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Abstract

In this thesis, we studied and developed 3D classification and segmentation models for medi-
cal imaging. The classification is done for Alzheimer’s Disease and segmentation is for brain
tumor sub-regions. For the medical imaging classification task we worked towards devel-
oping a novel deep architecture which can accomplish the the complex task of classifying
Alzheimer’s Disease volumetrically from the MRI scans without the need of any transfer
learning. The experiments were performed for both binary classification of Alzheimer’s Dis-
ease (AD) from Normal Cognitive (NC), as well as multi class classification between the three
stages of Alzheimer’s called NC, AD and Mild cognitive impairment (MCI). We tested our
model on the ADNI dataset and achieved mean accuracy of 94.17% and 89.14% for binary
classification and multiclass classification respectively.
In the second part of this thesis which is segmentation of tumors sub-regions in brain MRI im-
ages we studied some popular architecture for segmentation of medical imaging and inspired
from them, proposed our architecture of end-to-end trainable fully convolutional neural net-
work which uses attention block to learn the localization of different features of the multiple
sub-regions of tumor. Also experiments were done to see the effect of weighted cross-entropy
loss function and dice loss function on the performance of the model and the quality of
the output segmented labels. The results of evaluation of our model are received through
BraTS’19 dataset challenge. The model is able to achieve a dice score of 0.80 for the seg-
mentation of whole tumor, and a dice scores of 0.639 and 0.536 for other two sub-regions
within the tumor on validation data.
In this thesis we successfully applied computer vision techniques for medical imaging anal-
ysis. We show the huge potential and numerous benefits of deep learning to combat and
detect diseases opens up more avenues for research and application for automating medical
imaging analysis.
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Chapter 1

Introduction

The early detection and diagnosis of the various disease is made possible thanks to the de-
velopment in the medical image acquisition devices and medical imaging technology, such as
MRIs, CT scans, PET scans, etc. As a result of this growth huge volumes of complex and
heterogeneous medical data is generated for which extensive and tedious efforts and a large
force of human experts such as radiologists and physicians is required who can interpret
this data for the diagnosis and treatment of the disease. With the increase in the workload,
the diagnosis task becomes prone to human errors. Applying a deep learning-based medi-
cal image analysis to computer-aided diagnosis system can significantly decrease the efforts
required for medical diagnosis and with more accurate results improving the efficiency and
quality of the treatment.

The wave of technological advancement hit the medical industry in a very positive way.
Fast and robust detection and segmentation of medical imaging can provide great support
to pathology and can assist doctors and medical labs. AI is a very fast-growing field and
the rise in popularity of computer vision algorithms like CNN has caught the attention of
researchers to develop systems for the automation of medical image analysis.

An AI based medical imaging system tries to find the relevant patterns in the data to identify
specific anatomical markers. AI is playing an important role in diagnosing neuroimaging
data. In this thesis we have focused on two task of brain imaging diagnosis. In part one the
goal is to develop a 3D CNN architecture which can efficiently classify Alzheimer’s Disease
using the brain MRIs and in part two, we have worked on deep end-to-end fully convolutional
3D CNN model to create segmented masks of different sub-regions of gliomas present in the
brain.

1.0.1 Alzheimer’s Disease

The challenging task of detection of Alzheimer’s in early stages has been a focus of many
studies as it contributes 60%-70% of the total dementia cases worldwide. In Alzheimer’s
Disease brain cells involved in cognitive functioning starts to irrevocably deteriorate at a
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gradual pace. Detection of Alzheimer’s in early stag is really difficult because the disease
is thought to begin 20 years before the symptoms arrive, with very small and unnoticeable
changes in the brain. Common symptoms of Alzheimer’s include memory loss, reduced
ability to reason and think. As the disease spread to further parts in brain it leads to loss
of the ability to perform everyday activities.

1.0.2 Brain Tumor

A brain tumor is an abnormal growth of a mass of cells in parts of brain. A tumor can be
benign or cancerous. Among various kinds of brain tumors gliomas are the most common
one. In the segmentation part of this thesis, the focus is on gliomas. Common symptoms
of gliomas include headaches, memory loss, confusion and decline in brain functioning. The
task of brain tumour segmentation is to separate healthy tissues from tumour regions such
as advancing tumour, necrotic core and surrounding edema.

1.0.3 Motivation and Goals

Alzheimer’s disease as well as malignant brain tumours have a high mortality rate. In these
cases, early diagnosis plays a very important role in increasing the chances of survival. Also,
diagnosis is prone to human error that could be lethal. In order to circumvent these issues,
many technological innovations have been proposed to assist medical professionals. These
systems have proven to be vital in early diagnosis and resulted in a reduction in medical
errors.

After the advent of AI, intelligent decision support systems have captured the market of med-
ical imaging. Various computer vision techniques have been used to assist early diagnosis.
And, after the emergence of deep learning in early 2000s, neural networks have outperformed
most of the core medical imagining techniques. The go-to method for computer vision using
deep learning is the Convolutional Neural Network (CNN). Today, most of the state-of-the-
art models in medical imagining are based on CNNs. However, there are some flaws and
shortcomings of these models that we try to address in this thesis.

We propose novel 3D-CNN architectures for the task of Alzheimer’s detection and brain tu-
mour segmentation. Transfer learning has been used extensively in the task of Alzheimer’s
detection. However, pretrained weights might contain irrelevant information that could hin-
der performance and cause higher false positive and false negative rates. For Alzheimer’s
detection, we aim to build a model that is able to achieve high detection accuracy without
using any pretrained weights with less number of parameters.

Another challenging task that we address in this thesis is brain tumour segmentation. It
entails a complex computer vision application of semantic segmentation. As pointed out
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precisely by [1] that manual segmentation of tumors could be bias based on the relevant ex-
perience of the person and their subjective decision making since there are yet no standard
protocols to be followed. This gives the rise to the need of having automatic segmenta-
tion systems. This task becomes even more complex for medical image segmentation as it
consists of 3D images and highly unbalanced class distribution. The irregular shapes, size,
location, heterogeneous appearance and heterogeneous appearances of the tumors adds up
the challenges to the task. Brain tumour segmentation models are computationally and ar-
chitecturally complex, but obtain high performance. We aim to further boost performance
of a state-of-the-art 3D segmentation model called V-net. To do this, we propose a novel
additive self-attention module with a modified V-net architecture. This module encourages
the model to focus on relevant sub-regions of the 3D brain scans.

We are able to achieve the above mentioned objectives.

1.0.4 Thesis Outline

This thesis is divided into the following chapters:

2 Background

• This chapter provides preliminary information and introduces to the fundamental
building blocks of this thesis.

3 Related Work

• This chapter sheds light on the previous researches done in this area.

4 Methods

• This chapter describes the method approach we have taken to attain the goals of
this thesis.

• Detailed description of the experiments performed

• Discussion the data and the the different model architectures we have studied for
classification task as well as segmentation task.

5 Results

• This chapter records our observation and results from the experiments done in
Chapter 4

6 Conclusion and Future work

• Conclusion of the experiments and results of this thesis and potential future work.
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Chapter 2

Background

This chapter walks through the fundamental theory and mechanics of this thesis. In the
following sections we present a few concepts of Deep Learning and Bio-medical Imaging
that are pertinent to the rest of the thesis. In this chapter we have briefly introduced
Convolutional neural networks and related topics that are used throughout the thesis.

2.1 Deep Learning

2.1.1 Convolutional Neural Network

The Convolutional Neural Network is one of the most popular computer vision methods that
was proposed in 1980 [18], which was called the Neocognitron. The inspiration behind the
CNN was the visual cortex in animals and humans that is responsible for decoding features
extracted from the visual environment that are sent to the brain for interpretation. The
CNN is designed to extract features from n-dimensional structures like 2D and 3D Images
and capture local spatial patterns. This is achieved with local receptive field connections
and shared weights. The network consists of one or more convolution layers followed by
pooling layers in-between, and connected to one or more fully connected layers, as in a
standard feedforward neural network. The main advantage of CNNs over fully connected
Neural Networks is that they have a lot fewer trainable parameters.
In CNNs, kernels/filters are used to extract particular features that are present in an image
by convolving the kernel weights with an image patch. The size of the filters gives rise
to locally connected structure which are each convolved with the image to produce feature
maps. The features extracted by kernel maps are aggregated by using mean or max pooling.
The kernel weights are shared at all locations in the image, resulting in a reduction in the
number of parameters. Each kernel’s parameters can be shared across the whole image
because the statistics of a patch of a natural image are the same as any other patch of the
image, which suggests that features learned at a location are also relevant for other locations
in the image. So, we can apply a learned kernel feature extractor anywhere in the image to
extract the same feature across the image. This makes CNNs ideal for extracting relevant
features from images. Deep CNNs consisting of many consecutive layers have been used
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for various computer vision applications such as image classification, object detection and
semantic segmentation

2.1.2 Convolution operation

The convolution operation is basically used to calculate the correlation between the kernel
weights and the image pixels (or previous layer output). It is an element-wise multiplication
operation followed by a summation between the kernel feature map and the input, as shown
in the equation below.
Given an input of size N,H,W,D,Cin where H=height, W=width, D=depth, C=no.of chan-
nels, N=batch size, the output of the convolution layer is produced as:

Out(Ni, Coutj ) = b(Coutj ) +
Cin−1∑
k=0

weight(Coutj , k) ∗ input(Ni, k) (2.1)

where * is the cross correlation operation (3D cross correlation in our case) between two
signals. The learnable kernels are l × l × l matrices, which slide over the large input
to detect relevant patterns creating new feature maps and convolving feature maps from
previous layer.
The idea behind this operation is that the kernel weights are learned using backpropagation
so that they extract relevant features from the input. A kernel’s weights are spatially shared
for all locations in the image. This is because a feature extracted by a kernel at a particular
part in an image is relevant for other parts of the image as well. This is an important
property of CNNs as it reduces the number of parameters. It is performed as a matrix
operation rather than an individual element-wise multiplication and summation in practice
in almost all widely used deep learning libraries.

2.1.3 2D vs 3D CNN

In a typical 2D CNN, where input is something like image data, the convolution is performed
in 2 dimensions using 2D kernels. While 2D CNNs are great at capturing spatial features
they lack the potential of capturing the temporal information present in 3D data like MRI
images.
3D CNNs apply convolution in 3 dimensions hence capturing the temporal as well as the
spatial features present in the data describing the relationship of instances in 3D space.
The 3D convolution is achieved by convolving a 3D kernel to the cube formed by stacking
multiple contiguous frames together.
Fig 2.1 shows the 2D and 3D convolution operations
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(a) 2D convolution

(b) 3D convolution

Figure 2.1: Difference between 2D and 3D CNN

2.1.4 ReLU

The Rectified Linear Unit[19] is an activation function most widely used in deep neural
networks. It can be regarded as a truncation operator applied element-wise on the input.
The rectified linear unit (ReLU) is defined as

f(x) = max(0, x) (2.2)

The derivative of ReLU is:

f ′(x) =

1, if x > 0

0, otherwise
(2.3)

There is no parameter inside a ReLU layer, hence no need for parameter learning in this
layer. It is used as a nonlinear activation function in neural networks, as shown in Fig. x.
In the case of images, the ReLU function will let through features that result positive for a
certain patterns and will render other negative patterns to zero.
In this way, the ReLU function induces sparsity in the model which reduces complexity and
memory consumption. Other popular activation functions such as sigmoid and tanh have
a tendency of saturating at their extremas. ReLU has many variants but we have used
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Figure 2.2: Plot of ReLU and it’s derivative

ReLU because it encourages the model to learn sparse features early in training. It clips the
activation at value 6. It is given as

y = min(max(x, 0), 6) (2.4)

2.1.5 Batch Normalization

During the forward pass, the multiplication between weights and the input shifts the distri-
bution along the direction of the weights. In a deep neural network, subsequent operations
result in a huge shift in the distribution, which leads to loss in performance. This is called
internal covariate shift. In order to tackle this problem, the batch normalization layer was
proposed in [31]. Just like the input to the network must be normalized with zero mean
and unit variance, the batchnorm layer normalizes the input to each layer by calculating the
mean and variance in a batch-wise manner.

yi = γx̂i + β (2.5)

where, x̂i = xi − µkB√
σ

(k)2

B + ε
(2.6)

for a d-dimensional input, where k ∈ [1, d] and i ∈ [1,m], µkB and σ(k)2

B are the per-dimension
mean and variance of the mini batch B. γ and β are shifting and translation parameters
learned during training.

2.1.6 Pooling Layers

Pooling layers are used to downsample the feature maps produced by the convolution layer
by summarizing the features. In this way the resultant feature maps contain more global
information even at lower resolution making them robust to the location changes in the input
image. Two ways to do pooling operation is

1. Maxpooling, where the maximum value is taken from the patch of the feature map.
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2. Average pooling, where the average of the patch is taken as the new value in the
resultant feature map.

2.2 Medical Imaging

Medical Imaging can be described as a tool-set in medical science for diagnosis and clinical
intervention of the internal organs of a living body. It is a way to visualize the insides of an
organ or a body without opening it surgically or with any other invasive procedures; which
makes it one of the most safest and powerful resources available for diagnostic purposes. The
utilization of imaging technology has increased drastically with all the improvement in the
science and technology in the last couple of decades, as a result of which today a number of
different imaging modalities are available suiting the need of the diagnostic measure. Various
types of imaging techniques used in medical radiation are MRI(Magnetic Resonance Imag-
ing), PET(positron emission tomography) Scan, Ultrasounds, CT (Computer Tomography)
Scans, X-Rays etc. All these imaging techniques work slightly differently from each other.
The following section give a brief description of some of these technologies.

2.2.1 Types of Medical Imaging

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is the one of the medical diagnostic measures used in radiology
to form pictures of the anatomy and the physiological processes of the body. MRI uses strong
magnetic field projected through MRI scanners to generate the medical images.

Positron Emission Tomography (PET)

PET scans are used to plot the activity and functioning of the organs and tissues using a
radioactive drug called tracer which glows up in highly chemically active areas when scanned
through a PET scanner. Certain diseases have high chemical activity so in this way it helps
in identifying the disease

Computer Tomography (CT)

CT scan uses X-rays projected on the body from different angles and then processed by
computer to create cross-sectional images of the internal body parts. These are more-detailed
than normal X-ray scans.

2.2.2 Magnetic Resonance Imaging (MRI)

In this study we have used MRI images for both classification and segmentation task as
the data was readily available in this format. Fig 2.3 shows the view of MRI in all three
axis. To create MRI image, strong and uniform magnetic fields are required. The strength is
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Figure 2.3: Coronal View, Sagittal View and Axial View (left to right)

measured in Tesla(T). A MRI sequence is a particular set of setting of pulse sequences and
pulsed field gradients to create MRI images with specific properties. A brief introduction to
the properties of MRI sequences we have used is given below.

1. T1: Lower signal for high water content (edema, tumor, infarction etc) and high signal
for fat

2. T2: High signal for more water content, low signal for fat.

3. T1-Gd: It is type of contrast based sequence. It uses gadolinium-based contrast agent
to improve the visibility of the MRI. Often T1 MRI is used as a base MRI, and it’s
visibility is improved using gadolinium-base agent.

4. FLAIR: It is an inversion recovery based sequence, where signals from the cerebrospinal
fluid (CSF) are removed. It results in a T2 MRI where grey matter is brighter than
white matter but CSF is dark instead of bright

Figure 2.4: MRI Sequences

2.2.3 Identifying Alzheimer’s Disease on MRI

The area earliest affected by the Alzheimer’s disease is the hippocampus and its con-
nected structures. Hippocampus is needed for memory retrieval, hence person affected with
Alzheimer’s struggle to remember things. As the disease spread the cortex become thinner
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and brain starts to shrink. Other areas damaged by the disease are parietal lobe, frontal
lobe and temporal lobe. MRI image in Fig 2.5 shows the different lobes on the brain

Figure 2.5: Alzherimer’s Affected parts

2.2.4 Identifying Tumors on MRI

Gliomas are the most common type of brain tumors and can be further divided into High
Grade Gliomas (HGG) and Low Grade Gliomas (LGG) based on the growth rate. In the
segmentation section of this study, we have focused on the following tumor sub-regions1:

1. NCR: Necrotic Core, is present in the enhancing core of the high-grade gliomas

2. ED: Edema are peritumoral edematous and invaded tissues, present in tentacle shapes
and are easily visible on T2-weighted MRI images.

3. NET:Non-enhancing gross abnormality.

4. AT: Enhancing regions within the gross tumor but not in the necrotic center.

Fig 2.6 shows the different tumor sub-regions explained above.

Figure 2.6: Tumor sub-regions

1These definitions are taken from (author?) [6]
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Chapter 3

Related Work

The need of automation of biomedical imaging analysis has been there for long. In early
times low-level pixel processing and mathematical model based systems were used to solve
a set tasks. Gradually the focus shifted to more modern approaches which includes utilizing
the potential of rapid-growing filed of Artificial Intelligence. By the end of 1990, supervised
machine learning techniques became popular especially in the field of biomedical image anal-
ysis. Applications included active shape models (for segmentation), atlas methods (where
the atlases that are fit to new data form the training data)[37]. General reason for the pop-
ularity of machine learning techniques is their ability to learn and recognize pattern with
great accuracy and much efficiently if compare to humans. There has been a huge upgrade
in the field of AI since then. The related work revolves around medical image classification
and segmentation in for Alzheimer and brain tumors. In this section we will study some of
the work that has been done so far for the classification and segmentation of medical imaging
using deep learning for Alzheimer’s Disease and Brain Tumor respectively.

3.1 Classification of Alzheimer’s Disease

Several studies have been conducted in the recent years to develop a computer-aided diag-
nosis system for Alzheimer’s detection. Traditional methods included researcher trying to
handcraft features through voxel-based methods, ROI based methods, hippocampal shape
and volume or patch-based methods.
[44] have attempted to compute region of interest (ROI) to detect AD. ROI is a section
of image in which a binary mask is used to carry out various operations like filtering. [8]
used voxel based morphometry (VBM) and MRI to investigate gray matter change in medial
temporal structures and volume changes in several other brain regions.
[58] have analysed regional brain atrophy for example in the hippocampus to detect patterns
of neuron death by segmenting different types of brain tissues such as grey-matter (GM),
white-matter (WM) against cerebrospinal fluid (CSF) in the MRI. They segmented the im-
ages using watershed transformation algorithm[50] with marker image, and then calculating
the shrinkage happened in the whole brain through Tissue Atrophy Ratio (AT) for early
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detection of AD.
[39] has used an inherent structure-based multi-view learning (ISML) method in which they
have extracted multi-view features based on multiple selected templates. They then em-
ployed a subclass clustering algorithm for feature selection in order to eliminate the redun-
dant features. A SVM-based ensemble classifier is used to classify subjects into AD, MCI
and NC.
[47] have used Hu moments invariants[29], calculating a set of seven invariant moments to
extract features in the brain images (MRI) of all subjects. They also showed that normaliz-
ing these moments results in better feature extraction which makes it easier for the classifier
to distinguish. The extracted features are then used as inputs to SVM and KNN classifiers
to classify the subjects. They compared the classifiers, showing that SVM performed far
better than KNN.
In [21] feature extraction is done by using ROI on three sMRI biomarkers, named as Voxel-
based morphometry, Cortical and sub-cortical volume and Hippocampus volume. They used
Principal component analysis (PCA) [4] for feature selection. PCA is a dimensionality re-
duction method simplifying a high dimension data into smaller dimension without losing
the important patterns or trend in the data. Using PCA, they selected 61 features for the
classification of AD. They studied three different classifiers: SVM, Random Forest and KNN,
and evaluated their performance in two stages. First stage included individual features from
s VBM-extracted ROI volumes, CSC-extracted feature volumes, and HV extracted features
and second staged is evaluating classifiers using the combination of all 61 features. They
concluded that SVM outperformed KNN and Random Forest in all cases.
Multi-modal data fusion using MRI and PET scans was proposed in [42]. They used stacked
auto encoders and and a sigmoidal decoder to discover the synergy between MRI and PET
scans for high level feature extraction with a softmax classifier. A zero-masking technique
(SAE-ZEROMASK) is used in contrast to simple feature concatenation (SAE-CONCAT)
technique. They randomly hide one modality and trained the hidden layers to reconstruct
the multi-modal using inputs mixed with hidden modality.
However, SAE-CONCAT usually fails to captures the non-linear co-relation between two
different modalities[59]. That’s why authors in [59] proposed Multi-modal Stacked Deep
Polynomial Networks algorithm (MM-SDPN) which uses multi-modalities like [42] but they
have used two stages of SDPN to learn high-level features.
Various other machine learning algorithms have proven to be efficient when it comes to
extracting high level features. Artificial neural networks were used by [22] for Nephropa-
thy Detection and Classification. The drawback of using Feed Forward Neural Network (as
usually called ANN) for computer vision is that they are computationally expensive. The
number of learning parameters in ANN exponentially increase with respect to the size of
the image. Thus to counter this problem, the use of convolution neural network (CNN) to
automate feature learning in images has become popular because of their ability to generalize
well to high dimensional data, without losing important patterns.
A 2-D CNN is presented by [2] where they used VGG16[60] as a base model, and treated
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a 3-D MRI image as a stack of 2-D MRI slices. Other variants of CNNs have been used in
the researches such as in [35] authors used a ROI focused 3-D CNN with multi-modality.
Each modality and ROI region was assigned a dedicated pipeline of a CNN block, whose
output was flattened. The flattened outputs are the extracted features from each modality
and region of interests(ROI). These feature outputs were then concatenated, resulting into
late data fusion and were passed to a softmax classifier. Problem with this approach is
similar to what was described earlier, that while performing late data fusion using simple
concatenation, it ignores the variance in the nature of multi-modalities and fails to learn the
non-linear co-relation between modalities[59].
A few other research works employ pre-training 3-D CNN with auto encoders such as
[53].They used sparse auto encoders for feature extraction and also compared the perfor-
mance of 2-D CNN against 3-D CNN. Authors in [26] took a two stage approach where they
first used a convolutional auto encoder in place of conventional unsupervised auto encoder to
extract local features with possibly long voxel-wise signal vectors. These features are used to
perform task-specific classification with a target-domain-adaptable 3D-CNN using transfer
learning with Net2Net weight initialization. They later proposed [25] in which they trained
the same model with deep supervision, which resultant in an improvement.
[15] also build a 3-D convolutional neural network for an end-to-end classification of subjects
with AD. They added metadata (sex and age of subjects) to the first fully connected layer in
their model. The downside of using metadata in the neural network is that the network will
try to find the correlation based on the metadata that might be biased towards the predilec-
tion of meta-data, for e.g., older patient are more likely to be affected by Alzheimer’s Disease,
so the network might bias towards assigning older people to the Alzheimer’s Class.
[67] studied various paradigms of 3-D CNNs like patch-level 3D CNN, ROI based 3D CNN,
subject-level 3D CNN, along with exploring transfer learning using auto encoder pre-training
and ImageNet pre-training. They also reviewed studies done on AD classification using Deep
Learning from January 1990 to the 15th of January 2019, which proved very helpful in the
proposed research.

3.2 Segmentation of Brain Tumors

[1] proposed a 2D CNN architecture to segment tumors in MRI images on BraTS’15 dataset.
[62] proposed an Enhanced Convolutional Neural Networks where they divided the segmenta-
tion task into two parts, first preprocessing with image enhancement and second is to calcu-
late the segmented mask using Hybrid Convolutional Neural Networks. They also introduced
a novel loss optimization function called Novel BAT optimization algorithm (NOBA) which
uses the concept of echolocation mechanism to calculate the difference between an optimal
and non-optimal error. [65] introduced a scribble-based segmentation pipeline incorporating
the CNN into a bounding box. They used P-Net as a base model for bounding box-based
binary segmentation. They made a model compatible with both 2D data and 3D data with
some minor changes.
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[57] proposed a 2D architecture called U-Net. It is a key architecture in medical image
segmentation. The model has great ability to localize the features and inspired a lot more
models. For example [17] proposed a memory efficient version of U-Net regularized using
auto-encoders to segment brain tumors. A combination of mean-squared error and Kullback-
Leibler loss was used to as a loss function for the encoder, while SoftDice loss was used to
train the U-Net inspired network. [32] also carefully modified the architecture of U-NET to
boost the performance and accuracy of the biomedical imaging segmentation task.
While most of the studies focused on medical image segmentation using patches or 2D slices,
authors in [46] proposed an architecture capable of performing volumetric segmentation of
medical imaging called V-Net. The applied their model to the segmentation task on the
Promise 2012 dataset. The introduction of residual blocks in their network ensured the con-
vergence of the model much faster compared to other studies. [10] in their work made use
of two cascaded CNNs inspired from V-Net architecture and modified residual connections
for brain tumor segmentation problem. Their first network segments the overall tumor and
the second network then delineation of the different tumor regions using the output of first
network as input. Their study contributed toward BraTS’17 challenge. Inspired from U-
Net, [12] propose a 3D version of it, called 3D U-Net, which became another one of the key
architectures for biomedical imaging segmentation.[68] also heavily used U-Net architecture
in their study for segmentation of brain tumors in BraTS’18 challenge. They exploits a 3D
U-Net based model to first locate the tumors in the brain and an another but more complex
and smaller 3D U-Net to further segment the localized tumor into its sub-regions. [64] also
create a 2 staged 3D U-Net framework, where they utilized the potential of image super-
resolution CNN (SRCNN) to process the MRI images at full resolution. They first detected
the ROI from the full volumes and predicted the segmented masks from these ROIs.
Since 3D CNNs have large memory consumption, and 2D CNNs while having low memory
requirement ignore the 3D context in the data, [66] proposed a novel framework to use 2.5D
CNN, that is a trade-off between memory consumption, model complexity and receptive
field. They evaluated their model on BraTS’17 data and ranked second in the challenge.
They propose a test-time augmentation technique claiming to improve segmentation accu-
racy.
DeepMedic[34] is a multi-scale deep 3D CNN for lesion segmentation. The architecture
consists of two parallel convolutional pathways. The pathways process images at differ-
ent resolutions giving it a better receptive field for the final classification. Inspired from
DeepMedic, [34] proposed their architecture as extended DeepMedic with residual connec-
tions. They tested their results on BraTS’15. The residual connections gave a modest but
consistent improvement.
Many researches revolved around the idea of using encoder-decoders to segment lesions in
brain. [49] proposed encoder-decoder based architecture to segment tumors in 3D MRI
images. They also used a variational-autoencoder joined to the main architecture, to recon-
struct the input image and regularize the shared decoder. The architecture ranked 1st place
in the BraTS 2018 challenge.[54] has combined the model of normal brain tissues and the
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spatial information provided by model of tumor and edema. They have used a three step
approach where they first compute the region of interest which is any abnormal regions, in
second stage they find whether the computed region contains both tumor and edema, and
in the final stage they create the segmented labels using the proper sample locations deter-
mined through the knowledge of spatial and geometric properties discovered in the second
stage.
[14] trained a regression network with a fully 3D convolutional architecture for lesion detec-
tion in from weak labels only.[28] proposed a novel segmentation method based on multi-
cascaded convolutional neural network (MCCNN) and fully connected conditional random
fields (CRFs). They trained three segmentation models each dedicated to one of the three
axial, coronal, and sagittal MRI patches, and finally combined them to obtain the final
segmentation. They take the advantage of multi-cascasded CNN to account the local de-
pendencies of the labels by combining the results of the various intermediate components
and have used CRF to extract the spatial contextual information. Similarly, [13] has also
CRF to achieve the spatial and appearance accuracy. They have trained their model on 2D
patches and the proposed model is trained in three steps where they first train a Hetero-
geneous Convolution Neural Networks (HCNN) to identify the tumor in the patches, then
they trained CRF with CRF-Recurrent Regression based Neural Network (RRNN) and in
the last step they fine tuned the with HCNN and CRF-RRNN image slices. Similar to [28],
they also trained three segmentation model one for each view, and then combined the results
using voting fusion technique.
[48] proposed an ensemble of multi-dimension and multi-resolution networks for brain tu-
mor segmentation. The developed 2D and 3D segmentation models and ensembled them
to create robust segmentation maps. They developed their ensembled models based on
DenseNET-169[30], SE-RESNEXT-101 and SE-Net-154[27]. They segment the tumor com-
ponents seperately and then comibine them followed by post processing. A novel reinforce-
ment based approach is used by [7] where they propose to use the thermal information
present in tumor regions of the brain scans to improve the results of the segmentation task.
They calculated the thermal maps of the tumor regions by solving the Pennes bioheat equa-
tion. They extracted tumor contours from the calculated thermal maps using Canny edge
detector[9].
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Chapter 4

Methods for 3D Convolutional Neural
Network for Medical Diagnosis

The study is divided into two sections:

1. Classification of Diseases from MRI images

2. Segmentation of tumors in MRI scans

Task 1 is specific to the detection of Alzheimer’s Disease and in task 2 we have performed
segmentation of different kinds of tumour sub-regions in Brain MRIs with computer vision.
This chapter gives a detailed explanation of the tasks, and the proposed methods to solve
the respective tasks. In this chapter we will also walk through the description of the datasets
used in this thesis, and training methods and experiments we have performed.

4.1 Classification of Alzheimer’s Disease

4.1.1 Overview

For the classification task we have worked with Alzheimer’s Disease Data the algorithm we
have considered for Alzheimer’s Disease detection is 3D Convolutional Neural Network. We
have used 1.5T brain MRI dataset collected from the Alzheimer’s Disease Neuroimaging
Initiative(ADNI). ADNI is a research collaboration started in 2004 under the leadership of
Dr. Michael W.Weiner. It is private-public partnership between with $27 million contributed
by 20 companies and two foundations through the Foundation for the National Institutes of
Health and $40 million from the National Institute on Aging, designed to collect and study
clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking
of Alzheimer’s disease (AD). The goals of ADNI include early detection of Alzheimer’s in
the stage of pre-dementia and track the progression of the disease by tracking its biomarker.
The timeline of ADNI initiative consists of 4 phases called ADNI-1, ADNI-GO, ADNI-2 and
ADNI-3. A brief introduction of all the phases is given below.
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ADNI-1

Started in 2004 as phase-1, ADNI-1 continued for a duration of 5 years. The goal of this
phase was to develop the biomarkers as outcome measures for clinical trials. The study
in this phase gathered and examined thousands of brain scans including structural MRI
and PET (both FDG-PET, genetic profiles, and blood and cerebrospinal fluid biomarkers.
Many subjects were included in the study where 400 were diagnosed with mild cognitive
impairment (MCI), 200 subjects with the early AD, and 200 elderly control subjects.

ADNI-GO

ADNI-GO where GO stands for "Grand Opportunities" was started in 2009 after ADNI-1
and continued for another 2 years. The goal of this phase was to examine the biomarkers
developed in Phase-1 in the earlier stage of Alzheimer’s Disease.

ADNI-2

ADNI-2 was started in 2011 with an addition of some new participant groups. 150 elderly
controls, 100 EMCI subjects, 150 late mild cognitive impairment (LMCI) subjects, and 150
mild AD patients were added to the study during ADNI-1. 107 subjects with Significant
Memory Concern(SMC) also participated in the study. This phases lasted for 5 more years

Figure 4.1: MRI images from the dataset for three different stages of Alzheimer’s in Females

ADNI-3

ADNI-3 is the current ongoing phase of the ADNI initiative. It started in September 2016
and is aimed to complete in 2022. In ADNI-3 some new brain scans has been added which
could detect the presence of tau protein tangles (tau PET), which is a key indicator of
Alzheimer’s Disease. The goal of this phase is to study the use of tau PET and functional
imaging techniques in clinical trials.
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Figure 4.2: MRI images from the dataset for three different stages of Alzheimer’s in Males

4.1.2 Dataset

The data used in this study consists of 1075 1.5T Screening MRI records of 817 subjects
collected from the ADNI-1 Standardized Data Collections. The demographic information of
the subjects is given in the table 4.1 .

Table 4.1: Demographic data for 817 subjects from the ADNI database (STD - standard deviation))

Diagnosis Subjects Age(mean±std) Gender (F/M)

AD 188 75.36±7.5 89/99
MCI 401 74.84±7.3 143/258
NC 228 75.96±5.0 110/118

The MR images were downloaded in NIfTI format. NIfTI is a medical image file format
initially developed for neuroimaging analysis by Neuroimaging Informatics Technology Ini-
tiative (NIFTI). The configuration of NIfTI format contains the metadata and image data
in a single file, with metadata stored in the beginning of the file.
The original resolution of MRI images was inconsistent so we downscaled them a resolution
of 120 × 90 × 130, to have a standard size which can be process by our CNN. We followed the
common practice of downscaling for the deep learning model, to process the large images. We
have applied min-max normalization to the data for feature scaling. Min-max normalization
transforms the features in such a way that every feature will have exact same scale between
0 and 1. Mathematically it is given as:

X = x−Xmin

Xmax −Xmin

, x ∈ X (4.1)

where X is our dataset of size 1075 × 120 × 90 × 130, and x is each individual MRI
image. Alzheimer’s is a disease which can emerge in any of the hemisphere of the brain, so
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augmenting the data by flipping the MRI images horizontally is a good notion. We have
used only left and right flip augmentation of the data, which doubled the size of our dataset
to train the neural network. We have chosen axial view as it helps in avoiding the motion
artifacts from eyeball which can appear in other views [20].

Figure 4.3: Processed MRI images from the dataset showing three different stages of
Alzheimer’s

4.1.3 Architecture

Figure 4.4 shows the architecture of the 3D CNN used to detect Alzheimer’s. The ar-
chitecture shown is for binary classification of Alzheimer’s between two stages of Normal
Cognitive(NC) and Alzheimer Disease(AD). The architecture of the model for multi-class
classification among three stages (NC, AD and Mild Cognitive(MC) is exactly similar except
the number of output neuron.
The 3D CNN we have designed for the classification task is a deep convolutional neural net-
work consisting of 12 convolutional layers with batch-norm and maxpool layers in between
as shown in the architecture figure. The architecture takes an inverted bottle-neck shape as
the number of kernels increase at every layer, but at 8th convolutional layer a small wave
shape at the end occurs where the number of kernels in the layer is smaller than the previous
layer. The network contains two blocks like this. The objective behind experimenting with
this kind of architecture was to design a network efficiently extracting relevant features with
lesser number of parameters resulting in increased robustness of the model.

The model uses 3D kernels for feature extraction which are l × l × l matrices. 3D kernels
also called filters create feature maps by sliding over the larger input to detect relevant pat-
terns in the data, later on convolving feature maps from previous layer.
Table 4.2 gives a thorough insight of the model. The model consists of an input convolution
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Figure 4.4: Architecture for binary classification of Alzheimer’s disease
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block, a rearmost convolution block, a concluding classifier block and in-between four iden-
tical convolution block with two 3D convolution layers stacked up on a batch-normalization
layer in each block. Initial three blocks from this group goes through a 3D maxpool layer
with a pool size of (2, 2, 2). Maxpooling reduces the spatial size of the resulting feature
map by accumulating the generated features. Strided maxpooling is much faster, computa-
tionally efficient and provides the same amount of translation invariance a convolution layer
would have provided if used inplace of it for downsampling. The input convolution block is
made up of one 3D convolution layer followed by batch normalization layer. The rearmost
convolution block consists one unit of each 3D convolution layer, batch normalization layer
and maxpool layer in the respective manner. The classifier block takes the flatten input
from the preceding block, sends it to fully connected layer followed by a softmax classifier.
All convolution blocks, except the input block exercise kernels of size 3 × 3 × 3 focused on
learning the small details of the patterns in the Alzheimer’s affected parts of the brain.
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Table 4.2: Model Architecture

Layer Name Kernel size No of kernels/neurons

Conv3D 5 × 5 × 5 32
BatchNorm - -
Conv3D 3 × 3 × 3 32
Conv3D 3 × 3 × 3 32
BatchNorm - -
MaxPool3D 2 × 2 × 2 -
Conv3D 3 × 3 × 3 64
Conv3D 3 × 3 × 3 64
BatchNorm - -
MaxPool3D 2 × 2 × 2 -
Conv3D 3 × 3 × 3 64
Conv3D 3 × 3 × 3 128
BatchNorm - -
MaxPool3D 2 × 2 × 2 -
Conv3D 3 × 3 × 3 64
Conv3D 3 × 3 × 3 128
BatchNorm - -
Conv3D 3 × 3 × 3 64
BatchNorm - -
MaxPool3D 2 × 2 × 2 -
Flatten - -
Dense - 512
Dropout(0.1) - -
Dense - 2

4.1.4 Training

Weight initialization is a very important step in training deep learning models. If the pa-
rameters of a neural network are initialized correctly it helps in achieving the optimization in
relatively short period of time as well as prevents prevents the layer activation outputs from
exploding or vanishing during the forward pass of the training. There are many techniques for
weight initialization. General practice is zero initialization of bias and random initialization
of weights. The problem with this approach is that since weights are randomly initialized,
they can be initialized with either too large or too small values. This often leads to explod-
ing and vanishing gradients respectively. To overcome this issue, some weight initialization
techniques have been developed in the recent years. For example Xavier initialization and
He initialization. These are activation aware initialization. Both are almost identical, but
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Xavier initialization works better for tanh activation function while He initialization is used
for ReLU activation function.

For the training of our model we have used He initialization to achieve optimization in
relatively shorter time. In He initialization, we use the random initialization multiplied by
a factor given as, √

2
n

(4.2)

W [l] = random[l,n] ×
√

2
n

where W [l] is the weight initialization, n is the size of last layer/number of connections
coming from last layer, l is current layer and random[l,n] is a random vector of size l×n
The model takes a batch size of 2 samples because of memory constraints. One common
problem faced during the training of deep neural networks is overfitting, when the model
performs too well on the training data but not on unseen data. We have used l2 regular-
ization and drop out on the last fully connected layer to regularize our model and tackle
overfitting. We have used batch normalization layer in the convolution blocks to reduce the
covariance shift in the hidden units/kernels of the network. It increases the stability of the
network by normalizing the output of the previous layer using the current batch statistics.
In this way the kernels of our model can adapt to any change in the distribution of the data.
Batch normalization also gives a slight regularization effect as it scales the weights based on
batch mean and variance, which makes the weights not to fluctuate too much.

We have used k-fold cross validation with k=10 to validate the training of our model. K-fold
cross validation results in a less biased model because the model is trained and tested on
various subsets of the data. It ensures that the model will perform well on any data point
and not on just some lucky random set. To perform k-fold we have divided the data into 10
parts, and trained the network on 9 parts and tested on the remaining one part. From the
9 parts we used 10% data for validation during training. We repeated this process with all
the 10 parts.
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4.1.5 Experiments

We experimented with various depths for the model and different hyperparameters. The
hyperparameter estimation is done through randomized search. For initial learning rate,
values were to be chosen from set [0.01, 0.001, 0.0001,], dropout from [0.1, 0.15, 0.2] and
the l2 regularization parameter for the classification layers from [0.001, 0.0001]. The search
picks the best parameters to be 0.0001 for initial learning rate, a dropout factor of 0.1 and
regularization parameter to be 0.001.
Random Search Methods often picks the best results much faster as compared to Grid

Table 4.3: Hyper parameter search grid

Learning Rate Drop out L2
0.01 0.1 0.001
0.001 0.15 0.0001
0.0001 0.2 -

Search method. In Grid Search method we try all the possible combinations for all the
values for each hyperparameter, which can be computationally expensive if the size of the
dataset is large. By contrast Random Search method selects random combination to train
the model. In this way it gives us more control over how many attempts and number of
parameter combinations we want to try to get an optimal value for the hyperparameter.

We have trained the model for 100 epochs in each fold. We also experimented with longer
training sessions of 500 epochs and 200 epochs, but found that the model converges at 100
epochs efficiently so we restricted the training to 100 epochs only. While training, the model
makes use of schedule learning rate based on step decay where the learning rate is decreased
by a factor of 0.1 after every 40th epoch.

We observed the effect of Batch normalization Layer and L2 regularization on the perfor-
mance of our model. We have used Batch normalization layer in our final model as mentioned
earlier. We initially tried L2 regularization on convolution layers along with Batch normal-
ization layer, and observed no significant regularizing effect on our model as claimed in [36]
too. To experiment further we tried L2 regularization and Batch normalization layer sepa-
rately and found an increment of 3% in the model accuracy in binary classification and an
increment of 2.34% in multi class classification.

We have used a "build and train from scratch" approach which means we have designed the
architecture of our model from scratch and trained it from scratch without any transfer learn-
ing as opposed to other Deep Learning based Alzheimer Detection models, which have either
used some well-known CNN architecture as a backbone or have used pre-trained models for
transfer learning or some kind of additional data. For example [16] have used demographic
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information like age and sex of the subjects as additional features in their network for the
Alzheimer’s classification task. This additional data will make the model learn some new
features based on the correlation present in the statistics of demographic data. At first it
might look like a good and useful approach. But if the model starts to give more weightage
to the information present in the demographic data than the MRI data, chances are the
model will be highly influenced by the bias present in the demographic information.

To clear this further, we can take the example of age bias present in Alzheimer’s patients.
According to [24] out of 4.7 M people aged over 65 with Alzheimer’s disease in the United
States, around 81% of them are of or over 75 years old. And according to [5] about two-thirds
of clinically diagnosed cases of dementia and AD are women. Such statistics if provided to
the model as additional features, can result in a model highly biased towards a particular
age or sex group. Hence to eliminate such bias, we have made use of only imaging data
inform of MRI images. It results in model which is able to classify Alzheimer’s disease based
only on the features it has learned from the anatomy of the brain from the MRI scans.

Visualizing Model

To estimate where the model is looking at for the classification, we have create class activation
heatmaps using Gram-CAM algorithm. Gram-CAM algorithm helps us to visually validate
our model. Fig 4.5 shows heatmaps for two random slice of two random samples taken from
AD class and NC class respectively.

Fig 4.6 shows the some sample heatmaps averaged over AD and NC samples in the vali-
dation set of a random fold. We can see that to classify Alzheimer’s the model focuses on
the relevant areas of the brain. In the slices we can see the highlighted areas around the
frontal, temporal and parietal lobe which are the most affected areas during Alzheimer’s.
This proves the model is classifying based on relevant feature learning.
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(a) AD class sample slice 44 (b) AD class sample slice 88

(c) NC class sample slice 44 (d) NC class sample slice 88)

Figure 4.5: Heatmaps for sample images on different slices
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(a)

(b)

Figure 4.6: Visualizing CNNs for MRI-based Diagnosis of Alzheimer’s Disease through Grad-
CAM Heatmaps averaged over test samples of (a) NC class (b) AD class.
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4.2 Biomedical Image Segmentation

4.2.1 Dataset and Preprocessing

BraTS

The Brain Tumor Segmentation (BraTS) challenge focuses on the evaluation of the methods
for brain tumor segmentation in multi-parametric magnetic resonance imaging (mpMRI)
scans. It started in 2012 and takes place every year since then. Every year it provides
a publicly available, on request, dataset of mpMRI scans for segmentation of intrinsically
heterogeneous brain tumors called gliomas. BraTS later on expanded it’s focus to overall
survival prediction of patient, but we have focused only on the segmentation part of BraTS
challenge.

In this study we have used the latest dataset available at the time from BraTS called
BraTS’19. The dataset consists of mpMRI scans of 335 subjects in training set and 125
subjects in validation set, where each mpMRI consists of a) a native T1-weighted scan (T1),
b) a post-contrast T1-weighted scan (T1Gd), c) a native T2-weighted scan (T2), and d) a
T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) scan, so in total we have 4 different
kinds of MRI scans available for each case. Out of 335 subjects in training set, 259 subjects
have High Grade Gliomas (HGG) and the rest 76 have Low Grade Gliomas (LGG).

The BraTS segmentation task originally focused on four glioma sub-regions in the MRI scans
delineating NCR, ED, NET, and AT and were labeled as 1,2,3 and 4 respectively. But in
later BraTS segmentation tasks, since BraTS’17 to the present BraTS’19 the four sub-regions
were converted to three sub-regions, eliminating label 3 of NET sub-region and combining
it with the label of NCR sub-region, which is label 1. Therefore, in the BraTS’19 dataset
that we have used, there are three sub-regions, namely NCR, ED and AT for segmentation.
Fig 4.7 gives a full overview of the tumor sub-regions in the dataset.

The standard preprocessing done by BraTS on the MRI images in the dataset includes
co-registering the MRI images to a common anatomical template from [56], skull stripping
and resampling to a uniform isotropic resolution of 1 mm3.

The further preprocessing done on the dataset is the intensity normalization, N4 bias cor-
rection and downsampling of the MRI images as explained in the subsections below.

Intensity Normalization

Intensity normalization is an important data pre-processing step as MR images do not have
a consistent intensity scale. There are various intensity normalization techniques to process
MRIs such as Z-score normalization, Least squares (LSQ), Gaussian Mixture Model(GMM)
based WM mean normalization, Tissue mean normalization. [55] showed the vital role in-
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Figure 4.7: Glioma sub-regions. The image patches show from left to right: the whole tumor
(yellow) visible in T2-FLAIR (A), the tumor core (red) visible in T2 (B), the active tumor
structures (light blue) visible in T1Gd, surrounding the cystic/necrotic components of the
core (green) (C). The segmentations are combined to generate the final labels of the tumor
sub-regions (D): ED (yellow), NET (red), NCR cores (green), AT (blue). Figure taken from
[45]

tensity normalization plays in image synthesis using deep learning. Their study also gives
the evidence that results of the deep learning model are robust to the choice of normaliza-
tion technique, as they did not see much statistical difference in the performances of the
normalizing algorithms. That’s why we decided to used Z-score normalization for the inten-
sity normalization of the MRI images as a pre-processing technique, because of its simpler
implementation and competency with other algorithms.

As the name suggests Z-score normalization uses the statistical measures of the MRI image
data and converts the intensities of the MRI images to a common scale of zero mean and
standard deviation of one. Mathematically it is given as,

Iz−score(X) = I(X)− µzs
σzs

(4.3)

N4 bias correction

A bias field is a low frequency smooth corrupting signal present in MRI image data due
to intensity non-uniformity in the magnetic fields of the MRI machines. It often results in
blurred images, changed intensity value of the same tissue present in different place within
an image degrading the performance of the image processing algorithms [33].

So a preprocessing step to remove this bias is a must for the optimal performance of our
model. There are various techniques to remove this bias from the MRI images. Most
popular among them are N3 bias correction and N4 bias correction. N3 bias correction is an
intensity distribution based bias correction method. It iteratively calculates a total bias field
by maximizing the high frequency component in the intensity distribution of MRI image. N4
bias correction is an improved version of N3 bias correction method, where bias correction
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is computed based on the results of previous iteration. To eliminate the bias present in our
data we have use N4 bias correction. Fig 4.8 shows an example of N4 bias corrected image. A
bias field is difficult to be observed by human eyes but it can greatly degrade the piece-wise
constant property of medical images[61].

Figure 4.8: Bias Corrected Image
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4.2.2 Architecture

In this section we explain three different popular deep learning models for medical image
segmentation and the proposed architecture for brain tumor segmentation dataset.

U-Net

U-Net[57] was first proposed in 2015 as "fully convolutional network"[43]. As the name
suggests, U-Net has a symmetric U shaped architecture. It consists of a contraction path(left
side) to learn feature maps from the whole image for segmentation, and an expensive path
(right side) to produce a full-resolution segmentation. The contraction path follows a typical
2D convolution neural network architecture, where every block consists of two 2D convolution
layers with kernels of size 3×3 followed by a ReLU for feature learning and 2×2 max pooling
operation with stride 2 for downsampling. The expensive path upsamples the feature maps
by using up-convolution layers of size 2 × 2. The upsample feature maps are concatenated
with the corresponding cropped feature maps from the contracting path. A 3×3 convolution
is then used on the resultant feature maps. This concludes the operations performed at each
step taken by the expansive path. Fig 4.9 gives a clear overview of the architecture of a
U-Net model.

Figure 4.9: Architecture of U-net. Fig taken from [57]

The skip connections used in U-Net gives it the ability to better localize because the high-
resolution features from the contracting path are combined with the upsampled output of
the expansive path, yielding more precise segmentations.
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3D U-Net

One drawback of U-Net is that it doesn’t work with 3D data as whole. To segment 3D MRI
images, we either give 2D slices or patches as input. 3D U-Net[12] overcomes this drawback.
A 3D U-Net follows the same architecture as U-Net, but uses 3D convolution layers, 3D
max pooling, and 3D up-convolutional layers. Fig 4.10 shows the architecture of a 3D U-Net
model.
Task it was used for first?

Figure 4.10: Architecture of 3D U-Net. Fig taken from [12]
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V-Net

V-Net[46] was first proposed in 2016. It gained popularity because of it’s efficiency and
accuracy in "PROMISE 2012"[38] dataset challenge for volumetric binary segmentation of
prostate gland. V-Net also uses volumetric convolutions as opposed to 2D slices or patches
used by other deep learning models for medical imaging. The V-Net architecture also fol-
lows a similar contraction and expansion path like 3D U-Net but with some improvements.
Fig 4.11 gives a schematic representation of the V-Net architecture. The left side like U-Net
and 3D U-Net analyzes the image. Each stage consists of one to three 3D convolution layers
and at each stage the network learns a residual function. A residual is defined as a combi-
nation of the input of each stage and the output of the last convolution layer of that stage
processed through the non-linearities. At each stage 3D kernels of size 5× 5× 5 are applied
to the input for feature learning and convolutions with 2 × 2 × 2 kernels with stride 2 are
used to reduce the resolution, hence contracting.

Figure 4.11: Architecture of V-Net. Fig taken from [46]

In the right part of expansion, the low resolution feature maps are expanded, gathering
the necessary information to create the segmentation masks as output. The architecture of
the right part is similar as left with difference of using de-convolution layers to upsample
the image in place of downsampling convolution layers. A residual connection is learnt at
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each step just like in the contraction path. There are several advantages of using residual
connections. They propagate features from previous layers onto deeper layers that increases
feature richness. Another advantage is it alleviates the problem of vanishing gradients by
letting gradients pass through residual connections, improving gradient flow.
Similar to U-Net, V-Net also uses skip connections to preserve the location information of
the learnt features from the contraction path, hence improving the localization.
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4.2.2.1 Proposed Architecture: Attention V-Net

In this chapter we will discuss in depth our proposed architecture for volumetric segmen-
tation of medical imaging. Our model is very much inspired from the V-Net architecture,
leveraging the potential of end-to-end trained fully convolutional neural networks to process
MRI images. All the models explained above focused on binary segmentation but in this
study our focus is on segmenting multiple classes of tumor sub-regions. We take the full
advantage of skip connections, residual connections and have added novel attention blocks
in our model to tackle the complexity of this task. The proposed model uses volumetric
convolutions to process MRI images.
The model comprises of an analysis path (contraction) and a synthesis path (expansion). In
the analysis path there are 4 down-transition stages (including one input transition stage)
where at each stage downsampling and convolutions happen on the input. In the synthesis
path there are 5 up-transition stages.
At each stage in the analysis path, there are 3D convolutional layers sequentially increasing
from one to four. The input is passed to these convolution layers, followed by ReLU6 non-
linearity and then a batch normalization layer. Each convolution layer uses 3D kernels with
size 3× 3× 3. A residual function is learnt by adding the input of each stage with output of
the last convolution layer of that stage. At the end of each analysis stage a downsampling
operation is performed by convolution with 2× 2× 2 voxels wide kernels applied with stride
2 to reduce the resolution of the feature maps. Downsampling helps helps to increase the
receptive field. Each stage outputs double the number of feature maps with half of the input
resolution. For downsampling use of convolution layers with strides, over pooling layers is
inspired from [46]. As suggested in [46] switching pooling layers to convolution layers also
results in a smaller memory footprint.
The right part of the model called synthesis path decompresses the signal until the original
size is reached. At each stage in the synthesis path, the number of 3D convolution layers
decrease from five to one sequentially, making it a mirror image of the analysis path. At
each stage the input is upsampled using de-convolution layers to increase the size of the
feature maps. Inspired from [57] and [12] we have implemented horizontal skip connections
in our model as well. The output of the respective skip connection and the output of the last
stage are used to create an attention block which is explained in more details below. The
output of this attention block is then concatenated with the output of the last stage again.
This is treated as the input for the current stage in the synthesis path. This input is then
processed by the convolution layers present in the block followed by ReLU6 layer again. The
convolution layers use 3D kernels of size 3×3×3. The number of kernels in each convolution
layer at a stage is half the number of kernels in the convolution layers present in the last
stage. The learnt residual is added to this output similar to the analysis block. This process
is repeated at each stage. In the final output stage, the last convolution layer computes
the four feature maps, one for the background and the rest three for the sub-regions of the
tumor. In this way the the synthesis path gathers the necessary information and assembles
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it produce the final output of four channel volumetric segmentation of the tumors. Fig 4.12
presents our proposed model.

Figure 4.12: Proposed Attention VNet

1. Horizontal Skip Connections and Residual Connections
Skip connections as the name suggests skip some connections in the network and feeds
or adds the output of one layer to the output of the connecting layer in the skip
connection. In our model, we have used two kinds of skip connection, a) a horizontal
skip connection and b) a short residual connection.
In our model the horizontal skip connection helps in the forwarding the extracted
features from the analysis path to the synthesis path as shown in fig 4.13. The output
from each stage to analysis goes to the next stage, but along with that it also goes
to the attention block in the corresponding synthesis stage. In this way it helps our
attention block to focus on the localization of the features.

In each stage of both analysis and synthesis path, a residual connection[23] is also
present. A residual connection is a kind of skip connection which allows smooth in-
formation flow from one layer to another by bypassing some layers in deep neural
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Figure 4.13: Horizontal Skip Connection

Figure 4.14: Residual Connection

networks. A tradition deep learning model learns a mapping M, from an input x to
output y.

M(x) = y (4.4)

A residual connection tries to learn the difference between a mapping applied to x and
the original input x, given by

R(x) = M(x)− x (4.5)

Transforming eq 4.5, we get the mapping from a residual connection as

M(x) = R(x) + x (4.6)

Fig 4.14 gives the overview of residual connections from one of the blocks of our net-
work. Since our model is a deep 3D CNN, it is prone to suffer from vanishing gradient
problem during backpropagation. Residual connections helps in avoiding this problem
because of skipping trait as mentioned earlier.

2. Attention Blocks
The attention block in our model is used to highlight the salient features transferred
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through the horizontal skip connection and remove the irrelevant and noisy responses.
Fig gives an outline of the attention blocks we have used in our model.
The attention block in our model takes two inputs: 1) from the horizontal skip

Figure 4.15: Attention Block

connection coming from the corresponding analysis block of the contraction path as
mentioned above and 2) from the upsampled output of the previous synthesis block
in the expansive path. In the attention block, individual convolutions of 1 × 1 × 1 is
applied on both the inputs. We have then applied addition operation on these two
vectors following the norm of additive attention, and then passed it through ReLU6
layer to add non-linearity. Then one more 1×1×1 convolution operation is performed
on the resultant with sigmoid activation applied, creating a voxel-wise mask. We then
multiply this result with the 2nd input of this attention block. This is the final output
of this attention block which is then concatenated with the output of the current stage
in the synthesis block, and is passed to the next stage as input and as well as a residual
connection. This motivation of this attention block is taken from [51] with some minor
changes. Mathematically the attention block is given as:

Aatt = ψT (σ1(W T
x xi +W T

g gi + bx)) + bψ (4.7)

αi = σ2(Aatt(xi, gi; θatt)), (4.8)

where σ1 is the ReLU6 non-linearity in our block, gi and xi are the two inputs to
the attention blocks, and Wg and Wx are the corresponding convolution layers as
explained above. ψ is the last 1 × 1 × 1 convolution transformation followed by the
sigmoid activation function (σ2). αi is called the activation coefficient. θatt is the set
of parameters containing, Wx, Wg, ψ and bias terms bx, bψ
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4.2.3 Training and Experiments

The model was trained with 335 MRI images collected from BraTS’19, resized to 96×112×96
and spatial resolution of 1 × 1 × 1 mm3 in axial view. The input to the model consists of
the four MRIs stacked upon each other (T1, T1Gd, T2 and T2-FLAIR), resulting in a input
of shape 4 × 96 × 112 × 96. The model takes a batch size of 12. Like most of the medical
segmentation task, we also faced the problem of highly unbalanced classification of the labels
in our dataset. To get around this problem we experimented with weighted cross-entropy
and dice loss functions. In the final experiments we have used the compound loss which a
combination of weighted cross-entropy and dice loss. Cross-entropy is a distribution-based
loss and dice loss is a region based loss, so combining these two losses we can improve both
classification and localization of the labels in our dataset. Weighted cross-entropy is defined
as

WCE loss(x, class) = w[class]
−x[class] + log

∑
j

exp(x[j])
 (4.9)

and Dice loss tries to optimize dice coefficient is given as:

D = 1− 2 ∑N
i pigi∑N

i p
2
i + ∑N

i g
2
i

(4.10)

So the resultant loss we are trying to optimize is

loss =W CE loss +D (4.11)

Like classification task, we have initialized our segmentation model with He initialization
too. We have trained our model for 10,000 epochs with an initial learning rate of 0.01 with
a scheduled drop of factor 0.1 after every 2000 epochs. To optimize the loss we have used
Adam optimizer. ReLU6 is used as the activation function with all the convolution layers.
A dropout of factor 0.2 is used with all the convolution layers. Nearest interpolation is used
to resample the segmented labels to the original size.
Since the labels in the dataset are highly unbalance, the weights we have assigned to the
weighted cross-entropy are

w(l) = 1
frequency(l) , where l ∈ label (4.12)

in this way, the label which is underrepresented, will be penalized more if classified incor-
rectly. The distribution of each label in the whole training dataset is given in tab 4.4

Background (0) NCR(1) ED(2) AT(4)
0.989 0.0024 0.0063 0.0020

Table 4.4: Label Distribution

We first trained the model with weighted cross-entropy loss only and then we experimented
further with the compound loss of weighted cross-entropy and dice loss. We saw significant
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Figure 4.16: Performance of CE vs CE+Dice

improvement in the segmented results especially around the boundary areas of the labels.
We have presented some examples showing the difference in the segmentation quality of tu-
mor in Fig 4.16
Along with experimenting with our model, we also performed some experiments with 3D
U-Net and V-Net to compare our model performance. We trained all three model with the
same parameter settings. We limited the number the training epochs to 1000 only. This
was done due to time and memory constraints. We calculated the dice score for each of the
label. The comparison results are presented in Fig 5.9 in Chapter 5
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Chapter 5

Results

For detecting Alzheimer, a more wholistic approach is needed and the entire brain is exam-
ined as a whole, but for brain tumors, the research focuses on pinpointing where the tumors
are which makes segmentation most relevant. In this chapter we have presented results of
our experiments for the two tasks. Section 5.1 demonstrate the results for classification task
where we have provided more heatmaps for better model visualization and have presented
the comparison and evaluation matrix for our model. In section 5.2, we have produced the
results for tumor segmentation task, where we have given some examples of the segmented
labels predicted by our model and have provided the evaluation matrix.

5.1 Classification Task

To evaluate the performance and validity of model we have used accuracy (Acc), precision
and recall, and F2 score and have plotted the Grad-CAM heatmaps for both the Alzheimer’s
(AD) and NC classes. Fig 5.1 and Fig 5.2 show the every fourth slice out of 130 slices of
the heatmaps averaged over the test samples of NC and AD classes respectively. The results
shown are here are plotted with different cmap called rainbow for better visibility.

For evaluation matrix, following formulas are used.

Precision = TP/(TP + FP ) (5.1)

Recall = TP/(TP + FN (5.2)

F2 = (5× Precision×Recall)/(4Precision+Recall (5.3)

where, TP = True Positive, FP = False Positive, TN = True Negative and FN = False
Negative
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Figure 5.1: Every fourth Grad-CAM Heatmap averaged over test samples of NC class

Table 5.1 presents the evaluation matrix for the three experimented models comparing the
effect of batch-norm and l2 regularization (Last row represents the final model), averaged
over 10 folds for binary and multiclass classification. We thoroughly tested and compared the
performance of our model against other Deep Learning based Alzheimer’s Detection models.
Table 5.2 presents the comparison of our model with other studies. As mentioned earlier we
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Figure 5.2: Every fourth Grad-CAM Heatmap averaged over test samples of AD class.

have trained our model from scratch and didn’t use any kind of transfer learning because
unlike other studies because of the fact that pre-trained models like ImageNet don’t contain
relevent information for transfer learning of medical data classification. Some other studies
have used their pre-trained models from binary classification (AD vs NC) task to initialize
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Table 5.1: Evaluation Matrix for the Deep 3D CNN Model(L2: L2 regularization, BN: Batch
Normalization. Last row represents the configuration of our model )

Model L2 BN Binary Class Multi Class

Acc F2 Pre Recall Acc F2 Pre Recall

Deep 3D CNN X X 91.11 0.90 0.89 0.94 86.22 0.85 0.88 0.87
Deep 3D CNN X 7 91.20 0.91 0.91 0.92 86.70 0.86 0.84 0.85
Deep 3D CNN 7 X 94.17 0.94 0.94 0.94 89.14 0.88 89.21 88.1

their model for multi-class classification (AD vs NC vs MCI). This approach is very prune
to data leakage in case the same data is present for present for some classes in the next
classification task. As can be seen from Table 5.2 some studies have used PET scans in
combination with MRI scans, and is a very good technique to get more information about
the individual data points, our model still outperform them while working with only single
modality (MRI only). The training vs validation accuracy and training vs validation loss

Table 5.2: Comparison with previous studies of Alzheimer’s Detection using Deep Learning on
ADNI Data. Accuracy metrics is used for comparison and represents binary classification be-
tween Alzheimer’s Disease (AD) vs Normal Cognition(NC) and multi-class classification between
Alzheimer’s Disease (AD) vs Normal Cognitive(NC) Mild cognitive impairment(MCI)

Method Modality Dataset Size Accuracy

AD vs NC AD vs MCI vs NC

[40] FDG-PET ADNI (339) 91.20 -
[63] PET + MRI ADNI (317) 91.10 -
[41] MRI+PET ADNI (331) 91.40 53.84
[3] MRI ADNI (815) 91.41 -
[15] MRI ADNI (841) 94.10 61.10
Our Approach MRI ADNI (817) 94.17 89.14

averaged over 10 folds in presented in Fig 5.3 for binary classification. The smoothing of the
graphs can be noticed at every 40th epoch as a result of learning rate decay. The average
training accuracy for all the 10 folds in 100% but we can see the average validation accuracy
for all the folds is around 94.17% in binary classification. This is due to slight variance in
the learned weights across the 10 folds.
Graphs in fig 5.4 depicts the 10-fold average accuracy and loss between training and vali-

dation sets for multiclass classification. However we see during multiclass classification a bit
of overfitting in our model as the complexity of the task of multiclass classification is higher
than that of binary classification.
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(a)

(b)

Figure 5.3: (a) Training vs Validation accuracy (b) Training vs Validation loss for Binary
Classification
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(a)

(b)

Figure 5.4: (a) Training vs Validation accuracy (b) Training vs Validation loss for Multi-class
Classification
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We have presented the average variance in the validation accuracy of the model across all
10 folds for binary classification and multi-class classification in fig 5.5

(a) (b)

Figure 5.5: Average variance in validation accuracy across folds in (a) Binary Classification
(b)
Multi-class Classification

The confusion matrix in fig 5.6 for binary and multiclass classification details us with the
class-wise performance of our 3D CNN model. The best fold in the binary classification have
a very low false negative rate for of 0.016% for AD class and 0.06 in multiclass-classification.
The average false negative rate is still very low as can be seen in the confusion matrices.

(a) (b)

Figure 5.6: Confusion Matrix for Binary Classification (a) and Multi-class Classification (b)
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5.2 Segmentation

To evaluate the performance of our segmentation model, we have used the validation set of
125 MRIs from BraTS. The ground truths of the validation set are not made available by
BraTS. The segmented labels have to uploaded on the challenge website to get the segmented
results.

5.2.1 The Evaluation Criteria

As stated earlier the dataset contains three sub-regions of tumors: NCR (Label 1), ED
(Label 2) and AT (Label 4). To evaluate the results BraTS has distribute the segmented
labels in three classes as follows:

1. WT: Whole Tumor Extent. WT class represents the whole tumor and is given by
the union of all labels.

2. TC: Tumor Core. TC class represents the segmentation of the tumor core outline.
It is the union of label 1 and 4

3. ET: Active/enhancing and the non-enhancing/necrotic tumor regions. This
class is represented by label 4.

The evaluation matrix used by BraTS’19 is class wise DICE score, Sensitivity, Specificity
and Hausdorff distance (95%) for the classes mentioned above. Originally a DICE coefficient
for two sets X and Y is give as:

DSC = 2 |X ⋂
Y |

|X|+ |Y | (5.4)

Dice score measures the area of overlap between the ground truth and the predicted label.
It is similar to F1 score and using the definition of true positive (TP), false positive (FP),
and false negative (FN), it can be written as:

DSC = 2TP
2TP + FP + FN

(5.5)

Hausdorff distance is a surface distance measure. It measure the distance between two
boundaries, in our case boundary of prediction and ground truth segment. A bidirectional
Hausdorff distance between two sets X and Y is given as:

HD(X, Y ) = max(hd(X, Y ), hd(Y,X)) (5.6)

where,
hd(X, Y ) = max

x∈X
min
y∈Y
‖x− y‖2 (5.7)

Sensitivity is defined as the number of actual positive cases out of all the cases that are
predicted as positive. It is also called Recall and is mathematically defined in sec 5.1,
whereas specificity is the proportion of actual negatives, which got predicted as the negative
and is given as

Specificity = (TrueNegative)/(TrueNegative+ FalsePositive) (5.8)
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5.2.2 Evaluation

We have presented some examples to visualize the performance of our model in Fig 5.7 and
Fig 5.8. In Fig 5.7 some examples from training dataset are given showing a raw fMRI
image, the corresponding ground truth provided by BraTS and the labels segmented by our
model. The official results of the evaluation matrix for our segmented labels received from
BraTS are mention in Table 5.3

Figure 5.7: Examples from training dataset segmented by our model

Fig 5.8 presents some samples of the segmented labels from validation dataset segmented
by our model. As can be seen from both training and validation sample segmented results,
the model is able to detect the tumor sub-regions very well especially the whole tumor area.
The model pays deep attention on both the shape and location of the tumor regions. We
did a thorough analysis of the segmented labels for the localization of the whole tumor from
the training dataset (since ground truths aren’t available for validation data) and found that
the model can effectively localize the tumor. The dice score of whole tumor is 0.843 as can
be seen in table 5.3 validates this.
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Figure 5.8: Examples from validation dataset segmented by our model

In the fig 5.9 below, we have compared our model with V-Net and 3D U-Net when run
with the same setting for 1000 epochs. We had to limit this comparison experiment to 1000
epochs because of memory and time constrains. When run under same environment we can
see clearly that our model converges to a much better accuracy compared to the other two
models.

Figure 5.9: Performance comparison on training data for different labels when trained for
1000 epochs

Since the ground truth were not available, segmented labels for the validation set were up-
loaded on the BraTS website, and were evaluated on their server using the matrices defined
above. The official results of our segmented labels received from BraTS are mention in Ta-
ble 5.4
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Measure WT TC ET

Dice 0.843 0.808 0.910
Hausdorff95 4.064 1.892 1.816
Sensitivity 0.996 0.941 0.848
Specificity 0.976 0.996 0.997

Table 5.3: Evaluation Matrices for training data

From these two tables we observed that the model obtains good performance for the seg-
mentation of the whole tumor area but is overfitting for the other two classes, especially ET.
This is because of the highly unbalanced number of the classes.

Measure WT TC ET

Dice 0.800 0.639 0.536
Hausdorff95 15.04 20.06 16.23
Sensitivity 0.854 0.621 0.586
Specificity 0.985 0.996 0.996

Table 5.4: Evaluation Matrices for validation data

0The results are publically available on BraTS official evaluation website https://www.cbica.upenn.

edu/BraTS19/lboardValidation.html under team name CAIR
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Chapter 6

Conclusions and Future Work

In this thesis we proposed a novel 3D CNN based architectures for classification of Alzheimer’s
Detection and segmentation of brain tumors. The classification model showed the ability to
learn the relevant features on its own without the use of any transfer learning. From the
results of multi-class classification it can be observed that the model has the potential of
distinguishing between two very similar looking classes, in our case AD and MCI, and MCI
and NC, with a very high confidence. We showed that proper initialization of model and fine
parameter tuning leads to superior results. In the segmentation model, the model is able
to predict the segmentation mask with good accuracy for the whole tumor. But we saw it
overfitting for the other two sub-regions of tumor, named enhancing tumor (ET) and tumor
core (CT). This is because of highly unbalanced label classes as these classes contain only
22% and 18% of the whole tumor. The model segmented labels for these classes with high
accuracy in training dataset which shows the models ability to learnt these small patterns
but lacks in generalization. The future work involves improving the models generalization
ability with the use of better data augmentation techniques to increase the size of the training
data, hence increasing the times an under-represented class label appears during training.
Experimenting with multiple modalities and exploring other feature extraction and feature
selection algorithms so that the models will be able to learn more with small amount of
data for both Alzheimer’s classification and brain tumor segmentation. The models can be
improved in further studies by carrying out more sophisticated procedure for feature selec-
tion after feature extraction as just mentioned, and using deeply supervised learning. The
next step could be to segment the biomarkers of Alzheimer’s in the brain, and predicting
the pattern of growth of the disease in a very early stage. For segmentation of brain tumors,
we would like to contribute towards the new BraTS challenge for 2020 by improving our
segmentation model to generalize better. We would also like to explore the machine learning
models on MCI subjects to predict who might develop AD at a later stage.
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Appendix A

Code

The code is written in python and the full code is made available at https://github.com/
turtIe/Master-s-Thesis The library dependencies can also be found under the provided
link. Following the are the snippets of the code for the models

A.1 Proposed Classification model

The code is written using Keras[11] library

1 def Create_model ():

2 model = Sequential ()

3 model.add( Conv3D (32 ,(7 ,7 ,7) , kernel_initializer =keras. initializers .

he_normal (seed=None) , input_shape =(240 , 256, 160 ,1) , activation =’

linear ’))

4 model.add( LeakyReLU (alpha =0.1))

5 model.add( BatchNormalization ())

6 model.add( MaxPooling3D ((2, 2,2),padding =’same ’))

7 model.add( Conv3D (32 ,(5 ,5 ,5) , activation =’linear ’))

8 model.add( LeakyReLU (alpha =0.1))

9 model.add( BatchNormalization ())

10 model.add( MaxPooling3D ( pool_size =(2, 2,2),padding =’same ’))

11 model.add( Conv3D (64 ,(3 ,3 ,3) ,activation =’linear ’))

12 model.add( LeakyReLU (alpha =0.1))

13 #model.add( BatchNormalization ())

14 model.add( MaxPooling3D ( pool_size =(2, 2,2),padding =’same ’))

15 model.add( Conv3D (64 ,(3 ,3 ,3) , activation =’linear ’))

16 model.add( LeakyReLU (alpha =0.1))

17 model.add( BatchNormalization ())

18 model.add( MaxPooling3D ( pool_size =(2, 2,2),padding =’same ’))

19 model.add( Flatten ())

20 model.add(Dense (256 , activation =’linear ’))

21 model.add( LeakyReLU (alpha =0.1))

22 model.add(Dense (128 , activation =’linear ’))

23 model.add( LeakyReLU (alpha =0.1))

24 # model.add( Dropout (0.2))

25 model.add(Dense (2, activation =’softmax ’))

58

https://github.com/turtIe/Master-s-Thesis
https://github.com/turtIe/Master-s-Thesis


26 return model

A.2 Proposed Segmentation model

The code is written using PyTorch[52] library

1 class VNet3_seperate_up (nn. Module ):

2 # the number of convolutions in each layer corresponds

3 # to what is in the actual prototxt , not the intent

4 def __init__ (self , elu=True , nll=False , flat=True , o_chan =2, i_o_chan =1,

brain=False):

5 super( VNet3_seperate_up , self). __init__ ()

6 self.brain = brain

7 self.in_tr = InputTransition (16, elu , i_o_chan )

8 self. down_tr32 = DownTransition (16, 2, elu)

9 self. down_tr64 = DownTransition (32, 3, elu)

10 self. down_tr128 = DownTransition (64, 4, elu , dropout =True)

11 self. down_tr256 = DownTransition (128 , 5, elu , dropout =True)

12

13

14 self. up_256_128 = Up (256 , 128, elu , dropout =True)

15 self. up_256_64 = Up (256 , 64, elu , dropout =True)

16 self. up_128_32 = Up (128 , 32, elu , dropout =True)

17 self. up_64_16 = Up(64, 16, elu , dropout =True)

18

19 self. up_tr256 = UpTransition3 (256 , 5, elu , dropout =True)

20 self. up_tr128 = UpTransition3 (128 , 4, elu , dropout =True)

21 self. up_tr64 = UpTransition3 (64, 3, elu)

22 self. up_tr32 = UpTransition3 (32, 2, elu)

23 if flat:

24 self. out_tr = OutputTransition (32, elu , nll)

25 else:

26 self. out_tr = OutputTransition2 (32, elu , nll , o_chan )

27

28 self. att_128 = Attention_block3 (128 ,128 ,128 )

29 self. att_64 = Attention_block3 (64 ,64 ,64)

30 self. att_32 = Attention_block3 (32 ,32 ,32)

31 self. att_16 = Attention_block3 (16 ,16 ,16)

32

33 self. conv_1 = Conv_1_block (512 ,256 , elu , dropout =True)

34 self. conv_2 = Conv_1_block (256 ,128 , elu , dropout =True)

35 self. conv_3 = Conv_1_block (128 ,64 , elu , dropout =True)

36

37

38

39 def forward (self , x):

40 out16 = self.in_tr(x, brain=self.brain)

41 # print(out16.size ())
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42 out32 = self. down_tr32 (out16)

43 out64 = self. down_tr64 (out32)

44 out128 = self. down_tr128 (out64)

45 out256 = self. down_tr256 ( out128 )

46

47 up128 = self. up_256_128 ( out256 )

48 # print(f"up128: {up128.size () }")

49 at128 = self. att_128 (out128 , up128)

50 cat = torch.cat (( up128 , at128) ,1)

51 out = self. up_tr256 (cat)

52

53 up64 = self. up_256_64 (out)

54 at64 = self. att_64 (out64 , up64)

55 cat = torch.cat ((up64 , at64) ,1)

56 out = self. up_tr128 (cat)

57

58 up32 = self. up_128_32 (out)

59 at32 = self. att_32 (out32 , up32)

60 cat = torch.cat ((up32 , at32) ,1)

61 out = self. up_tr64 (cat)

62

63 up16 = self. up_64_16 (out)

64 at16 = self. att_16 (out16 , up16)

65 cat = torch.cat ((up16 , at16) ,1)

66 out = self. up_tr32 (cat)

67

68 out = self. out_tr (out)

69 # out = F. interpolate (out , (240 ,240 ,155) , mode=’nearest ’)

70 return out

60
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Abstract. One of the most well-known and complex applications of ar-
tificial intelligence (AI) is Alzheimer’s detection, which lies in the field of
medical imaging. The complexity in this task lies in the three-dimensional
structure of the MRI scan images. In this paper, we propose to use
3D Convolutional Neural Networks (3D-CNN) for Alzheimer’s detection.
3D-CNNs have been a popular choice for this task. The novelty in our pa-
per lies in the fact that we use a deeper 3D-CNN consisting of 10 layers.
Also, with effectively training our model consisting of Batch Normaliza-
tion layers that provide a regularizing effect, we don’t have to use any
transfer learning. We also use the simple data augmentation technique of
flipping. Our model is trained for binary classification that distinguishes
between Alzheimer’s and normal, as well as multiclass classification con-
sisting of Alzheimer’s, Mild Cognitive Impairment, and normal classes.
We tested our model on the ADNI dataset and achieved 94.17% and
89.14% accuracy for binary classification and multiclass classification,
respectively.

Keywords: Convolutional Neural Networks, Alzheimer’s Detection, Medical
Imaging, Deep Learning, MRI.

1 Introduction

With all the advancement in medical technology, medical error is still a very com-
mon factor that contributes to 180,000 deaths every year as of 2008, reported by
the US Department of Health and Human Services Office of the Inspector Gen-
eral. This fact makes medical error the third leading causes of deaths in the US
according to [22]. Today, more than 50 million people suffer from dementia world-
wide and with increasing life expectancy the number will increase. Alzheimer’s
disease (AD) is one of the most common forms contributing to 60%-70% of the
cases (ref: https://www.who.int/news-room/fact-sheets/detail/dementia). AD is
an irreversible neurodegenerative disease, in which the human brain cells involved
in cognitive functioning are damaged and eventually die. Important symptoms
are memory loss, reduced ability to learn new things and think. Additionally,
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orientation, comprehension, calculation, language and judgement are affected
leading to the loss of the ability to perform everyday activities.

Diagnosing Alzheimer’s disease in early stage is really difficult because it is
thought to begin 20 years before the symptoms arrive [30]. The changes occur-
ring in the brain during this stage are small and may be untraceable. According
to [1], around 5.8 million people in US have Alzheimer’s disease and the predic-
tion goes to 13.8 million by 2050. Diagnosing AD is challenging and requires a
thorough clinical assessment based on the patient’s medical and family history,
neuro-psychologic and - psychiatric testing, as well as blood and brain imaging
exams such as CT-, PET- and MRI. Even though analysis of brain scans can
point the doctors and researchers in the right direction, AD detection is chal-
lenging, since similar changes are common during aging as well. Computer-aided
diagnostic technology has the potential to improve the challenging task of early
and accurate detection of AD diagnosis. The latest research in deep learning
has shown promising results in solving a large number of problems from various
fields with a very high accuracy, including medical image analysis. Computer
vision techniques and machine learning algorithms certainly have the potential
to process medical images to efficiently diagnose Alzheimer’s disease. The most
successful type of model for medical image processing are Convolution Neural
Networks (CNN).
In this study we have developed a CNN based pipeline to detect AD and classify
it’s different stages against the normal cognitive stage (NC), i.e, Mild cognitive
impairment (MCI) and AD using MRI as input. MCI is a stage between normal
age related forgetfulness due and the development of AD. Not all people with
MCI necessarily develop AD, but many of them have a higher risk of developing
AD. MRI of the brain can capture structural changes such as the decrease in
size of the temporal and parietal lobes which are typically reduced in patients
with AD.
CNN is a subclass of Artificial Neural Networks where features are extracted
from data using feature maps or kernels that spatially share weights. These
feature maps work towards finding distinct features in the images in order to
distinguish them into different categories. This gives CNN the ability to extract
features from MR images and to classify AD. The multiple building blocks of
CNN such as convolution layer, pooling layer efficiently learn feature maps to
gain spatial knowledge from image data. That’s why CNN have an advantage
over other deep learning algorithms in medical image analysis. The novelty of
this research inheres within the use of 3D-CNNs to process whole MRI images
instead of using MRI slices with 2D CNNS, giving us better performance.

2 Related Work

Several studies have been conducted in the recent years to develop a computer-
aided diagnosis system for Alzheimer’s detection. Traditional methods included
researcher trying to handcraft features through voxel-based methods, ROI based
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methods, hippocampal shape and volume or patch-based methods.
[21] have attempted to compute region of interest (ROI) to detect AD. ROI is a
section of image in which a binary mask is used to carry out various operations
like filtering. [5] used voxel based morphometry (VBM) and MRI to investigate
gray matter change in medial temporal structures and volume changes in several
other brain regions.
[26] have analysed regional brain atrophy for example in the hippocampus to
detect patterns of neuron death by segmenting different types of brain tissues
such as grey-matter (GM), white-matter (WM) against cerebrospinal fluid (CSF)
in the MRI. They segmented the images using watershed transformation algo-
rithm [24] with marker image, and then calculating the shrinkage happened in
the whole brain through Tissue Atrophy Ratio (AT) for early detection of AD.
[17] has used an inherent structure-based multi-view learning (ISML) method in
which they have extracted multi-view features based on multiple selected tem-
plates. They then employed a subclass clustering algorithm for feature selection
in order to eliminate the redundant features. A SVM-based ensemble classifier
is used to classify subjects into AD, MCI and NC.
[23] have used Hu moments invariants [13], calculating a set of seven invariant
moments to extract features in the brain images (MRI) of all subjects. They
also showed that normalizing these moments results in better feature extraction
which makes it easier for the classifier to distinguish. The extracted features are
then used as inputs to SVM and KNN classifiers to classify the subjects. They
compared the classifiers, showing that SVM performed far better than KNN.
In [8] feature extraction is done by using ROI on three sMRI biomarkers, named
as Voxel-based morphometry, Cortical and sub-cortical volume and Hippocam-
pus volume. They used Principal component analysis (PCA) [4] for feature se-
lection. PCA is a dimensionality reduction method simplifying a high dimension
data into smaller dimension without losing the important patterns or trend in
the data. Using PCA, they selected 61 features for the classification of AD. They
studied three different classifiers: SVM, Random Forest and KNN, and evalu-
ated their performance in two stages. First stage included individual features
from s VBM-extracted ROI volumes, CSC-extracted feature volumes, and HV
extracted features and second staged is evaluating classifiers using the combi-
nation of all 61 features. They concluded that SVM outperformed KNN and
Random Forest in all cases.
Multi-modal data fusion using MRI and PET scans was proposed in [20]. They
used stacked auto encoders and and a sigmoidal decoder to discover the synergy
between MRI and PET scans for high level feature extraction with a softmax
classifier. A zero-masking technique (SAE-ZEROMASK) is used in contrast to
simple feature concatenation (SAE-CONCAT) technique. They randomly hide
one modality and trained the hidden layers to reconstruct the multi-modal using
inputs mixed with hidden modality.
However, SAE-CONCAT usually fails to captures the non-linear co-relation be-
tween two different modalities [27]. That’s why authors in [27] proposed Multi-
modal Stacked Deep Polynomial Networks algorithm (MM-SDPN) which uses
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multi-modalities like [20] but they have used two stages of SDPN to learn high-
level features.
Various other machine learning algorithms have proven to be efficient when it
comes to extracting high level features. Artificial neural networks were used
by [9] for Nephropathy Detection and Classification. The drawback of using
Feed Forward Neural Network (as usually called ANN) for computer vision is
that they are computationally expensive. The number of learning parameters
in ANN exponentially increase with respect to the size of the image. Thus to
counter this problem, the use of convolution neural network (CNN) to automate
feature learning in images has become popular because of their ability to gener-
alize well to high dimensional data, without losing important patterns.
A 2-D CNN is presented by [2] where they used VGG16 [28] as a base model, and
treated a 3-D MRI image as a stack of 2-D MRI slices. Other variants of CNNs
have been used in the researches such as in [15] authors used a ROI focused 3-D
CNN with multi-modality. Each modality and ROI region was assigned a dedi-
cated pipeline of a CNN block, whose output was flattened. The flattened out-
puts are the extracted features from each modality and region of interests(ROI).
These feature outputs were then concatenated, resulting into late data fusion
and were passed to a softmax classifier. Problem with this approach is similar to
what was described earlier, that while performing late data fusion using simple
concatenation, it ignores the variance in the nature of multi-modalities and fails
to learn the non-linear co-relation between modalities [27].
A few other research works employ pre-training 3-D CNN with auto encoders
such as [25].They used sparse auto encoders for feature extraction and also com-
pared the performance of 2-D CNN against 3-D CNN. Authors in [12] took a two
stage approach where they first used a convolutional auto encoder in place of con-
ventional unsupervised auto encoder to extract local features with possibly long
voxel-wise signal vectors. These features are used to perform task-specific clas-
sification with a target-domain-adaptable 3D-CNN using transfer learning with
Net2Net weight initialization. They later proposed [11] in which they trained
the same model with deep supervision, which resultant in an improvement.
[6] also build a 3-D convolutional neural network for an end-to-end classification
of subjects with AD. They added metadata (sex and age of subjects) to the
first fully connected layer in their model. The downside of using metadata in
the neural network is that the network will try to find the correlation based on
the metadata that might be biased towards the predilection of meta-data, for
e.g., older patient are more likely to be affected by Alzheimer’s Disease, so the
network might bias towards assigning older people to the Alzheimer’s Class.
[31] studied various paradigms of 3-D CNNs like patch-level 3D CNN, ROI based
3D CNN, subject-level 3D CNN, along with exploring transfer learning using
auto encoder pre-training and ImageNet pre-training. They also reviewed stud-
ies done on AD classification using Deep Learning from January 1990 to the 15th

of January 2019, which proved very helpful in the proposed research.
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Table 1: Demographic data for 817 subjects from the ADNI database (STD – standard
deviation))

Diagnosis Subjects Age(mean±std) Gender (F/M)

AD 188 75.36±7.5 89/99

MCI 401 74.84±7.3 143/258

NC 228 75.96±5.0 110/118

3 Proposed Work

In this work we have addressed the problem of Alzheimer’s Disease Detection,
and proposed a novel architecture based on 3D convolution Networks. The ad-
vantage of using a 3D convolution Neural Network over 2D convolution Neural
Network is that 3D CNN are able to extract features in 3D space. For example,
in a video it can derive spatial information from 2 dimensions and as well as
temporal information. In our case the MRI scans don’t have the temporal di-
mension, but are 3D images. So by using a 3D CNN we can extract the spatial
information from the three dimensional space.
We have performed binary classification between AD and NC (Normal Cognitive)
and multi-class classification between AD, MCI and NC. We have used whole
brain MRI scans on subject level for the network to focus on and eliminated the
need of selecting ROI.

3.1 Dataset and Pre-processing

We collected the data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). ADNI [14] is a collaboration for research in the progression of Alzheimer’s
Disease, started in 2004 as a private-public partnership among 20 companies. The
data consists of 1075 1.5T Screening MRI records of 817 subjects from ADNI1
project. The statistics of subjects is shown in Table 1.
The MR images in the dataset don’t have a standard size, so we downscaled the
images to a resolution of 120 x 90 x 130 maintaining the axial view. We follow
the common practice of downscaling for the deep learning model to process the
large images.
Since Alzheimer’s can start in any hemisphere of the brain, so it makes sense
to augment the data by flipping horizontally. Having larger dataset is crucial
for better performance in deep learning models. We only used left and right flip
augmentation of the data. We have chosen axial view as it helps in avoiding the
motion artifacts from eyeball which can appear in other views [7]. Table 1 gives
a summary of the demographic information of the subjects studied in this paper.

3.2 Model

In this paper, we have used a 3-Dimensional Convolution Neural Network (3D
CNN). As the name suggests 3D CNN performs convolution operation in 3 di-
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Table 2: Model Architecture
Layer Name Kernel size No of kernels/neurons

Conv3D 5 × 5 × 5 32
BatchNorm - -

Conv3D 3 × 3 × 3 32
Conv3D 3 × 3 × 3 32
BatchNorm - -
MaxPool3D 2 × 2 × 2 -

Conv3D 3 × 3 × 3 64
Conv3D 3 × 3 × 3 64
BatchNorm - -
MaxPool3D 2 × 2 × 2 -

Conv3D 3 × 3 × 3 64
Conv3D 3 × 3 × 3 128
BatchNorm - -
MaxPool3D 2 × 2 × 2 -

Conv3D 3 × 3 × 3 64
Conv3D 3 × 3 × 3 128
BatchNorm - -

Conv3D 3 × 3 × 3 64
BatchNorm - -
MaxPool3D 2 × 2 × 2 -

Flatten - -
Dense - 512
Dropout(0.1) - -
Dense - 2

mensions to extract features as opposed to a traditional 2D Convolution Neural
Network, which works in only 2D space. Mathematically a 3D convolution op-
eration in neural network is defined as follows:
Given an input of size N,H,W,D,Cin where H=height, W=width, D=depth,
C=no.of channels, N=batch size, the output of the convolution layer is pro-
duced as:

Out(Ni, Coutj ) = b(Coutj ) +

Cin−1∑

k=0

weight(Coutj , k) ∗ input(Ni, k) (1)

where * is the 3D cross correlation operation between two signals. The learnable
kernels are l × l × l matrices, which slide over the large input to detect relevant
patterns creating new feature maps and convolving feature maps from previous
layer. The architecture of the model is given in Table 2. Our model consists of
4 identical convolution blocks with 2 convolution layer stacked up on a batch
normalization layer in each block. Every block goes through 3D maxpooling with
a pool size of (2,2,2). Beside this, the model has an input block, last convolution
block and a classifier block. The input block consists of one convolution layer and
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batch normalization layer. The last convolution block consists of 1 convolution
layer followed by a batch normalization and maxpool layer respectively. The
classifier block has one fully connected layer followed by a softmax classifier. All
convolution blocks contain filters of size 3x3x3, to learn the small details and
patterns of Alzheimer’s affected parts in the brain.
We have used relu activation function on all layers and categorical crossentropy
cost function to optimize the loss, using Adam optimizer. ReLu doesn’t activate
the neurons with negative input values, which makes it is computationally very
efficient over sigmoid and tanh function as it introduces sparsity.

3.3 Training

To train the model we have first initialized all the kernels with He normal initial-
ization to achieve faster convergence. The model takes a batch size of 2 samples
at a time. We have trained the model using 10-fold cross-validation to ensure
that the model will perform well on all points of data, and not on just some
random sets. To prevent the model from overfitting we have used L2 regulariza-
tion on the last fully connected layer, which is followed by a dropout layer. To
stop convolutional layer learning irrelevant features or over-fit to the features, we
have used batch-normalization. The batch-normalization layer helps in reducing
the co-variance shift of the hidden units in the neural network. It normalizes the
output of the previous layer using the current batch statistics. In this way the
distribution of the weights of the hidden units or kernels in our case can adapt to
any change in the distribution of the data. Batch normalization layer also gave
us some regularization effect as it scales the weights based on the batch mean
and variance, which makes the weights stable. [16] showed that L2 regularizer
has no regularizing effect when it is used along with Normalization, however it
can influence the effective learning rate.

4 Experiments

We trained our model using k-fold cross validation with 10 folds. The data dis-
tribution of training, validation and testing is 80%, 10% and 10% respectively.
The model performs two classification tasks: binary classification between AD
and NC, and multiclass classification between AD, NC and MNC. We have seen
in other studies that transfer learning using Net2Net and ImageNet has been
used extensively before. But our model is able to learn the features for this clas-
sification task and achieve superior performance compared to the other models
without transfer learning. The results of our approach are presented in Table 3
where we have compared it with other models.
We didn’t use any kind of transfer learning because pre-trained models like Ima-
geNet models don’t contain relevant information for transfer learning of medical
data classification. Other research works have used the weights of their pre-
trained model from binary classification (e.g., AD and NC) to initialize the
model for multi-class classification (e.g, AD, MCI and NC) or vice versa. The
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Table 3: Comparison with previous studies of Alzheimer’s Detection using Deep Learn-
ing on ADNI Data. Accuracy metrics is used for comparison and represents binary
classification between Alzheimer’s Disease (AD) vs Normal Cognition (NC) and multi-
class classification between Alzheimer’s Disease (AD) vs Normal Cognitive (NC) Mild
cognitive impairment (MCI)

Method Modality Dataset Size Accuracy

AD vs NC AD vs MCI vs NC

[18] FDG-PET ADNI (339) 91.20 -
[29] PET + MRI ADNI (317) 91.10 -
[19] MRI+PET ADNI (331) 91.40 53.84
[3] MRI ADNI (815) 91.41 -
[6] MRI ADNI (841) 94.10 61.10
Our Approach MRI ADNI (817) 94.17 89.14

drawback of this approach is that if the same data is present for some classes
in the next classification, then it will lead to data leakage in the model, causing
biased transfer learning. To tackle this issue we initialized our model using He
initialization during both classification tasks.
We ran the model for 100 epochs for each fold. We experimented with different
hyper-parameters like learning rate, drop out rate and regularization coefficient.
We found the best set of parameters for the optimal performance of the model
is an initial learning rate of 0.0001, drop out factor of 0.1 and regularization
parameter as 0.001. We also used scheduled learning rate based on step decay to
optimize the loss curve and avoid divergence. The learning rate is scheduled to
drop by a factor of 0.1 every 40th epoch. As mentioned earlier we have used Batch
normalization layer with Convolution Layers. We initially tried L2 regularizer.
L2 regularizer when used along with Batch Normalization has no regularizing
effect [16]. So we tried L2 regularizer and Batch Normalization separately, and
found that the model performed better with Batch Normalization than with L2
regularizer, increasing the accuracy by 3% in binary classification and 2.34% in
multiclass classification.
We thoroughly tested our model and compared it with previous Deep Learning
based Alzheimer Detection model. [6] have used demographic information for the
classification task. They merged the age and gender information as additional
features in their network. Providing such information to the network can make
it bias towards the correlation and pattern present in the information. And if
the correlations are strong then the network will rely on these demographic fea-
tures more than the features learned from the MRI images. For example it’s a
well know fact that eighty-one percent of people who have Alzheimer’s disease
are age 75 or older, and almost two-thirds of Americans with Alzheimer’s are
women [10]. If this statistics is provided then it can make the model biased to-
wards a particular age or sex group.
To evaluate the performance of our model we have used accuracy (Acc), preci-
sion and recall, and F2 score. Given True Positive, True Negative, False Positive
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Table 4: Evaluation Matrix for the Deep 3D CNN Model (L2: L2 regularization, BN:
Batch Normalization. Last row represents the configuration of our model )

Model L2 BN Binary Class Multi Class

Acc(%) F2 Pre Recall Acc(%) F2 Pre Recall

Deep 3D CNN X X 91.11 0.90 0.89 0.94 86.22 0.85 0.88 0.87
Deep 3D CNN X 7 91.20 0.91 0.91 0.92 86.70 0.86 0.84 0.85
Deep 3D CNN 7 X 94.17 0.94 0.94 0.94 89.14 0.88 0.89 0.88

and False Negative as TP, TN, FP, FN recall and precision is calculated as
Precision = TP/(TP + FP ), Recall = TP/(TP + FN). The F2 score is calcu-
lated as (5×Precision×Recall)/(4Precision+Recall). We have used F2 score
because it gives more emphasis on false negatives making it a suitable option for
medical experiments evaluation.

Evaluation Matrix Table 4 presents the evaluation matrix averaged over 10 folds,
of our model for the two classification tasks, and comparing the effect of l2 and
batch normalization. The training vs validation loss and training vs validation

(a) (b)

Fig. 1: (a) training vs validation accuracy (b) training vs validation loss

accuracy of the average of the 10 folds is plotted in Fig. 1 for binary classifi-
cation. It can be seen that after every 40 epochs the graph becomes smoother.
It’s due to the learning rate decay occurring every 40th epoch. The learning rate
decreases by a factor of 0.1 here, helping the model to converge the optimization
and making the learning more stable.
As can be seen from Fig. 2, the confusion matrix details the class-wise perfor-
mance of our 3D CNN model on binary classification. During the evaluation of
all the folds, we noted that the model has a very low false negative rate on its
best fold, of 0.016 for AD class in binary classification, and 0.06 in multiclass
classification, where it confuses a bit with MCI class. The average false negative
rate is still very low at 0.04 for AD class in binary classification. These experi-
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(a)
(b)

Fig. 2: 10 folds average of Confusion Matrix for (a) Binary Classification and (b)
Multi-class Classification for model with best accuracy listed in Table 4

ments show that our model has outperformed the other models with only single
modality and training from scratch. The results also demonstrate the robustness
and confidence of the Alzheimer’s prediction by the proposed model.

5 Conclusion and Future Work

In this paper we proposed a novel 3D CNN based classifier for Alzheimer’s
Detection. The model showed the ability to learn the relevant features on its
own without the use of any transfer learning. From the results of multi-class
classification it can be observed that the model has the potential of distinguishing
between two very similar looking classes, in our case AD and MCI, and MCI and
NC, with a very high confidence. We showed that proper initialization of model
and fine parameter tuning leads to superior results. The future work involves
experimenting with multiple modalities and exploring other feature extraction
and feature selection algorithms so that the model will be able to learn more with
small amount of data. The model can be improved in further studies by carrying
out more sophisticated procedure for feature selection after feature extraction as
just mentioned, and using deeply supervised learning. The next step could be to
segment the biomarkers of Alzheimer’s in the brain, and predicting the pattern
of growth of the disease in a very early stage. We would also like to explore the
machine learning models on MCI subjects to predict who might develop AD at
a later stage.
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