be applied everywhere. This

motivates the need for various topology identification models and analyzing their char-

acteristics. Next, we describe the models used for the of topology identification in this

dissertation.

2.1.1 Vector Autoregressive Processes

The main model that we adopt for topology identification in this dissertation is vector

autoregressive (VAR) process. VAR process is used for topology inference in literature

[49]. For instance, in neuroscience, VAR process has been used to identify causality graphs

[50, 51]. Similarly, VAR processes have widely been used in econometrics [43]. Next, we

present a brief description of VAR models.

Consider a collection of N time series {yn[t]}t, n = 1, ..., N , where yn[t] denotes the

value of the n-th time series at time t. By defining y[t], [y1[t], . . . , yN [t]]>, a VAR process

of order P is given by

y[t] =
P∑
p=1

Apy[t− p] + u[t], (2.1)

where Ap∈RN×N , p = 1, . . . , P , are the VAR parameters and u[t], [u1[t], . . . , uN [t]]> is

the innovation process vector. This process is generally assumed to be a white zero-mean

stochastic process, i.e., E[u[t]] = 0N and E[u[t]u>[τ ]] = 0N×N for t 6= τ . The covariance

matrix E[u[t]u>[t]] of the innovation process is generally assumed to be nonsingular.

Stable VAR processes are analyzed in the literature since the analysis of stable VAR

processes is usually tractable. A VAR process is said to be stable if det(IN − A1z −
A2z−, . . . ,AP z) 6= 1 for all |z| < 1. A reason to study stable VAR processes is that

9
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stability implies stationarity [43, Prop. 2.1]. Hence, stable VAR processes are also sta-

tionary. Some of the practical dynamic systems cannot be modeled by stable/stationary

processes. To study these processes, understanding stable/stationary processes provides

an initial step to dig deeper towards studying unstable/non-stationary processes.

2.1.2 Structural Equation Model

SEM is one of the predominant models used for directed topology identification. One of

the key features of SEM is its simplicity, which makes these models tractable. Due to its

tractability and the ability to identify directed relations, SEMs have been used in across

the fields such as social networks [35], genetics [52], and economics [53].

Consider a network of N nodes, and let yti be the observed value at i-th node in a

linear static SEM, given by

yti =
N∑

j=1,j 6=i

aijy
t
j + biix

t
i + eti, (2.2)

where aij are SEM parameters capturing directed relations (aij 6= aji), xi is the exogenous

variable for the i-th node, bii is the influence of the exogenous variable, and eti denotes the

un-modeled dynamics. Observe from (2.2) that SEM depends on two type of variables,

i.e., endogenous and exogenous variables. The endogenous variables yti are caused by other

variables in the model. The endogenous variables yti can cause each other. The exogenous

variables xti, on the other hand, are not caused by other variables in the model. The

inclusion of exogenous variables makes SEM distinctive from other models. Exogenous

variables perfectly model in certain scenarios, where an external input is available.

2.2 Background on Online Optimization

Consider the generic unconstrained optimization problem

minimize
a

1

T0

T0−1∑
t=0

ht(a), (2.3)

where ht(a) is a convex function, which depends on the data received at time t and which

will typically represent some loss function related to the estimation problem and possibly

some regularizer. Solving (2.3) via batch approaches requires {ht(a)}T0−1
t=0 to be available.

This makes the batch approaches inappropriate to be used in real-time streaming data ap-

plications. Moreover, the computational complexity and memory requirements generally

grows super-linearly with T0 for batch approaches. This motivates the design of online

algorithms, as we introduce here.

Let an estimate of the solution to (2.3) at time t produced by an online algorithm

be denoted by a[t + 1]. Online algorithms compute a new estimate a[t + 1] every time

a new data element (a new ht(a)) is processed. At time t, a[t + 1] is obtained from

a[t], ht(a), and possibly some additional information carried from each update to the

next. The memory requirements and number of arithmetic operations per iteration must
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not grow unbounded for increasing t. Thus, online algorithms are especially appealing

when data vectors are received sequentially or T0 is so large that batch solvers are not

computationally affordable. Additionally, online algorithms can track changes in the

underlying time-varying model.

The analytical framework of online learning and online convex optimization is lever-

aged not only for the derivation of many of the algorithms developed in the dissertation,

but also for the performance analysis. Key to understand the possibilities and limitations

of an online algorithm, and to be able to compare between algorithms that are intended

to solve the same problem, is the concept of regret. In fact, two types of regret are taken

into account in our analysis, namely the static regret and the dynamic regret.

2.2.1 Static Regret

To theoretically evaluate the performance of online algorithms, regret is a common met-

ric used in the literature. Regret quantifies the cumulative loss incurred by an online

algorithm relative to the cumulative loss corresponding to the optimal batch solution in

hindsight. Mathematically, the static regret at T0 − 1 is given by [46]:

Rs[T0] ,
T0−1∑
t=0

[ht (a[t])− ht (a∗[T0])], (2.4)

where

a∗[T0] , arg min
a

(1/T0)

T0−1∑
t=0

ht(a) (2.5)

is the optimal batch hindsight solution, i.e., the batch solution after T0 data vectors have

been processed. To be deemed admissible, online algorithms must yield a sublinear regret,

i.e., Rs[T0]/T0→0 as T0→∞. A sublinear regret for an online algorithm implies that the

online algorithm has a performance that is asymptotically as good as the batch solution

on average. Online algorithms do not consider statistical assumptions on the data, which

can even be generated by an “adversary” [54]. This means that online algorithms under

the framework of online learning do not need the data to be independent as opposed to

stochastic optimization algorithms [55].

2.2.2 Dynamic Regret

In dynamic settings where the parameters of the data generating process vary over time,

a∗[T0] in (2.5), used in static regret, may not be a suitable reference since its computation

involves potentially very old data, namely {ht}t�T0 . In such scenarios, it is customary

to compare the estimates of an online algorithm against the instantaneous minimizer

a◦[t],arg mina ht(a) by means of the so-called dynamic regret [56, 57, 58, 59]:

Rd[T0] ,
T0−1∑
t=0

[ht (a[t])− ht (a◦[t])].

The dynamic regret has recently gained attention and is used to quantify the performance

of an online algorithm in dynamic settings, where the online algorithm is required to be
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adaptive in order to track the variations in a hindsight solution sequence; see e.g. [12]

and references therein. Deriving a sublinear dynamic regret is always not possible for

time-varying scenarios. Usually, a bound on the dynamic regret is derived in terms of the

so-called path length, which denotes the cumulative variations in the two instantaneous

minimizers.





Chapter 3

Topology Identification from

Multiple Streaming Time

Series

This chapter summarizes Paper A ([44]).

3.1 Motivation

Different approaches to identify the causal relations are discussed in Chapter 1. As de-

scribed earlier in Chapter 1, the notion of Granger causality is very elegant, however, it

is not very practical to apply in the real-world since it is based on the optimal prediction

error, which is not always easy to compute [60, p. 33], [61]. Hence, alternative definitions

of causality are used in practice. To this end, VAR model is adopted in many applications

to model linear dependencies among time series and VAR causality graphs are frequently

estimated in econometrics, bio-informatics, neuroscience, and engineering [62, 63, 64, 49].

An important aspect of the VAR process is that it provides a model to predict the time

series 1-step ahead. VAR causality is further motivated by the widespread usage of VAR

models to approximate the response of systems of linear partial differential equations [65].

Next, causality graphs based on VAR processes are discussed.

3.2 Introduction to VAR Causality Graphs

Consider a collection of N time series {yn[t]}t, n = 1, ..., N , where yn[t] denotes the value

of the n-th time series at time t. A prominent notion of causality can be defined using

VAR models. To this end, let y[t], [y1[t], . . . , yN [t]]> and define a VAR time series {y[t]}t
as a sequence generated by the order-P VAR model [43]

y[t] =
P∑
p=1

Apy[t− p] + u[t], (3.1)

13
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Figure 3.1: Structure of the VAR parameter matrices. The structure of ann′ and an can

be viewed clearly in terms of the VAR parameters.

where Ap ∈ RN×N , p = 1, . . . , P , are the VAR parameters and u[t] , [u1[t], . . . , uN [t]]>

is the innovation process. This process is generally assumed to be a white zero-mean

stochastic process, i.e., E[u[t]] = 0N and E[u[t]u>[τ ]]=0N×N for t 6=τ . A causality graph

G, (V , E) is a collection of a vertex set V and a set of edges E where the n-th vertex in

V = {1, . . . , N} is identified with the n-th time series {yn[t]}t and there is an edge from

n′ to n (i.e. (n, n′) ∈ E) if and only if {yn′ [t]}t causes {yn[t]}t according to a certain

causality notion. Specifically, for VAR-causality: {yn′ [t]}t VAR-causes {yn[t]}t whenever

n′ ∈N (n), where N (n) is the neighborhood of the node n. Equivalently, {yn′ [t]}t VAR-

causes {yn[t]}t if an,n′ 6= 0P , where an,n′ , [a
(1)
n,n′ , . . . , a

(P )
n,n′ ]

>. The structure of the VAR

parameters is presented in Fig. 3.1.

3.3 Online Topology Identification

Before considering an online approach, let us first introduce the batch problem. The prob-

lem statement is: given P and the observations {y[t]}T−1
t=0 generated by a VAR process of

order P , estimate the VAR coefficient matrices {Ap}Pp=1. The batch problem is formu-

lated along the lines of [66] by minimizing a least-squared criterion in (A.7) by considering

group-lasso regularization to introduce sparsity in edges of the topology.

When the whole data is not available or when the computational or memory require-

ments constrain us to apply batch algorithms, we resort to online algorithms. Since the

problem is separable across nodes, the problem for each node can be solved in separately

and the solution can be computed in parallel. Hence, from now on, the n-th problem is

considered. The cost function at time t for the n-th problem that an online algorithm min-

imizes is selected to be a time-dependent exponentially weighted least-squared functional
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in [44]:

ân[t] = arg min
an[t]

t∑
τ=P

γt−τ
(
yn[τ ]− g>[τ ]an[t]

)2
+ λ

N∑
n′=1
n′ 6=n

‖an,n′ [t]‖2 , (3.2)

where

an[t] , [a>n,1[t],a>n,2[t], ...,a>n,N [t]]> ∈ RNP , (3.3)

g[τ ] , vec
([
y[τ − 1], . . . ,y[τ − P ]

]>) ∈ RNP , (3.4)

and 0 < γ ≤ 1 is a user-selected forgetting factor. This loss functional also enables

an online algorithm to track the possible changes in the topology. Next, two online

algorithms are proposed in [44] to solve the problem of VAR-based topology identification

for streaming data.

The first algorithm is proposed by solving (3.2) using a sub-gradient based approach

following a closely-related structure to recursive least squares (RLS) algorithm. The

proposed approximate solution relies on the assumption that the estimated coefficients

do not change abruptly between consecutive time steps. The complexity of Algorithm

6 in [44] is dominated by step. 6, i.e., N times O(N2P 2), hence the overall complexity is

O(N3P 2).

For a large N , the computational complexity of Algorithm 6 becomes prohibitive.

To this end, we propose an online method with quadratic complexity in N . The proposed

method is based on performing a single iteration of block coordinate descent (BCD) to

minimize (3.2). The objective in (3.2) can be written as:

arg min
an[t]

a>n [t]Φ[t]an[t]− 2r>n [t]an[t] + λ
N∑

n′=1
n′ 6=n

‖an,n′ [t]‖2

where

Φ[t] ,
t∑

τ=P

γt−τg[τ ]g>[τ ], (3.5)

rn[t] ,
t∑

τ=P

γt−τyn[τ ]g[τ ]. (3.6)

For each t and n, the proposed algorithm performs N block updates: the i-th update mod-

ifies the i-th group an,i[t] whereas all other entries in an[t] are kept fixed. Each problem

for an,i[t] is solved via Newton’s algorithm detailed in Algorithm 8 in [44]. The sample

auto-correlation matrix and sample cross-correlation matrix are updated recursively. The

overall algorithm is called online Block coordinate descent for topology identification and

is tabulated in Algorithm 7 in [44].

In numerical simulations based on synthetic data, a network with N = 15 nodes

where the graph is generated via Erdős-Rényi model. A stable VAR process with P = 5

is generated by drawing the active coefficients of Ap from a Gaussian distribution and

time series of T time instants is generated according to (3.1) with u ∼ N (0, 0.02I).
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The performance of the proposed algorithms is analyzed via two error measures,

namely, the normalized mean squared deviation (NMSD) defined as:

NMSD[t] =
E

[∑N
n=1 ‖(ân[t]− an)‖2

2

]
E

[∑N
n=1 ‖an‖

2
2

] , (3.7)

where an are the true VAR parameters corresponding to the n-th node; and the normalized

mean square error (NMSE):

NMSE[t] =
E

[∑N
n=1

(
yn[t]− g>[t]ân[t]

)2
]

E [‖y[t]‖2
2]

. (3.8)

The results show that the proposed online algorithms approach the batch solution after

processing a large number of samples.

The online algorithms in [44] do not necessarily yield sparse iterates before conver-

gence. Moreover, they are not supported by theoretical convergence guarantees in the

online scenarios. To address the aforementioned challenges, we propose two online algo-

rithms in [45] under the framework of online convex optimization, which are presented in

the next chapter.

3.4 Summary of the Chapter

• This chapter summarizes [44], where two online algorithms are proposed for VAR-

based topology identification for sequential data.

• Both algorithms have complementary benefits in terms of computational complexity

and NMSD/NMSE performance.

• The numerical results show that the proposed algorithms converge to the batch

solution of the problem.

• Further investigation is required to propose online algorithms supported by conver-

gence guarantees, which yield sparse topologies at each time instant.





Chapter 4

Online Topology Identification

in Vector Autoregressive

Processes with Performance

Guarantees

This chapter summarizes Paper B ([45]).

4.1 Motivation

The problem of online topology identification in vector autoregressive processes is con-

sidered in [44], where two online algorithms are proposed. However, the algorithms do

not yield sparse iterates and their computational complexity is not suitable for big data

scenarios. Moreover, the algorithms are not supported by convergence guarantees. To

tackle these challenges, the work in was [45] initiated and accomplished. This chapter

describes a brief summary of the work in [45].

4.2 Topology Identification via Online Optimization

To solve the problem of online topology identification, two online algorithms in [45] are

presented under the framework of online optimization. To propose the online algorithms

based on the online machine learning framework, we set ht(an) introduced in Chapter 2

as:

ht(an) = f
(n)
t (an) + Ω(n)(an), (4.1)

where f
(n)
t (an) is a convex loss function for the n-th node since the loss function is

separable across nodes and Ω(n)(an) is a convex regularizer for the n-th node. To propose

the first online algorithm, we set

f
(n)
t (an) = `

(n)
t+P (an), (4.2)
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where

`
(n)
t (an),

1

2

(
yn[t]− g>[t]an

)2
(4.3)

and

Ω(n)(an) = λ
N∑

n′=1
n′ 6=n

‖an,n′‖2 . (4.4)

The update at time t of the resultant online algorithm is obtained after solving the

following objective under the framework of online learning by adopting the composite

objective mirror descent (COMID) method [67]:

an[t + 1] = arg min
an

[
αt∇̃f (n)

t

>
(an[t]) (an − an[t]) +

1

2αt
‖an − an[t]‖2

2 + αtΩ
(n)(an)

]
,

(4.5)

where ∇̃f (n)
t (an[t]) is a subgradient of f

(n)
t at point an[t], i.e., ∇̃f (n)

t (a[t])∈∂f (n)
t (an[t]),

and αt > 0 is a step size. Given ∇̃f (n)
t (an[t]), the problem in (4.5) can be solved in

parallel and the update expression for each sub-problem is given by (B.19). It can be

observed from (B.19) that the online update yields sparse topology estimates. We name

the resulting algorithm as Topology Identification via Sparse Online learning (TISO) and

is presented here in Algorithm 1.

TISO only requires O(N2P ) memory entries to store the last P data vectors and the

last estimate. The computational complexity of TISO is O(N2P ), which is in the same

order as the number of parameters to be estimated. Thus, TISO can arguably be deemed

as a low-complexity algorithm.

Each update of TISO depends on the data through the instantaneous loss `
(n)
t (an[t]),

which is based on one data vector. This renders TISO a computationally efficient algo-

rithm for online topology identification and it also increases sensitivity to noise and input

variability. To this end, we propose an alternative approach at the expense of a moderate

increase in computational complexity and memory requirements. From an algorithmic

point of view, observe that TISO can be seen as a generalization of the least mean squared

(LMS) algorithm. To reduce the output variability and to speed up convergence of LMS,

it is customary to adopt recursive least squares (RLS), which uses the previous data al-

lowing to control the influence of each data vector on future estimates through forgetting

factors. Following the same track, the trick is to replace the instantaneous loss `
(n)
t (an)

in (4.3) with a running average loss. Specifically, f
(n)
t (an)= ˜̀(n)

t (an) in (4.1) with

˜̀(n)
t (an) , µ

t∑
τ=P

γt−τ`(n)
τ (an), (4.6)

where γ∈(0, 1) is the user-selected forgetting factor and µ=1− γ is set to normalize the

exponential weighting window, i.e., µ
∑∞

τ=0 γ
τ =1. To derive an algorithm with constant

computational and memory complexity, we use the structure of (4.6). To this end, expand
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Algorithm 1 Topology Identification via Sparse Online optimization (TISO)

Input: λ, {αt}t, {y[τ ]}P−1
τ=0

Output: {an[τ ]}Nn=1, τ = P + 1, . . .

Initialization: an[P ] = 0NP , n = 1, . . . , N

1: for t = P, P + 1, . . . do

2: Receive data vector y[t]

3: g[t] = vec
(

[y[t− 1], . . . ,y[t− P ]]>
)

4: for n = 1, 2, . . . , N do

5: vn[t] = (g>[t]an[t]− yn[t])g[t]

6: for n′ = 1, 2, . . . , N do

7: af
n,n′ [t] = an,n′ [t]− αtvn,n′ [t]

8: an,n′ [t+ 1] = af
n,n′ [t]

[
1− αtλ 1{n6=n′}∥∥∥af

n,n′ [t]
∥∥∥
2

]
+

9: end for

10: end for

11: end for

and rewrite (4.6) to obtain

˜̀(n)
t (an)=

µ

2

t∑
τ=P

γt−τ
(
y2
n[τ ]+a>ng[τ ]g>[τ ]an−2yn[τ ]g>[τ ]an

)
=

1

2
a>nΦ[t]an−r>n [t]an+

µ

2

t∑
τ=P

γt−τy2
n[τ ], (4.7)

where

Φ[t] , µ
t∑

τ=P

γt−τg[τ ] g>[τ ], (4.8a)

rn[t] , µ
t∑

τ=P

γt−τyn[τ ] g[τ ]. (4.8b)

The variables Φ[t] and rn[t] can be updated recursively as

Φ[t] = γΦ[t− 1] + µ g[t] g>[t], (4.9a)

rn[t] = γ rn[t− 1] + µ yn[t] g[t]. (4.9b)

We name this algorithm as Topology Identification via Recursive Sparse Online optimiza-

tion (TIRSO) and tabulated as Algorithm 2.

The computational complexity is dominated by step 7 of Algorithm 2, which is

O(N3P 2) operations per t. However, exploiting the group-sparse structure of ãn[t] may

reduce the computation by disregarding the columns of Φ[t] corresponding to the zero

entries of ãn[t]. If, for instance, the number of edges is O(N), then the complexity of

TIRSO becomes O(N2P 2) per t. Regarding memory complexity, TIRSO requires N2P 2

memory positions to store Φ[t] and N2P positions to store {rn[t]}Nn=1.

To support the decision of setting f
(n)
t (an)= ˜̀(n)

t (an) to develop TIRSO for solving

a batch objective in an online fashion, we establish that the batch problems that TISO
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Algorithm 2 Topology Identification via Recursive Sparse Online optimization (TIRSO)

Input: γ, µ, P, λ, σ2, {αt}t, {y[τ ]}P−1
τ=0

Output: {ãn[t]}Nn=1, t = P + 1, ...

Initialization: ãn[P ] = 0NP , n =1, ..., N, Φ[P − 1]=σ2INP
rn[t] = 0NP , n = 1, ..., N

1: for t = P, P + 1, . . . do

2: Receive data vector y[t]

3: g[t] = vec
(

[y[t− 1], . . . ,y[t− P ]]>
)

4: Φ[t] = γΦ[t− 1] + µ g[t] g>[t]

5: for n = 1, . . . , N do

6: rn[t] = γ rn[t− 1] + µ yn[t] g[t]

7: ṽn[t] = Φ[t] ãn[t]− rn[t]

8: for n′ = 1, 2, . . . , N do

9: ãf
n,n′ [t] = ãn,n′ [t]− αtṽn,n′ [t]

10: ãn,n′ [t+ 1] = ãf
n,n′ [t]

[
1− αtλ 1{n 6=n′}

‖ãf
n,n′ [t]‖2

]
+

11: end for

12: end for

13: end for

and TIRSO implicitly solve become asymptotically equivalent as T→∞. Theorem 1 in

[45] essentially establishes not only that the TISO and TIRSO hindsight objectives are

asymptotically the same but also that their minima and minimizers asymptotically coin-

cide. Since the TISO hindsight objective equals the batch objective considered, it follows

that the TIRSO hindsight objective asymptotically approaches the batch objective. This

observation is very important since the regret analysis in the next section will establish

that the TISO and TIRSO estimates asymptotically match their hindsight counterparts.

4.3 Static and Dynamic Regret Analysis

We characterize the performance of TISO and TIRSO analytically by establishing that

the sequences of estimates produced by these algorithms yield a sublinear static regret,

which is a basic requirement in online optimization. This property means that, on average

and asymptotically, the online estimates perform as well as their hindsight counterparts.

The upcoming results will make use of one or more of the following assumptions:

A1. Bounded samples: There exists By> 0 such that |yn[t]|2 ≤ By ∀n, t.

A2. Bounded minimum eigenvalue of Φ[t]: There exists β˜̀ > 0 such that λmin(Φ[t]) ≥
β˜̀, ∀ t ≥ P .

A3. Bounded maximum eigenvalue of Φ[t]: There exists L > 0 such that λmax(Φ[t]) ≤
L, ∀ t ≥ P .
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A4. Asymptotically invertible sample covariance: There exists Tm and β such that

λmin

(
1

t− P

t∑
τ=P

g[τ ] g>[τ ]

)
≥ β ∀ t ≥ Tm. (4.10)

Note that A1 entails no loss of generality in real-world applications, where data are

bounded and thus By always exists. A2 usually holds in practice unless the data is

redundant, meaning that some time series can be obtained as a linear combination of the

others. A3 will also hold in practice since it can be shown that it is implied by A1. In

particular, if A1 holds, then A3 holds with L = PNBy. Similarly, A4 will also generally

hold since it is a weaker version of A2.

Theorem 2 in [45] establishes that under the assumptions A1 and A4, the regret for

the n-th subproblem is given by

R(n)
s [T ] = O

(
PNBy

(
1/β(By

√
PN +

√
B2
yPN + βBy)

)2√
T

)
. (4.11)

Similarly, the corresponding static regret for TIRSO is bounded under the assumptions

A1-3 in Theorem 3 in [45] as:

R(n)
s [T ] = O

(
L
(

1/β˜̀(By

√
PN +

√
B2
yPN + β˜̀By)

)2√
T

)
. (4.12)

Using the strong convexity of the data-fitting function of TIRSO, a logarithmic bound is

provided in Theorem (4) in [45] for a diminishing step size αt = 1/(β˜̀t):

R̃(n)
s [T ] ≤

G2
˜̀

2β˜̀
(log(T − P + 1) + 1) +

1

2αP−1

(
1/β˜̀(By

√
PN +

√
B2
yPN + β˜̀By)

)2

,

(4.13)

where G˜̀, (1 + κΦ)
√
PNBy with κΦ = L/β˜̀.

Next, the results about the dynamic regret are presented. For the n-th subproblem,

the dynamic regret is defined as:

R̃
(n)
d [T ] ,

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
, (4.14)

where ãn[t] is the TIRSO estimate and ã◦n[t] = arg minãn h̃
(n)
t (ãn). It can be easily

shown that the static regret is upper-bounded by the dynamic regret. Attaining a low

dynamic regret is therefore more challenging because the estimator under consideration

is compared with a time-varying reference. This implies that a sublinear dynamic regret

may not be attained if this time-varying reference changes too rapidly, which generally

occurs when the tracked parameters vary too quickly. To this end, the dynamic regret is

commonly upper-bounded in terms of the cumulative distance between two consecutive

instantaneous optimal solutions, known as path length:

W (n)[T ] ,
T∑

t=P+1

‖ã◦n[t]− ã◦n[t− 1]‖2 . (4.15)
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Theorem 5 in [45] presents a bound on the dynamic regret of TIRSO as a function of the

path length under assumptions A1-3:

R̃
(n)
d [T ] ≤ 1

αβ˜̀

(
(1 + L/β˜̀)

√
PNBy + λN

) (
‖ã◦n[P ]‖2 +W (n)[T ]

)
, (4.16)

where α ∈ (0, 1/L] and ‖ã◦n[t]− ã◦n[t− 1]‖2 ≤ σ, ∀ t ≥ P + 1. If the path length W (n)[T ]

is sublinear in T , then the dynamic regret is also sublinear in T . Moreover, the bound on

the dynamic regret is a function of the path length, the parameters of the data, and the

parameters of the algorithm such as initial value of the estimate and the step size.

4.4 Summary of the Chapter

• Two online algorithms are presented in [45] to estimate the VAR-based topologies

under the framework of online learning.

• Sub-linear static regret bounds are established for both the proposed online algo-

rithms. A logarithmic regret bound is also derived for TIRSO.

• A dynamic regret bound is also presented for TIRSO. This means that TIRSO can

track the changes in time-varying topologies. This bound depends on path length,

which characterizes how fast the changes occur in the topologies.

• The proposed algorithms are compared with the current benchmarks and extensive

numerical tests are presented.

• The algorithms are tested over both synthetic data and real data.





Chapter 5

Topology Identification in

Dynamic Structural Equation

Modeling

This chapter summarizes Paper C ([37]).

5.1 Motivation

Spatio-temporal data coming from many complex systems often reflect the dynamics of

an underlying physical, information, or technological network of the underlying observed

systems. Identifying the structure or topology of this network is a well-motivated problem.

This chapter considers the problem of identifying a directed topology of an underlying

network under the framework of structural equation modeling (SEM) [24]. This is a pow-

erful model due to: a) accommodation of the exogenous variables (the variables which are

not influenced by the endogenous variables) in the model, allowing to represent different

possible applications, and b) its tractability. The static SEM model has been used to

investigate the problem of directed topology identification in several applications [52, 68].

However, in many cases, the underlying topology can be time-varying. To this end, dy-

namic SEM can be used [69]. In this chapter, we investigate the estimation of sparse

dynamic SEM based topologies.

5.2 Model and Problem Formulation

The dynamic linear structural equation model (SEM) for a network with N nodes and C

contagions is given by [35]:

ytic =
N∑

j=1,j 6=i

atijy
t
jc + btiixic + etic, (5.1)

where ytic denotes the intensity of the c-th contagion in node i at time t and xic represents

the susceptibility of node i to external influence by contagion c. The coefficients atij are

23
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Figure 5.1: A digram of the dynamic SEM.

the time-varying SEM parameters that encode the topology of the network, btii quantifies

the level of influence of external sources on node i, and eic denotes the measurement errors

and un-modeled dynamics. A pictorial representation of the dynamic SEM for the t-th

time instant is presented in Fig. 5.1.

By defining ytc = [yt1c, . . . , y
t
Nc]
> ∈ R

N , xc = [x1c, . . . , xNc]
> ∈ R

N , Bt = diag(bt) ∈
R
N×N with bt = [bt11, . . . , b

t
NN ]>, and etc = [et1c, . . . , e

t
Nc]
> ∈ R

N , the model in (5.1) can

also be written in a compact form as:

ytc = Atytc +Btxc + etc, c = 1, . . . , C. (5.2)

The matrix At ∈ RN×N can be seen as a time-varying adjacency matrix for a SEM-based

network. Note that At and Bt are the same for all the contagions. The observations

for all contagions can be collected in a matrix by defining Y t = [yt1, . . . ,y
t
C ] ∈ R

N×C ,

X = [x1, . . . ,xC ] ∈ RN×C , and Et = [et1, . . . , e
t
C ] ∈ RN×C . The dynamic SEM takes the

following form:

Y t = AtY t +BtX +Et. (5.3)

The goal is to track the time-varying SEM-based topologies. The problem statement

is: given the observations {Y t}Tt=1 and X, find {At}Tt=1 and {Bt}Tt=1. We formulate the

estimation problem as

{Â
t
, B̂

t
} = arg min

A,B
ft(A,B) + Ω(A) (5.4a)

s.t. aii = 0,∀i (5.4b)

bij = 0,∀i 6= j. (5.4c)

The first term in the above criterion is a data-fitting function while the second term is

a sparsity-promoting regularization term. The constraints ensure that a valid A and
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B are estimated. Specifically, the constraint aii = 0 eliminates any component of the

trivial solution A = I. The constraint bij = 0 guarantees a diagonal B, meaning

that external sources for a certain node i do not affect any other node j 6= i. Follow-

ing [35], we consider the exponentially-weighted least-squares criterion, i.e., ft(A,B) ,
1
2

∑t
τ=1 γ

t−τ ‖Y τ −AY τ −BX‖2
F and the regularizer Ω(A) , λ ‖vec(A)‖1 . The param-

eter γ ∈ (0, 1] is a forgetting factor that regulates how much past information influences

the solution at time t, and λ is the sparsity-promoting regularization parameter.

5.3 The Proposed Algorithm and its Dynamic Regret

Analysis

The work in [37] proposes an online algorithm to track the time-varying SEM-based sparse

topologies. An exponentially-weighted least-square data-fitting function is considered

along with a regularization term to enforce sparse topologies. The resulting problem is

solved by proposing an online algorithm based on proximal online gradient descent under

the framework of online convex optimization. The proximal online gradient algorithm in

[70] is adopted to solve (5.4) leveraging the separability of the problem. The proposed

algorithm is tabulated in Algorithm 3.

Algorithm 3 Online algorithm for tracking dynamic SEM-based Topologies

Input: γ, λ, α ∈ (0, 1/Lf ], {Y t}Tt=1,X

Output: {A[t]}Tt=1, {B[t]}Tt=1

Initialization:

vi[1] = 0N×1,Φ
0
Zi

= 0N×N , r
0
i = 0N×1, i = 1, . . . , N

1: for t = 1, 2, . . . , T do

2: Receive data Y t

3: for i = 1, 2, . . . , N do

4: Zt
i = [(Y t

−i)
> (x>i )>]>

5: Φt
Zi

= γΦt−1
Zi

+Zi(Zi)
>

6: rti = γ rt−1
i +Zt

i (y
t>
i )>

7: ∇vif
i
t (vi[t]) = Φt

Zi
vi[t]− rti

8: vf
i[t] = vi[t]− α∇vif

i
t (vi[t])

9: vi[t+ 1] = proxαΩi
(
vf
i[t]
)

10: end for

11: Form A[t] and B[t] from vi[t], i = 1, ..., N

12: end for

To characterize the tracking performance of the proposed online algorithm, we analyze

its dynamic regret [56]. It is established in Theorem 1 of [37] that the dynamic regret is

a function of the path length and parameters of data and algorithm. If the path length

is sublinear, the upper bound on the dynamic regret becomes sublinear.

The numerical results presented in the paper show that the proposed algorithm can

track the changes in the time-varying SEM-based topologies. Two different models are
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shown to characterize the variations in the topologies. Specifically, the normalized mean

squared error (NMSE) and the dynamic regret of the proposed algorithm is analyzed for

a smooth-transition model and a non-smooth transition model.

5.4 Summary of the Chapter

• Tracking dynamic SEM-based topologies for streaming data is an important and a

well-motivated problem.

• Our paper [37] proposes an online algorithm to estimate the time-varying topologies

in dynamic environments.

• A dynamic regret analysis for the proposed algorithm is presented in [37]. A bound

on the dynamic regret is derived. This bound depends on parameters related to the

data, the algorithm, and the path length.

• Numerical results are presented that show that the proposed online algorithm can

track the time-varying topologies in the case of streaming data.





Chapter 6

Dynamic Topology and

Breakpoint Identification in

Non-stationary Vector

Autoregressive Processes

This chapter summarizes Paper D ([47]).

6.1 Motivation

To deal with time-varying topologies, graphical models [38, 39, 14, 34] or structural

equation models [26, 40] can be used. However, the above models only capture mem-

oryless interactions, which limits their applicability to many real-world scenarios. To

this end, topology inference from multiple time series is usually addressed via vector

autoregressive (VAR) models [43]. To cope with non-stationarity, VAR coefficients are

assumed to evolve smoothly over time [71, 72, 73, 45], to vary according to a hidden

Markov model [74], or to remain constant over time intervals separated by structural

breakpoints [75, 76, 77, 78, 79, 42, 80]. However, these methods cannot handle rapid

variations in the topology. To this end, we propose an algorithm in [47] that can detect

breakpoints for VAR-based topologies.

6.2 Dynamic Topology Identification

A customary model for multivariate time series generated by non-stationary dynamic

systems is the so-called P -th order TVAR model [43, Ch. 1]:

y[t] =
P∑
p=1

A(t)
p y[t− p] + ut, (6.1)

27
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Algorithm 4 ADMM solver for dynamic network identification

Input: λ, γ, data {yt}Tt=1

Output: matrix B containing VAR coefficients

1: for k = 1, . . . until convergence do

2: Update Bt via (D.9a)

3: for t ∈ [L+ 1, T ] do

4: for (i, j) ∈ [1, P ]2 do

5: Update cij,t, θij,t−1 via (D.9b,D.9c)

6: end for

7: end for

8: Update U,V via (D.9d,D.9e)

9: end for

where the matrix entries {a(`)
ij,t}i,j∈[1,P ],t∈[1,T ] are the model coefficients and ui,t form the

innovation process. Throughout, the notation [m,n] with m and n integers satisfying

m ≤ n will stand for {m,m+ 1, . . . , n}. A time-invariant VAR model is a special case of

(6.1) where a
(`)
ij,t = a

(`)
ij,t′ ∀(t, t′).

An insightful interpretation of time-varying VAR models stems from expressing (6.1)

as

yi,t =
∑L

`=1

∑P
j=1 a

(`)
ij,tyj,t−` + ui,t (6.2a)

=
P∑
j=1

[yj,t−1, yj,t−2, . . . , yj,t−L] aij,t + ui,t (6.2b)

where aij,t := [a
(1)
ij,t, a

(2)
ij,t, . . . , a

(L)
ij,t ]
>. From (6.2a), the i-th sequence {yi,t}Tt=1 equals the

innovation plus the sum of all sequences {{yp,t}Tt=1}Pp=1 after being filtered with a linear

time-varying (LTV) filter with coefficients {a(l)
ij,t}Ll=1.

As described in the introduction of this Dissertation, interactions between time series

are generally indirect (unmediated), which translates into many of these LTV filters be-

ing identically zero. To mathematically capture this interaction pattern, previous works

consider the notion of graph associated with a time-invariant VAR process (see e.g. [66]),

which is generalized next to time-varying VAR models (6.1). To this end, identify the

i-th time series with the i-th vertex (or node) in the vertex set V := [1, P ] and define

the time-varying edge set as Et := {(i, j) ∈ V × V : aij,t 6= 0}. Thus, each edge of this

time-varying graph can be thought of as an LTV filter, as depicted in Fig. 6.1.

The main goal of this paper is to estimate {{A(t)
p }Pp=1}Tt=P+1 given {y[t]}Tt=1. To cope

with the issue of identifiability, we impose certain structure usually found in real-world

dynamic systems. The proposed estimation criterion is given by

min
{A(t)

p }

T∑
t=L+1

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p y[t− p]

∥∥∥∥∥
2

2

(6.3)

+
∑
(i,j)

(
λ

T∑
t=P+1

‖aij,t‖2 + γ

T∑
t=P+2

‖aij,t − aij,t−1‖2

)
.
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Figure 6.1: Graph associated with a TVAR model.

The regularization parameters λ > 0 and γ > 0 can be selected through cross-validation to

balance the relative weight of data and prior information. The first regularizer is a group-

lasso penalty that promotes edge sparsity. This corresponds to the intuitive notion that

most interactions in a complex network are indirect and therefore nodes are connected

only with a small fraction of other nodes. This regularizer generalizes the one in [66] to

time-varying graphs.

The second regularizer promotes estimates where the edges remain constant over time

except for a relatively small number of time instants Ti,j := {t : a
(p)
ij,t 6= a

(p)
ij,t−1 for some

p} denoted as local breakpoints. This variant of total-variation regularizer, together with

the notion of local breakpoints, constitutes one of the major novelties of this work and

contrasts with the notion of structural (or global) breakpoints, defined as T := {t :

A
(t)
p 6= A

(t−1)
p for some p} and adopted in the literature [79, 42, 75, 76, 78]. These

works promote solutions with few global breakpoints, and therefore all the edges estimates

change simultaneously at the same time for all nodes. In contrast, this work advocates

promoting solutions with a few local breakpoints, since it is expected that changes in the

underlying dynamic system take place locally.

In practice, the time series are expected to evolve at a faster time scale than the

underlying system that generates them. The sampling rate needs to be increased if this

does not hold. Therefore, it is beneficial to assume that A
(t)
p remain constant within

a certain window since this would decrease the number of coefficients to estimate and

therefore would improve estimation performance.

Next, an ADMM based algorithm is proposed to solve (6.3). The algorithm is detailed

here in Algorithm 4. The numerical results in the paper show that the algorithm can
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detect the local breakpoint more accurately as compared to a competing algorithm.

6.3 Summary of the Chapter

• The problem of breakpoint detection is considered in non-stationary VAR-based

topology identification.

• For piece-wise stationary VAR-based topologies, the concept of local break-point is

introduced, motivated by the fact that only a few edges of the dynamic topology

can change.

• A low computational complexity algorithm is proposed, which can detect local

breakpoint and can identify sparse topologies.

• Numerical test based on synthetic data demonstrate that the proposed algorithm

outperforms the existing competing state-of-the-art methods.





Chapter 7

Online Joint Topology

Identification and Signal

Estimation with Inexact

Proximal Online Gradient

Descent

This chapter summarizes Paper E ([48]).

7.1 Introduction

In the previous chapters, we have discussed the problem of topology identification prob-

lems in the settings where the data has no missing values. However, in many scenarios,

we have noisy observations with missing values [81]. For instance, the missing values may

occur due to faulty sensors in sensor networks or due to burst sensing with some periods

where sensors take measurements and other periods where there are no measurements [82].

In social networks, the users may be reluctant to share certain information. The source of

the observation noise may be due to the accuracy of sensors. A simplified diagram with

missing values is presented in Fig. 7.1.

A batch approach to the problem of undirected topology identification under an in-

complete data scenario is considered in [83]. For directed graphs, the works in [84] and

[85] address the batch estimation of the VAR parameters in the presence of missing and

noisy data. In online approaches, online time series prediction for missing data is con-

sidered in [86]. A similar problem is presented in [87]. However, these works adopt a

one-dimensional autoregressive (AR) process. An approach to jointly estimate the signal

and topology with missing data is presented in [88]. Different batch and online algorithms

are proposed. However, the proposed online algorithm is not supported by convergence

guarantees for online scenarios such as the dynamic regret analysis.
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Figure 7.1: A simplified network with missing values in time series. The red dots repre-

sents the missing values in the time series.

To address the problem of topology of identification in time-varying scenarios with

missing data, we propose two novel online algorithms, i.e., Joint Signal and Topology

Identification via Recursive Sparse Online optimization (JSTIRSO) and Joint Signal and

Topology Identification via Sparse Online optimization (JSTISO) in [48]. To analyze the-

oretically the tracking performance of JSTIRSO time-varying topology settings, a bound

on the dynamic regret is derived.

7.2 Problem Formulation

A time-varying model given in (6.1) is used in this work. In order to provide the opti-

mization framework, let us first consider the batch version of the optimization problem.

The problem statement in the case of batch estimation is: given the observations y[t],

t = 0, . . . , T − 1 and the VAR process order P , find the time-varying VAR coefficients

{{A(t)
p }Pp=1}T−1

t=P such that it yield sparse topology at each time instant. To formulate the

problem of estimating the causality graphs with missing values and noise in the observa-

tion vector, consider a subset of V where the signal is observed, given by Mt ⊆ V . The

(random) pattern of missing values is collected in the N -by-N diagonal matrix Mt where

Mnn[t], n = 1, . . . , N , are i.i.d. Bernoulli random variables taking value 1 with probability

ρ and zero with probability 1− ρ. Mt is a diagonal matrix with the n-th diagonal entry

being zero whenever the value at the n-th node is missing, otherwise one. Let ỹ[t] be the

observation obtained at time t, given by

ỹ[t] = Mty[t] +Mtε[t], (7.1)

where ε[t] is the observation noise vector. In the batch setting, the problem of estimating

time-varying topologies with missing values is: given the noisy observations {ỹ[t]}T−1
t=0

with missing values and the VAR process order P , find the coefficients {{Â(t)
p }Pp=1}T−1

t=P

such that it yield a sparse topology. However, it is easier to estimate the topology from

the observation vector directly if the missing values are reconstructed (imputed), and the

topology (VAR parameters) helps in such reconstruction. Thus, a natural approach is to

jointly estimate the signal and the topology.

In batch setting, a common approach is to solve the following problem which includes
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joint estimation of the signal and the VAR coefficients:

{
ŷ[t],

{
Â

(t)

p

}P
p=1

}T−1

t=P

= arg min{
y[t],{A(t)

p }Pp=1

}T−1

t=P

1

2

T−1∑
t=P

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p y[t− p]

∥∥∥∥∥
2

2

+
ν

2|Mt|

T−1∑
t=P

‖ỹ[t]−Mty[t]‖2
2+λ

T−1∑
t=P

N∑
n=1

N∑
n′=1

1{n′ 6= n}
∥∥a(t)

n,n′

∥∥
2
+β

T−1∑
t=P

P∑
p=1

‖A(t)
p −A(t−1)

p ‖2
F,

(7.2)

where the first term is a least-squares (LS) fitting error for all time instants (where the t-th

term in the summation fits the signal based on the P previous observations and the VAR

coefficients at time t), the second term penalizes the mismatch between the observation

vector and the reconstructed signal (recall that |Mt| is the number of nodes where the

signal is observed), the third term is a regularization function that promotes sparsity in

the edges, and the fourth term limits the variations in the coefficients. The parameter

ν > 0 is a constant to control the trade-off between the prediction error based on the VAR

coefficients and the mismatch between the measured samples and the signal reported after

the reconstruction. The parameter λ controls the sparsity in the edges while β controls

the magnitude of the cumulative norm of the difference between consecutive coefficients.

The resulting problem in (7.2) is (separately) convex in {y[t]}T−1
t=P and in {{A(t)

p }Pp=1}T−1
t=P },

but not jointly convex. The problem in (7.2) can be solved via alternating minimization.

Each problem in alternating minimization can be solved via proximal gradient descent.

7.3 Proposed Online Solutions

The batch formulation in (7.2) uses information from all time instants to produce a

sequence of reconstructed signal values and VAR parameter (topology) estimates. On

the other hand, an online formulation should allow us to produce such a sequence with

minimum delay and with fixed complexity (at the price of lower accuracy). Specifically,

here we are interested in an algorithm that, at each time instant t, produces an estimate

of y[t] and{A(t)
p }Pp=1 as soon as the partial observation ˜y[t] is received.

The problem of estimating time-varying topology with missing data in the online

setting is posed as follows: at each time instant t, given the noisy observations ỹ[t] with

missing values, the previous estimate {Â(t)
p }Pp=1, and the VAR process order P , find the

coefficients {Â(t+1)
p }Pp=1 such that it yields a sparse topology. However, as opposed to

the approaches in the previous Chapters, we cannot only estimate the topology from the

observation vector directly since it may have missing values. A natural approach is to

jointly estimate signal and the topology.

To this end, we design an online criterion such that its sum over time matches the
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batch objective in (7.2). Consider the following dynamic cost function:

ct

(
{y[τ ]}tτ=t−P ,

{
A(t)
p ,A

(t−1)
p

}P
p=1

)
, `t

(
{y[τ ]}tτ=t−P ,

{
A(t)
p

}P
p=1

)
+ Ω

({
A(t)
p

}P
p=1

)
+ β

T−1∑
t=P

P∑
p=1

‖A(t)
p −A(t−1)

p ‖2
F, (7.3)

where

`t

(
{y[τ ]}tτ=t−P ,

{
A(t)
p

}P
p=1

)
,

1

2

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p y[t− p]

∥∥∥∥∥
2

2

+
ν

2|Mt|
‖ỹ[t]−Mty[t]‖2

2 ,

(7.4)

and

Ω
({
A(t)
p

}P
p=1

)
, λ

N∑
n=1

N∑
n′=1

1{n′ 6= n}
∥∥a(t)

n,n′

∥∥
2
, (7.5)

where a
(t)
n,n′ has the same structure of an,n′ with time-varying VAR parameters. With these

definitions, the objective function in (7.2) can be rewritten as
∑

t ct(. . . ). It becomes clear

that producing an estimate of y[t] and {A(t)
p }Pp=1 does not only have an impact on ct(·),

but also on {cτ (·)}t+Pτ=t . Such a coupling in time is taken into account in the framework of

dynamic programming (or reinforcement learning), where the goal is to find a policy π of

the form

π : RPN × R
N2P × R

N × R
N2 → R

N × R
N2P

π

(
{ŷ[τ ]}t−1

τ=t−P ,
{
Â(t−1)
p

}P
p=1

, ỹ[t],Mt

)
 ŷ[t],

{
Â(t)
p

}P
p=1

(7.6)

such that the cumulative cost is minimized in expectation. Learning such a policy (via,

e.g., deep reinforcement learning) would require a high amount of computation, and it is

out of the scope of the present work. Instead, we propose to approximate such a policy

using the much more tractable framework of online convex optimization. Fortunately

enough, the structure of (7.3) resembles that of the composite problems that can be

efficiently dealt with via proximal online gradient descent (OGD). In the next paragraph,

we will explain the approximations we take in order to be able to apply a variant of

proximal OGD to the online problem at hand.

Our approach consists in treating, at time t, the P previous reconstructed samples,

{ŷ[τ ]}t−1
τ=t−P , as random variables. Although those variables are dependent of the esti-

mated VAR parameters, we adopt the simplifying approximation of assuming that they

are independent. After doing so, the deterministic function ct(·) is replaced with a random

function

Ct

(
y[t],

{
A(t)
p

}P
p=1

)
= `t

(
{ŷ[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
+ Ω

({
A(t)
p

}P
p=1

)
+ β

P∑
p=1

‖A(t)
p − Â

(t−1)

p ‖2
F, (7.7)

which is jointly convex in its arguments. Notice that, if {ŷ[τ ]}t−1
τ=t−P and ỹ[t] were equal to

the true (unobservable) signals {y[τ ]}tτ=t−P , this setting would be the same that is dealt
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with in [45], by direct application of proximal OGD. Since the aforementioned signal

estimates are inexact versions of the true signals, in the present work we will use the

inexact proximal OGD framework discussed in [70] to analyze the regret of the resulting

algorithm.

Before proceeding to the formulation of the online algorithm, one more remark is

in order. Notice that the cost function has as inputs the signal estimate and the VAR

parameters. It is assumed that the VAR parameters change smoothly with time, but we

cannot assume that the signals vary smoothly with time. Recall that in each proximal

OGD iteration, a minimization is solved involving a first-order approximation of the loss

`t, the (non-linearized) regularizer Ω, and a proximal term that ensures that the variable

estimated at time t is close in norm to its previous estimate at time t− 1. This proximal

term should involve {A(t)
p }Pp=1, but not y[t].

Fortunately, the joint optimization over {A(t)
p }Pp=1 and y[t] can be reformulated into

an optimization only over {A(t)
p }Pp=1 as follows. Since Ct is jointly convex in both of its

arguments, minimizing it can be split into first minimizing over y and then over {A(t)
p }Pp=1.

Then, we can write

Lt
({
A(t)
p

}P
p=1

)
, min

y[t]
`t

(
{ĝ[t],y[t],

{
A(t)
p

}P
p=1

)
, (7.8)

where ĝ[t] , vec([ŷ[t−1], . . . , ŷ[t−P ]]>), and the minimization can be solved analytically.

Once a closed form is available for L, a composite objective online optimization algorithm

(specifically proximal OGD) can be applied.

The signal reconstruction problem is solved as follows: Given the current data vector

ỹ[t], the masking matrix Mt, the estimates of the previous P data vectors {ŷ[t− p]}Pp=1,

and the VAR coefficients estimated at the previous time-instant {Â(t)

p }Pp=1, the problem

of estimating the signal y[t] becomes [88] :

ŷ[t] = arg min
y[t]

1

2

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p ŷ[t− p]

∥∥∥∥∥
2

2

+
ν

2|Mt|
‖ỹ[t]−Mty[t]‖2

2 , (7.9)

which is solved in closed-form by computing the gradient of its cost function with respect

to y[t] and setting it to zero. The resulting solution for n-th value of y[t]is given by:

ŷn[t] = (1− Un[t]) ĝ[t]>an[t] + Un[t]ỹn[t], (7.10)

where

Un[t] ,
νMnn[t]

|Mt|+ νMnn[t]
. (7.11)

Observe that Un[t] is zeros when yn[t] is missing, otherwise Un[t] is ν/(|Mt| + ν). When

yn[t] is present, Un[t] is always less than 1. The overall computational complexity for

estimating ŷ[t] is O(N2P ). This complexity can be reduced depending on the sparse

structure of {an[t]}Nn=1. If, for instance, the number of edges is O(N), then the computa-

tional complexity for estimating ŷ[t] becomes O(NP ) per t.

The loss function in (7.8) is derived in closed-form by substituting the solution from

(7.10). Once the loss function is computed, we can apply inexact proximal OGD since
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due to noisy observations with missing values, the loss function is inexact and so is the

gradient. The proposed JSTISO algorithm is detailed in Algorithm 13 in [48].

The loss function in JSTISO is an instantaneous loss, i.e., based only on the current

sample. While this keeps the complexity of the iterations very low, and may be sufficient

for online estimation of a static VAR model, it is sensitive to noise and input variability,

and thus it is expected to perform poorly when attempting at tracking a time-varying

model. In [45], a running average loss function is designed drawing inspiration from the

relation between least mean squares (LMS) and recursive least squares (RLS) to improve

the tracking capabilities of the algorithm that is derived based on an instantaneous loss

function. In this work, we follow similar steps to propose a second approach, where

a running average loss function is adopted, which depends on the past received signal

values. In this second approach, we set the loss function as

˜̀
t

(
{ŷ[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
=

1

2

(∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p ŷ[t− p]

∥∥∥∥∥
2

2

+
t−1∑
τ=P

γt−τ

∥∥∥∥∥ŷ[τ ]−
P∑
p=1

A(t)
p ŷ[τ − p]

∥∥∥∥∥
2

2

)
+

ν

2|Mt|
‖ỹ[t]−Mty[t]‖2

2 , (7.12)

where γ is a user-selected forgetting factor which controls the weight of past (recon-

structed) samples of y[t] . The procedure in the previous section (treating the previously

reconstructed samples as a random variable, and minimizing over y[t]) is applied to the

alternative deterministic loss ˜̀
t, so we can write the random loss function L̃t as

L̃t
({
A(t)
p

}P
p=1

)
, min

y[t]

˜̀
t

(
{ŷ[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
. (7.13)

Next, we follow the same steps as in the previous case for the signal reconstruction.

It turns out that the signal reconstruction in this case coincides with the reconstruction

problem in (7.9). Therefore, to derive the closed-form solution for the loss function, we

substitute the solution of ŷ[t] given by (7.10) into (7.13). Next, inexact proximal OGD is

adopted to derive JSTIRSO, tabulated in Algorithm 5.

7.4 Dynamic Regret Analysis

The dynamic regret analysis is presented for the proposed algorithm JSTIRSO. In The-

orem 7 of [48], the following bound on the dynamic regret is derived for the proposed

algorithm:

R̃
(n)
d [T ] ≤ O

(
1 +W (n)[T ] + E(n)[T ]

)
, (7.14)

where

E(n)[T ] ,
T∑
t=P

[
‖e(n)[t]‖2

]
. (7.15)

The dynamic regret is a function the path length and the cumulative error in the gradient.

If these two are sublinear, then the dynamic regret becomes sublinear.
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Algorithm 5 Tracking time-varying topologies with missing data via JSTIRSO

Input: ν, γ, P, λ, σ2, α, {ŷ[τ ]}P−1
τ=0

Output: {ãn[t]}Nn=1

Initialization: ãn[P ] = 0, n = 1, . . . , N, Φ̂[P − 1] = σ2I,

r̂n[t] = 0, n = 1, . . . , N

1: for t = P, P + 1, . . . do

2: Receive noisy data vector with missing values ỹ[t]

3: ĝ[t] = vec
([
ŷ[t− 1], . . . , ŷ[t− P ]

]>)
4: Φ̂[t] = γ Φ̂[t− 1] + ĝ[t]ĝ>[t]

5: for n = 1, . . . , N do

6: Compute ŷn[t] from ỹn[t] via (7.10)

7: r̂n[t] = γ r̂n[t− 1] + ỹn[t] ĝ[t]

8: Un[t] = νMnn[t]
|Mt|+νMnn[t]

9: v̂n[t] = Un[t]
(
ĝ[t]ĝ>[t]ãn[t]− ỹn[t]ĝ[t]

)
+ Φ̂[t− 1]ãn[t]− r̂n[t− 1]

10: for n′ = 1, 2, . . . , N do

11: ãf
n,n′ [t] = ãn,n′ [t]− αv̂n,n′ [t]

12: ãn,n′ [t+ 1] = ãf
n,n′ [t]

[
1− αλ 1{n6=n′}
‖ãf

n,n′ [t]‖2

]
+

13: end for

14: ãn[t+ 1] =
[
ã>n,1[t+ 1], . . . , ã>n,N [t+ 1]

]>
15: end for

16: Output {ãn[t+ 1]}Nn=1

17: end for
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7.5 Summary of the Chapter

• This chapter summarizes [48], where the problem of online tracking time-varying

topologies with missing data is considered.

• Two online algorithms are proposed in [48], where the problem is solved via a joint

signal and topology estimation approach. At each step of the online algorithms,

the signal is estimated from the noisy observations with missing values. Then, the

time-varying topology is estimated. The resulting algorithms are called JSTISO and

JSTIRSO.

• The dynamic regret bound for the JSTIRSO is derived. The bound is a function of

the path length, error in the gradient, parameters of the data, and parameters of

the algorithm.

• Simulations results show that both the proposed algorithms can track the changes

in time-varying topologies in the presence of missing values in the data.





Chapter 8

Concluding Remarks

8.1 Conclusions

This dissertation addresses the problem of topology identification using online machine

learning algorithms. Different practical settings for topology identification are envisaged

under different models and online problems of topology estimation are formulated. To

solve these problems, various online approaches are proposed and their performance is

evaluated theoretically by deriving convergence guarantees and numerically by simulation

tests in this dissertation. Mainly time-varying environments, where the data is sequen-

tially available, are studied and online algorithms under the framework of online convex

optimization are proposed. The bounds on the static and the dynamic regret of the

proposed algorithms are derived. The following are the some of the worth-mentioning

conclusions of this dissertation:

• Online algorithms for sparse topology identification are proposed for static settings

when the data is coming sequentially. The numerical results confirm that the pro-

posed algorithms converges to the batch solution.

• When the underlying topologies are static or slowly time-varying and the data is

coming is a streaming fashion, two algorithms namely TISO and TIRSO under the

framework of online optimization are proposed to identify the sparse topologies in

an online fashion. Regret analysis is presented for both the algorithms. First, both

the algorithms are proved to incur sublinear regret. Second, due to the strongly

convex loss function considered in TIRSO, a logarithmic regret bound is derived.

Finally, it is shown that TIRSO can also work in time-varying scenarios by deriving

the dynamic regret bound, which depends on path length and the parameters of the

data and the algorithm.

• To address the problem of tracking SEM-based topologies, an online algorithm for

tracking the time-varying SEM-based sparse topologies is proposed. The perfor-

mance guarantee in the form of dynamic regret is presented. Specifically, a dynamic

regret bound for the proposed algorithm is derived.

• When the topologies are sparse and time-varying and the variations are not smooth,

39
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all the edges of the graph may not change at once, therefore a concept of local

structural breakpoint is introduced. An algorithm is proposed which is capable of

detecting the breakpoint as well as the weights of the edges.

• The problem of dynamic topology identification in streaming signals when the noisy

observations contain missing values is studied. Online algorithms, i.e., JSTISO and

JSTIRSO are proposed for the problem. The dynamic regret bound for JSTIRSO

is derived. The regret bound is a function of the parameters of the data, the path

length, the error in the gradient, and the parameters of the algorithm such initial

estimates and the step size.

8.2 Future Work

A number of different problems and settings have been considered in this dissertation.

There are various directions to extend the work in this dissertation. Among them, the

following are some of the possible potential future work directions:

• Nonlinear models for online topology identification preferably with constant memory

and constant computational complexity can be a possible future research direction

for this work.

• Considering other time-varying VAR models explicitly modeling the variations in

the VAR coefficients, possibly along the lines of [89, 90, 91] and deriving the online

algorithms can be a potential extension of this work.

• An interesting future work direction is to study the problem of identifying topologies

whose adjacency matrix has a low-rank plus sparse structure along the lines of [92]

to account for clusters in the nodes.

• The proposed algorithm in [47] is a batch method. Although challenging but a

potential extension would be to derive an online algorithm to detect the breakpoints

when the data is streaming.

• The algorithms in this dissertation are centralized. A possible extension would be to

consider the problem of topology identification under the framework of distributed

time-varying online optimization, e.g., along the lines of [93].

• Hyper-parameter tuning is a challenge in online settings. Hyper-parameter free

online learning based approaches for topology identification can be studied along

the lines of e.g., [94], [95].

• There are some works based on deep learning in the area of forecasting time series.

A possible future work is to consider applying deep learning approaches to predict

the time series similar to [96].
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Online Topology Estimation for Vector Autoregressive

Processes in Data Networks

Bakht Zaman, Luis M. Lopez-Ramos, Daniel Romero, and Baltasar Beferull-Lozano

Abstract— An important problem in data sciences pertains to inferring causal

interactions among a collection of time series. Upon modeling these as a vec-

tor autoregressive (VAR) process, this paper deals with estimating the model

parameters to identify the underlying causality graph. To exploit the sparse

connectivity of causality graphs, the proposed estimators minimize a group-

Lasso regularized functional. To cope with real-time applications, big data

setups, and possibly time-varying topologies, two online algorithms are pre-

sented to recover the sparse coefficients when observations are received se-

quentially. The proposed algorithms are inspired by the classic recursive least

squares (RLS) algorithm and offer complementary benefits in terms of com-

putational efficiency. Numerical results showcase the merits of the proposed

schemes in both estimation and prediction tasks.

A.1 Introduction

Network data analysis emerges naturally in a plethora of applications such as wireless

sensor networks, transportation, social, and biological networks, to name a few. A promi-

nent task in this context is inferring graphs that provide the causal relations among a

collection of time series such as those encountered in econometrics and sensor data anal-

ysis. Identifying these causal interactions is a central problem in many disciplines such

as neuroscience, econometrics, bio-informatics, meteorology. Revealing these interactions

facilitates tasks such as prediction of time series and data completion.

The problem of inferring graphs capturing dependencies among variables has recently

received a great attention in the literature. The simplest approach is to place an edge

between two vertices if the sample correlation between the associated variables exceeds a

threshold [13]. However, such an approach cannot distinguish mediated from unmediated

interactions, thus motivating the methods of partial correlations [13], [14]. Since these

methods are still unable to determine directionality in the dependencies, Granger proposed

a means to infer the direction of causation by building upon the principle that the cause

precedes the effect [28]. An alternative notion of interaction is adopted in the literature of

structural equation models by incorporating the influence of exogenous variables; see e.g.

[25],[26] and references therein. Unfortunately, these models do not generally capture the

temporal structure present in time series. Further approaches for topology identification

include [29, 30, 31] though their batch nature cannot track temporal changes in the

topology.

The goal of this paper is to track the temporal dynamics of causal relations among

time series associated with different variables. To this end, the framework of vector

autoregressive (VAR) processes is invoked. These processes are extensively adopted to

model linear dependencies among time series [43]. In a P -th order VAR model, the





PAPER A

current data are a noisy superposition of the data at the P previous time instants. The

parameters of the VAR model reveal the topology of the causality graph, which motivates

their estimation. An estimator based on minimizing a convex criterion regularized by a

group-Lasso penalty is presented in [66] to estimate VAR parameters and hence the graph

topology. This approach relies on the assumption that the connectivity is sparse, in the

sense that the number of edges is small.

When the samples of the time series become available one by one, or when the size of

the data challenges the available processing and memory capabilities, online estimation of

the model parameters offers a great advantage compared to batch approaches as presented

in [97], [98]. Online estimation is also advantageous when the data model is time-varying.

Some authors have addressed estimation of time-varying AR models [89, 90, 91]. However,

to the best of our knowledge, no online approach for tracking VAR parameters, and thus

the associated network topology, has been considered in the literature.

This paper proposes two online estimators for the parameters of a VAR signal model

to track the topology of the causality graph. Sparse estimates, where each time series

is influenced by a small number of other time series, are enforced by means of a group-

Lasso regularized objective in [66]. The first algorithm applies the approximate recursive

least squares (RLS) approach in [99], whereas the second solves an optimization problem

at each time instant by means of block coordinate descent (BCD). The complexity of

these algorithms grows at different rates with the problem size (P and the number of

time series), so that their benefits are complementary depending on the specific problem

setting.

The contribution of this paper is twofold:

• Online estimation of the group-sparse parameters of VAR process by means of two

algorithms with different orders of computational complexity.

• A performance comparison of the different approaches through numerical simula-

tions.

The remainder of this paper is structured as follows: Section A.2 introduces the model

and formulates the problem, and the proposed algorithms are presented in Section B.2.2.

Section A.4 provides numerical tests and wraps up the paper.

A.2 Model and problem formulation

Consider a collection of N time series, where fn[t], t = 0, 1, . . . , T − 1, denotes the value

of the n-th time series at time t. The goal is to determine a directed graph G , (V ,E ),

where V = {1, . . . , N} is the vertex set and E ⊂ V × V is the edge set capturing the

causation relations among time series. Specifically, (n, n′) ∈ E iff fn′ [t] causes fn[t + τ ]

for some τ ∈ [1, P ]. To this end, the VAR model is adopted, which prescribes that

f [t] , [f1[t], . . . , fN [t]]> = u[t] +
P∑
p=1

Apf [t− p], (A.1)
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where u[t] ,
[
u1[t], u2[t], ..., uN [t]

]>
denotes noise and Ap ∈ RN×N , p = 1, . . . , P , are the

VAR parameters. From this expression, it follows that

fn[t] = un[t] +
N∑

n′=1

P∑
p=1

a
(p)
n,n′fn′ [t− p], n = 1...N. (A.2)

Then, if fn′ [t] does not cause fn[t+ τ ] for any τ ∈ [1, P ], it holds that a
(p)
n,n′ = 0 ∀p, where

a
(p)
n,n′ stands for the (n, n′)-th entry of Ap. This implies that (A.2) can be equivalently

expressed as

fn[t] = un[t] +
∑

n′:(n,n′)∈E

P∑
p=1

a
(p)
n,n′fn′ [t− p], n = 1 . . . N. (A.3)

Therefore, one can trivially obtain E , and consequently G, if {Ap}Pp=1 are known. From

(E.2), it follows that fn[t] is the result of filtering the neighboring time series through a

linear time-invariant (LTI) filter and adding these filtered signals together with noise. One

can therefore interpret a sparse VAR model in terms of a graph whose edges correspond

to an LTI filter between the adjacent vertices. The problem of topology identification

reduces therefore to estimating {Ap}Pp=1 given {f [t]}T−1
t=0 .

A.3 Online topology identification

After presenting the estimation criterion in Sec. A.3.0.1, this section describes the pro-

posed algorithms in Secs. A.3.1 and A.3.2.

A.3.0.1 Estimation criterion

A natural approach to estimate {Ap}Pp=1 is to minimize the following objective:

arg min
{Ap}Pp=1

L
(
{Ap}Pp=1

)
+ λ

N∑
n=1

N∑
n′=1
n′ 6=n

1

{ P∑
p=1

|a(p)
n,n′ |

}
, (A.4)

where L(·) is given by

L
(
{Ap}Pp=1

)
,

T−1∑
τ=P

∥∥∥∥∥f [τ ]−
P∑
p=1

Apf [τ − p]

∥∥∥∥∥
2

2

=
N∑
n=1

T−1∑
τ=P

(
fn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′fn′ [τ − p]

)2

and it is a quadratic empirical loss function promoting data fit; and 1 is an indicator

function satisfying 1{x} = 0 if x = 0 and 1{x} = 1 if x 6= 0. The second term in

(A.4) equals the cardinality of E , i.e., the number of edges, times the regularization

parameter λ > 0; and therefore promotes a group-sparse structure in {Ap}Pp=1 to exploit

thus the prior information that the number of edges in E is small. Self-connections are
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not regularized. The parameter λ controls the tradeoff between the data fit and sparsity,

and can be adjusted e.g. via cross-validation [11].

For notational convenience, let us introduce the variables an,n′ , [a
(1)
n,n′ , a

(2)
n,n′ , ..., a

(P )
n,n′ ]

> ∈
R
P , an , [a>n,1,a

>
n,2, ...,a

>
n,N ]> ∈ RNP , as well as

g[τ ] , vec
([
f [τ − 1], . . . ,f [τ − P ]

]>) ∈ RNP . (A.5)

Then, L
(
{Ap}Pp=1

)
can be expressed as

∑N
n=1 L(n)(an), where

L(n)(an) ,
T∑

τ=P

(
fn[τ ]− g>[τ ]an

)2
. (A.6)

With this notation, (A.4) can be expressed as

{ân}Nn=1 = arg min
{an}Nn=1

N∑
n=1

[
L(n)(an) + λ

N∑
n′=1
n′ 6=n

1{‖an,n′‖2}
]
.

Since the above problem is non-convex, [66] proposed recovering sparse coefficients by

minimizing the following group-Lasso regularized functional

{ân}Nn=1 = arg min
{an}Nn=1

N∑
n=1

[
L(n)(an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2

]
(A.7)

which clearly separates across an as

ân = arg min
an

L(n)(an) + λ
N∑

n′=1
n′ 6=n

‖an,n′‖2 . (A.8)

The batch estimation criterion in (A.8) requires all data {f [t]}T−1
t=0 before an estimate

can be obtained. The rest of this section proposes an online criterion that provides an

estimate per each time-slot when new data is received, and furthermore enables tracking

topology changes. To this end, the objective in (A.8) is replaced with a time-dependent

objective as follows:

ân[t] = arg min
an[t]

L(n)(an[t], t) + λ
N∑

n′=1
n′ 6=n

‖an,n′ [t]‖2 , (A.9)

where ân[t] is the estimate of an at time t,

an[t] , [a>n,1[t],a>n,2[t], ...,a>n,N [t]]> ∈ RNP (A.10)

contains the optimization variables at time t, and

L(n)(an[t], t) ,
t∑

τ=P

γt−τ
(
fn[τ ]− g>[τ ]an[t]

)2
(A.11)
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is a time-dependent version of the empirical loss function in (A.6), where 0 < γ ≤ 1 is a

user-selected forgetting factor. The latter weights recent samples more heavily than the

older ones and is introduced to facilitate tracking topology changes. Observe that (A.11),

and therefore (A.9), only depend on data up to time t, and therefore ân[t] can be obtained

right after {f [τ ]}tτ=0 have been received. The rest of this section proposes two algorithms

to solve (A.9) in an online fashion.

A.3.1 Regularized RLS (R-RLS)

A solver based on RLS is proposed in this section. To this end, consider the following

valid subgradient of the (non differentiable) regularization term in (A.9)

h(an[t]) , [∇s>
an,1[t] ‖an,1[t]‖2 , . . . ,∇

s>
an,n−1[t] ‖an,n−1[t]‖2 ,0,∇

s>
an,n+1[t] ‖an,n+1[t]‖2 ,

. . . ,∇s>
an,N [t] ‖an,N [t]‖2]>, (A.12)

where

∇s
x ‖x‖2 =

{
x
‖x‖2

, x 6= 0

0, x = 0.
(A.13)

On the other hand, let

Φ[t] ,
t∑

τ=P

γt−τg[τ ]g>[τ ], (A.14)

rn[t] ,
t∑

τ=P

γt−τfn[τ ]g[τ ], (A.15)

respectively denote a weighted sample auto-correlation matrix of g[τ ] and a weighted

sample cross-correlation of fn[τ ] and g[τ ]. Note that Φ[t] and rn[t] can be updated

recursively as

Φ[t] = γΦ[t− 1] + g[t]g>[t], (A.16)

rn[t] = γrn[t− 1] + fn[t]g[t]. (A.17)

In view of these equations, it can be shown that the algorithm in [99] reduces to Al-

gorithm 6 when solving (A.9). This algorithm offers an approximate solution since it

relies on the assumption that the estimated coefficients do not change abruptly between

consecutive time steps.

The complexity of Algorithm 6 is dominated by the N computations of Q[t]h(ân[t−
1]) (which are O(N2P 2)), and therefore the overall complexity is O(N3P 2).

A.3.2 Online Block Coordinate Descent (OBCD)

When N is very large, the computational burden of Algorithm 6 can become prohibitive

given its cubic-order complexity with respect to N . To alleviate this limitation, this

section proposes an online method with quadratic complexity in N . The proposed method

is based on performing a single iteration of BCD to minimize (A.9). A related approach
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Algorithm 6 Group-sparse R-RLS algorithm

Input: σ, P, λ, γ, {f [τ ]}tτ=0

Output: {ân[t]}Nn=1

Initialization: ân[P − 1] = 0,Q[P − 1] = σ−1I

1: for t = P, P + 1, . . . , do

2: k[t] =
Q[t− 1]g[t]

γ + g>[t]Q[t− 1]g[t]
3: Q[t] = γ−1Q[t− 1]− γ−1k[t]g>[t]Q[t− 1]

4: for n = 1, 2, . . . , N do

5: en[t] = fn[t]− g>[t]ân[t− 1]

6: ân[t] = ân[t− 1] + en[t]k[t] + λ(γ − 1)Q[t]h(ân[t− 1])

7: end for

8: end for

for solving batch group-Lasso problems was proposed in [100]. Note that although (A.9)

can be solved directly by off-the-shelf convex optimization solvers, their complexity is

high and therefore an algorithm tailored to (A.9) is preferable.

Block coordinate descent is based on iteratively minimizing a given objective with

respect to a group of variables while keeping the rest of groups fixed to their values in

previous iterations. Fortunately, at each minimization step the function is differentiable

in all points except the zero, while the minimization step at the zero vector is simple to

be performed.

The right-hand side of (A.9) can be rewritten in terms of the recursively computed

Φ[t] and rn[t] as

arg min
an[t]

a>n [t]Φ[t]an[t]− 2r>n [t]an[t] + λ
N∑

n′=1
n′ 6=n

‖an,n′ [t]‖2

For each t and n, the proposed algorithm performs N block updates: the i-th update

modifies the i-th group an,i[t] whereas all other entries in an[t] are kept fixed.

Upon appropriately permuting the entries of an[t],Φ[t], and rn[t], the minimization

of the above objective with respect to the i-th group can be expressed as

ân,i[t] = arg min
an,i[t]

[
a>n,̄i[t] a

>
n,i[t]

][Φī̄i[t] Φīi[t]

Φīi[t] Φii[t]

][
an,̄i[t]

an,i[t]

]
− 2

[
r>n,i[t] r>n,̄i[t]

] [an,̄i[t]
an,i[t]

]
+ λ
( N∑
n′=1

‖an,n′ [t]‖2

)
1{i− n} (A.18)

where ân,i[t] collects the entries of the i-th group in ân[t]; an,̄i[t] collects the entries in

the complementary set of i-th group; and similar definitions apply for rn,̄i[t], Φī̄i[t], and

Φīi[t] (= Φ>īi [t] because of symmetry). Ignoring the constant terms, the right-hand side

of (A.18) can be rewritten as

ân,i[t] = arg min
an,i[t]

a>n,i[t]Φii[t]an,i[t] + 2(Φīi[t]an,̄i[t]− rn,i[t])
>an,i[t] +λ ‖an,i[t]‖2 (A.19)
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When i = n, the last term is zero and therefore (A.19) constitutes a conventional

least-squares equation and its solution is ân,n[t] = Φ†nnpn, where Mi , Φii and pi ,
Φīian,̄i − r>n,i[t].

Conversely, when i 6= n, we solve the optimization using Newton’s method. This

requires the cost function to be twice differentiable at every point. In our case, this holds

at every point except the zero vector; fortunately, when solving (A.19) this case can be

circumvented. Note first that it can be proven [100] that 0 will be an optimizer of (A.19)

iff ‖p‖2 ≤ λ. Second, if Newton’s method is initialized at an a(0) that yields a negative

objective and every iteration effectively reduces the objective, then the optimization is

done over a sub-level set where the gradient and the Hessian are always well defined.

Consequently, the proposed solver first checks if 0 is the optimal solution to (A.19),

and if it is not, a(0) is initialized as a(0) =
(
(λ ‖p‖2 − ‖p‖

2
2)/(p>Mp)

)
p which is the

solution to a line search over the half line that starts at 0 in the steepest descent direction.

Afterwards, standard Newton iterations are performed until convergence as detailed in

Algorithm 8.

Algorithm 7 further generalizes [101, Algorithm 3] which can only accommodate

groups of size 1 (regular Lasso). Regarding complexity, Algorithm 8 is called N(N − 1)

times and its complexity is dominated by the inversion of the P×P Hessian. Consequently,

OBCD entails a complexity of O(N2P 3) per time instant.

Algorithm 7 Online Block Coordinate Descent

Input: λ, γ, σ, {f [τ ]}tτ=0,

Output: {ân[t]}Nn=1

Initialization: ân[P − 1] = 0,Φ[P − 1] = σ2I, rn[P − 1] = 0, and g[P − 1] as in

(B.4)

1: for t = P, P + 1, . . . , do

2: Obtain Φ[t] as in (A.16)

3: for n = 1, 2, . . . , N do

4: for i = 1, 2, . . . , N do

5: Obtain rn[t] as in (A.17)

6: Set an,j[t] = an,j[t− 1]∀j 6= i

7: Update an,i[t] via (A.19)

8: end for

9: end for

10: end for

11: end for

A.4 Numerical Experiments

The performance of the proposed online algorithms is compared with the batch group-

Lasso approach by numerical tests in this section. A network is simulated by a random

graph with N = 15 nodes, and an edge set randomly generated by an Erdos-Renyi model

with edge probability pe constant for every pair of nodes except for self-loops, which have
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Algorithm 8 Solve (A.19) via Newton’s method

Input: Φii[t],Φīi[t], λ, rn,i[t],an,̄i[t] Output: ân,i[t]

1: M = Φii[t]; p = Φīi[t]an,̄i − rn,i[t]

2: if ‖p‖2 ≤ λ then return ân[t] = 0

3: else a(0) =
(
(λ ‖p‖2 − ‖p‖

2
2)/(p>Mp)

)
p

4: for k = 0, 1, . . . until convergence do

5: H = M + λ

(
I

‖a(k)‖2

− a
(k)a>(k)

‖a(k)‖3
2

)
6: g = Ma(k) + p +

λa(k)

‖a(k)‖2

7: a(k+1) = a(k) −H†g

8: end forreturn ân,i[t] = a(k)

edge probability one. A VAR process with order P = 5 is generated by drawing the

active coefficients of Ap from a Gaussian distribution, setting the rest of the coefficients

to zero, and normalizing the result so that the largest-magnitude eigenvalue of Ap is less

than 1/P , thus guaranteeing a stable VAR process. A time series of T time instants

is generated according to (E.1) with u ∼ N (0, 0.02I). The regularization parameter is

chosen as λ = 0.02.

Two error measures are used to compare the performance of the developed methods.

In the first case, the estimated VAR coefficients {ân[t]} are directly compared to the true

coefficients and the evolution of the normalized mean squared deviation (NMSD) defined

as E[‖
∑

n(ân[t] − an)‖2
2]/E[

∑
n‖an‖2

2] is represented in the top pane of Fig. A.1. In the

second case, the coefficients are used to predict the process in the next time instant and

the normalized mean square error (NMSE) is depicted in the bottom pane. To reduce

computational burden, the two error measures for the batch approach are evaluated for

T = 50, 100, 150, . . . , 650, considering all available data up to time T . The dashed line is

added to improve visualization. These results suggest that both algorithms have similar

convergence rates and their estimate approaches the batch solution after processing a large

number of samples. Although OBCD shows a slight advantage over R-RLS, a main factor

to choose one approach or the other is the computational efficiency. As a short wrap-up,

recall that OBCD has O(N2P 3) computation, and R-RLS has O(N3P 2). This makes the

former more suitable for large networks, whereas the latter enjoys fast performance for

large filter order.
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Figure A.1: Normalized Mean Squared Deviation (top) and Normalized Mean Squared

Error (bottom).





Appendix B

Paper B

Title: Online Topology Identification from Vector Autoregressive

Time Series

Authors: Bakht Zaman, Luis M. Lopez-Ramos, Daniel Romero, and

Baltasar Beferull-Lozano

Affiliation: Center Intelligent Signal Processing and Wireless Networks

(WISENET) Department of ICT, University of Agder, Grim-

stad, Norway

Journal: Submitted to IEEE Trans. Signal Process.

53



Online Machine Learning for Graph Topology Identification from Multiple Time Series

Online Topology Identification from Vector Autore-

gressive Time Series

Bakht Zaman, Luis M. Lopez-Ramos, Daniel Romero, and Baltasar Beferull-Lozano

Abstract— Causality graphs are routinely estimated in social sciences, nat-

ural sciences, and engineering due to their capacity to efficiently represent

the spatiotemporal structure of multi-variate data sets in a format amenable

for human interpretation, forecasting, and anomaly detection. A popular ap-

proach to mathematically formalize causality is based on vector autoregressive

(VAR) models and constitutes an alternative to the well-known, yet usually

intractable, Granger causality. Relying on such a VAR causality notion, this

paper develops two algorithms with complementary benefits to track time-

varying causality graphs in an online fashion. Their constant complexity per

update also renders these algorithms appealing for big-data scenarios. De-

spite using data sequentially, both algorithms are shown to asymptotically

attain the same average performance as a batch estimator which uses the

entire data set at once. To this end, sublinear (static) regret bounds are es-

tablished. Performance is also characterized in time-varying setups by means

of dynamic regret analysis. Numerical results with real and synthetic data

further support the merits of the proposed algorithms in static and dynamic

scenarios.

B.1 Introduction

Inferring causal relations among time series finds countless applications in social sciences,

natural sciences, and engineering. These relations are typically encoded as the edges of a

causality graph, where each node corresponds to a time series, and oftentimes reveal the

topology of e.g. an underlying social, biological, or brain network [13]. Causality graphs

may also offer valuable insights into the spatio-temporal structure of time series and

assist data processing tasks such as forecasting [102], signal reconstruction [3], anomaly

detection [2], and dimensionality reduction [9]. In some applications, graphs capturing

different forms of causality can be constructed based on domain knowledge; see e.g. [11,

Ch. 8]. However, this approach is often impractical in the aforementioned applications

due to the large dimension of the data or because such prior knowledge is unavailable.

Instead, causality graphs need to be inferred from data in these situations. This paper

accomplishes this task in an online fashion.

Identifying graphs capturing the spatiotemporal “interactions” among time series has

attracted great attention [13, 22]. Some approaches focus on instantaneous interactions,

i.e., they disregard the temporal structure. The simplest one is to connect two nodes if

the sample correlation between the associated time series exceeds a certain threshold [13].

To distinguish mediated from unmediated interactions [13, Sec. 7.3.2], one may resort to

conditional independence, partial correlations, Markov random fields, or other approaches

in graph signal processing; see e.g. [14, 16, 15, 11, 19, 21]. For directed interactions, one
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may employ structural equation models (SEM) [24] (see also [26] and references therein)

or Bayesian networks [11, Sec. 8.1]. However, these methods account only for memoryless

interactions, i.e., they cannot accommodate delayed interactions where the value of a time

series at a given time instant is related to the past values of other time series.

The earliest effort to formalize the notion of causality among time series is due to

Granger [28] and relies on the rationale that the cause precedes the effect. A time series

is said to be Granger-caused by another if the optimal prediction error of the former is

decreased when the past of the latter is taken into account. Albeit elegant, this definition

is generally impractical since the optimal prediction error is difficult to determine [60,

p. 33], [61]. Thus, alternative causality definitions based on vector autoregressive (VAR)

models are typically preferred [103, 31, 104]. VAR causality is determined from the

support of VAR matrix parameters and is equivalent to Granger causality [43, Chap.

2] in certain cases (yet sometimes treated as equivalent [31, 104]). VAR causality is

further motivated by the widespread usage of VAR models to approximate the response

of systems of linear partial differential equations [65] and, more generally, in disciplines

such as econometrics, bio-informatics, neuroscience, and engineering [62, 63, 64]. VAR

topologies are estimated assuming Gaussianity and stationarity in [30, 29] and assuming

sparsity in [66, 105, 20, 106]. All these approaches assume that the graph does not change

over time. Since this is not the case in many applications, approaches have been devised

to identify undirected time-varying topologies [38, 107] and directed piecewise-constant

time-varying topologies [47].

The complexity of all previously discussed approaches becomes prohibitive for long

observation windows since they process the entire data set at once and cannot accom-

modate data arriving sequentially. The modern approach to tackle these issues is online

optimization, where an estimate is refined with every new data instance. Existing online

topology identification algorithms include [34, 26],[35, 36, 37], and [32], but they only

account for memoryless interactions.

The present work is the first to propose online algorithms to estimate the memory-

aware causality graphs associated with a collection of time series.1 The specific contribu-

tions include: (C1) An online algorithm, termed Topology Identification via Sparse Online

learning (TISO), which estimates directed VAR causality graphs and therefore captures

memory-based interactions. Sparse and (possibly) time-varying topologies are tracked

by a composite-objective iteration [67] that minimizes a sequential version of the crite-

rion in [66] while promoting sparse updates. In addition, computational complexity and

memory requirements per iteration of the algorithm remain constant, which renders it

suitable for sequential and big-data scenarios. (C2) A second algorithm, named Topology

Identification via Recursive Sparse Online learning (TIRSO), which improves the tracking

performance of TISO and robustness to input variability by minimizing a novel estimation

criterion inspired by recursive least squares (RLS) where the instantaneous loss function

accounts for past samples. TIRSO inherits certain benefits of TISO but incurs a moder-

1The conference version [44] of this work presents two online algorithms different from the algorithms

presented here. One is based on a subgradient approximation and the other one is based on block

coordinate minimization via Newton’s method. In addition, no convergence guarantees were provided.

The related work in [108] was run in parallel and published subsequently.
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ate increase in computational complexity, which is still constant per iteration. (C3) In

terms of performance analysis: (i) it is established that the hindsight solution of TISO

and TIRSO are asymptotically the same. (ii) The convergence of TISO and TIRSO is

established by deriving sublinear static regret bounds. Hence, in the long run, these al-

gorithms perform as well as the best (batch) predictor in hindsight, which supports their

adoption for online topology identification. Remarkably, the performance (regret) analysis

does not require probabilistic assumptions, which endows the developed approaches with

high generality. (iii) A logarithmic regret bound is proved for TIRSO. (iv) To analyze

the performance of TIRSO when the topology is time-varying, a dynamic regret bound

is derived. Moreover, the steady-state error of TIRSO in time-varying scenarios is quan-

tified in terms of the data properties. (C4) Finally, performance is empirically validated

through extensive experiments with synthetic and real data sets.

The rest of the paper is organized as follows: Sec. B.2 presents the model, a batch

estimation criterion, and background on online optimization. Sec. B.3 develops TISO and

TIRSO. Sec. B.4 Sec. B.5 respectively assess performance analytically and via simulations,

whereas Sec. B.6 concludes the paper. All code will be made public at the authors’

websites.

Notation. Bold lowercase (uppercase) letters denote column vectors (matrices). Op-

erators E[·], ∇, ∇̃, ∂, (·)>, vec(·), λmax(·), R(·), (·)†, and diag(·) respectively denote expec-

tation, gradient, subgradient, sub-differential, matrix transpose, vectorization, maximum

eigenvalue, range or column space, pseudo-inverse, and diagonal of a matrix. Symbols

0N , 1N , 0N×N , and IN respectively represent the all-zero vector of size N , the all-ones

vector of size N , the all-zero matrix of size N × N , and the size-N identity matrix.

Also, [·]+ = max(·, 0). For functions f(x) and g(x), the notation f(x) ∝ g(x) means

∃a > 0, b : f(x) = ag(x) + b. Finally, 1 is the indicator satisfying 1{x} = 1 if x is true

and 1{x} = 0 otherwise.

B.2 Preliminaries

After outlining the notion of directed causality graphs, this section reviews how these

graphs can be identified in a batch fashion. Later, the basics of online optimization are

described.

B.2.1 Directed Causality Graphs

Consider a collection of N time series {yn[t]}t, n = 1, ..., N , where yn[t] denotes the value

of the n-th time series at time t. A causality graph G , (V , E) is a graph where the n-th

vertex in V = {1, . . . , N} is identified with the n-th time series {yn[t]}t and there is an

edge (or arc) from n′ to n (i.e. (n, n′) ∈ E) if and only if (iff) {yn′ [t]}t causes {yn[t]}t
according to a certain causality notion. For the reasons outlined in Sec. E.1, a prominent

notion of causality described later in this section can be defined using VAR models. To

this end, let y[t] , [y1[t], . . . , yN [t]]> and define a VAR time series {y[t]}t as a sequence
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generated by the order-P VAR model[43]

y[t] =
P∑
p=1

Apy[t− p] + u[t], (B.1)

where Ap ∈ RN×N , p = 1, . . . , P , are the VAR parameters2 and u[t] , [u1[t], . . . , uN [t]]>

is the innovation process. This process is generally assumed to be a white zero-mean

stochastic process, i.e., E[u[t]] = 0N and E[u[t]u>[τ ]] = 0N×N for t 6= τ . Yet, the present

work does not even need to assume that u[t] is random; see the remark at the end of

Sec. B.4. With a
(p)
n,n′ the n, n′-th entry of Ap, expression (E.1) becomes

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′yn′ [t− p] + un[t]

=
∑

n′∈N (n)

P∑
p=1

a
(p)
n,n′yn′ [t− p] + un[t] (B.2)

for n = 1, . . . , N , where N (n) , {n′ : an,n′ 6= 0P} and an,n′ , [a
(1)
n,n′ , . . . , a

(P )
n,n′ ]

T . Rec-

ognizing the convolution operation in the right-hand side enables one to express (E.2) as

yn[t] =
∑

n′∈N (n)a
(t)
n,n′ ∗ yn′ [t] + un[t] in signal processing notation. Thus, in a VAR model,

yn[t] equals the sum of noise and the output of |N (n)| linear time-invariant filters where

the n, n′-th filter has input {yn′ [t]}t and coefficients {a(p)
n,n′}Pp=1.

When u[t] is a zero-mean and temporally white stochastic process, the term ŷn[t] ,∑
n′∈N (n)

∑P
p=1 a

(p)
n,n′yn′ [t−p] in (E.2) is the minimum mean square error estimator of yn[t]

given the previous values of all time series {yn′ [τ ], n′ = 1, ..., N, τ < t}; see e.g. [61, Sec.

12.7]. The set N (n) therefore collects the indices of those time series that participate in

this optimal predictor of yn[t] or, alternatively, the information provided by time series

{yn′ [τ ]}τ<t with n′ /∈ N (n) is not informative to predict yn[t]. This motivates the following

definition of causality: {yn′ [t]}t VAR-causes {yn[t]}t whenever n′ ∈ N (n). Equivalently,

{yn′ [t]}t VAR-causes {yn[t]}t if an,n′ 6= 0P . VAR causality3 relations among the N time

series can be represented using a causality graph where E , {(n, n′) : an,n′ 6= 0P}. Clearly,

in such a graph, N (n) is the in-neighborhood of node n. To quantify the strength of these

causality relations, a weighted graph can be constructed by assigning e.g. the weight

‖an,n′‖2 to the edge (n, n′).

With these definitions, the batch problem of identifying a VAR causality graph re-

duces to estimating the VAR coefficient matrices {Ap}Pp=1 given P and the observations

{y[t]}T−1
t=0 . To simplify notation, form the tensor A by stacking the matrices {Ap}Pp=1

along the third dimension as shown in Fig. B.1.

2For the sake of clarity, matrices {Ap}Pp=1 are deemed constant throughout this section. However, all

the notions explained here can be easy generalized to time-varying scenarios, as detailed in subsequent

sections.
3A detailed comparison with Granger causality lies out of scope, yet it is worth mentioning that the

main distinction lies in the prediction horizon: whereas VAR causality just pertains to prediction 1 time

instant ahead, Granger causality involves prediction of all future samples yn[t′], t′ ≥ t, given the ones

up to a certain time instant {yn′ [τ ], n′ = 1, . . . , N, τ < t}. Therefore VAR causality implies Granger

causality, but the converse is false. See [43, Sec. 2.3.1] for a more detailed comparison.
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Figure B.1: Tensor A collecting the VAR parameter matrices.

B.2.2 Batch Estimation Criterion for Topology Identification

This section presents an estimation criterion to address the batch problem formulated in

Sec. B.2.1. A natural estimate could be pursued through least-squares by minimizing [43]

L (A) ,
1

2(T − P )

T−1∑
τ=P

∥∥∥y[τ ]−
P∑
p=1

Ap y[τ − p]
∥∥∥2

2

=
1

2 (T − P )

N∑
n=1

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′ yn′ [τ − p]

]2

.

This estimation task becomes underdetermined unless the number NT of available data

samples meaningfully exceeds the number of unknowns PN2. To circumvent this limita-

tion, the following criterion has been proposed in [66]:

arg min
A

L (A) + λ
N∑
n=1

N∑
n′=1
n′ 6=n

‖an,n′‖2 , (B.3)

where λ > 0 is a regularization parameter4 that can be adjusted e.g. via cross-validation

[11, Ch. 1]. The second term in (B.3) is conventionally referred to as a group-lasso

regularizer and the solution to (B.3) as a group-lasso estimate [109]. This promotes a

group-sparse structure in {Ap}Pp=1 to exploit the information that the number of edges in

4As seen in (B.3), λ is the same for all candidate edges (n, n′). This can be readily replaced with

an edge-dependent regularization parameter λn,n′ without any complexity increase to exploit possibly

available prior-information about edges.
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E is typically small. Self-connections (an,n, n = 1, ..., N) are excluded from the regular-

ization term so that the inferred causal relations pertain to the component of each time

series that cannot be predicted using its own past [66].

Remarkably, (B.3) separates along n. To see this, let an , [a>n,1,a
>
n,2, ..., a

>
n,N ]> ∈ RNP

and

g[t] , vec
(

[y[t− 1], . . . ,y[t− P ]]>
)
∈ RNP , (B.4)

and express L(A) as L(A) =
∑N

n=1 `
(n)(an), where `(n)(an) , 1/(T − P )

∑T−1
t=P `

(n)
t (an)

and `
(n)
t (an) , 1/2(yn[t]− g>[t]an)2. Then, (B.3) becomes

{a∗n}Nn=1 = arg min
{an}Nn=1

N∑
n=1

[`(n)(an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2], (B.5)

with

a∗n = arg min
an

`(n)(an) + λ
N∑

n′=1
n′ 6=n

‖an,n′‖2 (B.6)

for n = 1, . . . , N . Thus, the VAR causality graph can be identified by separately estimat-

ing the VAR coefficients, and hence incoming edge weights, for each node.

The batch estimation criterion in (B.6) requires all data {y[t]}T−1
t=0 before an estimate

can be obtained and cannot track changes. Furthermore, solving (B.6) eventually becomes

prohibitively complex for sufficiently large T . To address these challenges, this paper

adopts the framework of online optimization, which is reviewed in the following subsection.

B.2.3 Background on Online Optimization

This section reviews the fundamental notions of online optimization from a general per-

spective, not necessarily applied to the problem of topology identification. To this end,

consider the generic unconstrained optimization problem

minimize
a

1

T0

T0−1∑
t=0

ht(a), (B.7)

where ht(a) is a convex function, which in many applications depends on the data received

at time t. For example, in least squares ht(a) = ‖X[t]a − y[t]‖2
2, where y[t] and X[t]

are the data vector and matrix made available at time t. To solve (B.7), it is necessary

that all {ht(a)}T0−1
t=0 be available. Approaches that process all data at once are termed

batch and, hence, suffer from potentially long waiting times, which generally render them

inappropriate for real-time operation. Besides, computational complexity and memory

generally grow super-linearly with T0, which eventually becomes prohibitive.

Online algorithms alleviate these limitations. Let a[t + 1] denote an estimate of the

solution to (B.7) at time t produced by an online algorithm. Online algorithms compute

a new a[t+1] every time a new (X[t],y[t]) data element (or, more generally, a new ht(a))

is processed. At every iteration, also known as update, a[t+ 1] is obtained from a[t], y[t],
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X[t], and possibly some additional information carried from each update to the next.

The memory requirements and number of arithmetic operations per iteration must not

grow unbounded for increasing t. This requirement rules out approaches involving solving

(B.7) as a batch problem per update or carrying all the past data {(X[τ ],y[τ ])}t−1
τ=0 from

the (t−1)-th update to the t-th update. Thus, online algorithms are especially appealing

when data vectors are received sequentially or T0 is so large that batch solvers are not

computationally affordable. Additionally, online algorithms can track changes in the

underlying model.

The most common performance metric to evaluate online algorithms is the regret,

which quantifies the cumulative loss incurred by an online algorithm relative to the loss

corresponding to the optimal constant solution in hindsight. Formally, the (static) regret5

at iteration T0 − 1 is given by [46]:

Rs[T0] ,
T0−1∑
t=0

[ht (a[t])− ht (a∗[T0])], (B.8)

where a∗[T0] , arg mina (1/T0)
∑T0−1

t=0 ht(a) is the optimal constant hindsight solution,

i.e., the batch solution after T0 data vectors have been processed. To be deemed admissi-

ble, online algorithms must yield a sublinear regret, i.e., Rs[T0]/T0 → 0 as T0 →∞. Thus,

online algorithm with sublinear regret perform asymptotically as well as the batch solu-

tion on average. It is worth noting that the online learning framework does not involve

statistical assumptions on the data, which can even be generated by an “adversary” [54].

In dynamic settings where the parameters of the data generating process vary over

time, a∗[T0] may not be a suitable reference since its computation involves potentially very

old data, namely {ht}t�T0 , which is informative about old values of the true parameters

but not about the new values. In those cases, it is customary to compare against the

instantaneous minimizer a◦[t] , arg mina ht(a) by means of the so-called dynamic regret

[56], [57]:

Rd[T0] ,
T0−1∑
t=0

[ht (a[t])− ht (a◦[t])] .

More details about the dynamic regret are given in Sec. C.3.

B.3 Online Topology Identification

This section develops online algorithms for the considered problem of topology identifi-

cation from time series. To this end, cast (B.6) for the n-th node in the form (B.7) by

setting

ht(an) = `
(n)
t+P (an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2 , (B.9)

5The static regret is known simply as regret in earlier works, e.g. [46], and different types of regret

were formalized later, see e.g. [56].
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for t = 0, ..., T − P − 1. The most immediate approach to solve (B.7) would be applying

online subgradient descent (OSGD), whose updates are given by an[t+1] = an[t]−αtw̃n[t]

with w̃n[t] a subgradient of ht at an[t] and αt the step size at time t. From (B.9), w̃n[t]

equals ∇`(n)
t+P (an[t]) plus λ times a valid subgradient of the form

∇̃an

N∑
n′=1
n′ 6=n

‖an,n′‖2 , [∇̃>an,1 ‖an,1‖2 , . . . , ∇̃
>
an,n−1

‖an,n−1‖2 ,0P , ∇̃
>
an,n+1

‖an,n+1‖2 ,

. . . , ∇̃>an,N ‖an,N‖2]>,

evaluated at an[t]. For example, for x ∈ R
P , set ∇̃x‖x‖2 = x/‖x‖2 for x 6= 0P and

∇̃x‖x‖2 = 0P for x = 0P . It is easy to see that the resulting iterates an[t] are not

necessarily sparse; see also [67]. Since the solution to the batch problem is indeed sparse,

alternative approaches are required.

To this end, note that OSGD fails to provide sparse iterates because it implicitly

linearizes the instantaneous objective ht(an). Since the regularizer (last term in (B.9))

is not differentiable, it is not well approximated by a linear function and, as a result, it

fails to promote sparsity. To address this issue, composite algorithms decompose ht(an)

as ht(an) = f
(n)
t (an) + Ω(n)(an), where f

(n)
t (an) is a convex loss function and Ω(n)(an) is

a convex regularizer, and linearize only f
(n)
t (an). Algorithms of this family, which include

regularized dual averaging (RDA) [110] and composite objective mirror descent (COMID)

[67], solve the generic problem

minimize
an

1

T0

T0−1∑
t=0

[
f

(n)
t (an) + Ω(n)(an)

]
, (B.10)

by linearizing f
(n)
t (an) but not Ω(n)(an). For instance, in COMID6

an[t+ 1] = arg min
an

[
αt∇̃f (n)

t

T
(an[t]) (an − an[t]) +Bψ (an,an[t]) +αtΩ

(n)(an)
]
, (B.11)

where ∇̃f (n)
t (an[t]) is a subgradient of f

(n)
t at point an[t] (that is, ∇̃f (n)

t (a[t]) ∈ ∂f (n)
t (an[t])),

αt > 0 is a step size, and Bψ(w,v) , ψ(w) − ψ(v) − ∇ψT (v) (w − v) is the so-called

Bregman divergence associated with a ζ-strongly convex and continuously differentiable

function ψ. The strong convexity condition means that Bψ(w,v) ≥ (ζ/2)‖w−v‖2, which

motivates using Bψ(w,v) as a surrogate of a distance between w and v. Thus, the Breg-

man divergence in (B.11) penalizes updates an[t+1] lying far from the previous one an[t],

which essentially smoothes the sequence of iterates.

Relative to each term in (B.10), the loss f
(n)
t in (B.11) has been linearized but the reg-

ularizer Ω(n)(an) has been kept intact. When Ω(n)(an) is a sparsity-promoting regularizer,

then the online estimate a[t+ 1] is therefore expected to be sparse.

In view of these appealing features, the algorithm proposed in Sec. B.3.1 builds upon

COMID to address the problem of online causality graph identification from time series.

6 This work focuses on COMID since, unlike RDA, there exist bounds for its regret for constant step

size when the regularizer is not strongly convex.





Online Machine Learning for Graph Topology Identification from Multiple Time Series

B.3.1 Topology Identification via Sparse Online optimization

This section proposes topology identification via sparse online optimization (TISO), an

online algorithm for the problem in Sec. B.2.2 that provides a causality graph estimate

every time a new y[t] is processed. The key idea of this first algorithm is to refine the

previous topology estimate with the information provided by the new data vector by

means of a COMID update.

To this end, express ht in (B.9) in the form ht(an) = f
(n)
t (an) + Ω(n)(an) by setting

f
(n)
t (an) = `

(n)
t+P (an), (B.12a)

Ω(n)(an) = λ

N∑
n′=1
n′ 6=n

‖an,n′‖2 , (B.12b)

for t = 0, ..., T − P − 1. To choose Bψ(w,v), note that (B.11) with f
(n)
t (an) and

Ω(n)(an) given by (B.12) can be solved in closed form when ψ(·) = 1/2‖·‖2
2. In that

case, Bψ(w,v) = 1/2‖w − v‖2
2 and an[t + 1] can be found via a modified group soft-

thresholding operator, as detailed next. With these expressions, the TISO update after

processing {y[τ ]}tτ=0 is

an[t+ 1] = arg min
an

J
(n)
t (an), (B.13)

where

J
(n)
t (an) , v>n [t](an − an[t]) +

1

2αt
‖an − an[t]‖2

2 + λ
N∑

n′=1
n′ 6=n

‖an,n′‖2 (B.14)

and

vn[t] , ∇`(n)
t (an[t]) = g[t] (g>[t]an[t]− yn[t]). (B.15)

To solve (B.13) in closed form, expand the squared norm in (B.14) to obtain

J
(n)
t (an) ∝ ‖an‖

2
2

2αt
+ a>n

(
vn[t]− 1

αt
an[t]

)
+ λ

N∑
n′=1
n′ 6=n

‖an,n′‖2

=
N∑

n′=1

[ 1

2αt
‖an,n′‖2

2 + a>n,n′
(
vn,n′ [t]−

1

αt
an,n′ [t]

)
+ λ ‖an,n′‖2 1{n

′ 6= n}
]
,

(B.16)

where vn[t] , [v>n,1[t], ...,v>n,N [t] ]> and vn,n′ [t] ∈ RP ∀n′. From (B.16), it can be observed

that the updates in (B.13) can be computed separately for each group n′ = 1, ..., N .

For n′ 6= n, the n′-th subvector of an[t+ 1] (or n′-th group) can be expressed in terms

of the so-called multidimensional shrinkage-thresholding operator [111] as:

an,n′ [t+ 1] = af
n,n′ [t]

[
1− αt λ∥∥af

n,n′ [t]
∥∥

2

]
+

, (B.17)
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where af
n,n′ [t] , an,n′ [t]−αtvn,n′ [t]. Expression (B.17) is composed of two terms: whereas

af
n,n′ [t] is the result of performing a gradient-descent step in a direction that decreases the

instantaneous loss `
(n)
t (an), the second term promotes group sparsity by setting an,n′ [t+

1] = 0P for those groups n′ with ‖af
n,n′ [t]‖2 ≤ αt λ. Recalling that each vector an,n′

corresponds to an edge in the estimated causality graph (see Sec. B.2.1), expression (B.17)

indicates that only the relatively strong edges (i.e. causality relations) survive. In view

of such a shrinkage operation, a larger λ will result in sparser estimates.

On the other hand, when n′ = n, the n′-th subvector of an[t+ 1] in (B.13) is given by:

an,n′ [t+ 1] = an,n′ [t]− αtvn,n′ [t] = af
n,n′ [t] (B.18)

and, as intended, no sparsity is promoted on self-connections; see Sec. B.2.2. Combining

(B.17) and (B.18), the estimate of the n′-th group at time t+ 1 is given by:

an,n′ [t+ 1] = af
n,n′ [t]

[
1− αtλ 1{n 6= n′}∥∥af

n,n′ [t]
∥∥

2

]
+

. (B.19)

The performance of TISO depends on the choice of the step-size sequence {αt}t, as

discussed in Sec. B.4. The overall TISO algorithm is listed as Algorithm 9. It only

requires O(N2P ) memory entries to store the last P data vectors and the last estimate.

On the other hand, each update requires O(N2P ) arithmetic operations, which is in the

same order as the number of parameters to be estimated. Thus, TISO can arguably be

deemed a low-complexity algorithm.

Algorithm 9 Topology Identification via Sparse Online optimization (TISO)

Input: λ, {αt}t, {y[τ ]}P−1
τ=0

Output: {an[τ ]}Nn=1, τ = P + 1, . . .

Initialization: an[P ] = 0NP , n = 1, . . . , N

1: for t = P, P + 1, . . . do

2: Receive data vector y[t]

3: Form g[t] via (B.4)

4: for n = 1, 2, . . . , N do

5: vn[t] = (g>[t]an[t]− yn[t])g[t]

6: for n′ = 1, 2, . . . , N do

7: af
n,n′ [t] = an,n′ [t]− αtvn,n′ [t]

8: Compute an,n′ [t+ 1] via (B.19)

9: end for

10: end for

11: end for

The next section will build upon TISO to develop an algorithm with increased robust-

ness to input variability.
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B.3.2 Topology Identification via Recursive Sparse Online op-

timization

As seen in Sec. B.3.1, each update of TISO depends on the data through the instantaneous

loss `
(n)
t (an[t]), which quantifies the prediction error of the newly received vector y[t]

when the VAR parameters A are given by the previous estimate an[t]. Thus, the residual

of predicting each data vector is used only in a single TISO update. Although this

renders TISO a computationally efficient algorithm for online topology identification, it

also increases sensitivity to noise and input variability. To this end, this section pursues an

alternative approach at the expense of a moderate increase in computational complexity

and memory requirements.

It is clear from (B.13) that an[t+1] is determined by an[t] and vn[t]. The latter incor-

porates the residual only at time t. The step size αt controls how much variability in the

input data propagates to the estimates {an[t]}t. When a diminishing step-size sequence is

adopted, the influence of each new y[t] on the estimate becomes arbitrarily small, and the

variability of the estimates fades away. However, decreasing sequences cannot be utilized

when the application at hand demands tracking changes in the coefficients A. In these

settings, a constant step size αt = α is preferable. In such a scenario, a desire to reduce

output variability would therefore force one to adopt a small α, but this would hinder

TISO from tracking changes in the topology.

An approach to reduce output variability without sacrificing tracking capability will

be developed next by drawing inspiration from the connections between TISO, the least

mean squares (LMS) algorithm, and the recursive least squares (RLS) algorithm [112].

Indeed, observe that TISO generalizes LMS, which is recovered for λ = 0. To speed up

convergence and reduce variability in the output of LMS, it is customary to resort to

RLS, which accommodates the received data in a more sophisticated fashion, allowing to

control the influence of each data vector on future estimates through forgetting factors.

Along these lines, the trick is to replace the instantaneous loss `
(n)
t (an) in (B.12) with

a running average loss. To maintain tracking capabilities, a heavier weight is assigned

to recent data using the exponential window customarily adopted by RLS. Specifically,

consider setting f
(n)
t (an) = ˜̀(n)

t (an) in (B.12) with

˜̀(n)
t (an) , µ

t∑
τ=P

γt−τ`(n)
τ (an), (B.20)

where γ ∈ (0, 1) is the user-selected forgetting factor and µ = 1 − γ is set to normalize

the exponential weighting window, i.e., µ
∑∞

τ=0 γ
τ = 1.

Having specified a loss function, the next step is to derive the update equation. In a

direct application of COMID to solve (B.10) with f
(n)
t (an) = ˜̀(n)

t (an), each iteration would

involve the evaluation of the gradient of the t − P + 1 terms of ˜̀(n)
t . The computational

complexity per iteration would grow with t and, therefore, the resulting updates would not

make up a truly online algorithm according to the requirements expressed in Sec. B.2.3. To

remedy this issue, the structure of (B.20) will be exploited next to develop an algorithm

with constant memory and complexity per iteration. To this end, expand and rewrite
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(B.20) to obtain

˜̀(n)
t (an) =

µ

2

t∑
τ=P

γt−τ
(
y2
n[τ ] + a>ng[τ ]g>[τ ]an − 2yn[τ ]g>[τ ]an

)
=

1

2
a>nΦ[t]an − r>n [t]an +

µ

2

t∑
τ=P

γt−τy2
n[τ ], (B.21)

where

Φ[t] , µ

t∑
τ=P

γt−τg[τ ] g>[τ ], (B.22a)

rn[t] , µ
t∑

τ=P

γt−τyn[τ ] g[τ ]. (B.22b)

The variables Φ[t] and rn[t] can be respectively thought of as a weighted sample au-

tocorrelation matrix and a weighted sample cross-correlation vector. The key obser-

vation here is that, as occurs in RLS, these quantities can be updated recursively as

Φ[t] = γΦ[t− 1] + µ g[t] g>[t] and rn[t] = γ rn[t− 1] + µ yn[t] g[t]. Noting that

∇˜̀(n)
t (an) = Φ[t]an − rn[t], (B.23)

and letting ṽn[t] , [ṽ>n,1[t], . . . , ṽ>n,N [t]]> , ∇˜̀(n)
t (an[t]), the estimate ãn[t + 1] after re-

ceiving {y[τ ]}tτ=0 becomes

ãn[t+ 1] = arg min
ãn

J̃
(n)
t (ãn), (B.24)

where

J̃
(n)
t (ãn) , ṽ>n [t](ãn − ãn[t]) +

1

2αt
‖ãn − ãn[t]‖2

2 + λ

N∑
n′=1
n′ 6=n

‖ãn,n′‖2 . (B.25)

Proceeding similarly to Sec. B.3.1 yields the update

ãn,n′ [t+ 1] = ãf
n,n′ [t]

[
1− αtλ 1{n 6= n′}∥∥ãf

n,n′ [t]
∥∥

2

]
+

, (B.26)

where ãf
n,n′ [t] , ãn,n′ [t] − αtṽn,n′ [t]. Due to the recursive nature of the updates for Φ[t]

and rn[t], the resulting algorithm is termed Topology Identification via Recursive Sparse

Online optimization (TIRSO) and tabulated as Algorithm 10.

The choice of the step size affects the convergence properties of TIRSO, as analyzed

in Sec. B.4. Regarding step size selection, natural choices include (i) constant step size,

which is convenient in dynamic setups where changes in the coefficients A need to be

tracked over time (see Theorem 5) but also gives rise to performance guarantees in static

scenarios; (ii) diminishing step size, commonly in the form of O(1/
√
t) or O(1/t) (see

Theorem 4); or (iii) an adaptive step size that depends on the data, as discussed at the

end of Sec. C.3.
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Algorithm 10 Topology Identification via Recursive Sparse Online optimization

(TIRSO)

Input: γ, µ, P, λ, σ2, {αt}t, {y[τ ]}P−1
τ=0

Output: {ãn[t]}Nn=1, t = P + 1, ...

Initialization: ãn[P ] = 0NP , n = 1, ..., N, Φ[P − 1] = σ2INP
rn[t] = 0NP , n = 1, ..., N

1: for t = P, P + 1, . . . do

2: Receive data vector y[t]

3: Form g[t] via (B.4)

4: Φ[t] = γΦ[t− 1] + µ g[t] g>[t]

5: for n = 1, . . . , N do

6: rn[t] = γ rn[t− 1] + µ yn[t] g[t]

7: ṽn[t] = Φ[t] ãn[t]− rn[t]

8: for n′ = 1, 2, . . . , N do

9: ãf
n,n′ [t] = ãn,n′ [t]− αtṽn,n′ [t]

10: Compute ãn,n′ [t+ 1] via (B.26)

11: end for

12: end for

13: end for

Observe that Φ[t] only needs to be updated once per observed sample t, whereas the

vector rn[t] need to be updated for each n at every t. The computational complexity

is dominated by step 7, which is O(N3P 2) operations per t. However, exploiting the

group-sparse structure of ãn[t] may reduce the computation by disregarding the columns

of Φ[t] corresponding to the zero entries of ãn[t]. If, for instance, the number of edges

is O(N), then the complexity of TIRSO becomes O(N2P 2) per t. Regarding memory

complexity, TIRSO requires N2P 2 memory positions to store Φ[t] and N2P positions to

store {rn[t]}Nn=1.

B.4 Theoretical Results

In this section, the performance of TISO and TIRSO is analyzed. The upcoming results

will make use of one or more of the following assumptions:

A1. Bounded samples: There exists By > 0 such that |yn[t]|2 ≤ By ∀n, t.

A2. Bounded minimum eigenvalue of Φ[t]: There exists β˜̀ > 0 such that λmin(Φ[t]) ≥
β˜̀, ∀ t ≥ P .

A3. Bounded maximum eigenvalue of Φ[t]: There exists L > 0 such that λmax(Φ[t]) ≤
L, ∀ t ≥ P .

A4. Asymptotically invertible sample covariance: There exists Tm and β such that

λmin

(
1

t− P

t∑
τ=P

g[τ ] g>[τ ]

)
≥ β ∀ t ≥ Tm. (B.27)
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Note that A1 entails no loss of generality in real-world applications, where data are

bounded and thus By necessarily exists. A2 usually holds in practice unless the data is

redundant, meaning that some time series can be obtained as a linear combination of the

others. In general, the latter will not be the case e.g. if the data {y[t]}t adheres to a

continuous probability distribution, in which case Φ[t] is positive definite for all t ≥ P

with probability 1. A3 will also hold in practice since it can be shown that it is implied

by A1. In particular, if A1 holds, then A3 holds with L = PNBy. Similarly, A4 will also

generally hold since it is a weaker version of A2.

Next, the asymptotic equivalence of the batch solutions for TISO and TIRSO is es-

tablished.

B.4.1 Asymptotic Equivalence between TISO and TIRSO

To complement the arguments given in Sec. B.3.2 to support the decision of setting

f
(n)
t (an) = ˜̀(n)

t (an), which laid the grounds to develop TIRSO, we establish that the

batch problems that TISO and TIRSO implicitly solve become asymptotically equivalent

as T →∞. To this end, let a∗n[T ] denote the hindsight solution for TISO, which is given

by

a∗n[T ] = arg min
an

CT (an), (B.28)

where

CT (an) ,
1

T − P

T−1∑
t=P

[
`

(n)
t (an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2

]
. (B.29)

Observe that (B.29) is identical to the objective in the batch criterion (B.6). Likewise,

let ã∗n[T ] denote the hindsight solution of TIRSO, which is given by

ã∗n[T ] = arg min
an

C̃T (an) (B.30)

with

C̃T (an) ,
1

T − P

T−1∑
t=P

[
˜̀(n)
t (an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2

]
. (B.31)

In this case, (B.31) no longer coincides with the objective in (B.6). Therefore, one can

argue that the TIRSO algorithm is not pursuing the estimates that minimize the batch

criterion (B.6). This idea is dispelled next by establishing the asymptotic equivalence

between minimizing C̃T (an) and minimizing CT (an), since the latter is identical to (B.6).

Theorem 1. Under assumption A1:

1. It holds for all an that lim
T→∞

|CT (an)− C̃T (an)| = 0.
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2. It holds that lim
T→∞

∣∣ inf
an
CT (an)− inf

an
C̃T (an)

∣∣ = 0.

3. If, additionally, assumption A2 holds, then limT→∞ ‖a∗n[T ]− ã∗n[T ]‖2 = 0.

Proof. See Appendix B.7 in the supplementary material.

Theorem 1 essentially establishes not only that the TISO and TIRSO hindsight ob-

jectives are asymptotically the same but also that their minima and minimizers asymp-

totically coincide. Since the TISO hindsight objective equals the batch objective (B.6), it

follows that the TIRSO hindsight objective asymptotically approaches the batch objec-

tive (B.6). This observation is very important since the regret analysis from Sec. B.4.2

will establish that the TISO and TIRSO estimates asymptotically match their hindsight

counterparts.

B.4.2 Static Regret Analysis

This section characterizes the performance of TISO and TIRSO analytically. Specifically,

it is shown that the sequences of estimates produced by these algorithms yield a sublinear

static regret, which is a basic requirement in online optimization; see Sec. B.2.3. Broadly

speaking, this property means that, on average and asymptotically, the online estimates

perform as well as their hindsight counterparts.

A general definition of the regret metric is given in (B.8). Since the problem at hand is

separable across nodes, it is natural to separately quantify the regret for each node. The

total regret will be the sum of the regret for all nodes. Applying this idea and shifting

the time index to simplify notation, one can replace Rs[T0] in (B.8) with R
(n)
s [T0 +P − 1],

function ht with h
(n)
t+P , and T0 with T − P + 1 to write the regret of TISO for the n-th

node at time T as

R(n)
s [T ] ,

T∑
t=P

[
h

(n)
t (an[t])− h(n)

t (a∗n[T ])
]
, (B.32)

where h
(n)
t (·) = `

(n)
t (·) + Ω(n)(·) and a∗n[T ] is defined in (B.28). For TIRSO, the regret for

the n-th node is given by

R̃(n)
s [T ] ,

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã∗n[T ])
]
, (B.33)

where h̃
(n)
t (·) = ˜̀(n)

t (·) + Ω(n)(·) and ã∗n[T ] is defined in (B.30).

Since constant step size sequences allow tracking time-varying topologies, one could

think of seeking a sublinear bound for the regret. However, it is easy to see (cf. (B.18)

and (B.19) in the case of TISO) that the sequences of estimates in this case are generally

noisy, unless the innovation process u[t] in (E.1) is 0N . For this reason, a sublinear regret

bound cannot be obtained for a constant αt. However, it is possible to establish sublinear

regret when the step size is “asymptotically constant,” as described next.

The idea is to run the selected algorithm in time windows of exponentially increas-

ing length with a step size that differs across windows but is constant within each

one. Specifically, let the (m + 1)-th window, m = 1, . . . ,M , comprise the time indices





PAPER B

t02m−1 < t ≤ t02m for some user-selected t0 ≥ P . Set αt = α[m] for those t satisfying

t02m−1 < t ≤ t02m. The following result proves sublinear regret for TISO.

Theorem 2. Let {an[t]}Tt=P be generated by applying TISO (Algorithm 9) with step

size αt = α[m] = O(1/
√
t02m−1) in the window t02m−1 < t ≤ t02m, m = 1, 2, . . . Then, the

regret of TISO under assumptions A1 and A4 is

R(n)
s [T ] = O

(
PNByB

2
a

√
T
)
, (B.34)

where Ba = 1/β(By

√
PN +

√
B2
yPN + βBy).

Proof. See Appendix B.8 in the supplementary material.

Similarly, the regret of TIRSO is characterized as follows:

Theorem 3. Let {ãn[t]}Tt=P be generated by applying TIRSO (Algorithm 10) with step

size αt = α[m] = O(1/
√
t02m−1) in the window t02m−1 < t ≤ t02m, m = 1, 2, . . . Then, the

regret of TIRSO under assumptions A1, A2, and A3, is

R(n)
s [T ] = O

(
LB2

ã

√
T
)
, (B.35)

where Bã , 1/β˜̀(By

√
PN +

√
B2
yPN + β˜̀By).

Proof. See Appendix B.10 in the supplementary material.

Theorem 3 has the same form as Theorem 2 with the exception of (B.78), where the

constant term multiplying
√
T differs from the one in (B.34). However, it can be readily

shown that L ≤ PNBy, which implies that TIRSO also satisfies (B.34).

To sum up, both TISO and TIRSO behave asymptotically in the same fashion and

provide, on average, the same performance as the hindsight solution of TISO, which

coincides with the batch solution in (B.6). The difference between TISO and TIRSO is,

therefore, in the non-asymptotic regime, where TIRSO can track changes in the estimated

graph more swiftly than TISO. This is at the expense of a slight increase in the number

of arithmetic operations and required memory. Note, however, that TIRSO offers an

additional degree of freedom through the selection of the forgetting factor γ. This enables

the user to select the desired point in the trade-off between adaptability to changes and

low variability in the estimates.

As demonstrated next, tighter regret bounds can be obtained when a diminishing step

size sequence is adopted. Such sequences are of special interest when the VAR coefficients

do not change over time. Even in this scenario, the application of online algorithms such

as TISO or TIRSO is well-motivated when the number or dimension of the data vectors

is prohibitively large to tackle with a batch algorithm.

Theorem 4. Under assumptions A1, A2, and A3, let {ãn[t]}Tt=P be generated by TIRSO

(Algorithm 10) with αt = 1/(β˜̀t). Then, the static regret of TIRSO satisfies

R̃(n)
s [T ] ≤

G2
˜̀

2β˜̀
(log(T − P + 1) + 1) +

1

2αP−1

B2
ã, (B.36)

where G˜̀, (1 + κΦ)
√
PNBy with κΦ = L/β˜̀ and Bã is defined in Theorem 3.
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Proof. See Appendix B.12 in the supplementary material.

Next, we analyze the performance of TIRSO in dynamic environments.

B.4.3 Dynamic Regret Analysis of TIRSO

In this section, the performance of TIRSO is analyzed in dynamic settings. Specifically, a

dynamic regret bound is derived for TIRSO, and its steady-state tracking error in dynamic

scenarios is also discussed. To characterize the performance of TIRSO in dynamic setups,

the dynamic regret is defined as:

R̃
(n)
d [T ] ,

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
, (B.37)

where ãn[t] is the TIRSO estimate and ã◦n[t] = arg minãn h̃
(n)
t (ãn). The dynamic regret

in (E.12) compares the estimate ãn[t] with ã◦n[t] in terms of the metric h̃
(n)
t (·). As opposed

to ã◦n[t], estimate ãn[t] does not “know” h̃
(n)
t (·) since ãn[t] is obtained from {y[τ ]}τ<t

whereas h̃
(n)
t (·) depends on both {y[τ ]}τ<t and y[t]. This means that the dynamic regret

captures the ability of an algorithm to attain small future residuals. Furthermore, note

that comparing with ã◦n[t] is highly meaningful in the present case since, by definition,

ã◦n[t] = arg minãn µ
∑t

τ=P γ
t−τ`

(n)
τ (ãn)+λ

∑N
n′=1,n′ 6=n ‖ãn,n′‖2, which therefore minimizes a

version of the batch (B.6) or hindsight (B.30) objectives where the more recent residuals

are weighted more heavily. Thus, ã◦n[t] constitutes a significant estimator in dynamic

setups and therefore the dynamic regret also quantifies the ability of an estimator to

track changes.

It can be easily shown that the static regret is upper-bounded by the dynamic regret.

The dynamic regret in (E.12) would coincide with the static regret if ã◦n[t] were replaced

with arg minãn

∑T
t=P h̃

(n)
t (ãn). Attaining a low dynamic regret is therefore more challeng-

ing because the estimator under consideration is compared with a time-varying reference.

This implies that a sublinear dynamic regret may not be attained if this time-varying

reference changes too rapidly, which generally occurs when the tracked parameters vary

too quickly. For this reason, the dynamic regret is commonly upper-bounded in terms of

the cumulative distance between two consecutive instantaneous optimal solutions, known

as path length:

W (n)[T ] ,
T∑

t=P+1

‖ã◦n[t]− ã◦n[t− 1]‖2 . (B.38)

Next, we bound the dynamic regret of TIRSO.

Theorem 5. Under assumptions A1, A2, and A3, let {ãn[t]}Tt=P be generated by TIRSO

(Algorithm 10) with a constant step size α ∈ (0, 1/L]. If there exists σ such that

‖ã◦n[t]− ã◦n[t− 1]‖2 ≤ σ, ∀ t ≥ P + 1, (B.39)

then the dynamic regret of TIRSO satisfies:

R̃
(n)
d [T ] ≤ 1

αβ˜̀

(
(1 + κΦ)

√
PNBy + λN

) (
‖ã◦n[P ]‖2 +W (n)[T ]

)
,

where κΦ , L/β˜̀.
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Proof. See Appendix B.13 in the supplementary material.

Several remarks about Theorem 5 are in order. If the path length W (n)[T ] is sublinear

in T , then the dynamic regret is also sublinear in T . When the path length is not

sublinear, the dynamic regret may not be sublinear, but we can still bound the steady-

state error under certain conditions:

Theorem 6. Under assumptions A1, A2, and A3, let {ãn[t]}Tt=P be generated by TIRSO

(Algorithm 10) with a constant step size α ∈ (0, 1/L]. If there exists σ such that (E.65)

holds, then

lim sup
t→∞

‖ãn[t]− ã◦n[t]‖2 ≤
σ

αβ˜̀
. (B.40)

Proof. Following similar arguments as in the proof of Theorem 5, (B.40) follows by ap-

plying [70, Lemma 4].

This theorem establishes that the steady-state error incurred by TIRSO with α ∈
(0, 1/L] in dynamic scenarios eventually becomes bounded, which shows its tracking ca-

pability in time-varying environments. If α = 1/L, then the upper bound on the steady-

state error becomes σκΦ, where κΦ , L/β˜̀ is an upper bound on the condition number

of Φ[t], t ≥ P . This clearly agrees with intuition. In practice, one may not know the

value of L and therefore selecting an α guaranteed to be in (0, 1/L] would not be pos-

sible. In those cases, it makes sense to compute a running approximation of L given by

L̂t = maxP≤τ≤t λmax(Φ[τ ]) and adopt the approximately constant step size αt = c/L̂t,

where c ∈ (0, 1]. However, in setups where the true VAR parameters change over time,

the max operation may lead the algorithm to use an overly pessimistic approximation of

L. Thus, it may be preferable to directly adopt the adaptive step size αt = c/λmax(Φ[t]),

as analyzed in Sec. B.5.

Remark. None of the algorithms and analytical results in this paper require any proba-

bilistic assumption or mention to probability theory. This is because these results establish

performance guarantees for the proposed online algorithms relative to the batch estimator

or hindsight solutions. If one wished to obtain performance guarantees in terms of proba-

bilistic metrics, such as consistency of the estimators, probabilistic assumptions would of

course be required. For example, when λ = 0, the batch estimator in (B.3) boils down to

the ordinary least squares estimator, which is consistent if the VAR process is stable and

the noise is standard white [43, Lemma 3.1]. When λ > 0, consistency of (B.3) is dis-

cussed in [66]. Remarkably, consistency of the VAR coefficient estimates is not enough to

ensure the correct identification of the true graph. Theorem 1 in [66] provides conditions

that depend on the true VAR parameters that guarantee that the graph is successfully

recovered.

B.5 Numerical Results and Analysis

Simulation tests for the proposed algorithms are performed on both synthetic and real

data. All code will be made public at the authors’ websites.

The proposed algorithms are evaluated based on the performance metrics described next,
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Figure B.2: Performance of TISO and TIRSO on stationary time series for different

degrees of sparsity-promoting regularization (N = 12, P = 2, pe = 0.2, σu = 0.005,

γ = 0.99, T = 3000, T1 = 500, T2 = 3000, 300 Monte Carlo runs).

where expectations are approximated by the Monte Carlo method. For synthetic-data

experiments, the normalized mean square deviation

NMSD[t] ,
E
[∑N

n=1‖ân[t]− atrue
n [t]‖2

2

]
E
[∑N

n=1‖atrue
n [t]‖2

2

] (B.41)

measures the difference between the estimates {ân[t]}t and the (possibly time-varying)

true VAR coefficients {atrue
n [t]}t. The ability to detect edges of the true VAR-causality

graph is assessed using the probability of miss detection

PMD[t] ,

∑
n6=n′ E

[
1{‖ân,n′ [t]‖2 < δ}1{‖an,n′‖2 6= 0}

]∑
n6=n′ E

[
1{‖an,n′‖2 6= 0}

]
for a given threshold δ, which is the probability of not identifying an edge that actually

exists, and the probability of false alarm

PFA[t] ,

∑
n6=n′ E

[
1{‖ân,n′ [t]‖2 ≥ δ}1{‖an,n′‖2 = 0}

]∑
n6=n′ E

[
1{‖an,n′‖2 = 0}

] ,

which is the probability of detecting an edge that does not exist. Another relevant metric

is the edge identification error rate (EIER), which measures how many edges are misiden-

tified relative to the number of possible edges [113]:

EIER[t] =
1

N(N − 1)

∑
n′ 6=n

E
[∣∣1{‖ân,n′ [t]‖2 ≥ δ} − 1{‖an,n′‖2 6= 0}

∣∣]. (B.42)





PAPER B

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time, t (samples)

10-2

10-1

100

101

N
M

S
D

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time, t (samples)

10-2

10-1

100

101

N
M

S
D

Figure B.3: NMSD vs. time: comparison of TISO and TIRSO for various options of step

sizes (N = 10, P = 3, pe = 0.2, σu = 0.1, γ = 0.99, λ = 8 × 10−4, T = 2000, 50 Monte

Carlo runs). Moreover, Lmax(t) := maxtτ=1L(τ).





Online Machine Learning for Graph Topology Identification from Multiple Time Series

0 500 1000 1500 2000 2500 3000

Time, t (samples)

10-1

100
N

M
S

D

TISO

OSGDTISO

TIRSO

PGDTIRSO

Figure B.4: NMSD vs. time: comparison of TISO and TIRSO with other algorithms.

(N = 10, P = 2, pe = 0.2, σu = 0.01, αt = 0.1/L, γ = 0.99, T = 3000, KPGD = 5, 200

Monte Carlo runs). The parameter λ for each algorithm is selected based on minimum

NMSD.
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Figure B.5: EIER vs time for δ = 0, same parameters as of Fig. B.4. The parameter λ

for each algorithm is selected based on minimum EIER.
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Note that self-loops are excluded in these metrics. To quantify the forecasting perfor-

mance, define recursively the h-step ahead predictor given {y[τ ]}τ≤t as:

ŷ[t+ h|t] ,
P∑
p=1

Âp[t]ŷ [t+ h− p|t] , (B.43)

where {Âp[t]}Pp=1 are the estimated VAR coefficients at time t and ŷ[t+ j|t] = y[t+ j] for

j ≤ 0. The h-step normalized mean square error is given by

NMSEh[t] =
E
[
‖y[t+ h]− ŷ[t+ h|t]‖2

2

]
E [‖y[t+ h]‖2

2]
. (B.44)

The values of all parameters involved in the experiments are listed in the captions and

legends of the figures.

B.5.1 Synthetic Data Tests

Throughout this section, unless otherwise stated, the expectations in (E.80) to (B.44)

are taken with respect to realizations of the graph, VAR parameters, and innovation

process u[t]. Similarly, the step size is set to αt = 1/(4λmax(Φ[t])); see Sec. C.3. The

regularization parameter is selected to approximately minimize NMSD.

B.5.1.1 Stationary VAR Processes

An Erdős-Rényi random graph is generated with edge probability pe and self-loop proba-

bility 1. This graph determines which entries of the matrices {Ap}Pp=0 are zero. The rest

of entries are drawn i.i.d. from a standard normal distribution. Matrices {Ap}Pp=0 are

scaled down afterwards by a constant that ensures that the VAR process is stable [43].

The innovation process samples are drawn independently as u[t] ∼ N (0, σ2
uIN).

The first experiment analyzes TISO and TIRSO in a stationary setting. Figs. B.2(a)

and B.2(b) depict the NMSD and NMSE1 for three different values of λ. As a benchmark,

Fig. B.2(b) includes the NMSE1 of the genie-aided predictor, obtained from (B.43) after

replacing Âp with Ap. It is observed that λ = 10−6 yields a better NMSD and NMSE1

than lower and higher values of λ. This corroborates the importance of promoting sparse

solutions, as done in TISO and TIRSO. Furthermore, as expected, TIRSO generally

converges faster than TISO. Fig. B.2(c) shows the receiver operating characteristic (ROC)

curve, composed of pairs (PFA,PMD) for different values of the threshold δ. The values

of these pairs are obtained by respectively averaging PFA[t] and PMD[t] over time in the

interval [T1, T2]. Remarkably, both TISO and TIRSO can simultaneously attain PFA and

PMD below 10%. This ability to satisfactorily detect edges is further investigated in

Figs. B.2(d-f), where δ is set for each algorithm so that PFA[t] and PMD[t] have the same

average over the time interval [T1, T2].

Fig. B.3 analyzes different step size sequences. Because the true VAR parameters re-

main constant, the diminishing sequence yields the best performance; see Theorem 4. Be-

sides, TISO and TIRSO are compared with benchmarks in Fig. B.4, namely online subgra-

dient descent (OSGD) and proximal gradient descent (PGD). The former obtains a mini-
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mizer for (B.6) in an online fashion (labeled as OSGDTISO since it uses the same informa-

tion as TISO at each iteration). The latter approximates ã◦n[t] = arg minãn h̃
(n)
t (ãn) by us-

ing the (batch) algorithm PGD for KPGD iterations over h̃
(n)
t (ãn) (labeled as PGDTIRSO

since it uses the same information as TIRSO at each iteration). Fig. B.4 shows that

TISO outperforms OSGDTISO in terms of NMSD, and TIRSO eventually attains better

NMSD level than PGDTIRSO. Note that the computational complexity of PGDTIRSO

is significantly larger than the complexity of TIRSO. Although the NMSD of TISO in

Fig. B.4 is close to that of OSGD, a more in-depth study reveals that the former yields

sparse iterates without any thresholding; moreover, TIRSO offers a significantly improved

edge-detection performance (EIER), see Fig. B.5. Fig. B.6 compares the true (left) and re-

covered (right) graphs via TIRSO and TISO by thresholding the average of the estimated

VAR coefficients across the intervals [k/(3T ), (k + 1)/(3T )], k = 0, 1, 2. The threshold δ

is selected to detect pe(N
2 −N) edges. Note that this is displayed for a single graph and

realization of the VAR process; in other words, this is not a Monte Carlo experiment. It

is observed that both TIRSO and TISO can identify the true graph quite accurately and

approximate the true VAR coefficients soon afterwards.

B.5.1.2 Non-stationary VAR Processes

The next experiment analyzes TISO and TIRSO when y[t] is a (non-stationary) smooth-

transition VAR process [114, Ch. 18] y[t] =
∑P

p=1

(
Ap+sf [t](Bp−Ap)

)
y[t−p]+u[t]. The

signal sf [t] determines the transition profile from a VAR model with parameters {Ap}p to a

VAR model with parameters {Bp}p. In this experiment, sf [t] = 1− exp(−κ([t− TB]+)2),

where κ > 0 controls the transition speed and TB denotes transition starting instant.

Over an Erdős-Rényi random graph, {Ap} and {Bp} are generated independently as in

Sec. B.5.1.1. It is easy to show that the coefficients Ap + sf [t](Bp −Ap) yield a stable

VAR process for all t.

Figs. B.7(a) and B.7(b) illustrate the influence of the forgetting factor γ, of critical

importance in non-stationary setups. TISO and TIRSO are seen to satisfactorily estimate

and track the model coefficients. As intuition predicts, the lower γ is, the more rapidly

TIRSO can adapt to changes, but after a sufficiently long time after the transition, a

higher γ is preferred.

Finally, to demonstrate that TISO and TIRSO successfully leverage sparsity to track

time-varying topologies, Fig. B.8 illustrates an approximately optimal point in the trade-

off of selecting λ.

B.5.2 Real-Data Tests

The real data is taken from Lundin’s offshore oil and gas (O&G) platform Edvard-Grieg7.

Each node corresponds to a temperature, pressure, or oil-level sensor placed in the de-

cantation system that separates oil, gas, and water. The measured time series are phys-

ically coupled due to the pipelines connecting the system parts and due to the control

systems. Hence, causal relations among time series are expected. Topology identification

7https://www.lundin-petroleum.com/operations/production/norway-edvard-grieg
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Figure B.6: True and recovered graphs (N = 12, P = 2, pe = 0.2, σu = 0.005, γ = 0.98,

λ = 10−6, T = 600).

is motivated to forecast the short-term future state of the system and to unveil depen-

dencies that cannot be detected by simple inspection. All time series are resampled to

a common set of equally-spaced sampling instants using linear interpolation. Since the

data was quantized and compressed using a lossy scheme, a significant amount of noise

is expected. Each time series is normalized to have zero mean and unit sample standard

deviation. Here, the step size is set to αt = 1/(λmax(Φ[t])) and the NMSE is defined as

NMSEh = 1/(
∑

t‖y[t+ h]‖2
2)
∑

t ‖y[t+ h]− ŷ[t+ h|t]‖2
2 .

Fig. B.9 shows the NMSEh vs. the prediction horizon h for the time series in the data

set. The temperature, pressure, and oil level time series are respectively denoted by T, P,

and L and an identifying index. As expected, the prediction error increases with h. The

NMSE ranges from 10−4 to 1 due to the different predictability of each time series.

Fig. B.10 presents the graph obtained by thresholding the average coefficient estimates

over a three-hour duration. The threshold is such that the number of reported edges is

4N . Self-loops are omitted for clarity, and arrow colors encode edge weights. It is observed

that most identified edges connect sensors within each subsystem.

B.6 Conclusions

Two online algorithms were proposed for identifying and tracking VAR-causality graphs

from time series. These algorithms sequentially accommodate data and refine their sparse

topology estimates accordingly. The proposed algorithms offer complementary benefits:

whereas TISO is computationally simpler, TIRSO showcases improved tracking behavior.

Performance is assessed theoretically and empirically. Asymptotic equivalence of the

hindsight solutions of the proposed algorithms is established and sublinear regret bounds
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Figure B.7: Effect of the forgetting factor on the performance in a smooth-transition VAR

model (κ = 0.99, TB = 1000, N = 12, P = 2, pe = 0.2, 300 Monte Carlo runs).





PAPER B

0 500 1000 1500 2000 2500 3000

Time, t(samples)

10-1

100

N
M

S
D

TIRSO, =7e-06

TIRSO, =1e-06

TIRSO, =1e-07

TISO, =7e-06

TISO, =1e-06

TISO, =1e-07

(a) NMSD vs.time

0 500 1000 1500 2000 2500 3000

Time, t(samples)

0.3

0.4

0.5

0.6

0.7

0.8

N
M

S
E

1

TIRSO, =7e-06

TIRSO, =1e-06

TIRSO, =1e-07

TISO, =7e-06

TISO, =1e-06

TISO, =1e-07

Genie

(b) NMSE1 vs. time

Figure B.8: Effect of the regularization parameter on the performance in a smooth-

transition VAR model (κ = 0.99, TB = 1000, N = 12, T = 3000 P = 2, pe = 0.2,

γ = 0.98, 200 Monte Carlo runs).
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Figure B.9: Prediction NMSE vs. prediction horizon for individual variables of oil, gas,

and water separation system. TIRSO is used with P = 8, γ = 0.9, T = 4 hours, sampling

interval = 10 s. The parameter λ is selected based on minimum average NMSE.
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Figure B.10: The estimated topology of a subset of the variables. The sampling interval

is set to 10 seconds. The topology is obtained via TIRSO with γ = 0.9, T = 3 hours, and

P = 8. The parameter λ is selected based on minimum average NMSE.

are derived. Experiments with synthetic and real data validate the conclusions of the

theoretical analysis. Future directions include explicitly modeling the variations in the

VAR coefficients, possibly along the lines of [89, 90, 91], as well as identifying topologies

whose adjacency matrix has a low-rank plus sparse structure along the lines of [92] to

account for clusters.
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Supplementary Material

B.7 Proof of Theorem 1

The first step is to rewrite (B.31) to be able to obtain a simple expression for CT (an)−
C̃T (an). To this end, substitute (B.20) into (B.31) and exchange the order of the sum-

mations to obtain

C̃T (an) =
1

T − P

T−1∑
τ=P

[ T−1∑
t=τ

γt−τµ `(n)
τ (an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2

]

=
1

T − P

T−1∑
τ=P

θτ,T µ `
(n)
τ (an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2 ,

where θτ,T ,
∑T−1

t=τ γ
t−τ . From the geometric series summation formula, which establishes

that θτ,T = (1− γT−τ )/(1− γ), and noting that µ = 1− γ, the above equation becomes

C̃T (an) =
1

T − P

T−1∑
τ=P

(1− γT−τ ) `(n)
τ (an) + λ

N∑
n′=1
n′ 6=n

‖an,n′‖2 .

From (B.29) and the equation above, the difference dT (an) , CT (an)− C̃T (an) between

the TISO and TIRSO hindsight objectives is given by:

dT (an) =
1

T − P

T−1∑
τ=P

γT−τ `(n)
τ (an). (B.45)

To prove part 1, it suffices to show that dT (an) → 0 as T → ∞ for all an. To this end,

expand `
(n)
t (an)

`
(n)
t (an) =

1

2

(
y2
n[t] + a>n g[t] g>[t]an − 2 yn[t] g>[t]an

)
, (B.46)

and apply Cauchy-Schwarz inequality to obtain

`
(n)
t (an) ≤ 1

2
[‖an‖2 · ‖g[t]‖2]2 +

1

2
By +

√
By ‖g[t]‖2 · ‖an‖2 . (B.47)

On the other hand, the hypothesis |yn[t]|2 ≤ By∀n, t implies that ‖y[t]‖2
2 ≤ NBy, and

hence

‖g[t]‖2
2 =

t−1∑
τ=t−P

‖y[τ ]‖2
2 ≤ P max

t−P≤τ≤t−1
‖y[τ ]‖2

2 ≤ PNBy.

Substituting the upper bound of ‖g[t]‖2
2 into (B.47) yields

`
(n)
t (an) ≤ 1

2
NPBy ‖an‖2

2 +
1

2
By +

√
NPBy ‖an‖2 , G(an) (B.48)
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Applying the latter bound to (B.45) results in

dT (an) ≤ 1

T − P

T−1∑
τ=P

γT−τ G(an)

=
G(an)γT

T − P

T−1∑
τ=P

γ−τ =
G(an)

(
1− γT−P

)
(T − P )(γ−1 − 1)

. (B.49)

Taking the limit of the right-hand side clearly yields

lim
T→∞

G(an)
(
1− γT−P

)
(T − P )(γ−1 − 1)

= 0. (B.50)

Noting from (B.45) that dT (an) ≥ 0, it follows that limT→∞ dT (an) = 0, which concludes

the proof of part 1.

To prove part 2, note from (B.45) that dT (an) ≥ 0, which in turn implies that

C̃T (an) ≤ CT (an), (B.51)

for all an and T > P . On the other hand, it follows from (B.30) that

C̃T (ã∗n[T ]) ≤ C̃T (a∗n[T ]). (B.52)

Thus, by combining (B.51) and (B.52),

C̃T (ã∗n[T ]) ≤ CT (a∗n[T ]). (B.53)

Similarly, from (B.28), it holds that CT (a∗n[T ]) ≤ CT (ã∗n[T ]). Subtracting C̃T (ã∗n[T ])

from both sides of the latter inequality yields

CT (a∗n[T ])− C̃T (ã∗n[T ]) ≤ CT (ã∗n[T ])− C̃T (ã∗n[T ]) = dT (ã∗n[T ]).

By combining (B.53) and (B.54), it holds that

0 ≤ CT (a∗n[T ])− C̃T (ã∗n[T ]) ≤ dT (ã∗n[T ]). (B.54)

Since limT→∞ dT (ã∗n[T ]) = 0, (B.54) implies that

lim
T→∞

CT (a∗n[T ])− C̃T (ã∗n[T ]) = 0. (B.55)

Finally, to establish part 3, note that it follows from assumption A2, (B.21) and (B.31)

that C̃T is β̃-strongly convex for some β̃ > 0,∀T . Thus, from (B.30), one finds that

C̃T (a∗n[T ]) ≥ C̃T (ã∗n[T ]) +
β̃

2
‖a∗n[T ]− ã∗n[T ]‖2

2 . (B.56)

By combining (B.51) and (B.56), it follows that

CT (a∗n[T ]) ≥ C̃T (ã∗n[T ]) +
β̃

2
‖a∗n[T ]− ã∗n[T ]‖2

2 , (B.57)
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or, equivalently,

CT (a∗n[T ])− C̃T (ã∗n[T ]) ≥ β̃

2
‖a∗n[T ]− ã∗n[T ]‖2

2 ≥ 0. (B.58)

Taking limits gives rise to

lim
T→∞

[
CT (a∗n[T ])− C̃T (ã∗n[T ])

]
≥ lim

T→∞

[ β̃
2
‖a∗n[T ]− ã∗n[T ]‖2

2

]
≥ 0. (B.59)

From (B.55) and the sandwich theorem applied to (B.59), we have

lim
T→∞

[ β̃
2
‖a∗n[T ]− ã∗n[T ]‖2

2

]
= 0, (B.60)

which concludes the proof.

B.8 Proof of Theorem 2

Consider first the regret of TISO with constant step size.

Lemma 1. Let {an[t]}Tt=P be generated by TISO (Algorithm 9) with constant step size

αt = α = O
(
1/
√
T
)
. Under assumptions A1 and A4, we have

R(n)
s [T ] = O

(
PNBy B

2
a

√
T
)
. (B.61)

Proof. See Appendix B.9.

Observe that the step size in Theorem 1 depends on T and therefore (B.61) cannot be

interpreted as directly establishing sublinear regret for TISO. To understand this result,

consider a sequence of copies of TISO, each one for a value of T . Each copy has a

(potentially) different step size, but uses the same step size for all t. Expression (B.61)

bounds the regret of the T -th copy at time T . However, Theorem 1 can be used next to

establish sublinear regret for step size sequences that remain constant over windows of

exponentially increasing length; see the doubling trick [46].

To this end, let the regret in the window [t1, t2] be

R(n)
s [t1, t2] ,

t2∑
t=t1

h
(n)
t (an[t])− h(n)

t (a∗n[t1, t2]), (B.62)

where {an[t]}t ⊂ R
NP is an arbitrary sequence and

a∗n[t1, t2] , arg min
an

t2∑
t=t1

h
(n)
t (an). (B.63)

The next result establishes a bound on the static regret given the regret at each window.

Lemma 2. For T = t02M and for an arbitrary sequence {an[t]}t ⊂ R
NP , the regret in

(B.32) is bounded as:

R(n)
s [T ] ≤ R(n)

s [P, t0] +
M∑
m=1

R(n)
s [t02m−1 + 1, t02m]. (B.64)
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Proof. For T = t02M , expression (B.32) can be written as:

R(n)
s [T ] =

t02M∑
t=P

h
(n)
t (an[t])−

t02M∑
t=P

h
(n)
t (a∗n[T ]) . (B.65)

On the other hand, it follows from (B.62) that (B.64) is equivalent to

R(n)
s [T ] ≤

t0∑
t=P

[
h

(n)
t (an[t])− h(n)

t (a∗n[P, t0])
]

+
M∑
m=1

t02m∑
t=t02m−1+1

[
h

(n)
t (an[t])− h(n)

t

(
a∗n
[
t02m−1 + 1, t02m

])]
, (B.66)

The inequality in (B.66) can also be rewritten as

R(n)
s [T ] ≤

t02M∑
t=P

h
(n)
t (an[t])−

[ t0∑
t=P

h
(n)
t (a∗n[P, t0])+

M∑
m=1

t02m∑
t=t02m−1+1

h
(n)
t

(
a∗n
[
t02m−1 + 1, t02m

]) ]
.

(B.67)

By comparing (B.65) and (B.67), proving (B.64) is equivalent to showing that

t02M∑
t=P

h
(n)
t (a∗n[T ]) ≥

[ t0∑
t=P

h
(n)
t (a∗n[P, t0]) +

M∑
m=1

t02m∑
t=t02m−1+1

h
(n)
t

(
a∗n
[
t02m−1 + 1, t02m

]) ]
.

(B.68)

From the definitions of a∗n[T ] in (B.28) and a∗n[t1, t2] in (B.63), the above inequality holds

since infx,y f(x,y) ≤ infx=y f(x,y).

The next step is to bound the regret at each window using Lemma 1. To this end,

one must set α[m] as a function O(1/
√
Tm), where Tm , t02m − t02m−1 = t02m−1 is the

length of the (m + 1)-th window, m = 1, . . . ,M . Invoking Lemma 1, the regret for the

(m+ 1)-th window is given by R
(n)
s [t02m−1 + 1, t02m] = O(PNByB

2
a

√
2m−1). By Lemma

2, the regret of TISO becomes

R(n)
s [T ] = O

(
PNByB

2
a

√
t0 − P + 1

)
+

M∑
m=1

O
(
PNByB

2
a

√
t02m−1

)
= O

(
PNByB

2
a

M∑
m=1

√
t02m−1

)
= O

(
PNByB

2
a(
√

2)M
)

= O
(
PNByB

2
a

(
2

log2
T
t0

) 1
2

)
= O

(
PNByB

2
a

√
T
)
,

which concludes the proof.
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B.9 Proof of Lemma 1

First we present a lemma that establishes that the hindsight solution of TISO is bounded

and then we will present the proof of Lemma 1.

Lemma 3. Under assumptions A1, A2, and A4, the hindsight solution of TISO a∗n[T ]

given in (B.28) is bounded as

‖a∗n[T ]‖2 ≤ Ba ,
1

β

(
By

√
PN +

√
B2
yPN + βBy

)
. (B.69)

Proof. Note that a∗n[T ] belongs to the sublevel set of TISO hindsight objective for an =

0NP , given by

ST , {an : CT (an) ≤ CT (0NP )} , (B.70)

where CT (0NP ) is upper bounded by

CT (0NP ) =
1

T − P

T−1∑
t=P

1

2
y2
n[t]

≤ 1

2(T − P )

T−1∑
t=P

By =
By

2
.

This means that we can write:

ST ⊂
{
a∗n[T ] : CT (a∗n[T ]) ≤ By

2

}
. (B.71)

Next, we find a lower bound to CT (a∗n[T ]) that is an increasing function of ‖a∗n[T ]‖2 as

follows

CT (a∗n[T ]) =
1

T − P

T−1∑
t=P

[1

2
(a∗n[T ])>g[t]g>[t]a∗n[T ]− yn[t]g>[t]a∗n[T ] +

1

2
y2
n[t] + Ω(n)(a∗n[T ])

]
≥ 1

T − P

T−1∑
t=P

[1

2
(a∗n[T ])>g[t]g>[t]a∗n[T ]− yn[t]g>[t]a∗n[T ]

]
≥ 1

2
λmin

(
1

T − P

T−1∑
t=P

g[t]g>[t]

)
‖a∗n[T ]‖2

2 −
1

T − P

T−1∑
t=P

yn[t] ‖g[t]‖2 · ‖a
∗
n[T ]‖2

≥ 1

2
β ‖a∗n[T ]‖2

2 −By

√
PN ‖a∗n[T ]‖2 .

Therefore,

ST ⊂
{
a∗n[T ] :

1

2
β‖a∗n[T ]‖2

2 −By

√
PN‖a∗n[T ]‖2 ≤

By

2

}
. (B.73)

Further, we can write

ST ⊂ {a∗n[T ] : ‖a∗n[T ]‖2 ≤ Ba} , (B.74)

with Ba , 1/β(By

√
PN +

√
B2
yPN + βBy). Expression (B.74) implies that the TISO

hindsight solution is bounded.
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Now, we present the proof of Lemma 1. This proof is based on the idea that if the in-

equality ‖∇`(n)
t (an)‖2

2 ≤ 2PNBy `
(n)
t (an),∀ t, n holds and the strong convexity parameter

of ψ is 1, then it follows from [67, Corollary 5] that:

R(n)
s [T ] = O

(
1
2
ρ
√
T − P ‖a∗n[T ]− an[P ]‖2

2

)
= O

(
1
2
ρ
√
T ‖a∗n[T ]‖2

2

)
= O

(
PNBy

√
T ‖a∗n[T ]‖2

2

)
= O

(
PNBy

√
TB2

a

)
,

where Ba is defined in (B.69). We still need to show that the inequality ‖∇`(n)
t (an)‖2

2 ≤
2PNBy`

(n)
t (an), ∀ t, n, holds. To this end, note from (B.15) that:∥∥∇`(n)

t (an)
∥∥2

2
=
∥∥g[t]

(
g>[t]an − yn[t]

)∥∥2

2

= ‖g[t]‖2
2 ·
∣∣yn[t]− g>[t]an

∣∣2 . (B.75)

On the other hand, the hypothesis |yn[t]|2 ≤ By ∀ n, t implies that ‖y[t]‖2
2 ≤ NBy and,

therefore:

‖g[t]‖2
2 =

t−1∑
τ=t−P

‖y[τ ]‖2
2 ≤ P max

t−P≤τ≤t−1
‖y[τ ]‖2

2 ≤ PNBy. (B.76)

Combining (B.75) and (B.76) yields∥∥∇`(n)
t (an)

∥∥2

2
≤ PNBy

∣∣yn[t]− g>[t]an
∣∣2 . (B.77)

Thus, to satisfy

∥∥∇`(n)
t (an)

∥∥2

2
≤ ρ `

(n)
t (an) = ρ

1

2

(
yn[t]− g>[t]an

)2
,

it suffices to set ρ = 2PNBy.

B.10 Proof of Theorem 3

The first step is to obtain a bound for constant step size.

Lemma 4. Let {ãn[t]}Tt=P be generated by TIRSO (Algorithm 10) with constant step

size αt = α = O
(
1/
√
T
)
. Under assumptions A1, A2, and A3, we have

R̃(n)
s [T ] = O

(
LB2

ã

√
T
)
. (B.78)

Proof. See Appendix B.11.

The rest of the proof proceeds along the lines of the proof of Theorem 2.
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B.11 Proof of Lemma 4

First, we present a lemma that establishes that the hindsight solution of TIRSO is

bounded. Then, we will present the proof of Lemma 4.

Lemma 5. Under the assumptions A1 and A2, the hindsight solution of TIRSO ã∗n[T ]

given in (B.30) is bounded as

‖ã∗n[T ]‖2 ≤ Bã ,
1

β˜̀

(
By

√
PN +

√
B2
yPN + β˜̀By

)
. (B.79)

Proof. The proof follows similar steps to those of Lemma 3. Consider the sublevel set of

TIRSO hindsight objective for ã∗n[T ] = 0NP ,

S̃T ,
{
ã∗n[T ] : C̃T (ã∗n[T ]) ≤ C̃T (0NP )

}
, (B.80)

where C̃T (0NP ) is upper bounded as follows:

C̃T (0NP ) =
1

T − P

T−1∑
t=P

µ

2

t∑
τ=P

γt−τy2
n[t]

≤ Byµ

2(T − P )

T−1∑
t=P

t∑
τ=P

γt−τ

=
Byµ

2(T − P )

T−1∑
t=P

1− γt−P+1

1− γ

≤ By

2(T − P )

T−1∑
t=P

1 =
By

2
.

This implies that

S̃T ⊂
{
ã∗n[T ] : C̃T (ã∗n[T ]) ≤ By

2

}
. (B.82)

Next, we find a lower bound to C̃T (ã∗n[T ]) that is an increasing function of ‖ã∗n[T ]‖2 as

follows

C̃T (ã∗n[T ]) =
1

T − P

T−1∑
t=P

[1

2
(ã∗n[T ])>Φ[t]ã∗n[T ]− r>n [t]ã∗n[T ] +

µ

2

t∑
τ=P

γt−τy2
n[t] + Ω(n)(ã∗n[T ])

]
≥ 1

T − P

T−1∑
t=P

[1

2
(ã∗n[T ])>Φ[t]ã∗n[T ]− r>n [t]ã∗n[T ] +

µ

2

t∑
τ=P

γt−τy2
n[t]
]

≥ 1

T − P

T−1∑
t=P

[1

2
λmin(Φ[t])‖ã∗n[T ]‖2

2 − ‖rn[t]‖2 ‖ã
∗
n[T ]‖2

]
≥ 1

T − P

T−1∑
t=P

[
1

2
β˜̀‖ã∗n[T ]‖2

2 −By

√
PN‖ã∗n[T ]‖2

]
=

1

2
β˜̀‖ã∗n[T ]‖2

2 −By

√
PN‖ã∗n[T ]‖2.
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Therefore,

S̃T ⊂
{
ã∗n[T ] :

1

2
β˜̀‖ã∗n[T ]‖2

2 −By

√
PN‖ã∗n[T ]‖2 ≤

By

2

}
. (B.84)

Further, we can write

S̃T ⊂
{
ã∗n[T ] : ‖ã∗n[T ]‖2 ≤

1

β˜̀

(
By

√
PN +

√
B2
yPN + β˜̀By

)}
. (B.85)

Expression (B.85) implies that the TIRSO hindsight solution is bounded.

Now, we present the proof of Lemma 4. The proof has two parts. The first step is to

prove that there exists ρ̃ > 0 such that∥∥∇˜̀(n)
t (an)

∥∥2

2
≤ ρ̃ ˜̀(n)

t (an), ∀ t, n, (B.86)

holds for all an. The second step is to apply the result of [67, Corollary 5] in the present

case. To prove the first part, from (B.21) and ∇˜̀(n)
t (an) = Φ[t]an − rn[t], it follows that

(B.86) is equivalent to

‖Φ[t]an − rn[t]‖2
2 ≤ ρ̃

(1

2
a>nΦ[t]an − r>n [t]an +

1

2

t∑
τ=P

µγt−τy2
n[t]
)
, ∀ t, n. (B.87)

By expanding the left-hand side of (B.87), rearranging terms, and introducing Zt(an) as

Zt(an) , a>n

( ρ̃
2
Φ[t]−Φ>[t]Φ[t]

)
an + (2r>n [t]Φ[t]− ρ̃ r>n [t])an

+
ρ̃µ

2

t∑
τ=P

γt−τy2
n[t]− r>n [t]rn[t], (B.88)

the condition in (B.86) is equivalent to Zt(an) ≥ 0. So the goal becomes finding ρ̃ such that

Zt(an) ≥ 0 for all an and t. For this condition to hold, it is necessary that (a) infan Zt(an)

is finite for all t, and (b) infan Zt(an) ≥ 0 for all t. It can be seen [115, Appendix A.5] that

condition (a) holds iff (a1) the Hessian matrix HZt(an) = ρ̃Φ[t]− 2Φ>[t]Φ[t] is positive

semidefinite, and (a2) 2Φ[t]rn[t] − ρ̃rn[t] ∈ R(HZt(an)), where R(A) denotes the span

of the columns of a matrix A. The first step is to find ρ̃ such that (a1) holds. To this end,

consider the eigenvalue decomposition of Φ[t] = UΛU>, where the index t is omitted to

simplify notation. Therefore,

HZt(an) = U
(
ρ̃Λ− 2Λ2

)
U>. (B.89)

Let λmax(Φ[t]) denote the maximum eigenvalue of Φ[t]. It follows from (B.89) that

HZt(an) is positive semidefinite if

ρ̃ ≥ 2λmax(Φ[t]). (B.90)

It remains to be shown that there exists ρ̃ > 0 such that (B.90), (a2), and (b) simultane-

ously hold. To this end, focus first on (a2), which can be rewritten as

2Φ[t]rn[t]− ρ̃rn[t] ∈ R
(
ρ̃Φ[t]− 2Φ>[t]Φ[t]

)
(B.91)

= R (Φ[t] (ρ̃I − 2Φ[t])) .
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Clearly, if ρ̃ > 2λmax(Φ[t]), then ρ̃I−2Φ[t] is invertible and, hence, R(Φ[t](ρ̃I−2Φ[t])) =

R(Φ[t]) [116, Ch. 4]. Thus, (B.91) holds if 2Φ[t]rn[t] ∈ R(Φ[t]) and ρ̃rn[t] ∈ R(Φ[t]).

The former condition is trivial. To verify the latter, define

yn , [yn[P ], . . . , yn[t]]> ∈ Rt−P+1×1, (B.92a)

G , [g[P ], . . . , g[t]] ∈ RNP×t−P+1, (B.92b)

Γ , diag
(
µ[γt−P , . . . , γ0]

)
∈ Rt−P+1×t−P+1, (B.92c)

and B , GΓ1/2; note that Φ[t] = GΓG> = BB>. It follows that rn[t] = GΓyn =

BΓ1/2yn ∈ R(B) = R(BB>) = R(Φ[t]). Therefore, ρ̃rn[t] ∈ R(Φ[t]) holds and, conse-

quently, (a2) holds whenever ρ̃ > 2λmax(Φ[t]).

So far, this proof has established that, if ρ̃ > 2λmax(Φ[t]), then both (a1) and (a2)

hold. The next step is to show that (b) also holds when ρ̃ > 2λmax(Φ[t]). To this end,

set the gradient of Zt(an) equal to zero and use ρ̃ > 2λmax(Φ[t]) to obtain Φ†[t]rn[t] ∈
arg min

an

Zt(an), where the symbol † denotes pseudo-inverse. From this expression and

(B.88), it follows that

inf
an

Zt(an) = Zt(Φ
†[t]rn[t])

= r>n [t]Φ†[t]
( ρ̃

2
Φ[t]−Φ>[t]Φ[t]

)
Φ†[t]rn[t] +

(
2r>n [t]Φ[t]

− ρ̃r>n [t]
)
Φ†[t]rn[t] +

ρ̃µ

2

t∑
τ=P

γt−τy2
n[t]− r>n [t]rn[t].

Applying the properties of the pseudoinverse and simplifying results in

inf
an

Zt(an) =
ρ̃µ

2

t∑
τ=P

γt−τy2
n[t]− ρ̃

2
r>n [t]Φ†[t]rn[t]. (B.93)

From this expression, note that the condition inf
an

Zt(an) ≥ 0 is equivalent to

y>n Γyn ≥ y>n ΓG>
(
GΓG>

)†
GΓyn, (B.94)

and, upon defining ỹn , Γ1/2yn,

ỹ>n ỹn ≥ ỹ>n Γ1/2G>
(
GΓG>

)†
GΓ1/2ỹ>n . (B.95)

This inequality trivially holds when ỹn = 0t−P+1. Thus, assume without loss of gen-

erality that ỹn 6= 0t−P+1. By setting A , Γ1/2G>(GΓG>)†, one obtains AB =

Γ1/2G>(GΓG>)†GΓ1/2 and BA = Φ[t]Φ†[t].

Since the nonzero eigenvalues of AB and BA are the same [117, Sec. 3.2.11] and

the maximum eigenvalue of BA is 1, then the maximum eigenvalue of AB is also 1.

Therefore
ỹ>nABỹn
ỹ>n ỹn

=
ỹ>n Γ1/2G>

(
GΓG>

)†
GΓ1/2ỹn

ỹ>n ỹn
≤ 1, (B.96)

and, hence, (B.95) holds. To sum up, conditions (a) and (b) hold if ρ̃ > 2λmax(Φ[t]). In

other words, (B.86) holds for any choice of ρ̃ such that ρ̃ > 2λmax(Φ[t]) for all t. This
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completes the first part of the proof. The second part of the proof consists of setting

ρ̃ = sup
t
λmax(Φ[t]) + ε with ε > 0 an arbitrary constant, and invoking [67, Corollary 5]

to conclude that

R̃(n)
s [T ] = O

(
ρ̃ ‖ã∗n[T ] ‖2

2

√
T
)
.

Using assumption A3 and substituting the upper bound on ‖ã∗n[T ]‖2 from (B.79) into the

above expression completes the proof.

B.12 Proof of Theorem 4

To prove Theorem 4, first we present two lemmas. Before presenting the result related to

logarithmic regret of TIRSO, it is worth mentioning that a related result is presented in

[67, Th. 7], which is applicable to strongly convex regularization functions. Note that in

TIRSO, the data-fitting function is strongly convex. It can be easily shown that COMID

applied to a problem with strongly convex regularizer produces different iterates than

COMID applied to a strongly convex data-fitting function.

Lemma 6. Under assumption A2, let the sequence {ãn[t]}Tt=P be generated by TIRSO

(Algorithm 10) with a step size αt, and let ã∗n[T ] be the hindsight solution for TIRSO

at time T defined in (B.30). Then

˜̀(n)
t (ãn[t]) + Ω(n)(ãn[t+ 1])− ˜̀(n)

t (ã∗n[T ])−Ω(n)(ã∗n[T ]) ≤ 1

2αt
(1−αtβ˜̀) ‖ã∗n[T ]− ãn[t]‖2

2

− 1

2αt
‖ã∗n[T ]− ãn[t+ 1]‖2

2 +
αt
2

∥∥∥g ˜̀

t

∥∥∥2

2
, (B.97)

for P ≤ t ≤ T , ∀ g ˜̀
t ∈ ∂(˜̀(n)

t (ãn[t])).

Proof. For a strongly convex ˜̀(n)
t , by the subgradient inequality, we have

˜̀(n)
t (ã∗n[T ]) ≥ ˜̀(n)

t (ãn[t]) + (ã∗n[T ]− ãn[t])>g
˜̀

t +
β˜̀

2
‖ã∗n[T ]− ãn[t]‖2

2 , (B.98)

∀g ˜̀
t ∈ ∂(˜̀(n)

t (ãn[t])). On the other hand, since Ω(n) is convex,

Ω(n)(ã∗n[T ]) ≥ Ω(n)(ãn[t+ 1]) + (ã∗n[T ]− ãn[t+ 1])> gΩ
t+1, (B.99)

∀ gΩ
t+1 ∈ ∂(Ω(n)(ãn[t + 1])). Adding (B.98) and (B.99), scaling by αt, and rearranging
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terms,

αt

(
˜̀(n)
t (ãn[t]) + Ω(n)(ãn[t+ 1])− ˜̀(n)

t (ã∗n[T ])− Ω(n)(ã∗n[T ])
)

≤ αt

(
(ãn[t]− ã∗n[T ])>g

˜̀

t + (ãn[t+ 1]− ã∗n[T ])>gΩ
t+1 −

β˜̀

2
‖ãn[t]− ã∗n[T ]‖2

2

)
(a)
= (ã∗n[T ]− ãn[t+ 1])>

(
ãn[t]− ãn[t+ 1]− αtg

˜̀

t − αtgΩ
t+1

)
+ αt (ãn[t]− ãn[t+ 1])> g

˜̀

t −
αtβ˜̀

2
‖ãn[t]− ã∗n[T ]‖2

2 + (ã∗n[T ]− ãn[t+ 1])> (ãn[t+ 1]− ãn[t])

(b)

≤ αt (ãn[t]− ãn[t+ 1])> g
˜̀

t −
αtβ˜̀

2
‖ãn[t]− ã∗n[T ]‖2

2 + (ã∗n[T ]− ãn[t+ 1])> (ãn[t+ 1]− ãn[t])

(c)
= αt

〈
1
√
αt

(ãn[t]− ãn[t+ 1]),
√
αtg

˜̀

t

〉
− αtβ˜̀

2
‖ãn[t]− ã∗n[T ]‖2

2 +
1

2
‖ã∗n[T ]− ãn[t]‖2

2

− 1

2
‖ã∗n[T ]− ãn[t+ 1]‖2

2 −
1

2
‖ãn[t+ 1]− ãn[t]‖2

2

(d)

≤ 1

2
‖ãn[t]− ãn[t+ 1]‖2

2 +
α2
t

2

∥∥∥g ˜̀

t

∥∥∥2

2
− 1

2
‖ãn[t+ 1]− ãn[t]‖2

2 −
1

2
‖ã∗n[T ]− ãn[t+ 1]‖2

2

+

(
1

2
− αtβ˜̀

2

)
‖ãn[t]− ã∗n[T ]‖2

2

=
α2
t

2

∥∥∥g ˜̀

t

∥∥∥2

2
+

(
1

2
− αtβ˜̀

2

)
‖ãn[t]− ã∗n[T ]‖2

2 −
1

2
‖ã∗n[T ]− ãn[t+ 1]‖2

2 , (B.100)

where (a) results from adding and subtracting the term ã>n [t + 1]g
˜̀
t + (ã∗n[T ] − ãn[t +

1])>(ãn[t]− ãn[t+ 1]) followed by rearranging terms; in (b) the inequality (ã∗n[T ]− ãn[t+

1])>(ãn[t] − ãn[t + 1] − αtg
˜̀
t − αtg

Ω
t+1) ≤ 0 is used, which is implied by the optimality

of ãn[t + 1] in (B.24), i.e., (an − ãn[t + 1])>(∇̃J̃ (n)
t (ãn[t + 1])) ≥ 0,∀an; in (c) the

Pythagorean theorem for Euclidean distance (i.e. (ã∗n[T ]− ãn[t+ 1])>(ãn[t+ 1]− ãn[t]) =

1/2‖ã∗n[T ] − ãn[t]‖2
2 − 1/2‖ã∗n[T ] − ãn[t + 1]‖2

2 − 1/2‖ãn[t + 1] − ãn[t]‖2
2) is used; in (d)

the inequality 〈x,y〉 ≤ 1/2(‖x‖2
2 + ‖y‖2

2) is used. Dividing both sides of (B.100) by αt
completes the proof.

Next, we establish that TIRSO estimates ãn[t] are bounded and a bound on ‖∇˜̀(n)
t (ãn[t])‖2

that depends on parameters of the algorithm, is derived.

Lemma 7. Under assumptions A1 and A2, and let the sequence of iterates {ãn[t]} be

generated by TIRSO (Algorithm 10). Then

‖ãn[t+ 1]‖2 ≤ (1− αtβ˜̀) ‖ãn[t]‖2 + αt
√
PNBy. (B.101)

Proof. From the update expression of TIRSO, we have

‖ãn[t+ 1]‖2 ≤
∥∥ãf

n[t+ 1]
∥∥

2

= ‖ãn[t]− αtvn[t]‖2

= ‖ãn[t]− αt (Φ[t]ãn[t]− rn[t])‖2

= ‖(I − αtΦ[t]) ãn[t] + αtrn[t]‖2

≤ λmax (I − αtΦ[t]) ‖ãn[t]‖2 + αt ‖rn[t]‖2

= (1− αtλmin(Φ[t]) ‖ãn[t]‖2 + αt ‖rn[t]‖2

≤ (1− αtβ˜̀) ‖ãn[t]‖2 + αt ‖rn[t]‖2 . (B.102)
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Now, we derive an upper bound on ‖rn[t]‖2. By the definition of rn[t] in (B.22b) and

assumption A1, we have

‖rn[t]‖2 =

∥∥∥∥∥µ
t∑

τ=P

γt−τyn[τ ] g[τ ]

∥∥∥∥∥
2

≤ µ

∥∥∥∥∥
t∑

τ=P

γt−τ
√
By

√
By1NP

∥∥∥∥∥
2

(B.103a)

= µBy

√
PNγt

t∑
τ=P

(
1

γ

)τ
= By

√
PN(1− γt−P+1)

≤
√
PNBy. (B.103b)

Substituting the upper bound of rn[t] from (E.49b) into (C.24) completes the proof.

Lemma 8. Under assumptions A1, A2, and A3, and let the sequence of iterates {ãn[t]}
be generated by TIRSO (Algorithm 10) with αt = 1/(β˜̀t). Then

‖ãn[t]‖2 ≤ 1/β˜̀

√
PNBy,∀ t ≥ P, (B.104)

∥∥∥∇˜̀(n)
t (ãn[t])

∥∥∥
2
≤ G˜̀,

(
1 +

L

β˜̀

)√
PNBy,∀ t ≥ P. (B.105)

Proof. Invoking Lemma 7 and setting αt = 1/(β˜̀t) in (B.101),

‖ãn[t+ 1]‖2 =

(
1− 1

β˜̀t
β˜̀

)
‖ãn[t]‖2 +

1

β˜̀t

√
PNBy

≤
(

1− 1

t

)
‖ãn[t]‖2 +

1

β˜̀t

√
PNBy (B.106a)

≤
(

1− 1

t

)[(
1− 1

t− 1

)
‖ãn[t− 1]‖2 +

1

β˜̀(t− 1)

√
PNBy

]
+

1

β˜̀t

√
PNBy

≤
(
t− 2

t

)
‖ãn[t− 1]‖2 +

2

β˜̀t

√
PNBy. (B.106b)

Substituting the upper bound of ‖ãn[t− 1]‖2 using (B.106a), we have

‖ãn[t+ 1]‖2 ≤
(
t− 3

t

)
‖ãn[t− 2]‖2 +

3

β˜̀t

√
PNBy.

After k substitutions, the above bound can be written in terms of k as follows

‖ãn[t+ 1]‖2 ≤
(
t− k
t

)
‖ãn[t− k + 1]‖2 +

k

β˜̀t

√
PNBy,
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1 ≤ k ≤ t − P + 1. The bound on ‖ãn[t + 1]‖2 in terms of the initial estimate ‖ãn[P ]‖2

is obtained for k = t− P + 1 in the above inequality, given by

‖ãn[t+ 1]‖2 ≤
(
P − 1

t

)
‖ãn[P ]‖2 +

t− P + 1

β˜̀t

√
PNBy

=

√
PNBy

β˜̀
− P − 1

β˜̀t

√
PNBy

≤
√
PNBy

β˜̀
, t ≥ P.

This completes the proof of (B.104), the first part of the theorem. To prove the second

part of the theorem, by taking the value of the gradient in (B.23), and by the triangular

inequality,

∥∥∥∇˜̀(n)
t (ãn[t])

∥∥∥
2

= ‖Φ[t]ãn[t]− rn[t]‖2

≤ ‖Φ[t]ãn[t]‖2 + ‖rn[t]‖2

≤ λmax(Φ[t]) ‖ãn[t]‖2 + ‖rn[t]‖2 (B.108a)

≤ L

√
PNBy

β˜̀
+
√
PNBy

≤
(

1 +
L

β˜̀

)√
PNBy.

Now, we are ready to prove Theorem 4. We start from the result presented in Lemma
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6. Summing both sides of (B.97) from t = P to T results in

T∑
t=P

(
˜̀(n)
t (ãn[t]) + Ω(n)(ãn[t+ 1])− ˜̀(n)

t (ã∗n[T ])− Ω(n)(ã∗n[T ])
)

≤
T∑
t=P

(αt
2

∥∥∥g ˜̀

t

∥∥∥2

2
+
( 1

2αt
− β˜̀

2

)
‖ãn[t]− ã∗n[T ]‖2

2 −
1

2αt
‖ã∗n[T ]− ãn[t+ 1]‖2

2

)
(B.109)

=
1

2

T∑
t=P

(
1

αt
− β˜̀

)
‖ã∗n[T ]− ãn[t]‖2

2 −
1

2

T∑
t=P

1

αt
‖ã∗n[T ]− ãn[t+ 1]‖2

2 +
1

2

T∑
t=P

αt

∥∥∥g ˜̀

t

∥∥∥2

2

=
1

2

T−1∑
k=P−1

(
1

αk+1

− β˜̀

)
‖ã∗n[T ]− ãn[k + 1]‖2

2 −
1

2

T∑
t=P

1

αt
‖ã∗n[T ]− ãn[t+ 1]‖2

2

+
1

2

T∑
t=P

αt

∥∥∥g ˜̀

t

∥∥∥2

2

=
1

2

T−1∑
k=P−1

1

αk+1

‖ã∗n[T ]− ãn[k + 1]‖2
2 +

1

2

T∑
t=P

αt

∥∥∥g ˜̀

t

∥∥∥2

2
− 1

2

T−1∑
t=P−1

1

αt
‖ã∗n[T ]− ãn[t+ 1]‖2

2

+
1

2αP−1

‖ã∗n[T ]− ãn[P ]‖2
2 −

1

2αT
‖ã∗n[T ]− ãn[T + 1]‖2

2

(a)

≤ 1

2

T−1∑
t=P−1

‖ã∗n[T ]− ãn[t+ 1]‖2
2

(
1

αt+1

− 1

αt
− β˜̀

)
+

1

2

T∑
t=P

αt

∥∥∥g ˜̀

t

∥∥∥2

2

+
1

2αP−1

‖ã∗n[T ]− ãn[P ]‖2
2 , (B.110)

where the inequality in (a) results from ignoring the term 1/(2αT )‖ã∗n[T ] − ãn[T + 1]‖2
2

and combining similar terms. To relate the l.h.s. of (B.109) and the static regret in this

case, consider the definition of the static regret for TIRSO in (B.33)

R̃(n)
s [T ] =

T∑
t=P

[
˜̀(n)
t (ãn[t])− ˜̀(n)

t (ã∗n[T ])− Ω(n)(ã∗n[T ])
]

+
T∑
t=P

Ω(n)(ãn[t])

=
T∑
t=P

[
˜̀(n)
t (ãn[t])− ˜̀(n)

t (ã∗n[T ])− Ω(n)(ã∗n[T ])
]

+
T−1∑
t=P−1

Ω(n)(ãn[t+ 1]). (B.111)

Adding and subtracting the term Ω(n)(ãn[T + 1]) to the r.h.s. of (B.111) and rearranging

of terms results in

R̃(n)
s [T ] =

T∑
t=P

[
˜̀(n)
t (ãn[t])− ˜̀(n)

t (ã∗n[T ])− Ω(n)(ã∗n[T ])
]

+
T∑
t=P

Ω(n)(ãn[t+ 1]) + Ω(n)(ãn[P ])− Ω(n)(ãn[T + 1])

≤
T∑
t=P

[
˜̀(n)
t (ãn[t]) + Ω(n)(ãn[t+ 1])− ˜̀(n)

t (ã∗n[T ])− Ω(n)(ã∗n[T ])
]
, (B.112)
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where Ω(n)(ãn[P ]) = 0 and Ω(n)(ãn[T + 1]) ≥ 0 are used in the above inequality. Observe

that the r.h.s. of the above inequality coincides with the l.h.s. of (B.109). Therefore,

from (B.110) and (B.112), we have

R̃(n)
s [T ] ≤ 1

2

T−1∑
t=P−1

‖ã∗n[T ]− ãn[t+ 1]‖2
2

(
1

αt+1

− 1

αt
− β˜̀

)
+

1

2

T∑
t=P

αt

∥∥∥g ˜̀

t

∥∥∥2

2

+
1

2αP−1

‖ã∗n[T ]− ãn[P ]‖2
2 .

Setting αt = 1/(β˜̀t) in the above inequality yields

R̃(n)
s [T ] ≤ 1

2

T−1∑
t=P

‖ã∗n[T ]− ãn[t+ 1]‖2
2 (β˜̀(t+ 1)− β˜̀t− β˜̀)

+
1

2

T∑
t=P

1

β˜̀t

∥∥∥g ˜̀

t

∥∥∥2

2
+

1

2αP−1

‖ã∗n[T ]− ãn[P ]‖2
2

=
1

2β˜̀

T∑
t=P

1

t

∥∥∥g ˜̀

t

∥∥∥2

2
+

1

2αP−1

‖ã∗n[T ]− ãn[P ]‖2
2

(a)

≤
G2

˜̀

2β˜̀

T∑
t=P

1

t
+

1

2αP−1

‖ã∗n[T ]− ãn[P ]‖2
2

(b)

≤
G2

˜̀

2β˜̀
(log(T − P + 1) + 1) +

1

2αP−1

‖ã∗n[T ]‖2
2

(c)

≤
G2

˜̀

2β˜̀
(log(T − P + 1) + 1) +

1

2αP−1

B2
ã,

where in (a) the bound on the gradient given in (B.105) is used; in (b) the inequality∑T
t=1 1/t ≤ log(T ) + 1 and the fact ãn[P ] = 0NP is used, and (c) is obtained by using the

bound from (B.79).

B.13 Proof of Theorem 5

We derive the dynamic regret of TIRSO. To this end, since h̃t is convex, we have by

definition

h̃
(n)
t (ã◦n[t]) ≥ h̃

(n)
t (ãn[t]) +

(
∇̃h̃(n)

t (ãn[t])
)>

(ã◦n[t]− ãn[t]) (B.113)

∀ ã◦n[t], ãn[t], where ∇̃h̃(n)
t (ãn[t]) = ∇˜̀(n)

t (ãn[t]) +ut with ut ∈ ∂Ω(n)(ãn[t]). Rearranging

(E.67) and summing both sides of the inequality from t = P to T results in:

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

T∑
t=P

(
∇̃h̃(n)

t (ãn[t])
)>
· (ãn[t]− ã◦n[t]) .

By applying the Cauchy–Schwarz inequality on each term of the summation in the r.h.s.

of the above inequality, we obtain

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

T∑
t=P

∥∥∥∇̃h̃(n)
t (ãn[t])

∥∥∥
2
· ‖ãn[t]− ã◦n[t]‖2 . (B.114)
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The next step is to derive an upper bound on ‖∇̃h̃(n)
t (ãn[t])‖2. From the definition of

∇̃h̃(n)
t (ãn[t]) and by the triangular inequality, we have

‖∇̃h̃(n)
t (ãn[t])‖2 ≤ ‖∇˜̀(n)

t (ãn[t])‖2 + ‖ut‖2 . (B.115)

To bound ‖∇˜̀(n)
t (ãn[t])‖2, we invoke Lemma 7 and set αt = α to obtain

‖ãn[t+ 1]‖2 ≤ (1− αβ˜̀) ‖ãn[t]‖2 + α
√
PNBy (B.116a)

= δ ‖ãn[t]‖2 + α
√
PNBy, (B.116b)

where δ , 1 − αβ˜̀. Observe that for 0 < α ≤ 1/L, we have 0 < δ < 1. Substituting

(B.116b) recursively, we obtain

‖ãn[t+ 1]‖2 ≤ δ
(
δ ‖ãn[t− 1]‖2 + α

√
PNBy

)
+ α
√
PNBy

= δ2 ‖ãn[t− 1]‖2 + δα
√
PNBy + α

√
PNBy

≤ δ3 ‖ãn[t− 2]‖2 + δ2α
√
PNBy + δα

√
PNBy + α

√
PNBy ≤ . . .

≤ δk ‖ãn[t− k + 1]‖2 + α
√
PNBy

k−1∑
i=0

δi,

where 1 ≤ k ≤ t− P + 1. For k = t− P + 1, the above inequality becomes

‖ãn[t+ 1]‖2 ≤ δt−P+1 ‖ãn[P ]‖2 + α
√
PNBy

t−P∑
i=0

δi

=
α
√
PNBy

(
1− δt−P+1

)
1− δ

≤ α
√
PNBy

1− (1− αβ˜̀)
=

1

β˜̀

√
PNBy,

which implies that ‖∇˜̀(n)
t (ãn[t])‖2 ≤ (1 + L/β˜̀)

√
PNBy, as in the proof of Lemma 8 by

following the same arguments as in (E.47). Next, we need to find an upper bound on ‖ut‖2

in (E.70). To this end, we apply the result in [46, Lemma 2.6] to Ω(n), which establishes

that all the subgradients of Ω(n) are bounded by its Lipschitz continuity parameter LΩ(n) .

In the following, we show that LΩ(n) = λ
√
N . Lipschitz smoothness of Ω(n) means that

there exists LΩ(n) such that

∣∣Ω(n)(a)− Ω(n)(b)
∣∣ ≤ LΩ(n) ‖a− b‖2 , (B.119)

for all a, b. By definition, we have Ω(n)(xn) = λ
∑N

n′=1,n′ 6=n ‖xn,n′‖2 with xn = [x>n,1, ...,x
>
n,N ]>,

xn,n′ ∈ R
P , n′ = 1, ..., N . Let zn = [z>n,1, ...,z

>
n,N ]>, zn,n′ ∈ RP , n′ = 1, ..., N and by taking
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the l.h.s. of (E.63), we have

∣∣Ω(n)(xn)− Ω(n)(zn)
∣∣ = λ

∣∣∣∣∣∣∣∣
N∑

n′=1
n′ 6=n

‖xn,n′‖2 −
N∑

n′=1
n′ 6=n

‖zn,n′‖2

∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣∣∣
N∑

n′=1
n′ 6=n

[
‖xn,n′‖2 − ‖zn,n′‖2

]∣∣∣∣∣∣∣∣
≤ λ

N∑
n′=1
n′ 6=n

|‖xn,n′‖2 − ‖zn,n′‖2| (B.120a)

≤ λ
N∑

n′=1
n′ 6=n

‖xn,n′ − zn,n′‖2 (B.120b)

≤ λ
N∑

n′=1

‖xn,n′ − zn,n′‖2

≤ λ
√
N ‖xn − zn‖2 , (B.120c)

where the inequality in (E.64a) holds due to the triangle inequality for scalars (‖xn,n′‖2−
‖yn,n′‖2 as scalars); (E.64b) holds due to the reverse triangle inequality (given by |‖x1‖2−
‖x2‖2| ≤ ‖x1 − x2‖2); and (E.64c) follows from the inequality ‖b‖1 ≤

√
N‖b‖2 with

b ∈ R
N [118, Sec. 2.2.2]. The inequality in (E.64c) implies that (E.63) is satisfied with

LΩ(n) = λ
√
N , i.e., Ω(n) is λ

√
N -Lipschitz continuous. Thus, we have ‖∇̃h̃(n)

t (ãn[t])‖2 ≤
(1 + L/β˜̀)

√
PNBy + λ

√
N . Substituting this bound in (E.69) leads to:

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

T∑
t=P

[(
1 +

L

β˜̀

)√
PNBy + λ

√
N

]
‖ãn[t]− ã◦n[t]‖2 .

(B.121)

Next, we show that TIRSO for a constant step size can alternatively be derived by applying

online proximal gradient descent to minimize ˜̀(n)
t + Ω(n). With ˜̀(n)

t given by (B.20) and

Ω(n) is given by (B.12b), applying the online proximal gradient algorithm with a constant

step size α yields:

ãn[t+ 1] = proxαΩ(n)

(
ãn[t]− α∇˜̀(n)

t (ãn[t])
)
, (B.122)

where the proximal operator of a function Ψ at point v is defined by [119]:

proxηΨ(v) , arg min
x∈dom Ψ

[
Ψ(x) +

1

2η
‖x− v‖2

2

]
. (B.123)

The parameter η controls the trade-off between minimizing Ψ(·) and being close to v.

According to the definition in Sec. B.3.2, ãf
n[t] , ãn[t] − α∇˜̀(n)

t (ãn[t]), and ãf
n[t] =
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[(ãf
n,1[t])>, . . . , (ãf

n,N [t])>]>, which enables us to write the above update expression as

ãn[t+ 1] = proxαΩ(n)

(
ãf
n[t]
)

= arg min
zn

(
Ω(n)(zn) +

1

2α

∥∥zn − ãf
n[t]
∥∥2

2

)
= arg min
{zn,n′}Nn′=1

(
λ

N∑
n′=1

1{n 6= n′} ‖zn,n′‖2

+
1

2α

N∑
n′=1

∥∥zn,n′ − ãf
n,n′ [t]

∥∥2

2

)
.

Observe that the above problem is separable and the solution to the n′-th problem is

given by:

ãn,n′ [t+ 1] = arg min
zn,n′

[
1{n 6= n′} ‖zn,n′‖2 +

1

2αλ

∥∥zn,n′ − ãf
n,n′ [t]

∥∥2

2

]

= ãf
n,n′ [t]

[
1− αλ1{n 6= n′}∥∥ãf

n,n′ [t]
∥∥

2

]
+

, (B.124)

which is the same as (B.26) with a constant step size α. Therefore, TIRSO can be

equivalently derived by applying online proximal gradient descent method. Next, we

apply Lemma 2 in [70] in order to bound
∑T

t=P‖ãn[t]− ã◦n[t]‖2 in (E.71). The hypotheses

of Lemma 2 are Lipschitz smoothness of ˜̀(n)
t , Lipschitz continuity of Ω(n), and strong

convexity of ˜̀(n)
t . Lipschitz continuity of Ω(n) is proved in (E.64c) whereas strong convexity

of ˜̀(n)
t is implied by the assumption A2. So we need to verify that ˜̀(n)

t is Lipschitz-smooth,

which means that there is L′ such that∥∥∥∇˜̀(n)
t (a)−∇˜̀(n)

t (b)
∥∥∥

2
≤ L′ ‖a− b‖2 , (B.125)

for all a, b. To this end, taking the l.h.s. of (B.125) and substituting the value of the

gradient of ˜̀(n)
t from (B.23) results in:

‖Φ[t]a− rn[t]−Φ[t]b+ rn[t]‖2 = ‖Φ[t](a− b)‖2

≤ λmax(Φ[t]) ‖a− b‖2 ,

where λmax(·) denotes the maximum eigenvalue of the input matrix. Due to assumption

A3, the inequality in (B.125) holds with L′ = L. To apply Lemma 2 in [70], one can set

K in [70] as T − P + 1, gk as Ω(n), and fk as ˜̀(n)
P+k−1, it follows that xk in [70] equals

ãn[P +k−1] and x◦k equals ã◦n[P +k−1]. Then, since we have already shown above that

the hypotheses of Lemma 2 in [70] hold in our case, applying it to bound ‖ãn[t]− ã◦n[t]‖2

in (E.71) yields:

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤ 1

αβ˜̀

[(
1 +

L

β˜̀

)√
PNBy

+ λ
√
N

] (
‖ãn[P ]− ã◦n[P ]‖2 +W (n)[T ]

)
. (B.126)

Noting that ãn[P ] = 0NP concludes the proof.
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Dynamic Regret Analysis for Online Tracking of Time-

varying Structural Equation Model Topologies

Bakht Zaman, Luis M. Lopez-Ramos, and Baltasar Beferull-Lozano

Abstract— Identifying dependencies among variables in a complex system is

an important problem in network science. Structural equation models (SEM)

have been used widely in many fields for topology inference, because they

are tractable and incorporate exogenous influences in the model. Topology

identification based on static SEM is useful in stationary environments; how-

ever, in many applications a time-varying underlying topology is sought. This

paper presents an online algorithm to track sparse time-varying topologies in

dynamic environments and most importantly, performs a detailed analysis on

the performance guarantees. The tracking capability is characterized in terms

of a bound on the dynamic regret of the proposed algorithm. Numerical tests

show that the proposed algorithm can track changes under different models

of time-varying topologies.

C.1 Introduction

Time series are generated and observed in many applications. Using multiple time series

data from a complex system, identifying a structure explaining dependencies (connec-

tions) among variables is a well-motivated problem in many fields [13]. Such a networked

structure may offer insights about the system dynamics and can assist in inference tasks

such as prediction, event detection, and signal reconstruction [2],[120],[45].

There are different models and approaches that are extensively used in topology iden-

tification in certain applications: see, e.g., [22], [44], [120], and references therein. Among

these models, structural equation model (SEM) is a popular model [24]: this is mainly due

to its tractability and the ability to identify directed relations by means of the inclusion of

exogenous variables, which are naturally available in many applications. These exogenous

variables represent influences that do not depend on the (endogenous) variables in the

model, and their inclusion contributes to the model identifiability [68]. Static SEMs have

been applied to topology identification problems in various fields, e.g., gene regulatory

network discovery from gene expression data [52]. However, static SEM cannot capture

topology changes if the underlying dynamics are nonstationary and each observation is

obtained at instants relatively spaced in time, which occurs in various applications.

In time-varying environments, a dynamic SEM can be applied [69]. A dynamic SEM

is considered in [35] to track information cascades of popular news topics over social

networks, which are assumed to have sparse dynamic topologies. In the same work,

several online algorithms are presented, but not supported by any performance guarantees,

so that their tracking capabilities are not theoretically characterized. In [121], an online

algorithm for tracking dynamic topologies is proposed where the exogenous input is not

fully known, also without convergence guarantees.
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In this paper, an online algorithm to track the changes in dynamic SEM topologies

in the lines of [35] is described and its dynamic regret is analyzed, to theoretically char-

acterize its tracking capabilities. The dynamic regret measures the cumulative difference

between the cost function evaluated at the estimates and the cost function evaluated at

a sequence of time-varying optimal solutions. Specifically, we provide a bound on the

dynamic regret that depends on easily measurable properties of the data, the algorithm

hyper-parameters, and a metric of how much the model varies along time.

The rest of the paper is organized as follows: Sec. E.2 contains the model, problem

formulation, and the derivation of the algorithm. Sec. C.3 establishes the dynamic regret

bound, including its formal proofs. Numerical results are presented in Sec. C.4 and Sec.

D.4 concludes the paper.

C.2 Model and Problem Formulation

Consider a networked system with N nodes, indexed by i. At each time frame indexed

by t, a number C of interactions (frequently denoted as contagions) indexed by c are

observed in the system, with ytic denoting the intensity of the c-th contagion in node i at

time t. Also, let xic denote the susceptibility of node i to external influence (infection) by

contagion c. The dynamic linear structural equation model (SEM) is given by [35]:

ytic =
N∑

j=1,j 6=i

atijy
t
jc + btiixic + etic, (C.1)

for i = 1, . . . , N, c = 1, . . . , C, t = 1, . . . , T, where the coefficients atij are the time-

varying SEM parameters that encode the topology of the network, btii quantifies the level

of influence of external sources on node i, and eic denotes the measurement errors and

un-modeled dynamics. A pictorial representation of the SEM is presented i Fig. By

defining ytc = [yt1c, . . . , y
t
Nc]
> ∈ R

N , xc = [x1c, . . . , xNc]
> ∈ R

N , Bt = diag(bt) ∈ R
N×N

with bt = [bt11, . . . , b
t
NN ]>, and etc = [et1c, . . . , e

t
Nc]
> ∈ R

N , the model in (C.1) can also be

written in a compact form as:

ytc = Atytc +Btxc + etc, c = 1, . . . , C. (C.2)

The matrix At ∈ RN×N can be seen as a time-varying adjacency matrix for an SEM-based

network. The observations for all contagions can be collected in a matrix by defining

Y t = [yt1, . . . ,y
t
C ] ∈ R

N×C , X = [x1, . . . ,xC ] ∈ R
N×C , and Et = [et1, . . . , e

t
C ] ∈ R

N×C .

The dynamic SEM takes the following form:

Y t = AtY t +BtX +Et. (C.3)

The problem statement becomes: Given the observations {Y t}Tt=1 and X, find {At}Tt=1

and {Bt}Tt=1. Along the lines of [35], we consider the exponentially-weighted least-squares

criterion:

ft(A,B) ,
1

2

t∑
τ=1

γt−τ ‖Y τ −AY τ −BX‖2
F (C.4)
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and the regularizer Ω(A) , λ ‖vec(A)‖1 , and formulate the estimation problem as

{Â
t
, B̂

t
} = arg min

A,B
ft(A,B) + Ω(A) (C.5a)

s.t. : aii = 0,∀i (C.5b)

bij = 0,∀i 6= j. (C.5c)

The parameter γ ∈ (0, 1] is a forgetting factor that regulates how much past information

influences the solution at time t, and λ is the sparsity-promoting regularization parameter.

The constraint aii = 0 eliminates any component of the trivial solution A = I. The

constraint bij = 0 guarantees a diagonal B, meaning that external sources for a certain

node i do not affect any other node j 6= i. Dealing with constraints can be easily avoided

if we rewrite the objective including only the nonzero elements of the matrices. We can

rewrite ft(A,B) as:

ft(A,B) =
1

2

t∑
τ=1

N∑
i=1

γt−τ
∥∥yτ>i − a>−iY τ

−i − biix>i
∥∥2

F
(C.6a)

=
1

2

t∑
τ=1

N∑
i=1

γt−τ
∥∥∥∥yτ>i − [a>−i bii]

[
Y τ
−i
x>i

]∥∥∥∥2

F

, (C.6b)

where yτ>i is the i-th row of Y τ , x>i is the i-th row of X, a>−i is the i-th row of A without

i-th entry, and Y τ
−i is obtained by removing the i-th row from Y τ .

Further, we can define vi , [a>−i bii]
> and Zτ

i , [(Y τ
−i)
> xi]

> to rewrite (C.6a):

ft(A,B) =
1

2

t∑
τ=1

N∑
i=1

γt−τ
∥∥yτ>i − v>i Zτ

i

∥∥2

F

=
1

2

t∑
τ=1

N∑
i=1

γt−τ
∥∥yτi − (Zτ

i )>vi
∥∥2

2
(C.7)

Note that ft in (C.6a) is separable across i (nodes), so that

ft(A,B) =
N∑
i=1

f it (vi), (C.8a)

where f it (vi) ,
1

2

t∑
τ=1

γt−τ
∥∥yτi − (Zτ

i )>vi
∥∥2

2
. (C.8b)

Similarly, upon defining

Ωi(vi) , λ ‖a−i‖1 , (C.9)

the regularization function is also separable across the rows ofA, as ‖vec(A)‖1 =
∑N

i=1 Ωi(vi).

In the next subsection, the online proximal gradient algorithm in [70] will be applied

to solve (C.5) leveraging the separability we just presented. Before presenting the algo-

rithm, we re-write f it (vi) in a form that will simplify the computation of its gradient. By

expanding (C.8b) and ignoring terms not dependent on vi:

f it (vi) ∝
1

2

t∑
τ=1

γt−τ
[
v>i Z

τ
i (Zτ

i )>vi−2yτ>i (Zτ
i )>vi

]
,
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the gradient of f it (vi) is given by

∇vif
i
t (vi) =Φt

Zi
vi − rti , (C.10a)

where Φt
Zi
,

t∑
τ=1

γt−τZτ
i (Zτ

i )> (C.10b)

and rti ,
t∑

τ=1

γt−τZτ
i (yτ>i )>. (C.10c)

Note that the variables defined in the latter two expressions can be computed recursively,

as will be expressed in the tabulated algorithm (lines 5 and 6).

C.2.1 Proximal online gradient algorithm

The update of the proximal online gradient descent algorithm [70], applied to the i-th

portion of the separable problem presented in the previous section, yields

vi[t+ 1] = proxαΩi (gαi [t](vi[t])) , (C.11)

where α > 0, gαi [t](u) , u− α∇uf
t
i (u), and

proxαΨ(w) , arg min
s∈domΨ

[
Ψ(s) +

1

2α
‖s−w‖2

2

]
. (C.12)

From the definition of vi and (C.9), it becomes clear that

proxαΩi(s) =
[
Sαλ([s]1:N−1)>[s]N

]>
(C.13)

with Sαλ(w) denoting the standard soft-thresholding operator. The complete procedure is

presented in Algorithm 11. Observe that the step size α is required to be small enough,

specifically α < 1/Lf where λmax(Φt
Zi

) ≤ Lf , ∀ i, t.

C.3 Dynamic Regret Analysis

The performance of online algorithms is evaluated by means of the regret, which is the

difference in performance between the online algorithm and a solution which can be com-

puted based on the data in hindsight. The regret measure can be static or dynamic.

In the case of the static regret, the best comparator minimizes the objective averaged

over all past instants, which implicitly assumes a stationary model. Therefore, the static

regret cannot express the tracking performance of an online algorithm in dynamic environ-

ments, where the generating parameters are time-varying. To characterize the tracking

performance of online algorithms, the dynamic regret [56] is used, which results from

comparing the online algorithm against an optimal sequence of time-varying hindsight so-

lutions. Specifically, upon defining ht(A[t],B[t]) , ft(A[t],B[t]) + Ω(A[t]), the dynamic

regret is given by:

Rd[T ] =
T∑
t=1

[ht(A[t],B[t])− ht(A?[t],B?[t])] . (C.14)
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Algorithm 11 Online algorithm for tracking dynamic SEM-based Topologies

Input: γ, λ, α ∈ (0, 1/Lf ], {Y t}Tt=1,X

Output: {A[t]}Tt=1, {B[t]}Tt=1

Initialization:

vi[1] = 0N×1,Φ
0
Zi

= 0N×N , r
0
i = 0N×1, i = 1, . . . , N

1: for t = 1, 2, . . . , T do

2: Receive data Y t

3: for i = 1, 2, . . . , N do

4: Zt
i = [(Y t

−i)
> (x>i )>]>

5: Φt
Zi

= γΦt−1
Zi

+Zi(Zi)
>

6: rti = γ rt−1
i +Zt

i (y
t>
i )>

7: ∇vif
i
t (vi[t]) = Φt

Zi
vi[t]− rti

8: vf
i[t] = vi[t]− α∇vif

i
t (vi[t])

9: vi[t+ 1] = proxαΩi
(
vf
i[t]
)

10: end for

11: end for

12: Form A[t] and B[t] from vi[t], i = 1, ..., N

13: end for

with (A?[t],B?[t]) representing the estimate produced by a clairvoyant that knows ht(·)
in advance (in contrast, the online algorithm does not have access to ht(·) while producing

(A[t],B[t])). Using (C.6a), the above expression can be written as:

Rd[T ] =
T∑
t=1

N∑
i=1

[
f it (vi[t])+Ωi(vi[t])−f it (v?i [t])−Ωi(v?i [t])

]
=

T∑
t=1

N∑
i=1

[
hit(vi[t])− hit(v?i [t])

]
=

N∑
i=1

Ri
d[T ],

where hit(vi[t]) , f it (vi[t]) + Ωi(vi[t]), v
?
i [t] , arg minvi f

i
t (vi) + Ωi(vi), and Ri

d[T ] ,∑T
t=1[hit(vi[t]) − hit(v?i [t])]. Observe that the regret expression is separable across index

i (nodes). Thus, for the sake of simplicity, we derive the regret for the i-th node, i.e.,

Ri
d[T ]. The total regret will be obtained by adding the individual regret expressions. We

define the path length for each subproblem (corresponding to each node i) as:

Wi[T ] ,
T∑
t=2

‖v?i [t]− v?i [t− 1]‖2 , (C.15)

which represents the aggregated variations in the consecutive optimal solutions. In this

work, the following assumptions are considered:

A1. Bounded process: There exists Bxy such that |ytic|2 ≤ Bxy and |xic|2 ≤ Bxy, ∀ i, c, t.

A2. Strong convexity: Each function f it is β-strongly convex, i.e., λmin(Φt
Zi

) ≥ β >

0,∀ i, t.
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A3. Lipschitz smoothness: Each function f it is Lf -Lipschitz smooth, i.e., λmax(Φt
Zi

) ≤
Lf , ∀ i, t.

A4. Bounded variations of the optimal solution: The distance between two consecutive

optimal solution is bounded, i.e.,

‖v?i [t]− v?i [t+ 1]‖2 ≤ d, d ≥ 0,∀ t, i. (C.16)

These above assumptions are standard in the literature. Assumption A1 does not entail

any loss of generality and is satisfied in most real-world applications. Next, we present

an upper bound on the dynamic regret.

Theorem 1. The individual dynamic regret of Algorithm 11 for a node i is given by:

Ri
d[T ] = Dh (‖v?i [1]‖2 +Wi[T ]) , (C.17)

where

Dh ,
1

αβ

(
BxyC

√
N

1− γ

(
1 +

Lf
β

)
+ λ
√
N − 1

)
, (C.18)

under assumptions A1, A2, A3, and A4.

Proof. Since hit is convex, we have by definition that:

hit(v
?
i [t]) ≥ hit(vi[t]) + (∇̃hit(vi[t]))>(v?i [t]− vi[t]), (C.19)

∀vi[t],v?i [t], ∇̃hit(vi[t]) denotes a subgradient of hit(vi[t]) given by ∇̃hit(u) = ∇f it (u) +

∇̃Ωi(u) with ∇̃Ωi(u) ∈ ∂Ωi(u). Rearranging and summing the above inequality from

t = 1 to T , we have

T∑
t=1

[
hit(vi[t]) − hit(v

?
i )
]
≤

T∑
t=1

(
∇̃hit(vi[t])

)>
(vi[t]− v?i [t])

≤
T∑
t=1

∥∥∥∇̃hit(vi[t])∥∥∥
2
· ‖vi[t]− v?i [t]‖2 , (C.20)

where the second inequality follows from the Cauchy-Schwarz inequality. Next, we derive

a bound on ‖∇̃hit(vi[t])‖2. Note first that it holds that∥∥∥∇̃(hit(vi[t])
∥∥∥

2
≤
∥∥∇f it (vi[t])∥∥2

+
∥∥∥∇̃Ωi(vi[t])

∥∥∥
2
. (C.21)

Thus, we have to prove that ‖∇f it (vi[t])‖2 and ‖∇̃Ωi(vi[t])‖2 are bounded ∀vi[t]. First,

we prove that ‖∇f it (vi[t])‖2 is bounded. To this end, from (C.10a), using the triangular

inequality, the spectral radius of Φt
Zi

, and assumption A3, we obtain the following:∥∥∇f it (vi[t+ 1])
∥∥

2
=
∥∥Φt

Zi
vi[t+ 1]− rti

∥∥
2

≤
∥∥Φt

Zi
vi[t+ 1]

∥∥
2

+
∥∥rti∥∥2

≤ λmax(Φt
Zi

) ‖vi[t+ 1]‖2+
∥∥rti∥∥2

≤ Lf ‖vi[t+ 1]‖2 +
∥∥rti∥∥2

. (C.22)
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We need to derive a bound on ‖vi[t+ 1]‖2 and ‖rti‖2. First, we derive a bound on ‖rti‖2.

From the definition of rti in (C.10c), and using assumption A1, we obtain the bound as

follows:

∥∥rti∥∥2
=

∥∥∥∥∥
t∑

τ=1

γt−τZτ
i (yτ>i )>

∥∥∥∥∥
2

≤

∥∥∥∥∥
t∑

τ=1

γt−τBxy1N×C1C

∥∥∥∥∥
2

= Bxy

∥∥∥∥∥
t∑

τ=1

γt−τC1N

∥∥∥∥∥
2

= BxyC

t∑
τ=1

γt−τ ‖1N‖2

≤ BxyC
√
N

1− γ
=
BxyC

√
N

µ
, (C.23)

where µ , 1− γ. Thus, we have derived a bound on ‖rti‖2. To derive an upper bound on

‖vi[t + 1]‖2, from the update expression of the algorithm, and using assumption A2, we

have that:

‖vi[t+ 1]‖2 ≤
∥∥vi[t]− α∇f ti (vi[t])∥∥2

=
∥∥vi[t]− α (Φt

Zi
vi[t]− rti

)∥∥
2

=
∥∥(I − αΦt

Zi

)
vi[t] + αrti

∥∥
2

≤ λmax

(
I − αΦt

Zi

)
‖vi[t]‖2 + α

∥∥rti∥∥2

=
(
1− αλmin(Φt

Zi

)
‖vi[t]‖2 + α

∥∥rti∥∥2

≤ (1− αβ) ‖vi[t]‖2 + α
∥∥rti∥∥2

. (C.24)

Substituting the bound on rti from (E.49b) in the above inequality, we obtain:

‖vi[t+ 1]‖2 ≤ (1− αβ) ‖vi[t]‖2 + α
BxyC

√
N

µ

= δ ‖vi[t]‖2 +
αBxyC

√
N

µ
.

By recursive substitution in the above inequality:

‖vi[t+ 1]‖2 ≤ δ

(
δ ‖vi[t−1]‖2+

αBxyC
√
N

µ

)
+
αBxyC

√
N

µ

= δ2 ‖vi[t− 1]‖2 + δ
αBxyC

√
N

µ
+
αBxyC

√
N

µ

≤ δ3 ‖vi[t− 2]‖2 +
αBxyC

√
N

µ
(δ2+δ+1) ≤ . . .

≤ δk ‖vi[t− k + 1]‖2 +
αBxyC

√
N

µ

k−1∑
i=0

δi,
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where 1 ≤ k ≤ t. For k = t, the above inequality becomes

‖vi[t+ 1]‖2 ≤ δt ‖vi[+1]‖2 +
αBxyC

√
N

µ

t−1∑
i=0

δi

=
αBxyC

√
N

µ

1− δt

1− δ
≤ αBxyC

√
N

µ

1

αβ

=
BxyC

√
N

µβ
. (C.26)

By substituting the bounds from (C.26) and (E.49b) into (C.22), we obtain the bound on

‖∇f it (vi[t+ 1])‖2 as follows:

∥∥∇f it (vi[t+ 1])
∥∥

2
≤ LfBxyC

√
N

µβ
+
BxyC

√
N

µ
(C.27a)

=
BxyC

√
N

µ

(
1 +

Lf
β

)
. (C.27b)

To prove that ‖∇̃Ωi(vi[t])‖2 is bounded ∀vi[t], first we compute the Lipschitz continuity

parameter of Ωi, i.e., LΩ and then apply the result in [46, Lemma 2.6], which establishes

that all the subgradients of a function are bounded by its Lipschitz continuity parameter.

To find LΩ, let a′ , [a>m]>, b′ , [b>n]>,a, b ∈ R
N−1, m, n ∈ R. By the triangular

inequality and the reverse triangular inequality, we have that:∣∣Ωi(a′)− Ωi(b′)
∣∣ = |λ ‖a‖1 − λ ‖b‖1|

=

∣∣∣∣∣λ
N−1∑
i=1

[|ai| − |bi|]

∣∣∣∣∣
≤ λ

N−1∑
i=1

∣∣|ai| − |bi|∣∣ ≤ λ
N−1∑
i=1

|ai − bi|

= λ ‖a− b‖1 ≤ λ
√
N − 1 ‖a− b‖2

≤ λ
√
N − 1 ‖a′ − b′‖2 .

Thus, we have that LΩ = λ
√
N − 1. Substituting these bounds in (E.70), we have∥∥∥∇̃(f it (vi)

∥∥∥
2
+
∥∥∥∇̃Ωi(vi))

∥∥∥
2
≤BxyC

√
N

µ

(
1+

Lf
β

)
+λ
√
N−1. (C.28)

Substituting the above bound in (C.20), we obtain

T∑
t=1

[
hit(vi[t])− hit(v?i )

]
≤

T∑
t=1

(
BxyC

√
N

µ

(
1 +

Lf
β

)
+ λ
√
N − 1

)
‖vi[t]− v?i [t]‖2

=

(
BxyC

√
N

µ

(
1+

Lf
β

)
+λ
√
N−1

)
T∑
t=1

‖vi[t]− v?i [t]‖2 . (C.29)
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Next, we derive a bound on
∑T

t=1 ‖vi[t]− v?i [t]‖2. To this end, the first step is to prove

the following result:

‖vi[t+ 1]− v?i [t]‖2 ≤ ρ ‖vi[t]− v?i [t]‖2 , (C.30)

where ρ = 1−αβ. To this end, squaring the l.h.s. of (C.30) and by definition of vi[t+ 1],

we have

‖vi[t+ 1]− v?i [t]‖
2
2 =

∥∥∥∥[a−i[t+ 1]− a?−i[t]
bii[t+ 1]− b?ii[t]

]∥∥∥∥2

2

=
∥∥a−i[t+ 1]− a?−i[t]

∥∥2

2
+ ‖bii[t+ 1]− b?ii[t]‖

2
2

=
∥∥proxαλ‖·‖1(a−i[t]− α∇a−if

i
t (a−i[t]))

− proxαλ‖·‖1(a
?
−i[t]− α∇a−if

i
t (a

?
−i[t]))

∥∥2

2

+
(
bii[t]− α∇biif

i
t (bii[t])− (b?ii[t]− α∇biif

i
t (b

?
ii[t]))

)2

≤
∥∥(a−i[t]−α∇a−if

i
t (a−i[t]))−(a?−i[t]−α∇a−if

i
t (a

?
−i[t]))

∥∥2

2

+
(
bii[t]− α∇biif

i
t (bii[t])− (b?ii[t]− α∇biif

i
t (b

?
ii[t]))

)2

=
∥∥(vi[t]− α∇vif

i
t (vi[t]))− (v?i [t]− α∇vif

i
t (v

?
i [t]))

∥∥2

2

= ‖vi[t]− v?i [t]‖
2
2 + α2

∥∥∇vif
i
t (vi[t])−∇vif

i
t (v

?
i [t])

∥∥2

2

− 2α(vi[t]− v?i [t])>(∇vif
i
t (vi[t])−∇vif

i
t (v

?
i [t]))

≤ ‖vi[t]− v?i [t]‖
2
2 + α2

∥∥∇vif
i
t (vi[t])−∇vif

i
t (v

?
i [t])

∥∥2

2

− 2α
( βLf
Lf + β

‖vi[t]− v?i [t]‖
2
2

+
1

Lf + β

∥∥∇vif
i
t (vi[t])−∇vif

i
t (v

?
i [t])

∥∥2

2

)
,

where the above inequality is implied by assumptions A2 and A3. Given that α ∈
(0, 1/Lf ], using assumption A2, and by further simplifications, we have:

‖vi[t+ 1]− v?i [t]‖
2
2 ≤

(
1− 2αβLf

Lf+β

)
‖vi[t]−v?i [t]‖

2
2+

(
α2− 2α

Lf+β

)
·∥∥∇vif

i
t (vi[t])−∇vif

i
t (v

?
i [t])

∥∥2

2

=

(
1− 2αβLf

Lf + β

)
‖vi[t]− v?i [t]‖

2
2 −

(
2α

Lf + β
− α2

)
·∥∥∇vif

i
t (vi[t])−∇vif

i
t (v

?
i [t])

∥∥2

2

≤
(

1− 2αβLf
Lf + β

)
‖vi[t]− v?i [t]‖

2
2−β

2

(
2α

Lf + β
−α2

)
· ‖vi[t]− v?i [t]‖

2
2

=

(
1− 2αβLf

Lf + β
− 2αβ2

Lf + β
+ α2β2

)
‖vi[t]− v?i [t]‖

2
2

=
(
1− 2αβ + α2β2

)
‖vi[t]− v?i [t]‖

2
2

= ρ2 ‖vi[t]− v?i [t]‖
2
2 ,

where ρ , 1−αβ. Taking square root on both sides of the above inequality yields (C.30).
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Next, we show that

T∑
t=1

‖vi[t]− v?i [t]‖2 ≤
1

1− ρ
[‖vi[1]− v?i [1]‖2 +Wi[T ]] . (C.33)

To prove the above expression, consider the cumulative gap

T∑
t=2

‖vi[t]−v?i [t]‖2 =
T∑
t=2

‖vi[t]−v?i [t−1]+v?i [t−1]−v?i [t]‖2

≤
T∑
t=2

[‖vi[t]− v?i [t− 1]‖2 + ‖v?i [t]− v?i [t− 1]‖2]

=
T−1∑
t=1

‖vi[t+ 1]− v?i [t]‖2 +Wi[T ]

≤
T−1∑
t=1

ρ ‖vi[t]− v?i [t]‖2 +Wi[T ]

≤
T∑
t=1

ρ ‖vi[t]− v?i [t]‖2 +Wi[T ].

Adding ‖vi[1]− v?i [1]‖2 on both sides of the above inequality results in:

T∑
t=1

‖vi[t]− v?i [t]‖2 ≤
T∑
t=1

ρ ‖vi[t]− v?i [t]‖2 + ‖vi[1]− v?i [1]‖2 +Wi[T ]. (C.35)

By rearranging terms in the above inequality, we obtain the result in (C.33). Thus, we

can substitute
∑T

t=1‖vi[t]− v?i [t]‖2 with its bound from (C.33) into (C.29) and note that

vi[1] = 0N×1 in Algorithm 11. This completes the proof.

Remarks. The bound on the total dynamic regret is given by:

Rd[T ] = Dh

N∑
i=1

(‖v?i [1]‖2 +Wi[T ]) , (C.36)

where Dh is defined in (C.18). Notice that this means that the bound on the dynamic

regret is a function of the parameters of the data and the parameters of the algorithm.

Moreover, for a sublinear path length, the dynamic regret of the proposed algorithm is

sublinear.

C.4 Numerical Results

In this section, the performance of the algorithm is analyzed by presenting numerical

tests. The experimental results are based on synthetic data.

To generate the matrices At, a binary adjacency matrix Abinary is generated according

to an Erdős-Rényi model with edge probability pe. No self-loops are considered, i.e., the

diagonal entries of Abinary are zero. Two models are considered in the simulations: a)





Online Machine Learning for Graph Topology Identification from Multiple Time Series

0 100 200 300 400 500 600 700 800 900 1000

time t (samples)

10
-1

M
S

E
(t

)

smooth-transition model

Nonsmooth transition model

Figure C.1: MSE vs. time t. Parameters: N = 10, pe = 0.15, C = 5, σ = 0.1, λ = 15, γ =

0.9, α = 1/Lf .

smooth-transition model and b) non-smooth transition model. In the smooth-transition

model, the nonzero elements of At follow the pattern of the 1’s in Abinary. For t = 1, the

nonzero elements of At take one of the following four functions via random selection: i)

a1(t) = 0.5 + 0.5 sin(0.1t), ii) a2(t) = 0.5 + 0.5 cos(0.1t), iii) a3(t) = exp(−0.01t), and

iv) a4(t) = 0. For t > 1, the elements of At evolve according to the function selected

initially by evaluating the functions for t. In the non-smooth transition model, a static

model for At is considered for t < T/2. The nonzero elements of At are drawn one time

from a standard Gaussian distribution. At t = T/2, the model changes from one to

another. In both models, the matrices Bt are assumed to be constant, i.e., Bt = diag(b),

where b is fixed and chosen one time randomly from a standard Gaussian distribution.

This assumption means that the coefficients of external influences are constant over time,

which is natural since X is constant in the model (cf. (C.3)). At each time t, for each

contagion c, etc is drawn from N (0N×1, σIN×N). At time t, Y t is generated using (C.3).

Fig. C.1 presents the mean-square error (MSE) given by 1/N2
∑N

i=1‖vi[t]− vtrue
i [t]‖2

2

versus time, and Fig. C.2 shows the dynamic regret Rd[T ] for both models. Since the

optimal solution is time-varying, the algorithm is required to track the changes in the

optimal solutions. Observe from Fig. C.1 that the MSE has a decreasing trend, meaning

that the proposed algorithm is able to track the changes in the time-varying topologies.

Fig. C.2 shows that the dynamic regret of the non-smooth (single breaking point) tran-

sition model is lower than that of the smooth-transition model, since the model is always

changing in the smooth-transition model.
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Figure C.2: Dynamic regret vs time (T ). Parameters: N = 10, pe = 0.15, C = 5, σ =

0.1, λ = 15, γ = 0.9, α = 1/Lf .

C.5 Conclusion

An online algorithm for tracking dynamic SEM-based topologies is presented in this paper.

A bound was derived on the dynamic regret (a much better metric than static regret

for time-varying scenarios) of the proposed algorithm. This bound is a function of the

numeric properties of the data that are easy to obtain, parameters of the algorithm, and

the path length, which is a metric of how much the model parameters vary in a time

interval. When the path length is sublinear in time, the dynamic regret of the algorithm

becomes sublinear, meaning that the online algorithm enjoys a performance comparable

to the optimal offline estimator. The tracking capabilities of the algorithm have been

numerically validated for a time-varying scenario under two different assumptions on the

model variations, namely a smooth-transition and an abrupt-transition model.
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Dynamic Network Identification From Non-stationary

Vector Autoregressive Time Series

Luis M. Lopez-Ramos, Daniel Romero, Bakht Zaman, and Baltasar Beferull-Lozano

Abstract— Learning the dynamics of complex systems features a large number

of applications in data science. Graph-based modeling and inference under-

pins the most prominent family of approaches to learn complex dynamics due

to their ability to capture the intrinsic sparsity of direct interactions in such

systems. They also provide the user with interpretable graphs that unveil

behavioral patterns and changes. To cope with the time-varying nature of

interactions, this paper develops an estimation criterion and a solver to learn

the parameters of a time-varying vector autoregressive model supported on a

network of time series. The notion of local breakpoint is proposed to accom-

modate changes at individual edges. It contrasts with existing works, which

assume that changes at all nodes are aligned in time. Numerical experiments

validate the proposed schemes.

D.1 Introduction

Understanding the interactions among the parts of a complex dynamic system lies at the

core of data science itself and countless applications in biology, sociology, neuroscience,

finance, as well as engineering realms such as cybernetics, mechatronics, and control of

industrial processes. Successfully learning the presence or evolution of these interactions

allows forecasting and unveils complex behaviors typically by spotting causality rela-

tions [28]. To cope with the ever increasing complexity of the analyzed systems, traditional

model-based paradigms are giving way to the more contemporary data-driven perspec-

tives, where network-based approaches enjoy great popularity due to their ability to both

discern between direct and indirect causality relations as well as to provide interaction

graphs amenable to intuitive human interpretation. In this context, the time-varying na-

ture of these interactions motivates inference schemes capable of handling non-stationarity

multivariate data.

Inference from multiple time series has been traditionally addressed through vector

autoregressive (VAR) models [43]. To cope with non-stationarity, VAR coefficients are

assumed to evolve smoothly over time [71, 72, 73], to vary according to a hidden

Markov model [74], or to remain constant over time intervals separated by structural

breakpoints [75, 76, 77, 78, 79, 42, 80]. Due to the high number of effective degrees of

freedom of their models, these schemes can only satisfactorily estimate VAR coefficients if

the data generating system experiences slow changes over time. To alleviate this difficulty,

a natural approach is to exploit the fact that interactions among different parts of a

complex system are generally mediated. For example, in an industrial plant where tank A

is connected to B, B is connected to C, and C is not connected to A, the pressure of a fluid

in a tank A affects directly the pressure of tank B and indirectly (through B) the pressure

at tank C. Thus, a number of works focused on non-stationary data introduce graphs to
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capture this notion of direct interactions, either relying on graphical models [38, 39, 14, 34]

or structural equation models [26, 40]. Unfortunately, these approaches can only deal with

memoryless interactions, which limits their applicability to many real-world scenarios.

Schemes that do account for memory and graph structure include models based on

VAR [66, 20] and structural VAR models; see [122] and references therein. However,

these methods can not handle non-stationarities. To sum up, none of the aforementioned

schemes identifies interaction graphs in time-varying systems with memory. To the best

of our knowledge, the only exception is [44], but it can only cope with slowly changing

VAR coefficients.

To alleviate these limitations, the present paper relies on a time-varying VAR (TVAR)

model to propose a novel estimation criterion for non-stationary data that accounts for

memory and a network structure in the interactions. The resulting estimates provide

allow forcasting and impulse response causality analysis [43, Ch. 2]. A major novelty is

the notion of local structural breakpoint, which captures the intuitive fact that changes in

the interactions need not be synchronized across the system; in contrast to most existing

works. Furthermore, a low-complexity solver is proposed to minimize the aforementioned

criterion and a windowing technique is proposed to accommodate prior information on

the system dynamics and reduce computational complexity.

The rest of the paper is structured as follows. Sec. D.2 introduces the model and

the proposed criterion, with some practical considerations in Secs. D.2.3 and D.2.4; and

Sec. D.2.5 presents an iterative solver. Numerical experiments are described in Sec. D.3

and conclusions in Sec. D.4.

D.2 Dynamic network identification

After reviewing TVAR models and introducing the notion of time-varying causality graphs,

this section proposes an estimation criterion and an iterative solver. Extensions and gen-

eral considerations are provided subsequently.

D.2.1 Time-varying interaction graphs

A multivariate time series is a collection {yt}Tt=1 of vectors yt := [y1,t, y2,t, . . . , yP,t]
>.

The i-th (scalar) time series comprises the samples {yi,t}Tt=1 and can correspond e.g.

with the activity over time of the i-th region of interest in a brain network, or with the

measurements of the i-th sensor in a sensor network. A customary model for multivariate

time series generated by non-stationary dynamic systems is the so-called L-th order TVAR

model [43, Ch. 1]:

yt =
L∑
`=1

A
(`)
t yt−` + εt (D.1)

where the matrix entries {a(`)
ij,t}i,j∈[1,P ],t∈[1,T ] are the model coefficients and εi,t form the

innovation process. Throughout, the notation [m,n] with m and n integers satisfying

m ≤ n will stand for {m,m+ 1, . . . , n}. A time-invariant VAR model is a special case of

(D.1) where a
(`)
ij,t = a

(`)
ij,t′ ∀(t, t′).
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Figure D.1: Graph associated with a TVAR model.

An insightful interpretation of time-varying VAR models stems from expressing (D.1)

as

yi,t =
∑L

`=1

∑P
j=1 a

(`)
ij,tyj,t−` + εi,t (D.2a)

=
P∑
j=1

[yj,t−1, yj,t−2, . . . , yj,t−L] aij,t + εi,t (D.2b)

where aij,t := [a
(1)
ij,t, a

(2)
ij,t, . . . , a

(L)
ij,t ]
>. From (D.2a), the i-th sequence {yi,t}Tt=1 equals the

innovation plus the sum of all sequences {{yp,t}Tt=1}Pp=1 after being filtered with a linear

time-varying (LTV) filter with coefficients {a(l)
ij,t}Ll=1.

As described in Sec. D.1, interactions between time series are generally indirect (un-

mediated), which translates into many of these LTV filters being identically zero. To

mathematically capture this interaction pattern, previous works consider the notion of

graph associated with a time-invariant VAR process (see e.g. [66]), which is generalized

next to time-varying VAR models (D.1). To this end, identify the i-th time series with

the i-th vertex (or node) in the vertex set V := [1, P ] and define the time-varying edge

set as Et := {(i, j) ∈ V × V : aij,t 6= 0}. Thus, each edge of this time-varying graph can

be thought of as an LTV filter, as depicted in Fig. D.1.
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D.2.2 Proposed estimation criterion

The main goal of this paper is to estimate {{A(`)
t }L`=1}Tt=L+1 given {yt}Tt=1. Without

additional assumptions, reasonable estimates cannot be found because the number of

unknowns is (T − L)P 2L whereas the number of samples is just PL. This difficulty is

typically alleviated by assuming certain structure usually found in real-world dynamic

systems. As detailed next, the structure adopted here embodies both the sparsity of

causal interactions and the spatial locality of changes in those interactions.

The proposed estimation criterion is given by

min
{A(`)

t }

T∑
t=L+1

∥∥∥∥∥yt −
L∑
`=1

A
(`)
t yt−`

∥∥∥∥∥
2

2

(D.3)

+
∑
(i,j)

(
λ

T∑
t=L+1

‖aij,t‖2 + γ

T∑
t=L+2

‖aij,t − aij,t−1‖2

)
where the first term promotes estimates that fit the data and the two regularizers in

parentheses are explained next. The regularization parameters λ > 0 and γ > 0 can be

selected through cross-validation to balance the relative weight of data and prior infor-

mation (addressed in Sec. D.2.4).

The first regularizer is a group-lasso penalty that promotes edge sparsity or, equiva-

lently, that a large number of LTV filters aij,t are 0. As delineated in Secs. D.1 and D.2.1,

this corresponds to the intuitive notion that most interactions in a complex network are

indirect and therefore nodes are connected only with a small fraction of other nodes. This

regularizer generalizes the one in [66] to time-varying graphs.

The second regularizer promotes estimates where the LTV filters remain constant over

time except for a relatively small number of time instants Ti,j := {t : a
(`)
ij,t 6= a

(`)
ij,t−1 for some

`} denoted as local breakpoints. This variant of total-variation regularizer, together with

the notion of local breakpoints, constitutes one of the major novelties of this paper and

contrasts with the notion of structural (or global) breakpoints, defined as T := {t : A
(`)
t 6=

A
(`)
t−1for some `} and adopted in the literature; see e.g. [79, 42, 75, 76, 78]. These works

promote solutions with few global breakpoints, and therefore all the LTV filter estimates

change simultaneously at the same time for all nodes. In contrast, this work advocates

promoting solutions with few local breakpoints, since it is expected that changes in the

underlying dynamic system take place locally. For instance, in a chemical process, closing

a valve between tank A and B affects the future interactions between their pressures, but

does not generally affect interactions between the pressure of tanks C and D.

D.2.3 Data windowing

In practice, the time series are expected to evolve at a faster time scale than the underlying

system that generates them. In many applications, such as control of industrial processes,

the opposite would imply that the sampling rate needs to be increased. If this is the case,

it may be beneficial to assume that A
(`)
t remain constant within a certain window since

this would decrease the number of coefficients to estimate and therefore would improve

estimation performance.
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Figure D.2: Comparison between the estimates of the proposed criterion and the one in

(Tank et al., 2017) [42]

To introduce this windowing technique let {Wn}Nn=1 be a partition of [L+1,T] into

N sub-intervals (windows), and let n(t) denote for each t the (unique) index such that

t ∈ Wn(t). If A
(`)
t = Ã

(`)
n(t) ∀t, then (D.3) becomes

min
{Ã(`)

n }Nn=1

∑T
t=L+1

∥∥∥yt −∑L
`=1 Ã

(`)
n(t)yt−`

∥∥∥2

2
+
∑

(i,j) (D.4)

(
λ

T∑
t=L+1

∥∥ãij,n(t)

∥∥
2

+ γ
T∑

t=L+2

∥∥ãij,n(t) − ãij,n(t−1)

∥∥
2

)

where ãij,t is correspondingly defined in terms of Ã
(`)
t . Absorbing scaling factors in the

regularization parameters, (D.4) boils down to

min
{Ã(`)

n }Nn=1

N∑
n=1

∑
t∈Wn

∥∥∥∥∥yt −
L∑
`=1

Ã(`)
n yt−`

∥∥∥∥∥
2

2

(D.5)

+
∑
(i,j)

(
λ̃

N∑
n=1

‖ãij,n‖2 + γ̃
N∑
n=2

‖ãij,n − ãij,n−1‖2

)
.

Note that, while LP 2(T − L) coefficients need to be estimated in (D.3), this number

reduces to LP 2N in (D.5).

Besides an improvement in the estimation performance (D.5) when the length of the

windows is attuned to the dynamics of the system, it can be shown that the objective

function becomes strongly convex if windows are sufficiently large, which speeds up the

convergence of the algorithm in Sec. D.2.5 (convergence becomes linear). The caveat here

is a loss of temporal resolution: if one wishes to detect local breakpoints and two or more

changes are produced in the same LTV filter within a single window, then the algorithm

will only detect at most a single breakpoint. This effect can be counteracted by applying

a screening techniques along the lines of [79].

D.2.4 Choice of parameters

Regularization parameters, in this case λ and γ, are conventionally set through cross-

validation. However, such a task may be challenging when dealing with non-stationary
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data. If one decides to carry out M -fold cross validation, forming M sets of consecutive

samples is not appealing since the estimate of the fitting error in the validation set will

become artificially high and not informative about whether the algorithm is learning

changes in the VAR coefficients.

To circumvent this limitation, the proposed technique forms the aforementioned sets

by skipping one out of M time samples. The estimator for the m-th fold becomes

min
{Ã(`)

n }Nn=1

N∑
n=1

∑
t∈Wn

t modM 6=m

∥∥∥∥∥yt −
L∑
`=1

Ã(`)
n yt−`

∥∥∥∥∥
2

2

(D.6)

+
∑
(i,j)

(
λ̃

N∑
n=1

‖ãij,n‖2 + γ̃

N∑
n=2

‖ãij,n − ãij,n−1‖2

)
.

Admittedly, all vectors {yt}t will still show up in all folds, but only as regressors in those

folds where they are not target vectors. Indeed, this does not cause any problem from a

theoretical standpoint and the performance observed in the numerical tests supports this

approach.

D.2.5 Iterative solver

This section outlines the derivation of an ADMM-based algorithm proposed to solve (D.3).

Define Z := blkdiag(x>q+1, x
>
q+2, . . . ,x

>
T ), with x>t := [y>t−1 . . .y

>
t−q]; B := [B>q+1, . . . , B

>
T ],

with Bt :=
[
A

(1)
t ,A

(2)
t , . . . ,A

(q)
t

]>
; and Y := [yq+1, . . . ,yT ]>. Then (D.3) can be rewritten

as

arg min
B

1

2
‖Y − ZB‖2

F + λΩGL(B) + γΩGTV (B) (D.7)

where ΩGL(B) =
∑

(i,j)

∑T
t=L+1 ‖aij,t‖2, and ΩGTV (B) =

∑
(i,j)

∑T
t=L+1 ‖aij,t+1 − aij,t‖2.

Upon defining

D :=


−I I 0 . . . 0

0 −I I
...

...
. . . . . . . . .

0 . . . −I I

 ,
ΩGTV (B) can be expressed as ΩGL(DB). This allows to rewrite (D.7) along the lines of

[123] for solving via ADMM

arg min
B,Θ,C

1

2
‖Y − ZB‖2

F + λΩGL(Θ) + γΩGL(C),

s.to DB = Θ, B = C (D.8)

The ADMM for the ρ-augmented Lagrangian with scaled dual variables U and V
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Algorithm 12 ADMM solver for dynamic network ID

Input: λ, γ, data {yt}Tt=1

Output: matrix B containing VAR coefficients

1: for k = 1, . . . until convergence do

2: Update Bt via (D.9a)

3: for t ∈ [L+ 1, T ] do

4: for (i, j) ∈ [1, P ]2 do

5: Update cij,t, θij,t−1 via (D.9b,D.9c)

6: end for

7: end for

8: Update U,V via (D.9d,D.9e)

9: end for

computes for each iteration k:

B[k+1] :=
(
Z>Z/ρ+ I + D>D

)† (
Z>Y/ρ+ C[k] −V[k] + D>(Θ[k] −U[k])

)
(D.9a)

θ
[k+1]
ij,t := proxλ/ρ‖·‖2(b

[k+1]
ij,t − b

[k+1]
ij,t−1 + u

[k+1]
ij,t−1) (D.9b)

c
[k+1]
ij,t := proxλ/ρ‖·‖2(b

[k+1]
ij,t + v

[k+1]
ij,t ) (D.9c)

U[k+1] := U[k] + (DB[k+1] −Θ[k+1]) (D.9d)

V[k+1] := V[k] + (B[k+1] −C[k+1]) (D.9e)

and it is summarized in Proc. 12. The update (D.9a) can be efficiently computed by

exploiting the tri-diagonal strucutre of Z and D. The updates in (D.9b) and (D.9c)

exploit the fact that the resulting prox operators are separable per (i, j) and can be

expressed in terms of a group-soft-thresholding operator [124].

D.3 Numerical experiments

A simple experiment is shown next to validate the proposed estimator. An Erdös-

Rényi [13] random graph G0 is generated with P = 4 nodes and an edge probability

of P
(i,j)
0 := 0.5 if i 6= j and P

(i,j)
0 := 0 if i = j. An (L = 4)-order TVAR model is

generated, with initial VAR coefficients {A(`)
L+1}L`=1 over G0 drawn from a standard normal

distribution and scaled to ensure stability [43, chapter 1]. Local breakpoints are generated

at Nb = 100 uniformly spaced time instants Tb := {tb1, tb2, . . . , tbNb}, and for each tb ∈ Tb
a pair of nodes (ib, jb) is selected uniformly at random, generating a local breakpoint at

the triplet (tb, ib, jb). For each breakpoint b, the VAR coefficients aibjb,tb and the edge set

Et are changed as follows: if (ib, jb) ∈ Etb−1, aibjb,tb is set to 0 with probability Pz := 0.4;

otherwise, a new standard Gaussian coefficient vector aibjb,tb is generated and scaled to

keep stability. A realization of this TVAR process is generated by drawing {y`}L`=1 and

{εt}Tt=L+1 i.i.d from a zero-mean Gaussian distribution with variance σ2
ε := 0.03.

Fig. D.2 compares the true coefficients with the estimates obtained by the proposed

criterion and the one in [42]. The latter only detects global (but not local) breakpoints.

The windowing described in Sec. D.2.3 selects subperiods of length N = 21, and λ and γ
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have been selected using the cross-validation scheme described in Sec. D.2.4, both for the

proposed algorithm and the one in [42] (which only uses λ).

In each subfigure, each horizontal band corresponds to a pair of nodes, and the hori-

zontal axis represents time. The LTV impulse response vectors aij,t/ ‖aij,t‖ are mapped to

colors in an HSV space, being assigned similar hue if their unitary counterparts aij,t/ ‖aij,t‖
are closeby. The value (brightness) is set proportional to ‖aij,t‖, so responses close to 0

appear close to white, whereas impulse responses with a larger `2-norm will appear in

a darker color. The stems appearing between some pairs of breakpoints represent filter

coefficients of aij,t during the segment they lie on.

It is observed that the proposed algorithm could detect most of the local breakpoints

and correctly identifies segments of stationarity. On the other hand, the competing algo-

rithm yields a high number of false positives as expected.

D.4 Conclusions

Dynamic networks can be identified using the notion of local breakpoints, when VAR

coefficient changes appear in a small number of edges. The proposed technique involves

three novelties: a regularized criterion, a windowing technique, and a cross-validation

scheme. Simulation experiments encourage further research along these lines.
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Online Joint Topology Identification and Signal Es-

timation with Inexact Proximal Online Gradient De-

scent

Bakht Zaman, Luis M. Lopez-Ramos, and Baltasar Beferull-Lozano

Abstract— Identifying the topology that underlies a set of time series is use-

ful for tasks such as prediction, denoising, and data completion. Vector au-

toregressive (VAR) model-based topologies capture dependencies among time

series, and often inferred from observed spatio-temporal data. When the data

are affected by noise and/or missing samples, the tasks of topology identi-

fication and signal recovery (reconstruction) have to be performed jointly.

Additional challenges arise when i) the underlying topology is time-varying,

ii) data become available sequentially, and iii) no delay is tolerated. To over-

come these challenges, this paper proposes two algorithms to estimate the

VAR model-based topologies. The proposed algorithms have complementary

merits in terms of complexity and performance. A performance guarantee

is derived for one of the algorithms in the form of a dynamic regret bound.

Numerical tests are also presented, showcasing the ability of the proposed al-

gorithms to track the time-varying topologies with missing data in an online

fashion.

E.1 Introduction

In many applications involving complex systems, causal relations among time series are

computed. These relations form a causality graph, where each node corresponds to a

time series, and oftentimes reveal the topology of e.g. an underlying social, biological, or

brain network [13]. A causality graph provides insights about the complex system under

analysis, and enables certain tasks such as forecasting [102], signal reconstruction [3],

anomaly detection [2], and dimensionality reduction [9]. While most prior work assumes

that the data are fully observable at every node and time-instant, this is not the case

in certain real-world scenarios [81, 82], due to diverse reasons. For instance, in sensor

networks, the data at a node may be partially observed due to faulty equipments/sensors,

dropped data packages due to network congestion, or under-observation of certain signals

with the purpose of saving energy (e.g. sporadic observations based on the variations

of the measured signal). In social networks, available user data may be partial due

to security or privacy reasons. In ecological networks, uncontrollable factors such as

weather conditions limit the ability to have reliable counts of a certain species. This

paper considers the problem of online topology identification with streaming noisy data

where some values are missing.

Identifying graphs capturing the spatio-temporal “interactions” among time series has

attracted great attention in the recent literature [13, 22]. Among the popular approaches,

correlation [13], partial correlations, Markov random fields, or other approaches in
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graph signal processing [14, 16, 15, 11, 19, 21] are adopted in the literature. For directed

interactions, one may employ structural equation models (SEM) [24], [26] or Bayesian

networks [11, Sec. 8.1]. However, these methods account only for memoryless interactions,

meaning that they cannot accommodate delayed interactions where the value of a time

series at a given time instant is related to the past values of other time series.

An important notion of causality among time series is due to Granger [28] based

on optimal prediction error, which is generally difficult to determine optimally [60, p.

33], [61]. Thus, alternative causality definitions based on vector autoregressive (VAR)

models are typically preferred [103, 31, 104]. VAR topologies are estimated assuming

Gaussianity and stationarity in [30, 29] and assuming sparsity in [66, 105, 20, 106]. All

these approaches assume that the graph does not change over time. Since this is not

the case in many applications, approaches have been devised to identify time-varying

topologies, both undirected [38, 107, 41] and directed piecewise-constant [47].

The complexity of all previously discussed approaches becomes prohibitive for long

observation windows since they process the entire data set at once and cannot accom-

modate data arriving sequentially. The modern approach to tackle these issues is online

optimization, where an estimate is refined with every new data instance. Existing online

topology identification algorithms for memoryless interactions include [34, 26, 35, 36, 37],

and [32].

The problem of topology identification under incomplete data is considered in [83].

However, the underlying topology is considered to be undirected and the proposed algo-

rithm is a batch approach. For directed graphs, the works in [84] and [85] address the

batch estimation of the VAR parameters in the presence of noisy data with missing val-

ues. Other batch approaches to tackle the problem of joint signal estimation and topology

identification from noisy observations include [125], where a spatio-temporal smoothness-

based graph learning algorithm is proposed. The problem of online time series prediction

with missing data is considered in [86], where the goal is to predict the future values; and

[87], where the missing values are imputed by their estimates. Theoretical guarantees in

the form of static regret bounds are presented. However, those works adopt a univari-

ate autoregressive (AR) process model, and thus do not extract information about the

relations among multiple time series. Moreover, these works consider a static (station-

ary) model and analyze the static regret. An approach to jointly estimate the signal and

topology is presented in [88] for a structural VAR model (SVARM) when the observations

contain noisy and missing values; in that work, different batch and online algorithms are

proposed, and an identifiability result is stated. However, no performance guarantees

showing the tracking capabilities of the proposed online algorithm are presented.

The present work proposes online algorithms to estimate the memory-aware causality

graphs associated with a collection of time series with noisy missing data. The contri-

butions include two complementary algorithms that estimate (track) time-varying VAR

causality graphs (and therefore capture memory-based interactions) from streaming data

affected by noise and missing entries. Both algorithms have fixed computational complex-

ity per sample, which renders them suitable for sequential and big-data scenarios. The

proposed algorithms have complementary merits: the first one has very low computa-

tional complexity, and the second one has improved tracking capability and is supported
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by dynamic regret analysis.

More specifically, the contributions are

• C1) A first algorithm, termed Joint Signal and Topology Identification via Sparse

Online learning (JSTISO). At each iteration, the proposed algorithm simultane-

ously estimates the signal (from the noisy observations with missing values) and

the topology, by minimizing a carefully chosen, sequential objective function. Such

a function involves signal reconstruction mismatch (how far the estimated signal is

from the signal predicted by the past values and the topology), and time-variation of

the estimated topology (distance between parameter estimates that are adjacent in

time). A scalar hyperparameter allows to trade off between the two aforementioned

metrics.

• C2) A second algorithm, named Joint Signal and Topology Identification via Re-

cursive Sparse Online learning (JSTIRSO). The difference with respect to JSTISO

is that the cost function that JSTIRSO optimizes is augmented with an additional

term based on the cost function proposed in [45], which is in turn inspired by the

celebrated recursive least squares (RLS) algorithm.

• C3) To characterize the performance of JSTIRSO when the topology is time-varying,

a dynamic regret bound is derived.

• C4) Finally, performance is empirically validated through extensive experiments

with synthetic and real data sets.

The rest of the paper is organized as follows: Sec. E.2 presents the model and a batch

problem formulation for inferring time-varying memory-aware causality graphs. Sec. E.3

introduces the online joint tracking and signal estimation, and explains the online convex

optimization approach. To solve the problem of joint signal and topology estimation in

an online fashion, an approximate loss function is derived in Sec. E.4. An alternative loss

function is presented in Sec. E.5 and it is argued why it is expected to yield better track-

ing performance. The performance of the proposed algorithm (JSTIRSO) is evaluated in

the form of the dynamic regret analysis in Sec. E.6. Numerical results are presented in

Sec. E.7.

Notation. Bold lowercase (uppercase) letters denote column vectors (matrices). Op-

erators E[·], ∂, (·)>, vec(·), λmax(·), and diag(·) respectively denote expectation, sub-

differential, matrix transpose, vectorization, maximum eigenvalue, and diagonal of a ma-

trix. The operator ∇ denotes gradient and ∇s represents a subgradient. Symbols 0N ,

1N , 0N×N , and IN respectively represent the all-zero vector of size N , the all-ones vec-

tor of size N , the all-zero matrix of size N × N , and the size-N identity matrix. Also,

[·]+ = max(·, 0). Finally, 1 is the indicator satisfying 1{x} = 1 if x is true and 1{x} = 0

otherwise.

E.2 Model and Problem Formulation

Consider a collection of N time series, where yn[t], t = 0, 1, . . . , T − 1, denotes the value
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of the n-th time series at time t. A causality graph G , (V , E) is a graph where the

n-th vertex in V = {1, . . . , N} is identified with the n-th time series yn[t] and there is an

edge (or arc) from n′ to n ((n, n′) ∈ E) if and only if (iff) yn′ [t] causes yn[t] according

to a certain causality notion. A prominent notion of causality can be defined using VAR

models. To this end, consider the order-P time-varying VAR model [43]:

y[t] =
P∑
p=1

A(t)
p y[t− p] + u[t], (E.1)

where y[t] , [y1[t], . . . , yN [t]]>, A
(t)
p ∈ R

N×N , p = 1, . . . , P , are the matrices of time-

varying VAR parameters and u[t] , [u1[t], . . . , uN [t]]> is the innovation process, generally

assumed to be a temporally white, zero-mean stochastic process, i.e., E[u[t]] = 0 and

E[u[t]u>[τ ]] = 0N×N for t 6= τ . Yet, the results in the regret analysis in Sec. E.6 hold

independently of such assumptions, which benefits its generality.

With this model we can introduce the concept of VAR causality [49], which embodies

a similar spirit to that of Granger causality, but is much less challenging to compute:

given a process order P , it is said that time series yi[t] VAR-causes time series yj[t] iff

the P most recent values of yi[t] carry information that allows to reduce the prediction

MSE of yj[t] (compared to the optimal prediction based on all other time series in the

set under consideration). While in the definition of Granger causality the definition of

an optimal prediction is not clear, the VAR model allows a clear definition of an optimal

predictor. Before continuing this discussion, let us introduce some extra notation for

brevity purpose: With a
(p)
n,n′ the n, n′-th entry of A

(t)
p

1, (E.1) takes the following form

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′yn′ [t− p] + un[t]

=
∑

n′∈N (n)

P∑
p=1

a
(p)
n,n′yn′ [t− p] + un[t], (E.2)

for n = 1, . . . , N , where N (n) , {n′ : an,n′ 6= 0} and

an,n′ ,
[
a

(1)
n,n′ , . . . , a

(P )
n,n′

]>
. (E.3)

When u[t] is a zero-mean and temporally white stochastic process, the term ŷn[t] ,∑
n′∈N (n)

∑P
p=1 a

(p)
n,n′yn′ [t−p] in (E.2) is the minimum mean square error estimator of yn[t]

given the previous values of all time series {yn′ [τ ], n′ = 1, . . . , N, τ < t}; see e.g. [61, Sec.

12.7]. The set N (n) therefore collects the indices of those time series that participate in

this optimal predictor of yn[t] or, alternatively, the information provided by time series

yn′ [t] with n′ /∈ N (n) is not informative to predict yn[t]. This allows us to express the

definition of VAR-causality in a clearer and more compact way: yn′ [t] VAR-causes yn[t]

whenever n′ ∈ N (n). Equivalently, yn′ [t] VAR-causes yn[t] if an,n′ 6= 0. VAR causality

relations among the N time series can be represented using a causality graph where

1For brevity purpose, we drop the t for each element of A
(t)
p
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E , {(n, n′) : an,n′ 6= 0}. Clearly, in such a graph, N (n) is the in-neighborhood of

node n. To quantify the strength of these causality relations, a weighted graph can be

constructed by assigning e.g. the weight ‖an,n′‖2 to the edge (n, n′).

With these definitions, given a set of time series data in batch form, the problem

of identifying a time-varying VAR causality graph for each time instant is a tracking

problem. It involves more unknown variables than data and, thus, it is necessary to

incorporate certain assumptions in order to aim for a solution.

More formally, the problem statement in batch form is: given the observations y[t],

t = 0, . . . , T − 1 and the VAR process order, P , find the time-varying VAR coefficients

{{A(t)
p }Pp=1}T−1

t=P such that it yields sparse topology at each time instant. It is common to

make an assumption on the variations of the topologies. In this case, we assume that the

variations in the topology are constrained, so that the sum of the squared norms of the

difference between every two consecutive sets of parameters do not exceed a given budget

B. Given the observations {y[τ ]}T−1
τ=0 , to estimate the time-varying sparse topologies in

batch form, following [66], a batch problem can be formulated by solving the following

minimization problem:

arg min
{{A(τ)

p }Pp=1}
T−1
τ=P

1

2(T − P )

T−1∑
t=P

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p y[t− p]

∥∥∥∥∥
2

2

+
T−1∑
t=P

Ω
({
A(t)
p

}P
p=1

)
(E.4a)

s. t.
T−1∑
t=P+1

∥∥vec
(
{A(t)

p }Pp=1

)
− vec

(
{A(t−1)

p }Pp=1

)∥∥2

2
≤ B, (E.4b)

where the first term in the cost function is the least-squares loss, and the second term is

a group sparsity-promoting regularization function defined as

Ω
({
A(t)
p

}P
p=1

)
, λ

N∑
n=1

N∑
n′=1

1{n′ 6= n}
∥∥a(t)

n,n′

∥∥
2
, (E.5)

where a
(t)
n,n′ has the same structure as (E.3) with time-varying VAR parameters. The

regularization function Ω promotes sparse edges in the causality graphs. The parameter

λ is a user-defined constant that controls the sparsity in the edges of the graph. In

the constraint (E.4b), the cumulative variation in consecutive solutions is bounded by a

budget B. This restricts the amount of variations that the VAR model suffers during

the time lapse captured by the batch data, and is necessary for the problem to have a

meaningful solution (otherwise it would be very ill-posed). In this work, we consider

that some data values will be missing (for reasons already stated in the introduction),

and the observed values will be affected (corrupted) by measurement noise.

To formulate the problem of estimating the causality graphs with missing values and

noise in the observation vector, consider a subset of V where the signal is observed, given

by Mt ⊆ V . The (random) pattern of missing values is collected in the N-by-N diagonal

matrix Mt where Mnn[t], n = 1, . . . , N , are i.i.d. Bernoulli random variables taking value

1 with probability ρ and zero with probability 1 − ρ. Mt is a diagonal matrix with the

n-th diagonal entry being zero whenever the value at the n-th node is missing, otherwise

one. Let ỹ[t] be the observation obtained at time t, given by

ỹ[t] = Mty[t] +Mtε[t], (E.6)
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where ε[t] is the observation noise vector.

In batch setting, the problem of estimating time-varying topologies with missing values

is stated as: given the noisy observations {ỹ[t]}T−1
t=0 with missing values, and the VAR

process order P , find the coefficients {{Â(t)
p }Pp=1}T−1

t=P such that it yields a sparse topology.

However, thanks to VAR model, is easier to estimate the topology from the observation

vector directly if the missing values are reconstructed (imputed), and the topology (VAR

parameters) helps in such reconstruction. Thus, a natural approach is to jointly estimate

the signal and the topology.

In batch setting, the approach advocated in [88] is to solve the following problem, which

includes joint estimation of the signal and the VAR coefficients:

{
ŷ[t],

{
Â

(t)

p

}P
p=1

}T−1

t=P

= arg min{
y[t],{A(t)

p }Pp=1

}T−1

t=P

1

2

T−1∑
t=P

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p y[t− p]

∥∥∥∥∥
2

2

+
ν

2|Mt|

T−1∑
t=P

‖ỹ[t]−Mty[t]‖2
2 +

T−1∑
t=P

Ω
({
A(t)
p

}P
p=1

)
+ β

T−1∑
t=P

P∑
p=1

‖A(t)
p −A(t−1)

p ‖2
F, (E.7)

where the first term is a least-squares (LS) fitting error for all time instants (where the

t-th term in the summation fits the signal based on the P previous observations and

the VAR coefficients at time t), the second term penalizes the mismatch between the

observation vector and the reconstructed signal (recall that |Mt| is the number of nodes

where the signal is observed), the third term is a regularization function that promotes

sparsity in the edges, and the fourth term limits the variations in the coefficients (comes

from the dualization of the constraint in (E.4)). The parameter ν > 0 is a constant to

control the trade-off between the prediction error based on the VAR coefficients and the

mismatch between the measured samples and the signal reported after the reconstruction.

The parameter λ controls the sparsity in the edges while β controls the magnitude of

the cumulative norm of the difference between consecutive coefficients. The resulting

problem in (E.7) is (separately) convex in {y[t]}T−1
t=P and in {{A(t)

p }Pp=1}T−1
t=P }, but not

jointly convex. The problem in (E.7) can be solved via alternating minimization. Each

problem in alternating minimization can be solved via proximal gradient descent.

In the next section, we describe solving this problem in an online fashion where the

data are coming sequentially and are partially observable.

E.3 Online Signal Reconstruction and Topology In-

ference

The batch formulation in (E.7) uses information from all time instants to produce a

sequence of reconstructed signal values and VAR parameter (topology) estimates. On

the other hand, an online formulation should allow us to produce such a sequence with

minimum delay and with fixed complexity (at the price of lower accuracy). Specifically,

here we are interested in an algorithm that, at each time instant t, produces an estimate

of y[t] and {A(t)
p }Pp=1 as soon as the partial observation ỹ[t] is received.
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To this end, we design an online criterion such that its sum over time matches the

batch objective in (E.7). As a preliminary step, define

`t

(
{y[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
,

1

2

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p y[t− p]

∥∥∥∥∥
2

2

+
ν

2|Mt|
‖ỹ[t]−Mty[t]‖2

2 . (E.8)

Now we can use the expression above2, and the definition of Ω(·) from (E.5), to define

the dynamic cost function:

ct

(
{y[τ ]}tτ=t−P ,

{
A(t)
p ,A

(t−1)
p

}P
p=1

)
,

`t

(
{y[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
+ Ω

({
A(t)
p

}P
p=1

)
+ β

T−1∑
t=P

P∑
p=1

‖A(t)
p −A(t−1)

p ‖2
F, (E.9)

The objective function in (E.7) can be rewritten as
∑

t ct(. . . ). It becomes clear that

producing an estimate of y[t] and {A(t)
p }Pp=1 does not only have an impact on ct(·), but

also on {cτ (·)}t+Pτ=t . Such a coupling in time is taken into account in the framework of

dynamic programming (or reinforcement learning), where the goal is to find a policy π of

the form

π : RPN × R
N2P × R

N × R
N2 → R

N × R
N2P

π

(
{ŷ[τ ]}t−1

τ=t−P ,
{
Â(t−1)
p

}P
p=1

, ỹ[t],Mt

)
 ŷ[t],

{
Â(t)
p

}P
p=1

(E.10)

such that the cumulative cost is minimized in expectation. Learning such a policy (via e.g.,

deep reinforcement learning) would require a high amount of computation, and it is left

out of the scope of the present paper. Instead, we propose to approximate such a policy

using the much more tractable framework of online convex optimization (reviewed next).

Fortunately enough, the structure of (E.9) resembles that of the composite problems that

can be efficiently dealt with via proximal online gradient descent (OGD). In the next

section, an approximation of the cost function discussed above will be taken in a way

such that we can derive an proximal OGD update over {A(t−1)
p }Pp=1.

In the remainder of this section, the theoretical background of proximal OGD and

inexact proximal OGD will be introduced. In the next section, we will explain the ap-

proximations we take in order to be able to apply the inexact proximal OGD (IP-OGD)

framework [70] to the online problem at hand.

E.3.1 Theoretical background: composite problems

In the sequel, we present a framework to solve stochastic, composite-objective optimiza-

tion problems in an online fashion.

2The splitting of the arguments of `t into present and past samples will become useful in subsequent

sections
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Consider a sequence of functions such that each element in the sequence can be split

into two parts (a loss function and a regularization function). Generally, each function in

the sequence is given by

ht(a) , ft(a) + Ωt(a), (E.11)

where ft : X → R is a general convex loss function, Ωt : X → R is the convex regulariza-

tion function where X is a convex set. Note that the function Ωt(·) can vary with time,

however, in this work, it will remain constant.

Given such a sequence of functions, the online learning setting requests to generate,

at each time t, a hypothesis or estimate a[t], given the previous functions {hτ}t−1
τ=0. The

quality of the proposed estimate a[t] will be assessed by ht(a[t]). Since the estimate must

be delivered before ht is made available, the possibility of generating good estimates is

subject to certain assumptions on how much the sequence of optimal estimates (which is

only known in hindsight) changes over time. In the context of this work, a[t] corresponds

to the topology, and the online learning task corresponds to the tracking of the time-

varying topologies, subject to the assumption that the topology changes slowly over time.

The performance metric usually considered in online learning algorithms for static

problems is the static regret which compares the algorithm’s performance with a static

(constant in time) hindsight solution. It has been shown, though, that the algorithms in

[45] can estimate and track the slowly time-varying solutions, yet the static regret is less

relevant for inference of time-varying models. Since the optimal solution also changes with

time in tracking problems, the static regret cannot accommodate time-varying optimal

solutions. Therefore, the static regret is not a robust measure of cumulative error when the

optimal solution varies with time. To characterize the performance of online algorithms

in time-varying scenarios, a dynamic regret is proposed in tracking scenarios, where the

hindsight solution is also time-varying [56]. Mathematically, the dynamic regret is defined

as

Rd[T ] ,
T∑
t=1

[
ht(a[t])− ht(a∗[t])

]
, (E.12)

where a[t] is the estimate of the online algorithm and a∗[t] is the optimal solution at

time t, given by a∗[t] , arg mina ht(a). Note that optimal solutions are time-varying.

Next, we present an online algorithm to solve the composite problem given in (E.11). It

is well known that composite problems can be efficiently solved via proximal methods

[119], [126]. Before presenting the online algorithm based on proximal operator, we first

briefly discuss proximal operators. The proximal operator of a scaled function λΨ at

point v is defined by [119]:

proxλΨ(v) , arg min
x∈dom Ψ

[
Ψ(x) +

1

2λ
‖x− v‖2

2

]
, (E.13)

where the function is minimized together with a quadratic proximal term. The mini-

mization objective inside (E.13) becomes strongly convex due to the quadratic proximal

term. The proximal operator of a function at point v can be interpreted as minimizing the

function while being close v. The parameter λ controls the trade-off between minimizing

Ψ(·) and being close to v. Based on this proximal operator, there are various algorithms
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which work under very general conditions. Usually, the proximal algorithms are used to

solve composite problems (differentiable plus non-differentiable term) and they exhibit

good convergence guarantees. Some of the existing algorithms such as gradient descent,

projected gradient descent, etc. can be shown to be special cases of proximal algorithms.

An extremely popular algorithm in proximal methods is proximal gradient descent

(PGD) [119]. In PGD, the objective is split into two terms, one that is differentiable

and one that is not differentiable. At each iteration, a gradient descent step is performed

on the differentiable component of the objective and then the proximal operator of the

non-differentiable function at the resultant vector is performed. This process is repeated

until convergence. In its online version, namely proximal (OGD), only one iteration

of the proximal gradient is performed at each time instant based on the available data

sample, instead of running until convergence. In many cases, the full information about

the cost function is not available to the algorithm. To deal with this issue, the inexact

proximal OGD [70] assumes that an inexact gradient is available and the analysis of the

algorithm includes the error between the true gradient and the available inexact gradient.

Inexact proximal OGD performs very well in tracking time-varying parameters supported

by theoretical guarantees.

E.4 Deriving an approximate loss function

We can manipulate the expressions in the previous section to turn the joint signal and

topology identification problem into a composite objective problem that can be solved

using the approach described above.

Our approach consists in treating, at time t, the P previous reconstructed samples,

{ŷ[τ ]}t−1
τ=t−P , as random variables. Although those variables are dependent of the esti-

mated VAR parameters, we adopt the simplifying approximation of assuming that they

are independent. After doing so, the deterministic function ct(·) is replaced with a random

function

Ct

(
y[t],

{
A(t)
p

}P
p=1

)
= `t

(
{ŷ[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
+ Ω

({
A(t)
p

}P
p=1

)
+ β

P∑
p=1

‖A(t)
p − Â

(t−1)

p ‖2
F, (E.14)

which is jointly convex in its arguments. Notice that, if {ŷ[τ ]}t−1
τ=t−P and ỹ[t] were equal to

the true (unobservable) signals {y[τ ]}tτ=t−P , this setting would be the same that is dealt

with in [45], by direct application of proximal OGD. Since the aforementioned signal

estimates are inexact versions of the true signals, in the present work we will use the

inexact proximal OGD framework discussed in [70] to analyze the regret of the resulting

algorithm.

Before proceeding to the formulation of the online algorithm, two remarks are in order.

Remark 1: The cost function has as inputs the signal estimate and the VAR pa-

rameters. It is assumed that the VAR parameters change smoothly with time, but we

cannot assume that the signals vary smoothly with time. Recall that in each proximal
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OGD iteration, a minimization is solved involving a first-order approximation of the loss

`t, the (non-linearized) regularizer Ω, and a proximal term that ensures that the variable

estimated at time t is close in norm to its previous estimate at time t− 1. This proximal

term should involve {A(t)
p }Pp=1, but not y[t].

Remark 2: As a consequence of the simplifying assumption of random independent

reconstructed samples, the function Ct(·) becomes separable across nodes.

Fortunately, the joint optimization over {A(t)
p }Pp=1 and y[t] can be reformulated into

an optimization only over {A(t)
p }Pp=1 as follows. Since Ct is jointly convex in both of its

arguments, minimizing it can be split into first minimizing over y and then over {A(t)
p }Pp=1.

Then, we can write

min
y[t],

{
A

(t)
p

}P
p=1

Ct

(
y[t],

{
A(t)
p

}P
p=1

)
= min{

A
(t)
p

}P
p=1

Lt
({
A(t)
p

}P
p=1

)
, (E.15)

where

Lt
({
A(t)
p

}P
p=1

)
, min

y[t]
`t

(
{ŷ[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
, (E.16)

and the minimization in (E.16) can be solved analytically, as shown in Sec. E.4.1. Once a

closed form is available for L, a composite objective online optimization algorithm (specif-

ically inexact proximal OGD) can be applied; its theoretical background is described in

Sec. E.3.1. Observe that the loss function in (E.16) is separable across nodes, i.e.,

Lt
({
A(t)
p

}P
p=1

)
=

N∑
n=1

L(n)
t (an[t]) =

N∑
n=1

min
yn[t]

`
(n)
t (ĝ[t], yn[t],an[t]), (E.17)

where

`
(n)
t (ĝ[t], yn[t],an[t]) ,

1

2

(
(yn[t]− ĝ[t]>an[t])2 +

ν Mnn[t]

|Mt|
(yn[t]− ỹn[t])2

)
(E.18)

with

ĝ[t] , vec
([
ŷ[t− 1], . . . , ŷ[t− P ]

]>)
, (E.19)

and

L(n)
t (an) , min

yn[t]
`

(n)
t (ĝ[t], yn[t],an[t]). (E.20)

To derive the loss function, first, yn[t] is computed, i.e., signal reconstruction is performed.

Then, a closed-form expression for L(n)
t is derived.

E.4.1 Signal reconstruction

This section focuses on the (sub)problem of estimating the signal from a noisy observation

vector with missing values, given a (fixed) topology. The resulting estimator is a convex

combination of the signal prediction via the VAR process and signal estimation from the

observation vector with missing values. More formally, the reconstruction subproblem

consists in estimating y[t] given: the current data vector ỹ[t], the masking matrix Mt, the

vector ĝ[t] collecting the estimates of the previous P data vectors, and the estimated VAR
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coefficients {A(t)
p }Pp=1. Notice from (E.8) that ỹ[t] and Mt are implicit in the definition

of `t(·):
ŷ[t] = arg min

y[t]
`t(ĝ[t],y[t],an[t]). (E.21)

Since the above problem is separable across n, we can solve the problem separately. The

solution for the n-th entry of ŷ[t] is ŷn[t] = arg minyn[t] `
(n)
t (ĝ[t], yn[t],an[t]), which has a

closed form given by

ŷn[t] = (1− Un[t]) ĝ[t]>an[t] + Un[t]ỹn[t], (E.22)

where

Un[t] ,
νMnn[t]

|Mt|+ νMnn[t]
. (E.23)

Observe that Un[t] is zeros when yn[t] is missing, otherwise Un[t] is ν/(|Mt| + ν). When

yn[t] is present, Un[t] is always less than 1.

The overall computational complexity for estimating ŷ[t] is O(N2P ). This complexity

can be reduced depending on the sparse structure of {an[t]}Nn=1. If, for instance, the

number of edges is O(N), then the computational complexity for estimating ŷ[t] becomes

O(NP ) per t.

E.4.2 Loss function in closed form

Substituting the closed-form solution of ŷn[t] from (E.22) into (E.20) and after simplifi-

cation, we get

L(n)
t (a[t]) =

1

2
Un[t](ỹn[t]− ĝ>[t]an[t])2. (E.24)

The loss function we just derived will be used in Sec. E.4.3 to derive the IP-OGD

iterates. Since proximal OGD involves linearizing part of the objective, in this case L(n)
t (·),

which requires computing the gradient. The gradient of L(n)
t w.r.t. an[t] is given by

v̂n[t] , ∇an[t]L(n)
t = Un[t]

(
ĝ[t]ĝ>[t]an[t]− ỹn[t]ĝ[t]

)
. (E.25)

E.4.3 Application of Inexact Proximal OGD to Joint Signal and

Topology Estimation

Since the IP-OGD is a first-order method (i.e. only gradient is exploited), the error that

comes from the observation noise and the missing values is only translated into the error

in the gradient. Thus, the missing values and the noisy observations can be interpreted

as we do not have access to the true gradient of the loss function.

For a general f
(n)
t and Ω(n)(an) , λ

∑N
n′=1 1{n 6= n′} ‖an,n′‖2, applying the online

proximal gradient algorithm with a constant step size α yields:

an[t+ 1] = proxαΩ(n)

(
an[t]− α∇f (n)

t (an[t])
)
, (E.26)

where the proximal operator of a function Ψ at point v is defined by [119]:

proxηΨ(v) , arg min
x∈dom Ψ

[
Ψ(x) +

1

2η
‖x− v‖2

2

]
. (E.27)
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The parameter η controls the trade-off between minimizing Ψ(·) and being close to v.

When ∇f (n)
t (an[t]) is not available and only an inexact version is accessible, the resulting

algorithm is called inexact proximal OGD.

Let af
n[t] , an[t] − α∇f (n)

t (an[t]), and af
n[t] = [(af

n,1[t])>, . . . , (af
n,N [t])>]>, which

enables us to write the above update expression as

an[t+ 1] = proxαΩ(n)

(
af
n[t]
)

= arg min
zn

(
Ω(n)(zn) +

1

2α

∥∥zn − af
n[t]
∥∥2

2

)
= arg min
{zn,n′}Nn′=1

(
λ

N∑
n′=1

1{n 6= n′} ‖zn,n′‖2 +
1

2α

N∑
n′=1

∥∥zn,n′ − af
n,n′ [t]

∥∥2

2

)
.

Observe that the above problem is separable and the solution to the n′-th problem is

given by:

an,n′ [t+ 1] = arg min
zn,n′

[
1{n 6= n′} ‖zn,n′‖2 +

1

2αλ

∥∥zn,n′ − af
n,n′ [t]

∥∥2

2

]

= af
n,n′ [t]

[
1− αλ1{n 6= n′}∥∥af

n,n′ [t]
∥∥

2

]
+

. (E.28)

When f
(n)
t is set to be L(n)

t , we recover JSTISO as tabulated in Algorithm 13.

Algorithm 13 Tracking time-varying topologies with missing data via JSTISO

Input: P, λ, σ2, α, {ŷ[τ ]}P−1
τ=0

Output: {an[t]}Nn=1

Initialization: an[P ] = 0, n = 1, ..., N,

1: for t = P, P + 1, . . . do

2: Receive noisy data vector with missing values ỹ[t]

3: Form ĝ[t] from the previously estimated {ŷ[t− p]}Pp=1 via (E.19)

4: for n = 1, . . . , N do

5: Compute ŷn[t] using ỹn[t] via (E.22)

6: v̂n[t] = Un[t]
(
ĝ[t]ĝ>[t]an[t]− ỹn[t]ĝ[t]

)
7: for n′ = 1, 2, . . . , N do

8: af
n,n′ [t] = an,n′ [t]− αv̂n,n′ [t]

9: an,n′ [t+ 1] = af
n,n′ [t]

[
1− αλ 1{n 6=n′}∥∥∥af

n,n′ [t]
∥∥∥
2

]
+

10: end for

11: an[t+ 1] =
[
a>n,1[t+ 1], . . . ,a>n,N [t+ 1]

]>
12: end for

13: Output {an[t+ 1]}Nn=1

14: end for
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E.5 An Alternative Loss Function for Improved Track-

ing

The loss function in the previous approach is an instantaneous loss, which only depends

on the current sample. While this keeps the complexity of the iterations very low, and

may be sufficient for online estimation of a static VAR model, it is sensitive to noise

and input variability, and thus it is expected to perform poorly when attempting at

tracking a time-varying model. In [45], a running average loss function is designed drawing

inspiration from the relation between least mean squares (LMS) and recursive least squares

(RLS) to improve the tracking capabilities of the algorithm that is derived based on an

instantaneous loss function. In this paper, we follow similar steps to propose a second

approach, where a running average loss function is adopted, which depends on the past

received signal values. In this second approach, we set the loss function as

˜̀
t

(
{y[τ ]}t−1

τ=0, ŷ[t],
{
A(t)
p

}P
p=1

)
=

1

2

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p ŷ[t− p]

∥∥∥∥∥
2

2

+
1

2

t−1∑
τ=P

γt−τ

∥∥∥∥∥ŷ[τ ]−
P∑
p=1

A(t)
p ŷ[τ − p]

∥∥∥∥∥
2

2

+
ν

2|Mt|
‖ỹ[t]−Mty[t]‖2

2 , (E.29)

where γ is a user-selected forgetting factor which controls the weight of past (recon-

structed) samples of y[t] . The procedure in the previous section (treating the previously

reconstructed samples as a random variable, and minimizing over y[t]) is applied to the

alternative deterministic loss ˜̀
t, so we can write the random loss function L̃t as

L̃t
({
A(t)
p

}P
p=1

)
, min

y[t]

˜̀
t

(
{ŷ[τ ]}t−1

τ=0,y[t],
{
A(t)
p

}P
p=1

)
. (E.30)

The above loss function can be written in terms of the previous loss function `t as

L̃t
({
A(t)
p

}P
p=1

)
= min

y[t]
`t

(
{ŷ[τ ]}t−1

τ=t−P ,y[t],
{
A(t)
p

}P
p=1

)
+

1

2

t−1∑
τ=P

γt−τ

∥∥∥∥∥ŷ[τ ]−
P∑
p=1

A(t)
p ŷ[τ − p]

∥∥∥∥∥
2

2

. (E.31)

Next, we follow the same steps as in the previous case. We start with the signal recon-

struction as in Sec. E.4.1 for the present case. The minimizer of (E.30) is:

ŷ[t] = arg min
y[t]

˜̀
t

(
{ŷ[τ ]}t−1

τ=0,y[t],
{
A(t)
p

}P
p=1

)
= arg min

y[t]

1

2

∥∥∥∥∥y[t]−
P∑
p=1

A(t)
p ŷ[t− p]

∥∥∥∥∥
2

2

+
ν

2|Mt|
‖ỹ[t]−Mty[t]‖2

2 . (E.32)

Observe that (E.32) coincides with the reconstruction problem in (E.21) and, therefore,

its solution is given by (E.22).
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Next, we derive the closed-form solution for L̃t used in this approach. To this end,

substituting the closed-form expression of ŷ[t] from (E.22) into (E.30), we get

L̃t
({
A(t)
p

}P
p=1

)
=

1

2

N∑
n=1

[
Un[t](ỹn[t]− ĝ>[t]an[t])2

]
+

1

2

N∑
n=1

( t−1∑
τ=P

γt−τ ŷ2
n[τ ]

+ γa>n [t]Φ̂[t− 1]an[t]− 2γr̂>n [t− 1]an[t]
)
, (E.33)

where

Φ̂[t] ,
t∑

τ=P

γt−τ ĝ[τ ]ĝ>[τ ], (E.34a)

r̂n[t] ,
t∑

τ=P

γt−τ ŷn[τ ]ĝ[τ ]. (E.34b)

Note that L̃t is separable across the nodes and can be written as:

L̃t(·) =
N∑
n=1

L̃(n)
t (·). (E.35)

where

L̃(n)
t (an) , L(n)

t (an) +
t−1∑
τ=P

γt−τ ŷ2
n[τ ] + γa>n Φ̂[t− 1]an − 2γr̂>n [t− 1]an (E.36)

The proposed loss function will be used to derive the IP-OGD iterates, which requires

computing its gradient. The gradient of L̃(n)
t w.r.t. an[t] is given by

∇an[t]L̃(n)
t = Un[t]

(
ĝ[t]ĝ>[t]an[t]− ỹn[t]ĝ[t]

)
+ γΦ̂[t− 1]an[t]− γr̂n[t− 1]. (E.37)

Following similar steps to those in Sec. E.4.3, the gradient of the aforementioned

loss function can be used to derive the JSTIRSO algorithm. The proposed JSTIRSO

algorithm is tabulated in Alg. 14.

E.6 Performance analysis

To analyze the performance of JSTIRSO, we present analytical results in this section.

First, the assumptions considered in the analysis are stated and then, two lemmas fol-

lowed by the main theorem about the dynamic regret bound of JSTIRSO are presented.

Moreover, a third lemma about bounding the error in the gradient is presented and dis-

cussed.

First, we define the following quantities:

Φ[t] ,
t∑

τ=P

γt−τg[τ ]g>[τ ], (E.38a)

rn[t] ,
t∑

τ=P

γt−τ ŷn[τ ]g[τ ], (E.38b)





Online Machine Learning for Graph Topology Identification from Multiple Time Series

Algorithm 14 Tracking time-varying topologies with missing data via JSTIRSO

Input: ν, γ, P, λ, σ2, α, {ŷ[τ ]}P−1
τ=0

Output: {ãn[t]}Nn=1

Initialization:

ãn[P ] = 0, n = 1, ..., N, Φ[P−1] = σ2I, rn[t] = 0, n = 1, ..., N

1: for t = P, P + 1, . . . do

2: Receive noisy data vector with missing values ỹ[t]

3: Form ĝ[t] from the previously estimated {ŷ[t− p]}Pp=1 via (E.19)

4: Φ̂[t] = γ Φ̂[t− 1] + ĝ[t]ĝ>[t]

5: for n = 1, . . . , N do

6: Compute ŷn[t] using ỹn[t] via (E.22)

7: r̂n[t] = γ r̂n[t− 1] + ỹn[t] ĝ[t]

8: v̂n[t] = Un[t]
(
ĝ[t]ĝ>[t]ãn[t]− ỹn[t]ĝ[t]

)
+ Φ̂[t− 1]ãn[t]− r̂n[t− 1]

9: for n′ = 1, 2, . . . , N do

10: ãf
n,n′ [t] = ãn,n′ [t]− αv̂n,n′ [t]

11: ãn,n′ [t+ 1] = ãf
n,n′ [t]

[
1− αλ 1{n 6=n′}
‖ãf

n,n′ [t]‖2

]
+

12: end for

13: ãn[t+ 1] =
[
ã>n,1[t+ 1], . . . , ã>n,N [t+ 1]

]>
14: end for

15: Output {ãn[t+ 1]}Nn=1

16: end for
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which can be thought as the true counterparts of Φ̂[t] and r̂n[t].

We consider the following assumptions for the results we present about the JSTIRSO

algorithm.

A1. Bounded samples: There exists By > 0 such that |yn[t]|2 ≤ By, |ŷn[t]|2 ≤ By, and

|ỹn[t]|2 ≤ By ∀n, t.

A2. Bounded minimum eigenvalue of Φ[t] and Φ̂[t]: There exists β˜̀ > 0 such that

λmin(Φ[t]) ≥ β˜̀ and λmin(Φ̂[t]) ≥ β˜̀, ∀ t ≥ P .

A3. Bounded maximum eigenvalue of Φ[t] and Φ̂[t]: There exists L > 0 such that

λmax(Φ[t]) ≤ L and λmax(Φ̂[t]) ≤ L, ∀ t ≥ P .

A4. Bounds on the errors in Φ, rn, g due to noise and missing values:

‖ĝ[t]− g[t]‖2 ≤ Bg ∀ t (E.39)

λmax

(
Φ̂[t]−Φ[t]

)
≤ BΦ ∀ t (E.40)

‖r̂n[t]− rn[t]‖2 ≤ Br ∀ t. (E.41)

The forthcoming results depend on the error int the gradient, given by

e(n)[t] = ∇L̃(n)
t (an[t])−∇

[
min
yn[t]

˜̀(n)
t

(
{y[τ ]}t−1

τ=0, yn[t],an[t]
)]
, (E.42)

where ∇L̃(n)
t (an) is the gradient defined in (E.37) where the loss function is inexact due

to the error in the reconstructed entries in ĝ (the error in ĝ comes in turn from the

missing values and noisy observations), and therefore it is an inexact gradient. On the

other hand, the term that is subtracted corresponds [cf. (E.33)] to the contribution from

the n-th node to the loss function L̃(n)
t when ŷn[t] is replaced with the true signal yn[t],

and it is therefore the exact gradient.

Dynamic regret analysis is generally expressed in terms of metrics that express how

challenging tracking becomes, e.g., how fast the optimal parameters vary. Specifically in

our case, the dynamic regret will be expressed in terms of the variation in consecutive

optimal solutions (called path length) and the error in the gradient. If we define h̃
(n)
t ,

L̃(n)
t +Ω(n), and ã◦n[t] , arg minan h̃

(n)
t (an) is a (time-varying) hindsight solution, the path

length is given by

W (n)[T ] ,
T∑

t=P+1

‖ã◦n[t]− ã◦n[t− 1]‖2 . (E.43)

Also, we define the cumulative (norm of the) gradient error as

E(n)[T ] ,
T∑
t=P

∥∥e(n)[t]
∥∥

2
. (E.44)

The dynamic regret for JSTIRSO corresponding to the n-th node is defined as

R̃
(n)
d [T ] ,

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
, (E.45)
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where ãn[t] is the JSTIRSO topology estimate. Next, we present two lemmas that will

be instrumental to derive the dynamic regret of JSTIRSO.

Lemma 1. Under assumptions A1 and A3, we have

Bv ,
∥∥∥∇L̃(n)

t (ãn[t])
∥∥∥

2
≤

ν

1 + ν

(
PNBy + 2

√
PNByBg +B2

g + γL
1 + ν

ν

)
1

β˜̀

(
ν

1 + ν

√
PNBy +

√
PNBy

1− γ

)

+

(
ν

1 + ν
+

γ

1− γ

)√
PNBy (E.46)

Proof. To bound ‖∇L̃(n)
t (ãn[t])‖2, taking the norm on both sides of (E.37) and applying

the triangular inequality yields

∥∥∥∇L̃(n)
t (ãn[t])

∥∥∥
2
≤ Un[t]λmax

(
ĝ[t]ĝ>[t]

)
‖an[t]‖2 + Un[t] ‖ỹn[t]ĝ[t]‖2

+ γλmax

(
Φ̂[t− 1]

)
‖an[t]‖2 + ‖γr̂n[t− 1]‖2 (E.47)

Next, using assumptions A1 and A4, it can be easily shown that λmax(ĝ[t]ĝ>[t]) ≤ PNBy+

2
√
PNByBg +B2

g. Substituting this bound in the above expression and using assumption

A3 yields

∥∥∥∇L̃(n)
t (ãn[t])

∥∥∥
2
≤ Un[t]

(
PNBy + 2

√
PNByBg +B2

g

)
‖an[t]‖2 + Un[t]

√
PNBy

+ γL ‖an[t]‖2 + ‖γr̂n[t− 1]‖2 . (E.48)

Next, an upper bound of r̂n[t − 1] is derived. By the definition of r̂n[t] and assumption

A1, we have

‖r̂n[t− 1]‖2 =

∥∥∥∥∥
t−1∑
τ=P

γt−1−τ ŷn[τ ] ĝ[τ ]

∥∥∥∥∥
2

≤ 1

γ

∥∥∥∥∥
t−1∑
τ=P

γt−τ
√
By

√
By1NP

∥∥∥∥∥
2

(E.49a)

=
1

γ
By

√
PNγt

t−1∑
τ=P

(
1

γ

)τ
=

1

γ
By

√
PN

γ(1− γt−P )

1− γ

≤
√
PNBy

1− γ
. (E.49b)





PAPER E

Using the above bound in (E.48)∥∥∥∇L̃(n)
t (ãn[t])

∥∥∥
2
≤ Un[t]

(
PNBy + 2

√
PNByBg +B2

g

)
‖an[t]‖2 + Un[t]

√
PNBy

+ γL ‖an[t]‖2 +
γ
√
PNBy

1− γ
(E.50)

≤ ν

1 + ν

(
PNBy + 2

√
PNByBg +B2

g

)
‖an[t]‖2 +

ν

1 + ν

√
PNBy

+ γL ‖an[t]‖2 +
γ
√
PNBy

1− γ
(E.51)

=
ν

1 + ν

(
PNBy + 2

√
PNByBg +B2

g + γL
1 + ν

ν

)
‖an[t]‖2

+
ν

1 + ν

√
PNBy +

γ
√
PNBy

1− γ
. (E.52)

The next step is to derive a bound on ‖an[t]‖2. To this end, from (E.28) and (E.25), it

follows that

‖an[t+ 1]‖2 (E.53)

≤
∥∥af

n[t]
∥∥

2

= ‖an[t]− αtv̂n[t]‖2

=
∥∥∥an[t]− αt

(
Un[t]ĝ[t]ĝ>[t]an[t]− Un[t]ỹn[t]ĝ[t]

+ Φ̂[t− 1]an[t]− r̂n[t− 1]
)∥∥∥

2
(E.54)

=
∥∥∥(I − αtΦ̂[t− 1]− αtUn[t]ĝ[t]ĝ>[t]

)
an[t]

+ αtUn[t]ỹn[t]ĝ[t] + αtr̂n[t− 1]
∥∥∥

2
. (E.55)

Applying triangular inequality and by assumption A2, we have

‖an[t+ 1]‖2 (E.56)

≤ λmax

(
I − αtΦ̂[t− 1]− αtUn[t]ĝ[t]ĝ>[t]

)
‖an[t]‖2

+ αt ‖Un[t]ỹn[t]ĝ[t]‖2 + αt ‖r̂n[t− 1]‖2 (E.57)

= 1− αtλmin

(
Φ̂[t− 1] + αtUn[t]ĝ[t]ĝ>[t]

)
‖an[t]‖2

+ αt ‖Un[t]ỹn[t]ĝ[t]‖2 + αt ‖r̂n[t− 1]‖2 (E.58)

≤ 1− αtλmin

(
Φ̂[t− 1]

)
‖an[t]‖2 + αt ‖Un[t]ỹn[t]ĝ[t]‖2

+ αt ‖r̂n[t− 1]‖2 (E.59)

≤ (1− αtβ˜̀) ‖an[t]‖2 + αt ‖Un[t]ỹn[t]ĝ[t]‖2

+ αt ‖r̂n[t− 1]‖2 . (E.60)

Substituting the bound on ‖r̂n[t− 1]‖2 from (E.49b) into the above expression, we have

‖an[t+ 1]‖2 ≤ (1− αtβ˜̀) ‖an[t]‖2 + αt

(
Un[t]

√
PNBy +

√
PNBy

1− γ

)
. (E.61)
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Setting αt = α and for 0 < α ≤ 1/L, it can be proven by recursively substituting into

(E.60) (similar steps to those in the proof of [45, Theorem 5]), that

‖an[t+ 1]‖2 ≤
1

β˜̀

(
ν

1 + ν

√
PNBy +

√
PNBy

1− γ

)
∀t. (E.62)

Substituting the above bound into (E.52) completes the proof.

Lemma 2. All the subgradients of the regularization function Ω(n) are bounded by λ
√
N ,

i.e., ‖ut‖2 ≤ λ
√
N , where ut ∈ ∂Ω(n)(ãn[t]).

Proof. To find an upper bound on ‖ut‖2, we apply the result in [46, Lemma 2.6] to Ω(n),

which establishes that all the subgradients of Ω(n) are bounded by its Lipschitz continuity

parameter LΩ(n) . In the following, we show that LΩ(n) = λ
√
N . Lipschitz continuity of

Ω(n) means that there exists LΩ(n) such that∣∣Ω(n)(a)− Ω(n)(b)
∣∣ ≤ LΩ(n) ‖a− b‖2 , (E.63)

∀ a, b. By definition, we have Ω(n)(xn) = λ
∑N

n′=1,n′ 6=n ‖xn,n′‖2 with xn = [x>n,1, ...,x
>
n,N ]>,

xn,n′ ∈ RP , n′ = 1, ..., N . Let zn = [z>n,1, ...,z
>
n,N ]>, zn,n′ ∈ RP , n′ = 1, ..., N and by taking

the l.h.s. of (E.63), we have

∣∣Ω(n)(xn)− Ω(n)(zn)
∣∣ = λ

∣∣∣∣∣∣∣∣
N∑

n′=1
n′ 6=n

‖xn,n′‖2 −
N∑

n′=1
n′ 6=n

‖zn,n′‖2

∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣∣∣
N∑

n′=1
n′ 6=n

[
‖xn,n′‖2 − ‖zn,n′‖2

]∣∣∣∣∣∣∣∣
≤ λ

N∑
n′=1
n′ 6=n

|‖xn,n′‖2 − ‖zn,n′‖2| (E.64a)

≤ λ

N∑
n′=1
n′ 6=n

‖xn,n′ − zn,n′‖2 (E.64b)

≤ λ
N∑

n′=1

‖xn,n′ − zn,n′‖2

≤ λ
√
N ‖xn − zn‖2 , (E.64c)

where the inequality in (E.64a) holds due to the triangle inequality for scalars (‖xn,n′‖2−
‖yn,n′‖2 as scalars); (E.64b) holds due to the reverse triangle inequality (given by |‖x1‖2−
‖x2‖2| ≤ ‖x1 − x2‖2); and (E.64c) follows from the inequality ‖b‖1 ≤

√
N‖b‖2 with

b ∈ R
N [118, Sec. 2.2.2]. The inequality in (E.64c) implies that (E.63) is satisfied with

LΩ(n) = λ
√
N , i.e., Ω(n) is λ

√
N -Lipschitz continuous.

Next, we present a bound on the dynamic regret of JSTIRSO.
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Theorem 7. Under assumptions A1, A2, and A3, let {ãn[t]}Tt=P be generated by JSTIRSO

(Algorithm 2) with a constant step size α ∈ (0, 1/L]. If there exists σ such that

‖ã◦n[t]− ã◦n[t− 1]‖2 ≤ σ, ∀ t ≥ P + 1, (E.65)

then the dynamic regret of JSTIRSO satisfies:

R̃
(n)
d [T ] ≤ 1

αβ˜̀

[
Bv + λ

√
N
] (
‖ãn[P ]− ã◦n[P ]‖2 +W (n)[T ] + αE(n)[T ]

)
, (E.66)

where Bv is defined in (E.46).

Proof. We derive the dynamic regret of JSTIRSO. To this end, since h̃t is convex, we have

by definition

h̃
(n)
t (ã◦n[t]) ≥ h̃

(n)
t (ãn[t]) +

(
∇sh̃

(n)
t (ãn[t])

)>
(ã◦n[t]− ãn[t]) , (E.67)

∀ ã◦n[t], ãn[t], where a subgradient of h̃
(n)
t is given by ∇sh̃

(n)
t (ãn[t]) = ∇L̃(n)

t (ãn[t]) + ut
with ut ∈ ∂Ω(n)(ãn[t]). Rearranging (E.67) and summing both sides of the inequality

from t = P to T results in:

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

T∑
t=P

(
∇sh̃

(n)
t (ãn[t])

)>
· (ãn[t]− ã◦n[t]) . (E.68)

By applying the Cauchy-Schwarz inequality on each term of the summation in the r.h.s.

of the above inequality, we obtain

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

T∑
t=P

∥∥∥∇sh̃
(n)
t (ãn[t])

∥∥∥
2
· ‖ãn[t]− ã◦n[t]‖2 . (E.69)

The next step is to derive an upper bound on ‖∇sh̃
(n)
t (ãn[t])‖2. From the definition of

∇sh̃
(n)
t (ãn[t]) and by the triangular inequality, we have

‖∇sh̃
(n)
t (ãn[t])‖2 ≤ ‖∇L̃(n)

t (ãn[t])‖2 + ‖ut‖2 . (E.70)

From Lemma 1 and Lemma 2, we have ‖∇sh̃
(n)
t (ãn[t])‖2 ≤ Bv + λ

√
N . Substituting

this bound into (E.69) leads to:

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

T∑
t=P

[
Bv + λ

√
N
]
‖ãn[t]− ã◦n[t]‖2 . (E.71)

Note that Un[t] is upper-bounded by ν/(1 + ν). Next, we apply Lemma 2 in [70] in order

to bound
∑T

t=P‖ãn[t] − ã◦n[t]‖2 in (E.71). The hypotheses of Lemma 2 are Lipschitz

smoothness of L̃(n)
t , Lipschitz continuity of Ω(n), and strong convexity of L̃(n)

t . Lipschitz

continuity of Ω(n) is proved in (E.64c) whereas strong convexity of L̃(n)
t is implied by the

assumption A2. So we need to verify that L̃(n)
t is Lipschitz-smooth. Since L̃(n)

t is twice-

differentiable, assumption A3 is equivalent to saying that L̃(n)
t is L-Lipschitz smooth. To

apply Lemma 2 in [70], one can set K in [70] as T − P + 1, gk as Ω(n), and fk as L̃(n)
P+k−1,
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it follows that xk in [70] equals ãn[P + k − 1] and x◦k equals ã◦n[P + k − 1]. Then, since

we have already shown above that the hypotheses of Lemma 2 in [70] hold in our case,

applying it to bound ‖ãn[t]− ã◦n[t]‖2 in (E.71) yields:

T∑
t=P

[
h̃

(n)
t (ãn[t])− h̃(n)

t (ã◦n[t])
]
≤

1

αβ˜̀

[
Bv + λ

√
N
] (
‖ãn[P ]− ã◦n[P ]‖2 +W (n)[T ] + αE(n)[T ]

)
. (E.72)

This concludes the proof (note that initializing ãn[P ] = 0NP can lead to further simplifi-

cation).

The bound that has been presented depends on the cumulative error E(n)[T ], which

can be bounded as a function of the quantities introduced in A4 (related to the inexactness

of the reconstructed samples). The following lemma provides a bound on
∥∥e(n)[t]

∥∥.

Lemma 3. Under assumptions A1 and A4, let {ãn[t]}Tt=P be generated by JSTIRSO

(Algorithm 2) with a constant step size α ∈ (0, 1/L]. Then, the error associated with

the inexact gradient [cf. (E.42)] is bounded in norm as

∥∥e(n)[t]
∥∥

2
≤
(
γBΦ +

(
ν

1 + ν

)(
2
√
PNByBg +B2

g

))
×
√
PNBy

β˜̀

(
ν

1 + ν
+

1

1− γ

)
+ γBr +

(
ν

1 + ν

)
Bg

√
By. (E.73)

Proof. Next, we analyze the error in the gradient for JSTIRSO. This error can be proved

to be bounded under certain assumptions. The error in the gradient is given by (E.42)

and can be written as:

e(n)[t]

= Un[t]
(
ĝ[t]ĝ>[t]an[t]− ỹn[t]ĝ[t]

)
+ γΦ̂[t− 1]an[t]

− γr̂n[t− 1]− Un[t]
(
g[t]g>[t]an[t]− ỹn[t]g[t]

)
− γΦ[t− 1]an[t] + γrn[t− 1] (E.74a)

= γ(Φ̂[t− 1]−Φ[t− 1])an[t] + Un[t](ĝ[t]ĝ>[t]− g[t]g>[t])an[t]

+ γ(rn[t− 1]− r̂n[t− 1]) + Un[t]ỹn[t](g[t]− ĝ[t]). (E.74b)

Next, we take the norm on both sides of the above equation∥∥e(n)[t]
∥∥

2

≤
∥∥∥γ(Φ̂[t− 1]−Φ[t− 1])an[t]

∥∥∥
2

+
∥∥∥Un[t](ĝ[t]ĝ>[t]− g[t]g>[t])an[t]

∥∥∥
2

+ ‖γ(rn[t− 1]− r̂n[t− 1])‖2 + ‖Un[t]yn[t](g[t]− ĝ[t])‖2 (E.75a)

≤ γλmax

(
Φ̂[t− 1]−Φ[t− 1]

)
‖an[t]‖2+Un[t]λmax

(
ĝ[t]ĝ>[t]−g[t]g>[t]

)
‖an[t]‖2

+ γBr + Un[t] |ỹn[t]| ‖g[t]− ĝ[t]‖2 , (E.75b)
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where the first inequality holds because of the triangular inequality and the second in-

equality holds because of Cauchy-Schwarz inequality. The next step is to use the bounds

defined in assumptions A1 and A4. Combining A1 and (E.39) it can be proven that

λmax

(
ĝ[t]ĝ>[t]−g[t]g>[t]

)
≤ 2
√
PNByBg +B2

g. (E.76)

Therefore substituting (E.40), (E.76), (E.41), and (E.39) into (E.75b), we obtain∥∥e(n)[t]
∥∥

2

≤ γBΦ ‖an[t]‖2 + Un[t]
(

2
√
PNByBg +B2

g

)
‖an[t]‖2 + γBr + Un[t]Bg

√
By (E.77a)

≤ γBΦ ‖an[t]‖2 +

(
ν

1 + ν

)(
2
√
PNByBg +B2

g

)
‖an[t]‖2 + γBr +

(
ν

1 + ν

)
Bg

√
By

(E.77b)

=

(
γBΦ +

(
ν

1 + ν

)(
2
√
PNByBg +B2

g

))
‖an[t]‖2 + γBr +

(
ν

1 + ν

)
Bg

√
By,

(E.77c)

where the final result comes from substituting an upper bound on Un[t] and rearranging

terms. We can use here the same bound on ‖an[t]‖2 that was derived in the proof of

Lemma 1 [cf. (E.62)]:

‖an[t+ 1]‖2 ≤
√
PNBy

β˜̀

(
ν

1 + ν
+

1

1− γ

)
∀ t; (E.78)

substituting the above bound into (E.77c) completes the proof.

It can be observed that this bound depends on the parameters of the data, the param-

eters ν, and γ in the estimation algorithm. The bound on ‖e(n)[t]‖2 means that under

certain assumptions, the error in the gradient is always bounded.

Remark. Since ‖e(n)[t]‖2 and E(n)[T ] are related via (E.44), the above bound can be

used to replace E(n)[T ] in the regret bound in (E.66) with an expression that depends on

the quantities expressed in A4.

The bound on the dynamic regret for JSTIRSO depends on W (n)[T ] and E(n)[T ]. If

both the path length W (n)[T ] and the cumulative error E(n)[T ] are sublinear, then the

dynamic regret bound becomes sublinear.

E.7 Numerical Tests

We analyze the performance of proposed algorithm by presenting normalized mean squared

deviation for both the signal and the topology. The NMSD for the signal is given by

NMSDs[t] =
E
[
‖y[t]− ŷ[t]‖2

2

]
E [‖y[t]‖2

2]
, (E.79)

where y[t] is the true signal while ŷ[t] is the estimated signal from the noisy observations

with missing values. The NMSD for the topology is defined as:

NMSDg[t] ,
E
[∑N

n=1‖ân[t]− atrue
n [t]‖2

2

]
E
[∑N

n=1‖atrue
n [t]‖2

2

] , (E.80)
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Figure E.1: NMSD for signal estimation vs. time. Simulation parameters: N = 10, P =

3, T = 3000, σu = 0.01, σε = 0.01, γ = 0.99, ρ = 0.75, pe = 0.25, α = 0.1/L, no. of Monte

Carlo iterations = 500, JISGoT iterations = 10.

which measures the difference between the estimates {ân[t]}t and the time-varying true

VAR coefficients {atrue
n [t]}t. The letter g in NMSDg stands for the graph.

We consider a dynamic VAR model, where the coefficients change abruptly. There

are two time instants where the VAR coefficients are changed. To generate the synthetic

data, an Erdős-Rényi random graph is generated with edge probability pe and self-loop

probability 1. This gives us a binary adjacency matrix of the underlying graph. This graph

determines which entries of the matrices {Ap}Pp=0 are zero. The rest of entries are drawn

i.i.d. from a standard normal distribution. Matrices {Ap}Pp=0 are scaled down afterwards

by a constant that ensures that the VAR process is stable [43]. The innovation process

samples are drawn independently as u[t] ∼ N (0, σ2
uIN). At t = T/3 and t = 2T/3,

the model changes abruptly from one model to another model. This is performed by

generating a new set of VAR coefficients while keeping the binary adjacency matrix fixed.

The performance of JSTISO (Algorithm 13) and JSTIRSO (Algorithm 14) is evaluated

for the signal and the topology estimation. The values for the parameter ν in JSTISO

and JSTIRSO is selected via a grid search method where the optimal values of the pa-

rameter is selected based on minimum squared deviation for the signal. The values of the

regularization parameters for the proposed algorithms are also selected via grid search
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Figure E.2: NMSD for topology estimation vs. time. Simulation parameters: N =

10, P = 3, T = 3000, σu = 0.01, σε = 0.01, γ = 0.99, ρ = 0.75, pe = 0.25, α = 0.1/L, no. of

Monte Carlo iterations = 500, JISGoT iterations = 10.
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for true data (without noise and missing values). In Fig. E.1, the NMSD for the signal

estimation is presented for JSTISO and JSTIRSO. The signal is estimated from noisy

observations with missing data via (E.22). The estimated signal is different for both the

algorithm because (E.22) depends on the estimated coefficients. Hence, the corresponding

estimated coefficients from JSTISO and JSTIRSO are used in the signal estimation. We

compare our proposed algorithms with JISGoT [88, Algorithm 4]. Despite refining the

the previous P signal estimates at the cost of high computational complexity and running

more than one iteration at each time instant, JSTIRSO eventually achieves lower error

than JISGoT. Moreover, the performance of a third algorithm named as ‘NaiveTIRSO’ is

also presented. NaiveTIRSO is an extension of the TIRSO presented in [45]. To deal with

missing values, the prediction via the VAR process is used in NaiveTIRSO. The result in

Fig. E.1 show that JSTISO and JSTIRSO can estimate the signal from the noisy observa-

tion having missing values. It can be observed that at the time when the model changes,

the error starts to be increasing. This is due to the fact that the estimated coefficients

at that time instant have just changed and the topology estimate by the algorithm is not

accurate. Moreover, note that JSTIRSO outperforms JSTISO and NaiveTIRSO for the

signal estimation.

The NMSD corresponding to the topology for the proposed algorithms is presented

in Fig. E.2. JSTIRSO tracks the time-varying topologies with a lower final NMSD

than JSTISO, JISGoT, and NaiveTIRSO. The rationale is the special loss function plus

jointly estimating the signal from the observations with noise and missing values for

JSTIRSO. Moreover, JSTIRSO is also supported by theoretical guarantees for the time-

varying scenarios.

E.8 Conclusions

The problem of tracking time-varying topologies from noisy observations in the presence

of missing data is investigated. Initially, the batch problem for the missing values is

presented. Due to tractability issues of the batch problem, an approximated problem is

solved in the online scenario to track the variations in the topologies with missing data.

Two online algorithms JSTISO and JSTIRSO are proposed, where the problem is solved

by deriving a joint approach for the estimation of the signal from the noisy data and

estimation of the topology. To evaluate the performance of JSTIRSO, a dynamic regret

bound is derived. Numerical results showcase the tracking capabilities of the proposed

algorithms.





Bibliography

[1] A. Natali, E. Isufi, and G. Leus, “Forecasting multi-dimensional processes over

graphs,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2020, pp. 5575–

5579.

[2] C. Liu, S. Ghosal, Z. Jiang, and S. Sarkar, “An unsupervised spatiotemporal graphical

modeling approach to anomaly detection in distributed CPS,” in ACM/IEEE Int.

Conf. Cyber-Physical Syst., Apr. 2016, pp. 1–10.

[3] P. D. Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive least mean

squares estimation of graph signals,” IEEE Trans. Signal Info. Process. Netw., vol. 2,

no. 4, pp. 555–568, Dec. 2016.

[4] F. Nie, X. Wang, M. I. Jordan, and H. Huang, “The constrained laplacian rank algo-

rithm for graph-based clustering,” in Thirtieth AAAI Conference on Artificial Intelli-

gence, 2016.

[5] U. Von Luxburg, “A tutorial on spectral clustering,” Statist. Comput., vol. 17, no. 4,

pp. 395–416, 2007.

[6] H. E. Egilmez and A. Ortega, “Spectral anomaly detection using graph-based filter-

ing for wireless sensor networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., 2014, pp. 1085–1089.

[7] A. Gavili and X. Zhang, “On the shift operator, graph frequency, and optimal filtering

in graph signal processing,” IEEE Trans. Signal Process., vol. 65, no. 23, pp. 6303–

6318, 2017.

[8] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited

graph signals using graph spectral proxies,” IEEE Trans. Signal Process., vol. 64,

no. 14, pp. 3775–3789, Jul. 2016.

[9] Y. Shen, P. A. Traganitis, and G. B. Giannakis, “Nonlinear dimensionality reduc-

tion on graphs,” in Proc. IEEE Int. Workshop Comput. Advan. Multi-Sensor Adapt.

Process., Curacao, Netherlands Antilles, Dec. 2017.

[10] N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and P. Vandergheynst, “Fast robust

pca on graphs,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 4, pp. 740–756, 2016.

151



Online Machine Learning for Graph Topology Identification from Multiple Time Series

[11] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Information Science

and Statistics. Springer, 2006. [Online]. Available: https://books.google.com/books?

id=kTNoQgAACAAJ

[12] E. Dall’Anese, A. Simonetto, S. Becker, and L. Madden, “Optimization and learning

with information streams: Time-varying algorithms and applications,” IEEE Signal

Process. Mag., vol. 37, no. 3, pp. 71–83, 2020.

[13] E. D. Kolaczyk, Statistical Analysis of Network Data: Methods and Models. Springer,

New York, 2009.

[14] D. Angelosante and G. B. Giannakis, “Sparse graphical modeling of piecewise-

stationary time series,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,

Prague, Czech Republic, 2011, pp. 1960–1963.

[15] S. L. Lauritzen, Graphical Models. Clarendon Press, 1996, vol. 17.

[16] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation

with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[17] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under laplacian

and structural constraints,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 6, pp.

825–841, Sep. 2017.
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