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Abstract

The report is about training an Artificial Intelligence(AI) that is able to
play out endgames, using the existing solved endgame of chess to train the
Tsetlin Machine on.

This report describes the methods used to train and test a Tsetlin Ma-
chine using both the convolutional and multiclass implementation. We have
further tested out different methods to handle the data it trains on to in-
vestigate what methods work best. Where these methods are; to split the
data for two machines for either white or black starting player, transforming
the data to only be from one starting players perspective and one splitting
based on results by first having one machine looking at win versus draw and
loss, then a second machine for looking at draw versus loss.

The results showed that some of the methods used, involving only look-
ing at one players perspective, worked well for predicting if the board would
lead to a win with perfect play. Since several om the methods achieved over
90% accuracy in the testing, while the best achieves an accuracy of 95%.
However the playing off the endgame was lacking, as the games mostly ended
in draws even when the Tsetlin Machine should have been able to win. Such
as only drawing against each other, and only drawing against Monte Carlo
Tree Search.
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Chapter 1

Introduction

In machine learning, or more specifically Neural Networks, there is a prob-
lem of interpretability. Which is that the Neural Networks can achieve
better results than humans, but that the reasoning of the choice is not
known or not very clear. That the Neural Network manages to make op-
timal or better choices, but it is not completely understood why. There
is work being done in order to try to achieve understanding, or be able to
understand why a given choice is made. Where Olah, et al.[25] is one of
the most recent when it comes to understanding Neural Networks and why
they make a certain choice.

Why is interpretability so important though? As written by Olah, et al.[25],
it gives a better understanding of why a set of choices were made, and can
help improve the choices made by the machine learning agent. Such as
qualitative comparisons of the solutions learnt in order to achieve better
designs and results[10, 19]. It can also be used in order to make better
analysis and comparisons of different Neural Network models.

The Tsetlin Machine is a machine learning algorithm which learns patterns,
and uses the patterns with propositional logic in order to decide its outcome.
Which is similar to a Neural Network. In the fact that they both consist
of some medium which stores information about a state, and makes their
choice based on that state. Where Neural Networks stores it as neurons
that activate when certain conditions are met. While the Tsetlin Machine
learns several patterns.
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Introduction

The biggest difference is that one would have to investigate every neuron
and connection in order to get a full overview of how the Neural Network
decides. While the Tsetlin Machine is designed such that the patterns can
be visualized, and used in order to understand what the machine learning
agent is looking for. In order to make its choice.
Because the Tsetlin Machine is relatively new there is research required
in order to measure its capabilities, limitations and how interpreteable the
patterns become.

Chess has been chosen for this project since it is a fairly complex game.
Where this complexity arises from approximately 50 moves being available
on average every turn, and that there are different types of pieces on the
board. Where the pieces have values depending on their type[16]. This
value comes from how the piece can capture other pieces and move on the
board.
Chess is also a game where one has tried to create Artificial Intelligence(AI)
that can play the game on the same level or better than humans. The
biggest breakthrough came in 1996 with Deep Blues victory against then
reigning world champion Garry Kasparov[3]. More recent breakthroughs in
chess AI is Alphazero[6], a neural network based AI developed by Deepmind,
which masters chess, Go and shogi[27]. Where Go has, in the recent years,
been considered the more complex game for AI to play and solve.

This report details the work and tests done to train and evaluate a Tsetlin
Machine that can play chess. More specifically how to play endgame chess.
Since endgame chess has perfect solutions, meaning that the optimal moves
for a given position are known, making it easier to evaluate the Tsetlin Ma-
chine.

2



1.1. Thesis definition Introduction

1.1 Thesis definition

This section defines the goals we had in mind when we set out to test the
machine.

1.1.1 Thesis Goals

Goal 1: Train a Tsetlin Machine too play a chess endgame through a tree-
search. By seeing if the moves would result in win, loss or a draw, and
analyze if it can play or not.

Goal 2: Test different types of Tsetlin Machines; Multiclass, Convolutional
and weighted, and compare the results.

Goal 3: Test different methods for splitting the data and setting up the
Tsetlin Machine; one class against the others, change the player and split
by player.

Goal 4: Visualisation of clauses.

Goal 5: Testing other machine learning algorithms and comparing the
Tsetlin Machine to them.

1.1.2 Limitations

Limitation 1: Because of the size of 7-pieces and 6-pieces, only 5-pieces or
fewer boards have been used. This refers to the amount of pieces in which a
chess game has a known solution. This is considered a limitation since the
dataset is reduced, and one also has to play boards with few pieces since
the kings are 2 of the 5 pieces.

Limitation 2: This solution is not for playing a full game of chess. The
dataset and the machine learning algorithm will therefore be for endgames,
in which there is an already known solution.

3



1.2. Data set Introduction

1.1.3 Summary

The main goal for this report is to train a Tsetlin Machine that can play a
game of chess, given that there are 5 or less pieces left on the board. The
solution should also be able to visualize the clauses generated by the Tsetlin
Machine.

1.2 Data set

In order to train the Tsetlin Machine a data set was generated using datasets
from Lichess[21]. The dataset consists of endgames for chess. Endgame
means that the solution for the board is already known, and one can there-
fore play perfectly if one knows the solution. Perfect play has currently only
been solved for 7 or fewer pieces, though our dataset is limited to 5 or fewer
pieces, since there were space limitations for our equipment.

1.3 Thesis outline

This report will be divided into several chapters, these chapters are as fol-
lows:

Chapter: 2 Background
This chapter describes the underlying technology used, being the Tsetlin
Automata, Tsetlin Machine and K-fold cross validation and more.

Chapter : 3 State of the art
This chapter describes the already existing best chess AI’s and some history
surrounding AI’s made for chess.

Chapter: 4 Proposed Solutions
This chapter describes our solution for the problem. Meaning what we
implemented, and how this implementation was done.

Chapter: 5 Results and discussion
This chapter describes how we tested the Tsetlin Machines we trained, and
discuss the results and what they mean.

4



1.3. Thesis outline Introduction

Chapter: 6 Conclusion
This chapter is used to conclude the works. Looking at what went well
with the project, what did not go so well and also what was not finished or
other tasks that would be useful to complete in the future, to optimize the
solution to the problem we tried to solve.

5



Chapter 2

Background

2.1 Tsetlin Automata

The Tsetlin Automaton is a simple state machine structure, it does one of
two actions based on what state it is in [14]. Simply put, if the Tsetlin
Automaton has 2N states. It will do action one if it is in a state less than
N, and action 2 if it is in a state greater than N.
The Tsetlin Automaton gets a reward or a penalty based on the result of
the action. If it gets a penalty it will move towards the middle, or it will
go towards a state of N. If it gets a reward it will go towards the edges.
This makes it so that for each time it does the correct action it gets more
certain that this action is correct. For every wrong action it will get less
certain, and swap what action to do if it crosses the middle. The Tsetlin
Automaton is very simple computational wise and it also has a low memory
footprint, as it just needs to maintain an integer.

Figure 2.1: Tsetlin Automaton illustration, reprinted from Granmo, et
al.[14].

Figure 2.1 shows a Tsetlin Automaton in a two action environment. If it is

6



2.2. Tsetlin Machine Background

on the left side being N or less it would do action 1, and if it is on the right
side being N+1 or more it would do action 2. Given the result of the action
it would follow the arrows shown in the figure accordingly.

2.2 Tsetlin Machine

The Tsetlin Machine is constructed using a set of clauses for each class, or
classification, in the data. These clauses are patterns or sub patterns used
for deciding the output [14]. The clauses for the class consist of negated and
non-negated clauses. Meaning that half the clauses votes for the input being
of the class, and the rest votes against. Where the first half of the clauses
are non-negated, or vote for, while the other half is negated, vote against.
When the clauses have voted, they are tallied up, and the classification with
the highest score is the final output of the Tsetlin Machine.

Figure 2.2: Tsetlin Machine illustration, reprinted from Granmo, et al.[14]

Figure 2.2 shows how the Tsetlin Machine is put together, with having an
added threshold function that arbitrates the final output.

2.2.1 Clause

A clause is one of the patterns created and used by the Tsetlin Machine in
order to do classification. A clause consists of several Tsetlin Automata,
which says what bits to include in the given input. The amount of Tsetlin
Automatas is decided by the features given when training the Tsetlin Ma-
chine. Where 2 Tsetlin Automatas are used to represent one feature. A

7



2.2. Tsetlin Machine Background

feature also means a bit, meaning that two Tsetlin Automatas are used to
include or exclude a bit. Include means that the given feature has to be
present for the given clause to vote, while exclude means the given feature
cannot be present for the clause to vote. If both the include and exclude
bit are set it means that the clause has lead to false positives, and in an
effort to combat this the Tsetlin Machine has set both bits to invalidate the
clause. If none of the bits are set, it means the given feature is not looked
at[14].

2.2.2 Multiclass Tsetlin Machine

The Multiclass Tsetlin Machine is an implementation of the Tsetlin Machine
which allows for classification of several classes. Such that one can classify
more types of data rather than only one or two.[14]

2.2.3 Convolutional Tsetlin Machine

The Convolutional Tsetlin Machine is another implementation of the Tsetlin
Machine, in which it learns smaller patterns. These patterns are used to look
at smaller portions at a time. If a specific pattern is found, it would be able
to only look at that pattern and not the entirety of the input. This pattern
would also receive possible positions where it looks for the pattern[15]. The
pattern is done by arranging the input as a window, or list of lists. In which
the Tsetlin Machine will also learn the position for where the pattern should
be found.

2.2.4 Weighted Tsetlin Machine

Weighted Tsetlin Machine is an addition to the Tsetlin Machine in which
the clauses are weighted. Meaning that often appearing clauses will have
a greater weight. A clause will be assigned a weight when created and the
weight will increase or decrease depending on how often the clause is seen.
Creating something similar to the weights of a Neural Network, in which a
more important clause will have a greater impact on the decision[1]. The
weighted Tsetlin Machine should be able to reduce the amount of clauses

8



2.2. Tsetlin Machine Background

needed to achieve the same accuracy as a regular Tsetlin Machine, and also
reduce the training and evaluation time.

2.2.5 Parallel Tsetlin Machine

Parallel Tsetlin Machine is an implementation of the Tsetlin Machine li-
brary, which turns the training and predicting into a multi-threaded job in
order to improve the speed of the algorithm.

2.2.6 Hyper-parameters

Hyper-parameters is used for optimizing the learning and accuracy of the
Machine Learning algorithm. These hyper-parameters can affect the learn-
ing rate and how well it learns, and is useful for mitigating or avoiding over-
fitting. Tsetlin Machine has clauses, threshold and s as hyper-parameters.

Clauses are the number of clauses, and are the patterns that the Tsetlin
Machine learns. If there is a high enough number, as many as there are
possible combinations, the Tsetlin Machine will overfit and learn all the
patterns.

Threshold is used with the threshold function in order to arbitrate the final
output of the Tsetlin Machine. This is used together, with the summa-
tion of the clauses, to replace the or operator that was in the basic model.
Which is done in order to reduce the impact of noise. The threshold function
decides the output based on the result of the conjunctive clauses. It looks
at the result of the Clauses that voted for and the clauses that voted against.

S is a parameter that deals with reducing the impact of false positives and
false negatives, and reinforcing true positives. Such that a larger s leads to
clauses with more literals. Where literals are also defined as the bits which
decide what feature to include or exclude.[14]

9



2.3. Chess Background

2.3 Chess

Chess is a turn based board game with two players, where the player with
the white pieces start. Each player has 16 pieces, and there are 8 pawns,
2 knights, 2 horses, 2 rooks, 1 queen and 1 king. The classification of the
piece refers to how the piece can move. On a board the horizontal line of
squares is called a rank, the vertical file of squares is called a lane and the
diagonally collection of same colored squares is called the diagonal. The
goal of the game is to put the other players king in such a state that they
can’t prevent themselves from being captured. In chess one is not allowed
to put one self in check. Check is a state in which ones king is under direct
threat of being captured. If a player is not able to do any legal move the
game ends in a draw. Chess is a perfect information game, since all the
knowledge of the game is available to both players.

2.3.1 Chess rules

In chess the rules are simple. The goal is to capture the opposing sides
king. The pieces on the board have different movement abilities. Most of
the pieces can not pass through pieces. Pieces are captured by moving the
pieces onto squares where the opponent has a piece, when captured a piece
is taken out of the game.

10



2.3. Chess Background

Figure 2.3: Start position of a Chess board, figure made using chess.com[5]

Normal moves

The King(k) can move one square in any direction.[23]

The Queen(q) can move along the rank, along the file and diagonally for
as many squares as wanted.

The Rook(r) can move along the rank and along the file for as many
squares as wanted

The Horse(h) can move to the squares that are two steps along the rank
and one step along the file, and also too the squares that are two steps along
the file and then one step along the rank. This piece can move through pieces
and only interacts with the final square it lands on.

The Knight(n) can move diagonally for as many squares as wanted.

The Pawn(p) can move 1 step along the file towards the opponents side
of the board, and has the option to step 2 squares on its first move. The
pawn can not capture a piece by moving along the file. The way for a pawn
to capture a piece is when there is an enemy piece diagonally 1 square in

11



2.3. Chess Background

front of the pawn, then it can capture it by moving to that square.

Special moves

Other than normal moves the pieces can do, there are some special moves
that are conditional. Some rules exist to speed up and prevent endlessly
stalling games. These rules are often optional rules outside the game, like
having a clock to prevent a player using more than a certain amount of
time.

En passant[18] is a pawn capture move that is only available after a pawn
has used the 2 step move. When a pawn uses this 2 step move, an enemy
pawn will be able to capture the pawn if it could capture it if it took 1
step. If the pawn captures the other this way it would end up on the square
behind the pawn that did the 2 step move.

Castling is a chess move in which 2 pieces, rook and king, are moved. This
move can only be done if the king and the rook involved hasn’t been moved.
You can castle on both of your rooks. In addition to not having moved
them, the squares between the king and the rook cannot be occupied, and
the king cannot be in check. If the move is done the king moves two squares
towards the rook, and the rook moves to the opposite side of the king.

Promotion is a rule in chess where when a pawn reaches the end of the
board on the opponents side, it will be able to upgrade into a Knight, Rook,
Horse or Queen. The upgraded piece will take the pawns place in the same
move as the pawn reaches the square. The promotion does not rely on pieces
that are captured, so a player can for example have more than one Queen
on the board at the same time.

2.3.2 Forsyth-Edwards Notation (FEN)

FEN is a single line of symbols used to represent the state of the chess
game[9]. In this project FEN has been used a lot as it is an easy way to
handle looking at board states, and manipulating them by executing moves
using libraries that support FEN.

12



2.3. Chess Background

Figure 2.4: Example of a FEN

The first part of the FEN defines the pieces on the board[24], where numbers
represent the number of empty spaces. The slashes represents the rows,
and the pieces are represented with letters uppercase for white pieces and
lowercase for black pieces.

The part after the information about the pieces is who is next to do a move.
As seen in the example FEN from above 2.4 the black pieces has the next
move.

The first of the two ”-” in the example tells if the player is able to castle, it
is ”-” if the player cannot castle, but if it can castle it will be notated with
”q” for queen side or ”k” if it can castle on kings side. The next ”-” in the
example is about en passant target squares, this being the square behind a
pawn after it does a two step move. Neither of these are present much in
the endgame of chess.

The second last element of the FEN is a halfmove clock, this number defines
how many half moves have been done since the last pawn move, or capture.
This is used to determine the 50 move rule which is a rule that states; if no
pawn has moved or no capture has been done in the last 50 moves a player
can claim that it is a draw.

The last element of the FEN is the fullmove number records how many full
turns have been done. It starts at 1 and increments every time black does
a move.

2.3.3 Syzygy tablebases

Syzygy tablebases is a tablebase containing pre-calculated information about
endgames in chess. Currently it has up to 7 pieces available. In 2003 6 piece
tables was released by Ronald de Man[22]. He also released the code for
generating and probing the tablebase. In 2018 Bojun Guo spent several
months of computation time on his supercomputer to generate the 7 piece
tablebase[22].
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2.3. Chess Background

Two different types of information are made. One is WDL(Win/Loss/Draw)
which contains the information of if the current player to move wins, loses or
draws the game[13]. But in this there is no good way to handle the 50 move
rule. Therefore the second set of information DTZ(depth to zero) describes
how many moves before a capture or a pawn move, where the winner tries
to minimise the DTZ and the loser tries to maximise it.

Pieces
Amount

WDL DTZ Total

3-5 378.1 MiB 560.9 Mib 939.0 MiB

6 67.8 GiB 81.4 GiB 149.2 GiB

7 8.5 TiB 8.3 TiB 16.7 TiB

Table 2.1: Size of the Syzygy tablebases[22]

Above, in table 2.1, the sizes of the different tablebases are shown. For
this project only the WDL would be needed to get the desired effect. Still
with only needing this, the nearly 70GB of needed space to include 6 piece
endgames made it not get included in this project, because of the limited
space when the code had to be run on a virtual machine.

2.3.4 Python-Chess library

The Python-Chess library is a python library that contains multiple useful
functions that supports looking into chess[12]. Some of these functions are
used in this project when looking at the chess boards.

Two functions that has been used in this project is probing Syzygy tablebase[13],
and handling the PGN(portable game notation) files[11]. Even though these
are the main things the library was used for, it also proved useful for working
with FEN’s for finding the next legal moves and other board interactions
like executing moves.
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2.4. Monte Carlo Tree Search Background

2.4 Monte Carlo Tree Search

A method that finds optimal decisions by the use of tree search and random
sampling[4, 2]. Where it simulates a multitude of random games in order
to find a good solution or strategy. It works by trying to find a leaf node.
Where it either follows a known path that leads to good results, or explores
unknown paths in order to possibly find better solutions. When it reaches
one of the current leaf nodes of the tree, or states that does not exist, it will
add one or more of the new states found. This way the tree is expanded
incrementally. The initial state that it works from is usually only one node.

Figure 2.5: Adapted figure 1 from Chaslot, et al.[4]

The method will then run simulations, where it will choose the moves ran-
domly. When it reaches the end of the game it will update the nodes visited,
where a counter, for the given nodes, will increase. The final solution is the
most visited tree nodes.

The implementation from mcts1 has been used in order to implement the
Monte Carlo Tree Search. In which one only has to define evaluation, ter-
mination and functions for progressing the game. From there one only has
to give an initial state and how long the method is to run.

1https://github.com/pbsinclair42/MCTS
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2.5. Precision Background

2.5 Precision

Precision is qualitative, it returns the amount of correct predictions for
a class and divides it by the amount of correct predictions and incorrect
predictions for a given class. Showing how good the classifier is at predicting
correctly.[7].

Figure 2.6: Formula for calculating precision

Figure 2.6 shows the formula for calculating precision. TP is the amount of
True positives, which is the amount of correctly identified positives. Where
positives is decided by the person. An example would be that positives is
wins. Therefore true positive is the amount of correctly predicted wins. FP
is false positive, which would be the amount of incorrectly predicted wins.

2.6 Recall

Recall is quantitative, where it takes the amount of correct predictions, and
divides it by the amount of correct predictions and the amount of predictions
that should have been the given class[7]. Showing how good the classifier is
at finding the correct predictions.

Figure 2.7: Formula for calculating recall

Figure 2.7 shows the formula for calculating recall. FN is false negative,
which would be the amount of incorrectly predicted losses and/or draws.
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Chapter 3

State Of The Art

For a long time AI has been used in order to try and solve or play chess as
optimally as possible. This is hard because the complexity of chess makes
it difficult to completely solve the game from start to finish, with the tools
available.

Deep blue

Deep blue is not currently the top of the available chess AI’s, but it was
the one that made the first huge breakthrough by winning against the then
reigning world champion in chess Garry Kasparov[3]. The AI is made by a
team from IBM who worked with input from several chess experts to pro-
gram its value based approach[17]. It is in its core an AI that calculates
values of the chess board from many different factors. The AI’s evaluation
was based on around 8000 factors for comparing the boards against each
other. These factors were both simple ones as to which pieces were left on
the board, and more nuanced ones that looked into the positions and inter-
actions between the pieces. Although Deep blue is currently not considered
the best chess AI, it made huge progress for it’s time into mastering the
game of chess with computers.

Alphazero

Alphazero is an AI developed by Deepmind that masters the game of chess,
shogi and go, using self training methods.[6] It is using Reinforcement learn-
ing to learn through playing against itself, without information other than
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State Of The Art

the rules of the game. Alphazero uses a general purpose Monte Carlo tree
search algorithm, to search for moves to make while playing the game. Deep-
minds Alphazero AI is able to achieve superhuman level off play in chess
within a day, proven by beating world class chess programs like stockfish
and elmo.

Stockfish

Stockfish is a world class open source chess engine, able to beat top class
chess players. Unlike Alphazero’s self learning approach the Stockfish pro-
gram focuses more on rules and calculations of predetermined values[26].

Stockfish works by searching for moves, and calculates the value of the
positions based on predefined values. The Alpha-beta pruning is used to
limit the amount of calculations needed to be done, as a full tree search in
chess gets very big in just a few steps. The Stockfish algorithm does this
type of search as it goes for being a real time chess engine, getting the best
possible solution within a reasonable time frame.

Open spiel

Open spiel is an open source framework for reinforcement learning in games
made by Deepmind, the code can be found on Github[8]. It is able to work
for many different games, chess being one of the supported games. It is a
collection of environments and algorithms for doing reinforcement learning
to learn how to play the games[20]. Open spiel is not state of the art in the
same way as the other algorithms mentioned. But it is state of the art in the
way it enables the different environments and algorithms to work together
using its framework.

Differences and similarities to this projects proposed solution

Unlike the AI’s mentioned in this chapter this projects Tsetlin machine
does not attempt to play an entire game off chess, it just focuses on the
solved endgame. The solution will not be able to compete against the state
of the art AI’s in playing the game, but it can bring with it an AI that
can be interpreted by humans, by looking at the Tsetlin Machine clauses.
These can be examined to find patterns in the way it plays that can help
understand the game.
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Chapter 4

Proposed Solutions
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4.1. Overview Proposed Solutions

4.1 Overview

This chapter details the implementations created or used in order to solve
the tasks. Figure 4.1 shows general execution of the training and testing.
More detailed explanations are found in the remainder of the chapter.

Figure 4.1: General overview of execution

4.2 Data

For the data the Lichess database[21] was used. Where this data is recorded
games played on the platform. This data is stored as a pgn(portable game
notation) file. The Python chess library[12] includes ways to handle such
files and is used to iterate through it. The data is separated into years so
three separate years worth of games for the different piece datasets was used
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4.2. Data Proposed Solutions

for the data generation. For determining the outcome of endgames we use
Syzygy tablebases[22].

4.2.1 Data Generation

The data generation is done by iterating the files filled with millions of
games gotten from the Lichess database. Like shown in figure 4.2 the code
iterates through the games of the file it currently is examining. For each
of the games it iterates the moves done on the board of the game. This is
done until either the wanted amount of pieces 3,4 or 5 is left on the board,
or if the game ends before the amount of pieces left is reached, where the
code will then go onto the next game. If the correct amount of pieces is
reached the code stores the FEN of the board into an array, and then goes
to the next game if the amount of FEN’s wanted is not reached yet. The
code goes to the stage of storing the FEN’s to a file when it either reaches
50 000 FEN’s or it runs out of games in the file. When this happens the
array with the FEN’s gets iterated, and for each FEN it checks, using the
Python chess library, if it is a legal move. Which is done before using the
library to probe the Syzygy tablebase, to get the result of the game. After
this probe both the FEN and the result of the game gotten from the probe
is written into a csv file that is used when training and testing the Tsetlin
Machine.
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4.2. Data Proposed Solutions

Figure 4.2: Flowchart for generation of data

The end result of the data generation was to get 4 different csv files, one
for each of the amount of pieces and one csv file that had all the three files
added together to make one bigger dataset for all pieces. Both the 4 and 5
piece file contains 50 000 entries, while the 3 piece file contains a little less
than 40 000 entries.

4.2.2 Data Transformation

Since the form of the chess boards uses FEN it had to be translated from
FEN to some bit representation. Such that it can be used by the Tsetlin
Machine. Considering the fact that the Tsetlin Machine learns patterns, the
representation would consist off all squares on the board. The representation
would therefore be an 8x8 board where all the squares have been turned into
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4.2. Data Proposed Solutions

some bit form to represent them. An empty square would therefore have 0
bits set, while squares with pieces on them would have some combination of
bits to represent them. The final look of the board would therefore depend
on the bit representation of the pieces.

The first representation considered was a 7 bit encoding. Where the first
bit represents which side the piece is on, the next bits represent what type
of piece it is. The big problem found with this approach was that the first
would represent either white or black, and could not represent neither, nor
both. Which would not be important for the training, but was more for the
representation of the clauses. Since it would become harder to represent a
board that would vote if there was any piece on a square, or if there where
to be none on a square.

The second representation was therefore a 12 bit encoding. Where the 6
first bits represents a piece that is white, and the 6 last bits represent a
piece that is black. Figure 4.3 shows an illustration of how what each bit
represents. The white letters means a white piece, and the black a black
piece.

Figure 4.3: Illustration of what piece each bit represents

This represents a chess board, but does not include information about who
is moving. This was included two different ways. One which adds a bit
for the player making the move, and another where the amount of bits, the
board itself, are doubled. Where the first part represents white making the
move, and the second half represents black making the move. The different
methods are both used.

Non Convolutional does not need reshaping of the bit board in order to
train on it. It is easier to add an extra bit, where boards for Convolutional
needs reshaping. For one of the methods of Convolutional, adding the extra
bits for the moving player, was not included since the basis of the method
is to have different Tsetlin Machines based on the player making the move.
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4.3. Tsetlin Machine implementation Proposed Solutions

When creating the different methods it takes FEN boards as an input, where
the transformation is handled from there. Such that one can easily give the
methods games, that they then handle themselves.

4.3 Tsetlin Machine implementation

The Tsetlin Machine implementation uses the pyTsetlinMachine implemen-
tation, which is available at Github1, in order to create and train Tsetlin
Machines of the different versions. This library is also used when getting
the clauses from a Tsetlin Machine. Though this is the main library pyT-
setlinMachineParallel was used for most of the training. Since this library
allows faster training by leveraging more threads or cores of the CPU rather
than only using one. Apart from this it uses the same implementation as
pyTsetlinMachine. It is also available at Github2.

The weighted clauses are also a part of the pyTsetlinMachine library and
are therefore used, since it provides greater speed[1]. The weights for each
clause are gotten through the built-in function get state. Which gets both
the state of the clause and its weight.

For this report multiple methods was created in order to see if one could
achieve a Tsetlin Machine that could be used for playing endgame chess.
Where the methods refer to different ways of handling the data. To make
this easier the Tsetlin Machine libraries were used in order to create a class
that would allow for easier creation of these methods, to make training and
testing easier to handle. The implementation also provides a way of storing
and loading trained machines to files. Where that storing and handling au-
tomatically handles the parameters and version of Tsetlin Machine it is to
load. This is intended to give easier access to the various trained machines
without having to retrain them for a test.

1https://github.com/cair/pyTsetlinMachine
2https://github.com/cair/pyTsetlinMachineParallel
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4.3. Tsetlin Machine implementation Proposed Solutions

4.3.1 Clauses

To get clauses for the Tsetlin Machine, the tm action function from the
Tsetlin Machine library was used. This function gets the action that the
various Tsetlin Automata will take. In order to use the function one has
to provide the ta action function with the class, clause and the Tsetlin Au-
tomatas for that clause. One therefore has to take into account the size of
the amount of Tsetlin Automata for the clause, since a clause consists of
more than one Automata. For the Convolutional version one has to specify
the size of the window given, but also extra bits for the placement of the
clause on the board.

Clauseoutput Meaning

-1 The given bit must be excluded

0 The given bit is not looked at

1 The given bit must be included

2 The given bit has both the include bit and exclude bit set.
The clauses is therefore invalid

Table 4.1: The representation used in the clauses

Apart from this the amount of bits for the clause is double the specified
window. Since a clause consists of both include and exclude bits. The
include bit and exclude bit was put together into one value in order to
reduce the total size of the clause, and to better visualise the clause. Table
4.1 shows the representation used when looking at the clauses. Figure 4.4
shows how a clause will look like for a Convolutional Tsetlin Machine with
a window of 3x3.

Figure 4.4: Visualization of a clause
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4.3. Tsetlin Machine implementation Proposed Solutions

4.3.2 Convolutional Tsetlin Machine

The difference between the usage of the Multiclass and Convolutional ver-
sions are not big. Since the functions needed for both are similar. The
biggest differences would be the initialization of the versions, and how the
clauses are gotten for each. The difference of initialization can be seen in
4.5. Where the Convolutional version needs a tuple that decides the size
of the patterns it is to learn. The functionality and behavior of them are
different. Since one needs a different set of hyper-parameters, and that the
accuracy would be different. Though the usage of the versions are similar.

When working with the Convolutional Tsetlin Machine one also needs to
reshape the data. Since the Convolutional version works with windows and
learning patterns from these windows. In order to reshape the arrays, numpy
was used, since it has functionality that manipulates data and arrays, and
that the Tsetlin Machine takes numpy arrays as input.

Figure 4.5: Difference between Multiclass and Convolutional
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4.4. Methods Proposed Solutions

4.4 Methods

This section specifies the various methods used in the Tsetlin Machine. They
are created in order to see what would be the best method for the Tsetlin
Machine, when it comes to chess. For the most part they are intended to
split or change the data.

4.4.1 Non Convolutional

An implementation which only changes the data so it can be used in a non
Convolutional Tsetlin Machine. It is meant to show the differences with the
other methods. It will only split the data into training and testing.

For each method, the data will be transformed or changed before training.
This can be seen in figure 4.7. Though the way the data is transformed is
different.

4.4.2 Convolutional

An implementation which changes the data so it can be used with the Con-
volutional Tsetlin Machine. It is meant to show the difference with the
other methods. It splits the data into training and testing sets. It also re-
shapes the data so it becomes an 8x8 window for the Convolutional Tsetlin
Machine.
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4.4. Methods Proposed Solutions

4.4.3 Reversing a player

Figure 4.6: Illustration of flipping the board

The main point of this method is to change the given player. Such that
the machine only gets the results of seemingly one player, and reduce the
variance and overlap between the different results.
If the given player is white, the pieces will have their side changed and their
position on the board will be flipped. A piece that was placed on A1 will
now be placed on H8. Figure 4.6 shows how this would be done.
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4.4. Methods Proposed Solutions

4.4.4 Split by moving player

Figure 4.7: Flowchart for splitting data

The main point for this method is to create two Tsetlin Machines. Where
one would be given all the samples for the white player, while the other for
the black player. To see if these machines can then improve by only being
shown samples for one player, and not having data from the other.

4.4.5 Split by result

This method splits the data into two. In set one all losses and draws
have been turned into the same class/sample. Meaning that win is 1 and
loss+draw is 0. The other set only consists of the losses and draws. The
first set would then be used to see if the position is a win or not. If it is not
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the other set would be used to see if the result is loss or draw. This is done
in order to see if the differences between the samples are similar or not. It
is also done in order to see if splitting the data, and trying to make it focus
on one class will help the classification. Figure 4.8 shows the 2 machines,
and how the data would be split.

Figure 4.8: The two machine in the Split results method

4.5 Testing

For each set of tests the better performing Tsetlin Machine versions will be
used for further testing. This is done in order to reduce training and testing
time, and also to better focus on the methods that could provide better
results.

4.5.1 10-Fold Cross Validation

This implementation uses the Scikit-learn implementation in order to get
data sets used for validation. Cross validation means that it splits the data
into different partitions. Where the partitions depend on the amount of
folds one want. For this project 10 folds was used, which means the data
was split into 10. 9 of these will be used for training while the last partition
will be used for testing. The partitions will then switch around until all the
different partitions have been used for testing, as shown in Figure 4.9. This
is done in order to be sure that the results from training and testing where
not from just getting a good split when training the data, and to be sure
that the accuracy gotten is correct.
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4.5. Testing Proposed Solutions

Figure 4.9: Flow chart of how the testing is done for the methods

Stratified means that the ratio of classes are kept for the different partitions.
Meaning that if 10% of the data consists of draws, 10% of the training data
will be draw and 10% of the testing data will be draw. Which is helpful for
data where there is an unequal amount of different samples in the data.

10-folds was chosen since it uses most of the data for training. This means
there are fewer testing examples, which can impact the validity of the results,
since a small data-set will mean that there is an even smaller amount of
testing cases. If there were 100 examples, 10 of these examples would be
the testing. Where it could be correct 50% of the time, but would have
a lower percentage correct if more test cases were included. Though the
splits or folds used would mitigate this since they use all the data as test
data. Meaning that the percentage would be lower in other folds tested if
the inclusion of certain examples would impact the result. Therefore the
mean has been calculated from the results gotten from the test-cases. The
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result given for each fold is the highest percentage correct that the machine
got over it’s epochs.

Figure 4.10: Flow Chart showing more how testing and training are done

Figure 4.10 shows how the testing is done with the different methods being
chained. For each piece dataset and each window, all methods would be run
for every execution of the program.

The testing will first be done for the weighted and unweighted Tsetlin Ma-
chine and Convolutional Tsetlin Machine. In order to see which of the
differing versions is the better one for the task. The machines used for
further testing would be the version performing the best for the different
data-sets. For every method one will be chosen for every set of data. This
will be based on the highest accuracy achieved by a machine. For the meth-
ods moving player and split player, which has 2 machines, the accuracy
achieved for both machines will be taken into consideration. For moving
player both machines would have to be weighted equally, since they are for
different moving players. While for Split result the first machine would have
a greater weight than the second one. Since the second machine is used if
the machine determines a board as not win.
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4.5.2 Tree search recall

This test is about testing if the various Tsetlin Machines can correctly eval-
uate the result of a game, and then calculate the recall and precision for the
Tsetlin Machines. Where 100 random games will be used. For these 100
games all moves found 3 moves deep will be used. The prediction for the
move will also have a score, which is based on the amount of clauses that
voted against and the amount of clauses that voted for the prediction.

The moves and predictions will be sorted based on the scoring and a given
amount of moves, for each game, and will be used for calculating recall and
precision. It will first start with one move for each game, then two, and so
on. Until it reaches 100 moves for each game. Which is done in order to see
how the confidence of the Tsetlin Machine changes based on the tolerance
in the amount of moves.

Figure 4.11: Visualised example of a 1 step three search where white is
next to move

4.5.3 Playing Games

For this test the methods chosen from the previously will play against each
other, and other methods for playing chess. The results gotten from this
can be used in order to compare how the methods perform, and how they
perform compared to each other. The other methods used is:

33



4.5. Testing Proposed Solutions

1. Random

• Chooses a move randomly

2. Monte Carlo Tree Search

• Does a Monte Carlo tree search, in which it has been limited to
a minute of computational time, in order for the testing to not
take too long. It should not require too much time either, since
it is endgames where there are fewer variations of good moves.

In order for the Tsetlin Machine to play the games a tree search will be used
in order to find moves. So that the Tsetlin Machine systematically evaluates
all the moves possible from a given position. The Tsetlin Machine will then
evaluate the moves, and the best move predicted as win is chosen. In order
to find the best move two methods will be used to sort the evaluated moves.
Where the top most, or the move with the highest score, will be chosen.
The first method is to score the moves by how confident the Tsetlin Ma-
chine is about the prediction. The second is to take the first set of moves.
Evaluate the moves that can be done from these moves and predict what
they are supposed to be. Finally a score is calculated for the original moves,
where the percentage of predicted wins is the score.

The players or methods will play a chosen amount of games against each
other. Where they will play the amount of games, switch sides and play the
same amount. The Tsetlin Machine methods will therefore have their own
entries when they are the starting side. The Monte Carlo Tree Search and
random methods will not, and the results from these games will be placed in
the same entry. Since the point is to evaluate the Tsetlin Machine methods.

One play will only be done for a certain amount of moves, since the Tsetlin
Machine can move back and forth without any progression. The tablebase
probe from the python-chess library is used in order to find out if the Tsetlin
Machine still can obtain a win, given perfect play, from that position or
rather if it has lost it would only lose. The results from the playing are
written to a file. Where finishing the game within the given amount of
move gives a tuple consisting of the result and a 1, and not finishing the
game within the given amount of moves gives a tuple with the result taken
from the endgame tablebase and a 2.
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Chapter 5

Results and discussion

This chapter contains all the results from the various tests conducted. Here
a subset of the Tsetlin Machines that performed well from the previous
test will be used in the next test. So that the more interesting or higher
performing Tsetlin Machines can be further tested. In order to try and find
methods that perform well.

When Multiclass Tsetlin Machine is mentioned it refers to the Non-convolutional
Tsetlin Machine. Even though the Convolutional Tsetlin Machine is also
multiclass.

5.1 10-Fold Cross Validation

This test is a cross validation of different windows for the Convolutional
Tsetlin Machine and the Non-convolutional Tsetlin Machine. It is also used
in order to see the difference between a Tsetlin Machine with weights and
a Tsetlin Machine without weights.

In all tables Pieces Amount refers to the data used for that test. Where
3 means there are 3 pieces left, and all means all the datasets have been
used (meaning it is a combination of 3, 4 and 5 pieces data sets). Avg.
Accuracy means the mean of the highest accuracy from the folds for that
test. Window refers to the size of the pattern that the Convolutional Tsetlin
Machine learns.
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5.1. 10-Fold Cross Validation Results and discussion

5.1.1 Multiclass

Table 5.1 shows the result of the non weighted Multiclass Tsetlin Machine.
The result shows under 50% accuracy at the best. Which is close to what
would be reached by just guessing the most common occurrence. The ma-
chine chooses one class over the others a significant amount of times. So
this setup with using the normal Multiclass Tsetlin Machine is clearly not
a good way to solve how to classify chess using a Tsetlin Machine.

Pieces Amount Avg. Accuracy

3 46.59 ± 0.68

4 43.86 ± 0.40

5 45.14 ± 0.37

All 43.07 ± 0.20

Table 5.1: Result of 10-fold validation on non weighted Multiclass Tsetlin
Machine

From the table 5.1 the 3 pieces dataset had the highest accuracy, though
this does not correlate with its ability to play the game. Apart from this
the accuracy is about the same for all datasets.
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5.1.2 Convolutional

Pieces Amount Window Avg. Accuracy

3 8x8 46.20 ± 0.42

3 7x7 45.97 ± 0.96

3 5x5 58.53 ± 0.65

3 3x3 63.5 ± 0.7

3 2x2 64.13 ± 0.73

4 8x8 43.74 ± 0.32

4 7x7 44.76 ± 0.51

4 5x5 53.95 ± 0.53

4 3x3 54.96 ± 0.43

4 2x2 54.97 ± 0.58

5 8x8 45.1 ± 0.29

5 7x7 46.78 ± 0.45

5 5x5 49.87 ± 0.35

5 3x3 51.42 ± 0.42

5 2x2 52.13 ± 0.49

All 8x8 43.15 ± 0.18

All 7x7 43.13 ± 0.27

All 5x5 48.25 ± 0.54

All 3x3 50.61 ± 0.38

All 2x2 51.07 ± 0.39

Table 5.2: Result of 10-fold validation on non weighted Convolutional
Tsetlin Machine

The Convolutional Tsetlin Machine’s result showed in table 5.2 shows that
the results for all the different datasets increase when looked at in smaller
windows. This probably has to do with the complexity of chess, where many
different possible positions exist even in the endgame. This makes it hard
for the Tsetlin Machine to learn. When using a window the different pat-
terns created from a window can be used to match different places on the
board, instead of having to match the entire board. More information can
be added to the various clauses or patterns, or more patterns can vote on
a given board. This usage of more smaller clauses spread across a board,
would result in a combined effort to detect more cases.
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5.1.3 Multiclass w. Weights

Pieces Amount Avg. Accuracy

3 47.10 ± 0.62

4 43.86 ± 0.32

5 45.1 ± 0.28

All 43.05 ± 0.35

Table 5.3: Result of 10-fold validation on weighted Multiclass Tsetlin Ma-
chine

The accuracy is still about the same for the different datasets, and is about
the same as Tsetlin Machine without weights.
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5.1.4 Convolutional w. weights

Pieces Amount Window Avg. Accuracy

3 8x8 47.02 ± 0.7

3 7x7 46.30 ± 0.58

3 5x5 57.08 ± 0.71

3 3x3 61.52 ± 0.65

3 2x2 62.41 ± 0.88

4 8x8 43.90 ± 0.46

4 7x7 44.53 ± 0.5

4 5x5 52.2 ± 0.4

4 3x3 54.4 ± 0.47

4 2x2 62.43 ± 0.81

5 8x8 45.06 ± 0.28

5 7x7 46.8 ± 0.5

5 5x5 49.91 ± 0.50

5 3x3 51.26 ± 0.51

5 2x2 52.17 ± 0.59

All 8x8 43.15 ± 0.24

All 7x7 43.08 ± 0.21

All 5x5 47.78 ± 0.32

All 3x3 50.37 ± 0.24

All 2x2 50.62 ± 0.31

Table 5.4: Result of 10-fold validation on weighted Convolutional Tsetlin
Machine

As with the previous test without weights, the accuracy on the various
datasets increases with smaller window sizes.
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5.1.5 Comparison

Type of Machine Pieces Amount Accuracy

Multiclass 3 46.59 ± 0.68

Multiclass w.
Weights

3 47.10 ± 0.62

Convolutional 3 64.13 ± 0.73

Convolutional w.
Weights

3 62.41 ± 0.88

Multiclass 4 43.86 ± 0.4

Multiclass w.
Weights

4 43.86 ± 0.32

Convolutional 4 54.97 ± 0.88

Convolutional w.
Weights

4 62.43 ± 0.81

Multiclass 5 45.14 ± 0.37

Multiclass w.
Weights

5 45.03 ± 0.26

Convolutional 5 52.13 ± 0.49

Convolutional w.
Weights

5 52.17 ± 0.59

Multiclass All 43.07 ± 0.2

Multiclass w.
Weights

All 43.05 ± 0.35

Convolutional All 51.07 ± 0.39

Convolutional w.
Weights

All 50.62 ± 0.31

Table 5.5: Comparison of the Multiclass and Convolutional tests

From table 5.5 the weighted Tsetlin Machine versions perform about the
same as the unweighted Tsetlin Machine versions. Except for the 4 pieces
dataset, where the Convolutional version with weights achieves 62.43% ver-
sus the no weights 54.97%.

This does go against the assumption of weighted outperforming the non
weighted. Since the weighted version should allow for more clauses, since
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clauses that have been seen before gets their weight increased. These added
clauses should allow for better detection of general cases and also more edge
cases, since it allows more uncommon clauses to appear. Though the big
difference in the 4 pieces dataset might suggest that the hyper-parameters
hasn’t been optimized enough to make the difference between the methods
clearer, or that the datasets themselves doesn’t allow for the learning of
more cases.

Where the weighted Tsetlin Machine should reduce the amount of needed
clauses in order to achieve the same accuracy, while also reducing the com-
putation time[1].

5.1.6 Method Classification Experiments

In this section three different methods are looked at for the Tsetlin Machine.
All the tests used the Convolutional Tsetlin Machine since it performed
better on average. Each of the methods was tested for different window
sizes with the same hyper parameters from the previous test being 4000
clauses, 8000 Threshold and 10 S for 50 epochs. There are a couple of the
tests that include a bit for moving player and one test without draws, to
see how this would impact the accuracy.
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Flipped Player

Pieces
Amount

Window Inc. draw Moving
player bits

Avg.
Accuracy

3 8x8 Y N 69.21 ± 0.85

3 7x7 Y N 66.66 ± 0.91

3 7x7 Y Y 72.78 ± 0.37

3 5x5 Y N 86.82 ± 0.58

3 3x3 Y N 90.97 ± 0.35

3 2x2 Y N 88.45 ± 0.31

4 8x8 Y N 67.24 ± 0.39

4 7x7 Y N 64.66 ± 0.48

4 5x5 Y N 76.95 ± 0.67

4 5x5 N Y 94.18 ± 0.31

4 5x5 Y Y 75.42 ± 0.79

4 3x3 Y N 80.24 ± 0.54

4 2x2 Y N 88.39 ± 0.5

5 8x8 Y N 66.64 ± 0.32

5 7x7 Y N 70.53 ± 0.31

5 5x5 Y N 77.09 ± 0.34

5 5x5 Y Y 76.7 ± 0.42

5 3x3 Y N 79.32 ± 0.52

5 2x2 Y N 80.64 ± 0.39

All 8x8 Y N 63.4 ± 0.35

All 7x7 Y N 62.63 ± 0.37

All 5x5 Y N 74.55 ± 0.41

All 3x3 Y N 77.62 ± 0.72

All 2x2 Y N 78.13 ± 0.61

Table 5.6: Results from the Flipped player method

Flipped player flips the board so that all boards become the viewpoint of a
specified player. It might therefore be easier for the Tsetlin Machine classify,
as it only has to classify from the viewpoint of 1 player. The added data
also gives more examples on what the different classifications are. Since
the flipping is a mirroring of the boards and both players should be able to
reach most of the same positions.
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Moving Player

Pieces
Amount

Window Inc. draw Moving
player bits

Avg.
Accuracy

White

Avg.
Accuracy

Black

3 8x8 Y N 68.56±0.67 68.58±0.75

3 7x7 Y N 67.42±1.09 67.21±0.82

3 7x7 Y Y 67.38±0.65 67.24±0.64

3 5x5 Y N 87.08±0.47 86.59±0.62

3 3x3 Y N 91.42±0.65 90.49±0.81

3 2x2 Y N 88.44±0.79 87.93 ± 1.0

4 8x8 Y N 68.47±0.53 68.31±0.60

4 7x7 Y N 65.35±1.13 65.47 ± 1.0

4 5x5 Y N 77.23±0.71 76.97±0.77

4 5x5 N Y 95.27±0.53 94.68±0.66

4 5x5 Y Y 77.43±1.04 76.87±0.71

4 3x3 Y N 80.61±0.76 80.42±0.62

4 2x2 Y N 88.34±0.75 88.1 ± 1.29

5 8x8 Y N 67.55±0.41 66.93 ± 0.5

5 7x7 Y N 66.59±0.70 66.2 ± 0.64

5 5x5 Y N 76.58±0.66 77.09±0.73

5 5x5 Y Y 76.83±0.49 77.08±0.75

5 3x3 Y N 79.09±0.80 79.47±0.73

5 2x2 Y N 80.48±0.80 80.93±0.44

All 8x8 Y N 64.52±0.43 64.01±0.36

All 7x7 Y N 63.24±0.54 62.98±0.67

All 5x5 Y N 74.62±0.43 74.63±0.42

All 3x3 Y N 77.88±0.59 77.87 ± 0.5

All 2x2 Y N 78.1 ± 0.41 78.15±0.54

Table 5.7: Results from the Moving player method

Moving player splits the job into two different Tsetlin Machines. This means
that one machine is dealing with the viewpoint of a certain player. It does
something similar to Flipped player, but splits the datasets for the two
machines. When reviewing the performance, one has to take both machines
into consideration when looking at the percentages. Where the highest
scoring machine is from Moving player, though its other machine scores a
bit lower. A singular machine with the same accuracy will probably perform
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better overall, since the machines for Moving player are only tested on data
that is specific for them.

Split Result

Pieces
Amount

Window Inc. draw Moving
player bits

Avg.
Accuracy

Win

Avg.
Accuracy

Other

3 8x8 Y N 67.82±0.38 62.38±0.39

3 7x7 Y N 67.17±0.37 60.80±0.64

3 7x7 Y Y 90.73±0.65 66.87±0.94

3 5x5 Y N 72.99±0.73 69.42±0.86

3 3x3 Y N 74.84±0.70 78.99±1.01

3 2x2 Y N 73.88±0.78 78.63±0.80

4 8x8 Y N 68.35±0.15 62.88±0.50

4 7x7 Y N 68.61±0.17 63.31±0.45

4 5x5 Y N 69.86±0.44 71.30±0.61

4 5x5 Y Y 86.45±0.46 83.02±0.46

4 3x3 Y N 70.41±0.42 72.21±0.59

4 2x2 Y N 73.97±0.77 79.13±0.84

5 8x8 Y N 66.05 ± 0.1 68.02±0.24

5 7x7 Y N 65.99±0.13 69.72±0.43

5 5x5 Y N 66.38±0.24 73.27±0.59

5 5x5 Y Y 88.08±0.23 82.41±0.47

5 3x3 Y N 67.40±0.32 74.52±0.58

5 2x2 Y N 67.79±0.47 75.14±0.65

All 8x8 Y N 66.48±0.03 61.88±0.23

All 7x7 Y N 66.60±0.17 62.0 ± 0.43

All 5x5 Y N 67.67±0.27 64.14±0.77

All 3x3 Y N 68.93±0.27 66.63±0.68

All 2x2 Y N 69.69±0.34 66.56±0.48

Table 5.8: Results from the Split result method

Split result splits the data according to what the result is. There are two
Tsetlin Machines, where the first predicts if it is win or not, and the second
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predicts if it is draw or loss. The first is consistently used for all the data,
while the second is only used for data that the first machine did not predict
as a win. Because of this splitting there could be a bigger difference in what
is considered win versus what is not. Since one machine would only have
to look at the difference between it and the rest, and there being only 2
classifications to vote on as well.

Comparison

Type of method Pieces Amount Avg. Accuracy
1

Avg. Accuracy
2

Flipped Player 3 90.97 ± 0.35 -

Flipped Player 4 94.18 ± 0.31 -

Flipped Player 5 80.64 ± 0.39 -

Flipped Player All 78.13 ± 0.61 -

Moving Player 3 91.42 ± 0.65 90.49 ± 0.81

Moving Player 4 95.27 ± 0.53 94.68 ± 0.66

Moving Player 5 80.48 ± 0.8 80.93 ± 0.44

Moving Player All 78.1 ± 0.41 78.15 ± 0.54

Split Result 3 90.73 ± 0.65 66.87 ± 0.94

Split Result 4 86.45 ± 0.46 83.02 ± 0.46

Split Result 5 88.08 ± 0.23 82.41 ± 0.47

Split Result All 69.69 ± 0.34 66.56 ± 0.48

Table 5.9: Comparing the best results from the methods

From what can be seen in table 5.9 the different methods manage to achieve
high accuracy on the different datasets. It can also be noted that several
methods achieved over 90% on a dataset. These percentages are much higher
than the previous tests, where there were no changes to the data.

Some of the percentages given have added information or there are other
factors. These are; which side to move is added to the bit representation
of the board, removing draw from the dataset, or a combination of both.
Where Moving player for 4 pieces has had the draws removed from the
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dataset. Even though this improved the results for a given method there
where other methods that achieved almost the same accuracy without re-
moving draw.
The added bits to the representation also increased the percentage in most
instances. This suggests that the added data, or added information, in the
representation could also further increase the overall performance of the dif-
ferent methods. Though this was not tested thoroughly.

Though the best versions have certain extra factors, such as adding ex-
tra information or removing draws, the Moving player and Flipped player
methods perform about the same, and both perform better than the Split
Result method. It can also be noted that one of the two methods performs
better on some datasets, while the other performs worse and vice versa.
Also when looking at the highest performing versions of the methods, they
perform about the same. Showing that either splitting the machines based
on the moving player or flipping the board for one of the players would give
better results.
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5.2 Tsetlin Machine with tree search

In order to better see how the highest rated methods perform on a game of
chess, the Tsetlin Machines shown in the comparison table 5.9 has been used
in this testing. Below are some of the graphs from different three search
tests to look at how the prediction and recall changed based on how many
of the top scoring moves was included.

Figure 5.1: Graph off recall for a Tsetlin Machine

In figure 5.1 shows a test done on the machine trained with 3 pieces dataset,
with the flipped player method and a window size of 3x3. From the figure it
can be seen that the recall is at its highest around 20 moves before it slowly
decreases. Meanwhile the precision starts at its best with the least amount
of moves from each game, and slowly decreases from there. Showing that
the first set of moves are accurately predicted, even though it does not find
many of the possible winning moves. As the amount of moves increases
the Tsetlin Machine starts to be less accurate, though it finds more of the
winning moves.
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Figure 5.2: Graph off recall for 3 piece Moving player window 3x3

Figure 5.2 shows a test done on the machine trained with the 3 piece dataset,
with the moving player method and a window size of 3x3. The figure shows
that as with the previous test the precision slowly decreases as more moves
are added. The recall increases until around 20 moves included where it
stays almost the same but decreases slightly for the rest of the moves.
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Figure 5.3: Graph off recall for 3 piece split results window 7x7

The recall of this method is low, where only around 30% of the total amount
of winning positions are correctly classified. Apart from this the graph 5.3
shows that out of all the ones it found, meaning that it classified more as
win, around half of the ones classified were actually win. Showing that the
total amount of win classifications were relatively low. The graph also shows
that the machine performed best on its most confident predictions, while
its precision became worse as more moves were added.
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Figure 5.4: Graph off recall for 4 piece Flipped player window 5x5

The graph 5.4 shows that the method has a generally high percent recall,
though it peaks early and gets lower as more moves are added. Though it
is generally above 90%, this might come from not having draws included in
this machines training. This is one of the best results for these tests, apart
from the precision starting out at 80% and getting lower as more moves are
added. It shows that while the method manages to find most of the correct
wins, it also manages to classify the other moves wrongly. Meaning that
if one has to search through more than the first 10-20 moves, the method
becomes more uncertain and gets worse at finding the moves that give a
win.

50



5.2. Tsetlin Machine with tree search Results and discussion

Figure 5.5: Graph off recall for 4 piece Moving player window 5x5

The graph 5.5 starts with a high recall and also a high precision. Then the
method becomes more uncertain as more moves are added. Indicating that
the highest scoring moves are the most secure moves, but as one includes
more it becomes worse. Though this could also stem from the fact that this
method was trained on the dataset without draws. Such that it knows how
to classify win and loss, but has problems when trying to classify draw.
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Figure 5.6: Graph off recall for 4 piece split results window 5x5

The graph 5.6 shows a method which has low recall. It finds barely any of
the moves, though this improves as one adds more moves. Though recall is
low the precision is a lot higher, so that even though it does not find all the
moves, it is more accurate in its prediction. But these results are still low.
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Figure 5.7: Graph off recall for all pieces Flipped player window 2x2

Figure 5.7 shows a test run on the machine that was trained on the all pieces
dataset, with the flipped player method and a window of 2x2. The figure
shows that the precision is very high, although it drops off the more moves
gets added. The recall on the other hand starts out pretty low at around
0.62 but slowly increases when the amount of moves looked at increases.
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Figure 5.8: Graph off recall for all pieces Moving player window 2x2

Figure 5.8 shows a test run on the machine that was trained on the all pieces
dataset, with the moving player method and a window of 2x2. This had a
very similar result to the previous test on the same specifications with the
flipped player method. As with that method this figure also shows that the
precision is very high with a slight decrease with more moves, and a recall
that starts around 0.66 that slightly increases the more moves gets added

54



5.2. Tsetlin Machine with tree search Results and discussion

Figure 5.9: Graph off recall for all pieces Split results window 2x2

Figure 5.9 shows a test run on the machine that was trained on the all
pieces dataset, with the split results method and a window of 2x2. This
figure shows that this function does not have the same results as the moving
player and flipped player methods have. The figure shows that the precision
is around 0.50, and the recall is at 0.1. This shows that this method is not
very suited for the task of determining good moves.

55



5.2. Tsetlin Machine with tree search Results and discussion

5.2.1 Comparison

This chapter details a comparison of the average precision and recall of the
various methods.

Type of method Pieces Amount Precision Recall

Flipped Player 3 82.31 80.81

Flipped Player 4 78.67 94.49

Flipped Player 5 95.37 69.31

Flipped Player All 95.88 66.07

Moving Player 3 82.12 78.92

Moving Player 4 81.05 89.46

Moving Player 5 93.41 63.6

Moving Player All 96.4 73.51

Split Result 3 48.69 31.93

Split Result 4 64.67 32.38

Split Result 5 58.15 29.21

Split Result All 51.78 7.29

Table 5.10: Comparing the results from the different methods used in the
tree search

From the tree search tests done that are displayed in 5.10 it can be seen
that the split results method performed significantly worse than the other
methods. This is likely because it has to determine the game while analyzing
for both players, where as the two other methods look at it from only one
players perspective.

Both the flipped player and moving player method performed almost the
same on all the different tests. For both of them the recall and precision
is around 80% when using the version trained on the 3 piece data. The
machine trained on 4 pieces has a slight increase in recall, going up to
94.49% for the flipped player method and 89.46% for the moving player
method. While the recall did improve the precision did not, going down a
tiny bit for both methods. With the 5 piece and all pieces data sets the
percentage for the precision seems to increase, going over 90% for all of
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them. The recall however dropped off significantly for these machines to
around 63-73% for the tests.

Even with a lower recall the machines with a high precision are better.
This comes from that even with a medium recall you still pick up winning
moves, but if the recall is high and the precision is low, many of the predicted
winning moves will be false positives.

Overall most of the methods had a drop in recall and precision as more
moves where added. Showing that the Tsetlin Machine manages to perform
highly on some moves, but to then starts making more mistakes.

5.3 Visualised Clauses

In this section some of the highest weighted clauses in the Tsetlin Machine
is looked at to see if the patterns they have are able to give some insight
into the choices made. These patterns are supposed to be interpretable for
humans. When looking at the clauses 1 means the piece on that position is
to be included for it to vote, and -1 means it should not be there. 0 means
it does not look at what that bit is.

Figure 5.10: 3x3 Clause trained on 3 piece voting for win with 469 weight

Figure 5.10 shows one of the highest weighted clauses for a machine trained
on the 3 piece data set with 3x3 window size. It has one bit set to 1, and
multiple to -1. The 1 that is set on the 7Th bit makes it so that there has
to be a black pawn in that square for the clause to vote. All the -1 means
that in all those squares, the piece that the bits set to -1 represent should
not be there for the clause to vote. Which piece each bit represents can be
found in chapter 4.2.2.
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Figure 5.11: 5x5 Clause trained on 4 piece voting for win with 1167 weight

Figure 5.11 shows a clause gotten from a Flipped player Tsetlin Machine
trained on the 4 piece dataset with a window of 5x5. In this clause there are
two pieces that are set to be included, this is the black king and the white
knight. For the 5x5 windows each collection of squares in this representation
shows one row, and the next collection is the the next row. This was done
because showing an entire row in one line would make it hard to read.
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Figure 5.12: 5x5 Clause trained on 4 piece voting for win with 1153 weight

Figure 5.12 shows a clause gotten from a Moving player Tsetlin Machine
trained on the 4 piece dataset with a window of 5x5. This clause votes for
a win for the white side. In this clause only one piece that has been set to
be included, which is a black pawn. Apart from this the rest of the clause
has only exclude bits set across the clause. There are also a lot of places
in which the black king has been excluded and some places that the white
king has to be excluded.
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Figure 5.13: 5x5 Clause trained on 4 piece voting for win with 915 weight

Figure 5.12 shows a clause gotten from a Moving player Tsetlin Machine
trained on the 4 piece dataset with a window of 5x5. This clause votes for
a win for the black side. Compared to the one that votes for white, this
clause has a lot less exclude bits set, but still has a lot of positions where
the black and white king cannot be.

Because of all the excluded bits being the majority of bits set in the clauses
one can say that the clauses looks more at what should not be there, in
order for it to vote for a win. Which can overall be easier in chess, since the
amount of different pieces that would have to be there to get a win, check
mate, could be even more. Such as if the pattern is located somewhere in
the middle of the board, in which one would need pieces all around if one
is to consider it a win. There would also be a need for pieces outside the
pattern, which is not known to the clause. Though this can be helped with
the combination of other patterns.

From the top clauses gotten there was many of them that was invalid, either
having more than one piece on a square or having the same piece both be
there and not be there at the same time. Other than these the clauses
mostly looked as the examples shown in this section, having one or two
piece set to be included and many set to be excluded. From this its hard to
interpret of it detects a specific pattern with these clauses.
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5.4 Playing Games

5.4.1 Players

Game (FEN) Player Amount of games Reference

8/8/8/4QK2/
8/2nkp3/8/8 w -
- 0 56

Flipped player 3 10 1

8/8/8/4QK2/
8/2nkp3/8/8 w -
- 0 56

Flipped player 4 10 2

8/8/8/4QK2/
8/2nkp3/8/8 w -
- 0 56

Moving player 4 10 3

Table 5.11: The players that will play in a tournament

Table 5.11 shows the different methods chosen and the board or game used
for the evaluation. The Player column in the table is the method. The
player name refers to which method and also which dataset that is used for
the method.

The game used for the evaluation would have white to win with perfect
play. Though it is possible for black to win or draw if white makes the
wrong moves. Where there are multiple moves that leads to black winning
and one move which leads to draw. The reason for the draw would be a
lack of materials, meaning that black and white have given away enough of
their pieces such that none of them can be check mated.
Once the method picks the draw move. The opponent has to pick a losing
move for the method to regain its advantage, or they will have to keep
choosing a drawing move to not lose.
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5.4.2 Results

Table 5.12 is for the confidence scoring, with depth of 1.

Reference Opponent Win Loss Draw

1 Random 0 0 20

1 Monte Carlo 0 0 20

1 Flipped player 4 0 0 10

1 Moving player 4 0 0 10

2 Random 1 2 17

2 Monte Carlo 0 0 20

2 Flipped player 3 0 0 10

2 Moving player 4 0 0 10

3 Random 1 1 18

3 Monte Carlo 0 0 20

3 Flipped player 3 0 0 10

3 Flipped player 4 0 0 10

Table 5.12: Results from having the various methods play each other

Table 5.12 shows that the players only manage to draw against each other
and against the Monte Carlo method. Where two of them show different
results against random. In which one can assume that looking at the moves
1 search depth is not enough for the Tsetlin Machine to make a proper
move. The results also show that the different methods manage to make
the 1 move that leads to a draw, but still to keep the draw. This means
that the methods most likely see the possibility for a draw and predict it
as a win, with high confidence. Where this could be happening because
the training data was too small in order to properly learn how to play this
situation.
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Table 5.13 is for the confidence scoring, with depth of 3.

Reference Opponent Win Loss Draw

1 Random 1 1 18

1 Monte Carlo 0 0 20

1 Flipped player 4 0 0 10

1 Moving player 4 0 0 10

2 Random 2 1 17

2 Monte Carlo 0 0 20

2 Flipped player 3 0 0 10

2 Moving player 4 0 0 10

3 Random 2 0 18

3 Monte Carlo 0 0 20

3 Flipped player 3 0 0 10

3 Flipped player 4 0 0 10

Table 5.13: Results from having the various methods play each other

Table 5.13 shows that giving the machine moves further down doesn’t change
the results much. The biggest change is that all the methods have differ-
ent results against the random opponent. Though all the others are still
draws. Which just supports the fact that the methods choose one or multi-
ple draw moves instead of a winning move, so that it has no way of winning.
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Table 5.14 is for the non confidence scoring, with depth of 1.

Reference Opponent Win Loss Draw

1 Random 2 2 16

1 Monte Carlo 0 0 20

1 Flipped player 4 0 0 10

1 Moving player 4 0 0 10

2 Random 3 5 12

2 Monte Carlo 0 0 20

2 Flipped player 3 0 0 10

2 Moving player 4 0 0 10

3 Random 3 3 14

3 Monte Carlo 0 0 20

3 Flipped player 3 0 0 10

3 Flipped player 4 0 0 10

Table 5.14: Results from having the various methods play each other

Table 5.14 shows that the methods manage to get more differing results
against random, but there are still mostly draws.
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Table 5.15 is for the non confidence scoring, with depth of 3.

Reference Opponent Win Loss Draw

1 Random 5 2 13

1 Monte Carlo 0 0 20

1 Flipped player 4 0 0 10

1 Moving player 4 0 0 10

2 Random 7 8 5

2 Monte Carlo 0 0 20

2 Flipped player 3 0 0 10

2 Moving player 4 0 0 10

3 Random 6 5 9

3 Monte Carlo 0 0 20

3 Flipped player 3 0 0 10

3 Flipped player 4 0 0 10

Table 5.15: Results from having the various methods play each other

Table 5.15 shows again that even given a greater depth to the tree search,
it only produces differing outcomes when against the random opponent

5.4.3 Comparison

Though the various methods showed good results when testing them. Though
it is not shown in the tables all wins and losses happened outside the speci-
fied amount of moves, and all draws happened within the specified amount
of moves. Which means that the Tsetlin Machine plays itself to draw against
all other methods, except for random. Which could have several explana-
tions:

That the Tsetlin Machine thinks a position or move that actually leads to
a draw, leads to a win. Which could explain the wins and losses towards
random, since the random doesn’t try to make optimal moves. And since
the position it thought was draw is not anymore, and random has given it
the advantage back, it manages to retain the win advantage. Where Monte
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Carlo will see the draw as a possibility to get a better result than a loss,
and will therefore not give the Tsetlin Machine a chance to regain the ad-
vantage. Though the Tsetlin Machine also losses. Making it seem like the
Tsetlin Machine has a classification problem. Where it has not trained on
enough positions in order to know that it is actually a draw. From the
tree search evaluation, we can also see that it is not perfect in its precision
either, where this could show how they miss-classified the draw as a win.

Another explanation would be that the Tsetlin Machine does not train well
enough on playing the game. The Tsetlin Machine is good at classification,
but even when it classifies a winning board correctly, the machine has not
been trained on knowing whether this board is closer to the win or not, just
that with perfect play from that point on would lead to a win. The data does
not contain boards that show check mate positions, so it would probably
not choose these. This is shown from the fact that instead of winning the
game, both sides loses their non king pieces instead. Check mate is often a
hard board to achieve with only 1 piece other than the king, so this possibly
had an impact on the ability of the Tsetlin Machine to reach it.
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Chapter 6

Conclusion

6.1 Goals

This projects goals managed to be reach different levels of completion. Fol-
lowing we take a look at the each goal and how well it was achieved.

Goal 1: Train a Tsetlin Machine to play a chess endgame through a tree-
search. Seeing if the moves will result in win, loss or a draw, and analyze if
it can play or not.

The Tsetlin Machine was able to correctly predict a lot in the tree-search
tests and looked promising, but when playing it showed poor results by get-
ting mostly draws. The wins and losses it had was not natural, but forced
by exceeding the amount of moves it ran for.

So from this the project can conclude, from what our tests showed, that the
Tsetlin Machine is able to identify if the board would lead to a win, loss or
draw from perfect play. Even though it is not able to play the game well.

Goal 2: Test different types of Tsetlin Machines; Multiclass, Convolu-
tional and weighted, and compare the results.

This goal was reached by testing the four different types of machines being
non weighted Multiclass, weighted Multiclass, non weighted Convolutional
and weighted Convolutional.
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6.1. Goals Conclusion

The results showed that the weighted and non weighted performed similar
to each other. Where the Convolutional approaches outperformed the nor-
mal Multiclass implementation when the window size was lower than 8x8,
which is the full board. Multiclass reaches about 45% on all the different
datasets, and for weighted and unweighted. While the Convolutional ap-
proach reaches around 55% on average for the different piece amounts. The
results also showed that these implementations performed pretty poorly,
since it was trained on data that focused on both players at the same time.

When comparing the weighted version versus non weighted, it was shown
that it did not provide a significant impact on the accuracy. This could
have been because of poor optimization of various factors, such as hyper-
parameters or maybe by not training the Tsetlin Machine versions enough.
Though the weighted versions are supposed to be faster and reduce the
amount of clauses needed in order to achieve the same percentages.

Goal 3: Test different methods for splitting the data and setting up the
Tsetlin Machine; change the player and split by moving player, and Split
results.

This goal was achieved by making the tree different methods of flipped
player, moving player and split results. The flipped player and moving
player methods both performed well for analyzing the board. Where the
two methods achieved about the same results. The best results were around
90% accuracy, which was achieved with the 3 piece dataset and a small
window. This are the best results gotten if you do not look at the tests
that excluded draw from the data that performed better. As with the other
Convolutional approach, they performed better with lower window sizes.
The split result method on the other hand showed poor results by having a
lower score than the other methods.

This shows that the implementations that focused on one player outper-
formed the other methods. In this project the goal was looking at multiple
different variants, so there was limited time to focus and perfect the pa-
rameters and data for one method. So focusing on spending more time
improving one method is work that could be done in the future.

Goal 4: Visualisation of clauses.

For this goal the clauses was visualised as wanted, but the clauses was not
as understandable as hoped for, because chess is very complex. Looking at
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6.2. Future Work Conclusion

one clause at a time was not enough to get interpretable patterns. To create
patterns that would be more sensible, one would probably need to look at
more clauses at the same time and see if they work together.

There was also a problem of not being able to have a better representation
of a clause, since the squares could contain many different pieces meant one
would need to have a better system for representing pieces to include or
exclude. This increased the difficulty in making the clauses visually easy to
understand.

Goal 5: Testing other machine learning algorithms and comparing the
Tsetlin Machine to them.

Even though we had a goal of testing other machine learning algorithms and
testing them against the Tsetlin Machine, there was only enough time to
test Monte Carlo Tree Search against the Tsetlin Machine. Though Monte
Carlo Tree Search is not a machine learning algorithm, it is a smart method
that achieves pretty good results. Monte Carlo Tree Search is also used
to generate datasets for machine learning algorithms or used along with
machine learning algorithms in order to achieve good results for games.

Final remarks would be that even though this project did not yield any
significant results, in playing the endgame of chess with the Tsetlin Machine.
It did lay some ground work in what methods works better than others for
this task. Which would help with future work on this project to be able
to focus on what was found to work well. The playing was also tested out
and found that the pure Tsetlin Machine was not able to lead to wins when
trained on the data it had. Where some ideas to improve this would be
reinforcement learning, or changing the dataset to better reflect playing an
entire endgame perfectly. These ideas are written more about in the future
work section.

6.2 Future Work

Given the results that the Tsetlin Machine seems to consistently draw
against other techniques. Future work could be to create or find a larger
dataset, which contains more cases. To see if one can increase the accuracy
of the Tsetlin Machine and to get it to win more games.
Another option would be to do further testing of the dataset that contains
all of the pieces, and try to achieve better results with it. Since this dataset
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would contain more information for various endgame scenarios than a more
specialised dataset.

To decrease the amount of draws gotten when playing the game. The dataset
could be changed from just adding one board per game, to instead add the
entire endgame with perfect play of the board found. This would lead to
the machine being trained on data that would lead to a win, and not just
positions that would be a win given perfect play.

Another way of doing this would be to implement Reinforcement Learn-
ing or another method of self play. Where the machine plays against it-
self, or generate and evaluate boards for endgames. This would allow the
Tsetlin Machine to learn board positions that it does not have from the
other dataset. One would be able to not have to rely on a self generated
dataset that does not contain enough varied cases. With the self play op-
tion one would also try to learn the Tsetlin Machine to play games from the
beginning.

An interesting idea to test out for endgame chess would be to have different
machines trained on different amount of pieces left on the board. Imple-
menting overhead for the playing so that it could swap what machine it
used based on the amount of pieces left on the board. For example; if there
was 4 pieces left it would use a machine trained on the 4 piece data, but if
it was 3 pieces it would instead use a machine trained on the 3 piece data.

Other future work would be to increase the amount of pieces left on the
board that it can handle. 6 pieces would be achievable with the current
hardware, but would prove troublesome if one wanted to include the 7 piece
data. It would either require a hard drive with a lot of space, or some
online query option. This would be interesting in order to see how much
the increased complexity of adding more pieces could change the results.
Looking at how the 5 piece data performed worse than the lower piece
amounts, the 6 and 7 piece would probably follow this. Though this can be
combined with the previous suggestion of adding the data together to one
set, and trying to increase the accuracy for that set.

An approach to look at clauses less individually, as this did not yield the de-
sired results, would be to implement some way of gathering different clauses
that vote together on a board. In order to see if one can get a better pattern,
or a pattern that contains more information than looking at one clause at a
time. Then we can see if we can get a better understanding for the choices,
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6.2. Future Work Conclusion

since it will show what the machine mostly reacts too. One can also make
a system where the features that where included or excluded are gathered
in a separate pattern, in order to better see what specifically lead to the
classification.

For most of the future work mentioned, it would be to chose one method.
Either flipped player or moving player and focus on it by testing out different
hyper-parameters for this method specifically. Since the hyper-parameters
was made at the beginning of the project and used for every method. So the
methods could perform better with different hyper-parameters and would
be worth looking into.
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Appendices

A Code

Code available at https://github.com/jareie/TMChess.
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