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Abstract

A transmission network is the most crucial part of modern infrastructure.
However, it requires an extensive amount of power line inspection each year
to maintain, and with an increased interest in replacing large helicopters
with drones for this process, the possibility of including AI is equally com-
pelling. This thesis goes into the second part by taking a deep learning-based
approach in the interest of fault detection. A literature review illustrates
that earlier research has some to none understanding of the complexity re-
quired for inspection.

Due to the advancement in object detection and classification, this thesis
has identified and implemented an applicable model capable of giving state-
of-the-art accuracy in electrical pole and component detection by dividing
the process into multiple layers. This thesis takes as well and proposes a new
method that presented great result in assuring more reliable fault detection
and is a way to improve the quality of images taken by drones. The pole
detection layer gave 97.7 mAP, the component detection layer reached 95.6
mAP, the fault classifier delivered an accuracy of 93%, and the proposed
quality classifier had an accuracy of 93% as well.

The presented approach illustrates the possibility of phasing the physical
inspection out. The amount of component labeled that must be available
for algorithmic training to surpass a human expert is not readily available.
Nevertheless, the presented approach is a sufficient tool for assisting the
inspector.
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Chapter 1

Introduction

Electricity has become one of the most necessary dependencies in modern
society. This comes with its own challenges related to reliability, availabil-
ity, and sustainability. Even small blackouts can be costly, and here the
importance of power line inspection comes in – but the size of the Norwe-
gian power lines is immense. In addition to volume, the electrical network
is divided into three transmission levels covering over 130000 kilometers
with power lines. Because of these levels, and the lack of early planning in
regards to standards, the transmission network is highly complex.

Power line inspections are mostly done with a low-flying helicopter where at
least two people are required – one to take multiple high-resolution photos
of each electrical pole and one maneuvering the helicopter in the inspection
direction. This process is tedious and puts human lives in a dangerous
situation. An inspection done in 2018 was extremely close to becoming fatal,
where a helicopter almost collided with a line crossing over the inspected
line. Nevertheless, it is not only human lives that are continuously at risk.
There have been situations where farm- [1] and wildlife animals [2][3] have
died because of the stressful situation the helicopters put upon them. These
cases illustrate the beneficial needs of replacing large helicopters with drones
in regard to human- and animal safety.
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1.1. Motivation Introduction

1.1 Motivation

The situation presented has been challenged by different companies that
have observed an opportunity to use an Unmanned Aerial Vehicle (UAV)
and Artificial Intelligence (AI) together - permanently removing humans
from the equation. While waiting for drone technology to improve, this
thesis’ motivation is to take a deep learning-based approach in interest to
automated fault detection and assuring that images contain enough infor-
mation to assure a proper inspection.

1.2 Thesis Definition

The primary purpose of this thesis is to take a deep learning-based ap-
proach to support power line inspection. To be able to propose a possible
solution for out-phasing the potential slow time power line inspectors use,
the research is divided into three goals and three hypotheses.

1.2.1 Thesis Goals

Goal 1: Create or locate a dataset suitable for taking a deep learning-based
approach for power line fault detection.

Goal 2: Identify and implement an applicable model capable of locating
electrical poles and components under complex conditions and provide state-
of-the-art accuracy.

Goal 3: Identify and implement an applicable model suitable to classifying
components given from goal two in regards to fault detection and quality
assurance.
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1.3. Contributions Introduction

1.2.2 Hypotheses

Hypothesis 1: The quality of an image can not entirely be represented
based on the number of pixels wrapping a component.

Hypothesis 2: State-of-the-art deep-learning methods for image recogni-
tion are more suitable than earlier presented methods.

Hypothesis 3: A Deep Learning-based approach for fault detection is capa-
ble of phasing out an inspection performed by an expert so long the dataset
contains enough information.

1.3 Contributions

This thesis takes state-of-the-art methods and uses it in an area that has had
only a hand-full of earlier experiments. With high variation in contributed
results and questionable accuracy from earlier projects, this thesis has shown
an improvement in detection by using methods not seen documented in
power line inspection before.

In addition to better accuracy, a new method for assuring reliable image
data from an inspection is proposed. From the authors’ knowledge, no
documented research has proposed or tested a similar method.
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1.4. Thesis Outline Introduction

1.4 Thesis Outline

Chapter 2 outlines background theory relevant for the experimentation and
research, by presenting standards in the field of object recognition (2.1), the
fundamental architecture of CNN (2.2), and the change in object recognition
(2.3).

Chapter 3 investigates current state-of-the-art in object detection and clas-
sification (3.1), and what earlier research in the area of power line inspection
has accomplished (3.2).

Chapter 4 presents information in regards to the inspection data (4.1), brief
overview of the labeling tool created (4.2), and a description of datasets
created (4.3).

Chapter 5 introduces the proposed solution for the presented goals in (1.2),
by describing the methods for object detection (5.2) and object classification
(5.3). Ending the chapter with a outline of the full design (5.1).

Chapter 6 reveals and discusses the results from the experiments done in
regards to the proposed solution in Chapter 5.

Chapter 7 concludes this thesis and presents possible future research.
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Chapter 2

Background

Neural network is a common term used within machine learning for algo-
rithms that mimics the way the human brain operates. Since this topic has
become a wast sea of solutions and methods during the last few years, will
only the most relevant network for this thesis be briefly described, namely
Convolutional Neural Network (CNN).

This chapter outlines background theory relevant for the experimentation
and research presented in this thesis. Section 2.1 describe standards used
for measuring the quality of methods. Section 2.2 presents the fundamental
architecture of CNN. Section 2.3 outlines the change in object recognition
from traditional methods to neural networks.
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2.1. Standards – Datasets and Formulas Background

2.1 Standards – Datasets and Formulas

In most sports where people compete, there is a set of rules everyone follows
to ensure fairness. Just as in the Olympics, scientists and engineers in the
field of computer vision have established standards to provide a common
ground for everyone. These standards can be related to the dataset used
or the definition of the mathematical statements within scientific papers or
journals.

2.1.1 Datasets – computer vision and classification

To be able to determine detection and classification accuracy to find the best
model, various official datasets have been put together to achieve common
ground for measurement. Early datasets created for image classification
contained a single image and a blank background, Modified National Insti-
tute of Standards and Technology (MNIST) [4] and Columbia Object Image
Library (COIL) [5] are examples of this kind of official datasets. The tran-
sition to more realistic images came with the Caltech-101, and fast followed
by Visual Object Classes (VOC) 2005 [6].

An explosion of data came with the rise of the digital age, with social media
and more available technology for the average consumer increased access to
information. Because of this availability, Pascal VOC went from only four
classes and 1578 images in 2005 to 20 classes and 11530 images in 20111 [8].
The number of categories in Pascal VOC did not satisfy a team of scientists
at Princeton University, which announced in 2010 ImageNet [9], a large-
scale database of images divided into 1000 classes and 3.2 million images.
ImageNet is extremely diverse in categories. Because of this, the number of
images within each category had to be limited to an amount between 500
and 1000 images.

One of the primary goals of computer vision is to get an understanding
of the content, what objects are present, and the location of each object.
To achieve this goal, images should contain complexity in the number of
categories presented. ImageNet and Pascal VOC have a common flaw re-
garding this; they have not focused on category complexity. Over 60% of
their data only contain one category [10]. Because of this lack in diversity,

1“The 2012 dataset is the same as the 2011 dataset”[7]
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2.1. Standards – Datasets and Formulas Background

a new dataset was created, named Microsoft Common Objects in Context
(MS COCO) [10]. MS COCO is designed to advance the state-of-the-art
within object recognition and is today the most used dataset benchmark in
its field. The dataset contains 91 objects distributed across 328 thousand
images, where only 10% of the images contains only one category.

2.1.2 Formulas – mathematical statements

Jaccard Index or better known as Intersection-Over-Union (IoU), is an
evaluation metric used to determine the accuracy of an object detector on a
ground-truth bounding box (i.e., a hand-drawn box determine the location
of a given object), most often defined as Region of Interest (RoI). As
seen in formula 2.1, two values are required to be able to decide the IoU, a
ground-truth bounding box which is most often quality assured by a human
and a predicted bounding box which is the box provided by the vision-based
algorithm. The IoU result given is a value between 0 and 1, where 1 is a
perfect overlap, and 0 is no contact.

IOU =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∪B|
(2.1)

To find out how well an object detection model is doing, the result given
back from a model is divided into different values based on the prediction
made related to the ground-truth:

• True Positive (TP): A detection is satisfied with the IoU threshold and
class type.

• False Positive (FP): A detection is not satisfied given requirements related
to class or IoU.

• False Negative (FN): A prediction was not made where an object was
present.

• True Negative (TN): does not apply in object detection, because that
would be all possible boxes that were never given by the model.

Figure 2.1 gives a more visual view of what the different values represented. It

should be stated that the IoU threshold between TP and FN is not a globally

defined value, but there exist some defined values most scientists follow.
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2.1. Standards – Datasets and Formulas Background

Figure 2.1: A visual illustration on how object detection determine the result
between true positive, false positive, and false negative.

Precision determine how many of the predicted classes with a boundary
box are relevant – also known as positive predictive value. Seen in formula
2.2 is the true positive values divided on the total amount of prediction
done. The result given is a value between 0 and 1.

Precision =
TP

TP + FP
=

TP

all detection
(2.2)

Recall, on the other hand, determines how many of the selected items are
relevant. In equation 2.3 is the true positive values divided on the total
amount of relevant occurrences. The result given is a value between 0 and
1, where 1 have no failed predictions, while 0 is a situation where there was
never a good enough prediction.

Recall =
TP

TP + FN
=

TP

all ground truths
(2.3)

F1score is a measure used to test the accuracy of a model. The score can
be interpreted as a weighted average of the recall and precision, a harmonic
mean between the values. Just as recall and precision, the score given by
the F1score is a value between 0 and 1. The F1score is a better messure
when seeking the balance between recall and precision and in datasets where
classes have a uneven amount of object [11].

F1score =

(
2

recall−1 + precision−1

)
= 2× precision× recall

precision+ recall
(2.4)
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2.1. Standards – Datasets and Formulas Background

Average Precision (AP) is perhaps the main measurement value. AP
combines multiple values given and calculate an averaged value. Before the
calculation is done, the pattern given is smooted to the lowest and highest
value, as seen in equation 2.5. Since precision and recall always give a value
between 0 and 1, AP will as well fall between this range.

AP =

∫ 1

0
p(r)dr (2.5)

IoU and AP operate hand-in-hand when it comes to object detection. Look-
ing away from class difference and situations with no predictions, AP al-
ways have an IoU-threshold that defines if something is true positive or
false positive. The most common measurement used is IoU larger than 0.5,
commonly written as AP IoU=.50, AP50, or AP@[.50]. This threshold has
been considered good enough for object detection and was used a lot in the
VOC challenges. AP IoU=.75 or AP75 is called strict metrics and is as the
number states a stricter requirement before something is defined as true
positive. The MS COCO challenge has taken this measurement even fur-
ther and takes the average over multiple different IoU threshold between 0.5
and 0.95, where the value increases with 0.05 for each step up to 0.95 (i.e.,
teen steps in total). This can as well be written as AP IoU=.50:.05:.95 and a
few other ways already mentioned. In some cases stands AP alone with no
defined threshold mentioned. There is no globally established value of what
AP-threshold is when standing alone but can, in most cases, be determined
based on what type of dataset used when determining the value (i.e., VOC,
or MS COCO).

Mean Average Precision (mAP) is, in most cases, the average value of the
computed AP for each class, but it is important to note that this might
not be the case. For example, in the context of MS COCO, there is no
distinction between mAP and AP [12]. When there is a difference between
the values, mAP calculation is seen in equation 2.6, here K is the number
of classes and APi is the AP of a given class i.

mAP =

∑K
i=1APi
K

(2.6)
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2.2. Convolutional Neural Network Background

2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) or also known as ConvNet, was first
introduced by IBM in the year 1998 [13], and have similarities to standard
neural networks with learnable weights and biases. What separates ConvNet
architecture from standard neural networks is the explicit presumption that
everything that comes into the input-layer is images; Allows ConvNet to
have properties within the architecture that specializes in visual-recognition
[14].

There are five types of layers used together in a stack to form a full ConvNet
architecture. A not too technical description will be presented to give a
overview of role of the different layers.

Input Layer

The input layer is the first building-block for all types of networks, defining
a large part of the architecture based on the dimensional shape allowed
into the model. The shape is not universally defined and depends on the
situation desired. Standard datasets described in section 2.1.1, such as MS
COCO and Pascal VOC, have high complexity images and require a larger
input dimension even to get a perception of the objects, while MNIST, on
the other hand, can work with less input information because of low image
complexity.

Convolutinal Layer

The convolutional layer is the fundemental building-block for ConvNet, in
this layer most of the heavy computational workload is preformed. The
amount of workload is determined by multiple factors such as the input
volume and the values of different hyperparameters:

1. Depth (K) represents the number of filters, and this value most often
starts at the input layer with an amount of three because of the color
spectrum computers are built toward. Still, in some cases, the value
might be preferable as one (i.e., gray-images) for efficiency reasons.
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2.2. Convolutional Neural Network Background

Each hidden layer within the network has the potentiality to reduce
image width and height, for the benefit of increasing the depth-value
of the given data.

2. stride (S) determines how far the filter moves for each iteration. A
stride value of one will move the filter by one pixel in the horizontal
direction until reaching the end of the width-axis, before moving a
stride value down and starting the window from left again. More
substantial stride values will produce smaller output volume, but it is
uncommonly to see a usage of stride value higher than two.

3. Zero-padding (P) is a technique where values of zero’s are added
around the border of an image to control the size of the output. This
is a common practice when we want to preserve the spatial size of the
image (i.e., the same width and height in the output layer as in the
input layer).

4. Spatial extend (F) is a value used to determine the receptive field
of neurons. This is a considerable technique used when dealing with
high-dimensional inputs such as large images to reduce the number
of connections each neuron requires between layers. The width and
height dimension can differ, but the depth-dimension is always equal
to the depth of the input value from the previous layer.

Figure 2.2: Architecture of the first convolutional neural network, LeNet-5 [13].
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2.2. Convolutional Neural Network Background

The convolutional layer combines the four hyperparameters and use them
to determine the values of the next layer. By accepting an input volume of
size W1 ×H1 ×D1, the hyperparameters produces a output value by:

• W2 = W1−F+2P
S + 1

• H2 = H1−F+2P
S + 1

• D2 = K

Figure 2.2 illustrates how the original image is transformed and given more
depth through the hidden convectional layers, the architecture is from LeNet-
5, which only contained five hidden layers, but the concept still applies for
more modern approaches.

ReLU layer

Activation functions are not often explicitly written as a layer. However, to
get a modest understanding of a CNN it is explained with a focus around
ReLU activation. Rectified Linear Unit or better known as ReLU, it is a
type of activation function most often found in neural networks. ReLU is
linear for all positive values, where negative values become transferred to
zero, defined as y = max(0, x). Nevertheless, turning all negative values
to zero have a downside. A concept called Dying ReLU occurs if the inputs
are caught at the negative side, then all outputs become zero, and once a
neuron gets negative, the chance for recovery is unlikely. To counter the
dying ReLU other variants of ReLU have been used, such as Leaky ReLU
y = max(0.1x, x) or Paramteric ReLU y = ax where a is a constant
value the system determine by itself when x < 0.

Looking away from the problem with Dying ReLU, the concept of ReLU is
inexpensive to compute, allowing the model to train and converges faster.
It is sparsely activated since zero replacing all negative inputs which are
most often desirable when working with multiple classes since the model
filter away unnecessary information.
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2.2. Convolutional Neural Network Background

Pooling Layer

The pooling layer is a common periodically practice to progressively reduce
the number of parameters and required computations, by downsampling the
dimension of an input array. Pooling works by taking in a spatial extend
F and a stride value S. The most common form of pooling is F = 2, and
S = 2, but F = 3, and S = 2 is also seen, larger dimensions are considered
too destructive.

There exist different ways of preforming pooling; max pooling is the most
commonly used. This practice takes the F box and only keep the highest
value, before striding to the next window. Other methods exist but are not
commonly used, such as average pooling and minimum pooling. Discard of
the entire pooling concept has occurred, and some scientists [15] only favor a
well balanced convolutional layer with variations in hyperparameters above
the idea of pooling.
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Fully-Connected Layer

Fully-Connected (FC) layer is as the name state, a layer where all neurons
are connected fully to all activations from the previous layer. This differs
a bit from what was earlier mentioned related to the convolutional layer,
where the connections are within a receptive field. In regards to differences
between the two layers, it is only the amount of links that differ, where FC
has a global connection, while convolutional has locally based connections.

The FC layer is not only a sub-layer used within a network, it is as well the
last layer within the architecture. This layer uses a preferable loss function
to calculate a class score based on the provided input image. There are
different functions available, but the most common ones are:

• Multiclass Support Vector Machine (SVM) loss is one of two
commonly seen classifiers. The SVM classification seen in equation 2.7
wants a score higher than the incorrect classes by a fixed value greater
than ∆ (delta) to achieve a loss value of zero. When SVM reaches the
defined delta value, there is no need for further improving; the system
only cares about reaching the delta difference.

Li =
∑
j 6=yi

max(0, sj − syi + ∆) (2.7)

• Softmax is a binary logistic regression classifier, used for generalizing
the score of multiple classes. The Softmax takes a vector of arbitrary
real-values scores and normalizes the value to a value between zero
and one, where the sum of all categories equals to one.

S(yi) =
eyi∑
j e

yj
(2.8)
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2.3 Object Recognition

Recognizing something is a way to gain a level of understanding of what
the visual perception is seeing. This is something that comes naturally to
humans. However, for a machine, this is entirely different and most often
requires a lot of visual information.

Object recognition is a general term used to describe a collection of re-
lated computer vision tasks used in computer vision, such as classification,
localization, and detection.

Recognizing different objects requires some sort of feature extraction of the
visual traits, which can present a semantic and robust representation [16].
Methods used for this type of extraction is diverse, but there are a few
representative ones:

• Scale Invariant Feature Transform (SIFT) [17], is an approach
which transforms image data into scale-invariant coordinates relative
to local features. The method first initializes key points based on
the maxima and minima of the different-of-Gaussian functions, then
a threshold of minimum contrast is applied for reducing the number
of keypoints, before finally using a threshold on a ratio of principal
curvatures. An essential aspect of this approach is the vast quantity
of generated features that densely cover the image.

• Histograms of Oriented Gradients (HOG) [18] is reminiscent of
SIFT, but instead of dense grids of uniformly spaced cells and feature
overlapping, HOG uses a grid of overlapping blocks. HOG first nor-
malize the gamma and color value of the input image, before dividing
the image into small connected regions and computes a histogram of
gradient directions or edge orientation for pixels inside the cell. The
pixels then calculate a weighted vote for an edge orientation based
on the gradient element concentrated on the pixel position, the votes
get accumulated into orientation bins over a local cell, then the over-
lapping cells are locally contrast-normalized to increase performance.
Ending the HOG method by adding a detector window to the im-
age, creating a black border around the image, which has shown a
significant amount of increase in context.

To recognize different objects with this type of feature extractions, a large

17



2.3. Object Recognition Background

number of features have been pre-extracted from similar images and added
to a feature-database. This database provides a basis for object and scene
recognition. After the increased interest in neural networks, primarily CNN,
these types of feature extractions have become antiquated because the ob-
tainable mAP is not comparable. Ross Girshick et al. [19] illustrated this
jump in mAP with the introduction of R-CNN in 2013 – the method had a
61% relative improvement compared to a HOG based method.

In a CNN architecture, feature extraction is conducted in the backbone
network – this network is acting as the primary feature extractor for an
object detection task. The network takes an input image of a defined size
and outputs a feature map of the corresponding image. The last layers use
this feature map to classify it to a predicted class. [20]
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Chapter 3

State-of-the-art

The inspection of power lines is a critical task to ensure stability in crucial
infrastructure. With the advances in object detection and image classifica-
tion in the last few years, state-of-the-art methods have quickly advanced,
opening up the possibility to outsource repetitive and tedious inspection.

This chapter will present well-established state-of-the-art methods used in
object detection and image classification in Section 3.1, before moving over
to a literature review in the field of visual power line inspection in Section
3.2.
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3.1 Object Recognition

3.1.1 Object detection

Defining the location of an object within an image is the main problem
defining object detection. The pipeline used to achieve this is mainly di-
vided into three stages: informative region selection, feature extraction, and
classification [16]. The object detection systems taking advantages of this
pipeline can usually be divided into two categories:

• Two-stage Deep Object Detection splits the pipeline into a region-
proposal-stage focusing on object localization, extract the features and
then moves over to the next stage which is classification. This method
have delivered some of the best results in terms of object recognition
accuracy with methods such as Fast R-CNN [21] and Faster R-CNN
[22].

• One-stage Deep Object Detection does not split the pipeline
into two-stages allowing much higher computational efficiency. YOLO
[23] is a well known one-stage object detector that illustrates higher
computational efficiency in the form of numbers of boundary boxes
required and Frames Per Second (FPS) of detection time, allowing
real-time object detection. The amount of FPS depends on the com-
putational power and the backbone of the model, e.g., YOLOv3 [24]
introduced three methods where there was a tradeoff between execu-
tion time and FPS in regards to localization accuracy.

Except for the number of stages in the categories, both models wants to
increase the localization accuracy to provide the best object detector. The
most common measurement for determining accuracy is IoU, which can work
as a loss function for faster convergence and better accuracy compared to
L2-loss [25]. But the tradeoff between two- and one-stage detecting have
always been in the form of accuracy and speed until Alexey Bochovskity et
al. [26] introduced version four of YOLO.
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3.1.2 Two-stage detector – R-CNN

Object detection concept had reached their peak on modern datasets. So
in 2013, Ross Girshick et al. [19] introduced Region-based Convolutional
Neural Networks (R-CNN), a two-stage object detector with a mAP 7.1%
higher than the previous best result on the 200-class ILSVRC2013 detection
dataset. The architecture of R-CNN is first based on the selective search
algorithm from [27] for object extraction, proposing approximately 2000
possible regions, then running each proposed region through a CNN, before
classifying each image with SVM and determine the best fitted bounding
box out of the proposed regions.

R-CNN needed days to train, required hundreds of gigabytes of storage for
VOC 2007 features, and used around 47 seconds to propose objects on each
test case. This was not suitable for a real use case. Hence, the introduction
of Fast R-CNN [21], built on the previous work. Fast R-CNN is 9x faster in
training, 146x faster in test-time, and achieves higher mAP than R-CNN.
This was done by changing the method of processing from each RoI, to
the entire image. It still proposes RoI, but overlapping regions are sharing
computation – which is a significant change for improving the speed. The
CNN is still built on the VGG16 architecture. However, the classifier is
changed from SVM to softmax because of a slight improvement in mAP.

The test speed of Fast R-CNN was still considered too slow for an object
detector. As a consequence of this, Faster R-CNN [22] became introduced.
The architecture for detection is the same as in the previous model. How-
ever, the selective search algorithm became replaced with an integrated
Region Proposal Networ (RPN). RPN is a sliding-window concept, moving
n pixels at a time, and testing k number of anchors at each sliding position.
This small change in the first stage of the model increased the test speed
10x compared to Fast R-CNN, reducing the test time at each image to 0.2
seconds; 5 FPS detection speed.
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3.1.3 One-stage detector – YOLO

To accomplish real-time image processing, complex methods such as sliding
window or generating potential boundary boxes had to be eliminated to
reduce computation power. By looking at the problem as a single regression
problem, YOLO can predict what objects are present and the location of the
given object by only looking once, thereby the name You only look once [23].
YOLO divides an Image into a SxS grid, where each cell in the grid predicts
B bounding boxes, confidence for those boxes, and the class probability. If
an object is within a cell, that cell is responsible for detecting the object,
or the confidence for the object existence should be zero.

YOLO had a variety of shortcomings relative to state-of-the-art detection
systems. With a significant number of localization errors, and relatively
low recall compared to region proposal-based methods. Because of this
an improved model was designed, YOLOv2 [28]. YOLOv2 takes a variety
of concepts to improve the older model, e.g., batch normalization, higher
resolution classification, dimension clusters, direct location prediction, fine-
grained features, and multi-scale training. The exact improvement each
technique has on the model can be found in [28], although the total im-
provement was significant and put YOLOv2 in line with other state-of-the-
art detectors such as Faster R-CNN. At a high resolution (i.e., 480x480,
544x544) YOLOv2 provided state-of-the-art detection on the Pascal VOC
2007+2012 dataset with a 78.6 mAP. Even with impressiv result at Pascal
VOC, the methode was lagging behind on the latest developed standard
dataset (i.e., MS COCO). To challange this YOLOv3 was introduced. Ac-
cording to Joseph Redmon et al. [24] there was not done any significant
improvement to the method, but even so, they mananged to improve AP50

with 31.6% on the MS COCO set, passing Faster R-CNN. Even with this
strong detection metric, it was not able to surpass RatinaNet in any form
of defined metric.

Two years later, on April 23.2020 Alexey Bochkovskity et al. [26] intro-
duces YOLOv4. The model is using the concept from YOLOv3 in front for
class prediction and object localization, and have taken an advanced con-
cept from Chien-Yao Wang et al. [29] named Cross Stage Partial Network
(CSPNet) which have been implemented with the DarkNet53 backbone to
reduce not only computation cost and memory but also increasing speed
and accuracy. Between YOLOv3 input-based images and the CSPDark-
Net53 backbone, they have added two image processing concept named
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Spatial Pyramid Pooling (SPP) [30] and Path Aggregation Network (PAN)
[31]; the methods are built for improving feature extraction. The combi-
nation of these methods, with a few smaller ones, have made YOLOv4 the
best available state-of-the-art detector in regards to real-time1 accuracy on
the MS COCO dataset.

3.1.4 Image classification

Teaching machines to find meaning within an image have existed for decades,
already in 1998 the first CNN architecture was proposed by Yann LeCun.
The architecture called LeNet-5 [4] was designed to recognition handwrit-
ten and machine-printed characters. However, the concept of using neural
networks for image classification was almost forgotten because of computer
power, data availability, and the lack of notice within the science community.

In 2012 a neural network known as AlexNet [32] entered the ImageNet
competition and vastly outpaced the competitions. The result started a new
age for computer vision; someone might consider that history began with
AlexNet [33]. Two years later, in 2014, the Visual Geometry Group (VGG)
network was introduced [34] – this is the same backbone the classification
part of R-CNN is using. Different classification methods have been proposed
afterward, although the most significant is EfficentNet.

3.1.5 EfficientNet

Network scaling is never straight forward, and the most common ways for
scaling have been in one of three directions, as seen in Figure 3.1: width
(b), depth (c), or image resolution (d). Mingxing Tan and Quoc V. Le
[35] wanted to rethink the scaling process and looked into the effect of each
component interacting with each other, finding a balance. They state that
ConvNets have become increasingly more accurate by going more prominent
in the number of parameters, but the size of state-of-the-art networks such
as GPipe is so massive it can only be trained with a specialized pipeline.
Nevertheless, they reveal that carefully balanced network parameters per-
form better in accuracy than earlier state-of-the-art methods [35, Tab. 2].

1Speed faster than 30 Frames Per Second
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Figure 3.1: (b)-(d) are different methods for neural network scaling, (e) is the
proposed solution for EfficentNet [35, Fig. 2]

The proposed parameter scaling method uses a compound coefficient φ on
a fixed baseline network named EfficentNet-B0. The scaling of the baseline
network is based on equation 3.1, where α1

2, β3, γ are fixed constraints
determined by a grid search.

depth : d = αφ1

width : w = βφ

resolution : r = γφ

constraint : α1 · β2 · γ2 ≈ 2

restriction : α1 ≥ 1, β ≥ 1, γ ≥ 1

(3.1)

Multiple observations of different scaling dimensions have shown that an
increase in image resolution should also have an increase in depth to capture
similar features and in width to capture more fine-grained patterns. With a
small grid search based on equation [35, eq. (2)] and 3.1, have the authors
found the best values for the baseline network to be: α1 = 1.2, β = 1.1, and
γ = 1.15. Only a change in the φ is done to obtain EfficentNet-B1 to -B74.

EfficentNet is a highly effective compound scaling method to a suitable net-

2Have a subscript of one to not get misled with the learning-rate value α
3The exponential decay rate, uses an index of two β2, and is not the same as β
4EfficentNet-B8, is later introduced as a larger alternative [36]
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work for a given task. Additional work has improved the EfficentNet model
further, such as using adversarial examples for improving image recognition
[36], semi-supervised learning for training a second model [37], and fixing
the train-test resolution [38]. An increase in accuracy at ImageNet top-
1 is approximately 4.1% (from 84.4% to 88.5%) in difference between the
original EfficentNet-B7 [35] and the best improved solution [38].
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3.2 Literature Review

Powergrid inspection has not been a topic for more than six to seven years
– the lack of available data and promising methods are two main factors.
There has been done research in transmission quality [39][40][41] line detec-
tion [42][43][44] and the advances of Generative Adversarial Network (GAN)
have illustrated the possibilities for segmenting out components [45]. How-
ever, these types of inspections are not of value for this thesis. Further, we
are going to present research done in regards to visual object detection and
classification.

3.2.1 An early approach to powergrid detection

A paper by Carlos Sampedro et al. [46] did already in 2014 look at the
possibility of using supervised learning to detect components in regards to
power line inspection. They did state early on in the paper that computer
vision is a crucial technique for automating the inspection process of power
lines. It is a very challenging task because of the heterogeneous and complex
infrastructure power lines possess.

Another essential factor that must be taken into consideration when trying
to automate the power line inspection is the quality of images. This is a
challenging problem since it varies a lot depending on the type of inspection
conducted and the vehicle used.

The experiment conducted is based on tower location-detection and classi-
fication of pole types. The system was divided into two stages. The first
part uses a sliding window across an image and tries to determine if the
cropped out window contains a tower while the second part takes the RoI
from the first part to classify the type of pool. The result obtained illus-
trated a tower detection accuracy of 96% and type classification accuracy
between 92% and 98%. The result demonstrates that automation is a pos-
sible feature for power line detection. Achieving 96% without using modern
concepts such as CNN is impressive comparing it to the result presented in
Subsection 3.2.3. Still, images presented in the report illustrate from the
authors’ point of view a perfect condition, which should even be easy for
a HOG based approach to distinguish between a white pole and a black
background.
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3.2.2 Pole and crossarm detection based on pixel value

Pedro B. Castellucci et al. [47] raise a concern about how power outages
may cause structural and financial losses, and that inspections done in a
traditional way only covers a small part of the total infrastructure. A UAV
can potentially work more efficiently, but it requires a way to guide itself.

The focus of this paper is to detect pole and cross-arms, which can be used
for a drone to track the electrical poles. Looking away from the colormap
experiment done, they had a system connected with multiple steps, building
on the usage of Artificial Neural Network and statistical approaches. First,
they classified if an image contained a pole before continuing; this is the
Artificial part. Then they start to change pixel colors based on their value,
and if enough percentages of white pixels fit within a fixed template, the
pixels kept its color, or else they are turned black. The detection result
depends on the color map used, but for simplicity, they managed at best to
achieve an accuracy of 72%.

3.2.3 Transmission tower inspection with R-CNN and YOLO

Jiang Bian et al. [48] testes different methods for electrical pole detection,
and proposes a modified version of Faster R-CNN named Tower R-CNN.
They also introduce a drone for the inspection job and methods for detecting
power lines, but this is not relevant for this thesis.

Their proposed model has a reduced amount of convolutional layers since
electrical towers have low-level of edge features and do not require to be
described by deeper abstract features. They also reduce the number of
anchor boxes to one, which means that only boxes with an aspect ratio
of 2:1 are selected as proposals, and according to them, this has increases
the proposal quality and obtains higher detection accuracy. The result
presented is as followed in regard to AP and FPS: Faster R-CNN 89.8%
with 0.8 FPS, YOLOv2 86.8% with 5.6 FPS, and Tower R-CNN 89.8%
with 5 FPS.

Result presented is better in accuracy than [47] and presumably faster than
[46]. However, two aspects regarding the result need to be criticized. (1) The
dataset contains 1300 images that they state are collected from inspection
videos, but with a link in the paper to the applied dataset, it is not the case.
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Most images appear to be scrapped from the Internet, with watermarks from
multiple stock photo sellers, and at least three images contain a person
attempting suicide. (2) With a restriction to only 2:1 ratio anchor boxes,
it should not be possible to get better accuracy on the provided dataset,
images taken from a high angle would be close to 1:1 in ratio and a low
angle 3:1. Nonetheless, most images are taken from the ground, making it
hard for a UAV to understand pole-top features.

3.2.4 Insulator fault detection in aerial images

Jiaming Han et al. [45] focuses on insulator fault detection on high-voltage
transmission; more specifically, they state that the current methods often
suffer from lack of accuracy and robustness. Developed methods only dis-
tinguish between fault and not fault, but not the amount of fault present in
the insulator.

Their model structure for insulator detection uses ResNet50, with a small
change in the last convolutional layer to fit the purpose of the project. Then
they apply a feature pyramid [49] to detect an object in three image scales,
and on top of the entire structure, the header layer of YOLOv2 is attached.
This model is named ResnetV2. Additional smaller changes are produced to
increase the performance of the model, but when it comes to the detection
accuracy, they are below YOLOv3 and defend this with 14.5% less memory
usage.

With no mention of anchor boxes being transformed in the YOLOv2 header,
the paper states that the best ratio for detection is 1:5 in height/width
threshold – reaching a precision of 96.3%. Their method for fault detection
is similar to an earlier mentioned paper [47], where the RoI is transformed
into a black and white color scheme – ending the process by highlighting
possible areas with faults (i.e., the white parts in the image).

3.2.5 Electrical component detection with YOLOv3

Heipeng Chen et al. [50] performed research on recognition methods related
to electrical components. With no dataset publicly available for insulator
and shockproof detection, they used UAV images from a specific area of
China. Because of blurriness in a lot of the available images, a pre-processing
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method for image sharpening named SRCNN [51] became utilized. After
blurred images had been pre-processed, they got resized down to 416x416
– matching the input-layer of YOLOv3. In addition to YOLOv3, Faster R-
CNN and SSD were tested in accuracy and mAP. However, YOLOv3 had
the best performance with a test accuracy of 96.45% and a mAP of 93.6%.

The paper illustrates good accuracy in detecting the objects. Nevertheless,
the author has to question how useful this system is in a real situation since
the focus is automatic detection with a UAV, but they manipulate bad UAV
images beforehand to increase accuracy and precision. With the usage of
SRCNN, they also smoothen out possible component faults.

3.2.6 Advancing automatic power line inspection

The most comprehensive documented resource in the field of power line in-
spection is possibly done by Van Nhan Nguyen [52], which has contributed
three years of his life in researching and testing different methods. He identi-
fies six main challenges in regards to deep learning vision-based inspection:
The lack of training data, class imbalance, the detection of small power
line components and defects, the detection of power lines in a cluttered
background, the detection of previously unseen power line components and
defects, and the lack of metrics for evaluation inspection performance. The
different challenges are divided into four research papers. The last two pa-
pers focuses on line inspection [44], and a few-shot learning method [52],
not relevant for further discussion.

The first paper [53] goes into the current status and the potential role of deep
learning in regards to vision-based inspection, and just as previously men-
tioned papers, he expresses the lack of publicly training data for power line
components and continuing by declaring a new dataset with 30000 manually
tagged images distributed over 54 classes. With an average of 8 components
in each image, a class imbalance problem is presented, where a brown in-
sulator contains 43275 examples while missing top cap only contains 210
examples. Even with a considerable amount of examples, the paper states
that well-known object detectors such as YOLO would never perform well
because of the small scale of the component. However, the paper continues
by saying that the result can be increased by first cropping out the mast.

The second paper [54] goes into the proposed inspection system for compo-
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nent detection. They use two custom build UAVs, with different components
to acquire images of power masts. The acquired images are combined with
images provided by two power companies, creating a dataset containing
28674 unique images, which is a bit less than the dataset presented in the
first paper. However, the number of component classes are the same. To
increase the dataset for component detection, the RoI containing a mast is
augmented twelve times its size by sliding the window (left, right, up, down)
and flipping the image. Other augmentation techniques are used on the im-
balanced classes, but the methods are not presented. The result shows a
lot of different precision in regards to components and methods used. The
paper continues by stating that the multi-stage pipeline has no problem ad-
dressing the fault-detection challenge. However, there is no mention of the
first step in the pipeline; mast detection.
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Contributions
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Chapter 4

Environments

Computer vision is a popular research area for challenging a machine to un-
derstand something human takes for granted. Where humans can with only
a handful of examples get a clear understanding of an object, the “eyes” of a
computer require hundreds or even thousands of examples repeatedly shown
for a defined number of iterations. In this chapter a short presentation of
the inspection data (4.1) is presented, before defining the labeling tool used
(4.2), ending with a description of the available datasets (4.3) needed for
fulfilling the first goal.
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4.1 Inspection Data

Working with restricted information often requires access to a closed system.
The only way to access images taken of the critical power line infrastructure
is by a controlled laptop from Agder Energy – limiting the possibility to self-
install tools needed.

The inspection data goes into two categories: Maintenance inspection and
top inspection. A maintenance inspection is a fast inspection with fair image
resolution (i.e., 2481x3509, or 4864x3232), few images of each mast, and
low precision in image quality. Top inspection, on the other hand, is a more
delicate inspection process with high-resolution images (i.e., 6000x4000),
more images of each mast, and most often have a higher precision in the
photos.

Photos from both categories are inspected by hand. If a fault is found,
different labels are then added to the image. The number of labels can be
above 40 columns, so a deep dive into the possibilities will not be discussed.
Nevertheless, the labels give information about mast-type, material in pole
and cross-arm, type of fault, and age. Information that later can be used
for categorizational tasks – what the columns do not contain are boundary
boxes of components. With limited access to install an application on the
Agder Energy’s environment, a swift labeling application was developed to
work in the environment (4.2).

4.2 Labeling Tool

Image labeling is a tedious process, building a tool in addition to that
is something entirely different. Restriction to other labeling applications
was perhaps the leading reason for the development, but there was also a
belief that a specialized program could create an interest in image labeling
– removing the barrier for unavailable data. The rest of this subsection is a
brief description of the tool.

The labeling tool is built on the programming language Python 3.x and
uses the Kivy library1 for interface interaction. To get access to images of

1https://kivy.org/
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electrical poles and their corresponding labels, an excel file generated from
an early 21st-century inspection program is required. The file contains a
unique path link to a restricted network drive containing the needed data.
The image file is copied into the labeling program and is now ready for
boundary box labeling. Too secure flexibility, the boundary box coordinates
use float values between 0 and 1, allowing the image to get stretched or
compressed without altering the foundation of the boundary box.

Figure 4.1: A snapshot of the self-created labeling tool

Because of the immense nature around most pole images, the program is
dividing the labeling into two layers. The first layer is pole detection. This
layer is only built for marking all poles contained within each image. The
second layer zooms into the RoI selected from the first layer, making it easier
to label small components with high accuracy. Figure 4.1 is a snapshot taken
from the second layer in the application, where the component “traver”2 is
selected with a boundary box. The middle image presents the selected area
and the boxes under present information relevant to the selected compo-
nent. Component “insulator” had labels in regards to insulator type and
the quality of the image presented, while component “top-cap” had other
conditions specialised for the planned task. All datasets presented in Table
4.1 are generated by this application, fulfilling the first goal of this project.

2Named “travers”, later defined as pole-top
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4.3 Dataset

Goal 1 states: Create or locate a dataset suitable for taking a deep learning-
based approach for power line fault detection.

Papers focusing on similar topics in regards to power line inspection are all
stating the same; there are no publicly available datasets good enough for
adequate training of a model. Despite, unique datasets have been produced.
Carlos Sampedro et al. [46] created a dataset consisting of 1600 background
and 1600 tower labeled images, with four tower classes. Pedro B. et al. [47]
acquired 700 high-resolution images (i.e., 4000x3000) with a UAV. Van Nhan
Nguyen [54] made a dataset consisting of 28674 extremely high-resolution
images (i.e., 6048x4032) containing the position of electrical poles and the 54
most common power line components with their corresponding class label.

This paper is no different in regards to producing a working result; tedious
hours have been used to create a dataset suitable. Opposite from what
many of the earlier projects have done in this field, Agder Energy supplied
this thesis with raw images. A file containing links to 16000 helicopter im-
ages from the year 2018 and 2019 maintenance inspection was used. Almost
5000 images were physically looked at, and marked with the location of the
electrical poles. After clearing out not suitable images, the final pole loca-
tion dataset consisted of 3562 images, where the split was: 2500 training
and 1062 test images. The images only contain one class; electrical pole.
The planned categorization was firstly based on pole-type, but the avail-
able information was considered inaccurate and unnecessary – this labeling
concept got dropped, although the labels still exist within the dataset.

To continue the detection pipeline, an additional dataset was created for
component detection. Figure 4.2a consist of insulator count, split between
four classes. Figure 4.2b is top-cap count, consisting of three defined classes.
Both components have sup-classes under each class, but the meaning is en-
tirely different for the experiment. Insulator sub-classes are defining the
available information (see figure 4.3), i.e., how much information is phys-
ically seen in the image. Top-cap sub-classes are defining the amount of
fault in the component, where “good” is a perfect top-cap, while “gone” is
a missing top-cap and “bad” is something in between.

After the component location detection experiment, the location accuracy
for component detection was not considered suitable, and because of this, a
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(a) Insulator count (b) Top-cap count

Figure 4.2: Component location- and class count

third dataset got created. This dataset focused on top-pole location, which
should not be confused with cross-arm detection. The reason behind this
is that the author did not want to disclude the detection of straight poles
with no cross-arm, since they can as well contain a component fault. The
top-pole dataset contains 547 images, which are the same photographs used
in regards to component detection. From the pole-top-location dataset, was
the information from component-detection re-shaped into the location of the
top-pole position in regards to previous float coordinates and class type.

(a) An insulator classified bad (b) An insulator classified good

Figure 4.3: Insulator classification

In addition to four detection datasets, two classification datasets got cropped
out from the component boundary-boxes in the second dataset. To prevent
feature-loss, cropping was performed only on the original image size. The
first classification-dataset uses the information found in Figure 4.2a under
class-type brown; splitting the dataset into two classes: “good”, and “bad”.
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The second classification-dataset takes information found in Figure 4.2b,
splitting the dataset into four possible classes: “white good”, “white bad”,
“black good”, and “gone”. Because of the lack of available information in
regards to “black bad” this class has been excluded.

Table 4.1: All datasets for training, testing, and validation developed

Dataset Size Classes Training Testing

Pole-location 3562 1 2500 1062
Component-detection 547 2 426 121
Pole-top-location 547 1 350 150
Pole-top-components 547 1 426 121
Insulator classification 1180 2 944 236
Top-cap classification 780 4 390 390

Table 4.1 is a summary of all dataset used for achieving the result fount in
chapter 6. All numbers refer to unique images containing multiple different
components. The author is not trying to compensate for something (e.g.,
[52]) by flipping and shifting images to give a vision of a larger dataset than
it is – YOLO already has this type of functions integrated.
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Chapter 5

Proposed Solutions

In Chapter 2 we have looked into the background of object recognition,
Chapter 3 presents relevant models and papers for defining a proposed so-
lution, and Chapter 4 introduces the datasets. Related work presented in
Section 3.2, mostly seems to use high-quality images to present their result –
one paper [50] even goes so far as using SRCNN to fabricated higher quality
- a method useless when trying to detect a crack the size of a few pixels.

Almost all related work presented in the literature only focuses on a single
problem, such as direct component detection [47][50] or fault classification
[45]. Most state-of-the-art methods for detection such as YOLO and R-CNN
works well for what it is designed for, but detecting a fault on a component
1/1000 in size of the total image would never yield any good accuracy. To
compensate for this, the author believes a similar pipeline as Nhan Nguyen
[52, Fig. 5.1] has presented is the best alternative to go forward with when
working with uncommonly large image sizes.
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5.1 The Proposed Design

The proposed design is a multi-stage pipeline, divided into two possible
detection directions, and two classification methods. The presented pipeline
in Figure 5.1 is designed to reduce background noise by cropping out all RoI
presented in each part of the pipeline.

Figure 5.1: The proposed multi-stage power line inspection system for detection,
classification and assuring image quality.

The first stage of the pipeline is the detection of electrical poles. The pole-
location dataset is build to include a small part of the ground under not
to disclude the possibility for faults at the lower part of the pole. This is
something Agder Energy has stated essential to include, even though no
previous work has stated something similar, but this part will not have
any more further focus in this thesis. There can be multiple poles located
within the field of vision because of crossing power lines or different levels
of transmission networks. All poles RoI are taken to the next step since it
is at the current moment, no method to determine which pole is part of the
planned inspection.

In the second part of the pipeline two directions can be taken, Direction
A, a direct detection of component, or Direction B, first detect the pole-
top to get higher feature extraction and then detect the components. Even
if the first direction is faster for the pipeline, there is more details to get
from adding this extra layer. Even if the Result 6.2 illustrate something
different.

When components are detected, a split occurs. Components chosen for
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quality classification are classified by a given label “good” or “bad”. All
other known components become transferred to fault classification. There
can be various classifiers within this field, each specialized for a defined
component. In this paper, only top-caps illustrate the possibility of fault
detection, but with more data, the amount of component used for fault
classification is extensive.

For a UAV this entire detection process is too heavy because of the limited
processing power most UAVs possess. However, theUAV images can be
transmitted to a more powerful device that can, as illustrated in the figure,
report back the image quality – allowing the UAV to take action based on
the response. However, this is more in the category of future work (7.2).

5.2 Object Detection

Goal 2 states: Identify and implement an applicable model capable of locat-
ing electrical poles and components under complex conditions and provide
state-of-the-art accuracy.

The theoretical work presented in Chapter 3 present one- and two-stage
state-of-the-art detection models. From this obtained information, the de-
tection of power lines and component types are considered to not require
the deepest of models, fine-tuned to obtain the best detection result in the
MS COCO. Since power line detection is relevant both for post- and during-
detection, a one-stage object detection method is the best choice, because of
the real-time detection capabilities compared to existing two-stage methods.

The most suitable one-stage detection model documented is the YOLO ar-
chitecture. Alexey et al. [26] presented YOLOv4 in the last month of this
project, offering a state-of-the-art detector that is faster and more accurate
on the MS COCO than the previously best one-stage detector; YOLOv3.
YOLOv3 was considered the best choice early in the project, though avail-
able time made it possible to include YOLOv4. As mentioned in Subsection
3.1.3, YOLOv3, and YOLOv4 use the same head and similar backbone for
feature extraction, which makes the setup for the experiments very similar.
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5.2.1 Model setup

Before presenting the different stages in the detection part of the pipeline, a
short explanation of the YOLO hyperparameters must be explained. Firstly,
discovered during experimentation, the batch size of 64 needed a subdivi-
sion increase to 32 for YOLOv3 and 64 for YOLOv4, because of the limited
video memory. The amount of iteration (i) for a fully trained model used
the proposed calculation i = max steps(4000, classes · 2000). Because
of the policy value (i.e., “steps”), the max iteration value would affect the
“steps”1 variable. The “steps” variable used is the recommended formula:
steps = (max steps · 0.8, max steps · 0.9). In short, these are the val-
ues used in regards to learning rate. When a defined amount of iterations
reached in the “steps” variable, the rate of learning is multiplied with 0.1,
meaning that the start learning rate of 1e−3 is after 80% completion changed
to 1e−4, and the last 90% uses 1e−5. Explanation of other available hyper-
parameters and its defined value:

• angle=0, randomly rotates the image during training up to given
amount.

• saturation=1.5, randomly changes the image saturation.

• exposure=1.5, randomly changes the image exposure.

• jitter=0.3, randomly changes image size and its aspect ratio from
x(1− 2 · jitter) to x(1 + 2 · jitter).

• random=1, randomly resizes the network size every 10 epoch.

Additional hyperparameters included in YOLOv4 are CutMix, Mixup, Mo-
saic, and Blur – these are described in [26]. The author of YOLOv4 [26]
tested multiple combinations of these parameters and concluded that the
combination of CutMix and Mosaic yielded the best accuracy in MS COCO,
however because of the thesis problem, only Mosaic is activated. CutMix is
considered too destructive for the given problem.

Before the YOLO model can be used, two parameters are required to be
changed in each output layer of the pyramid. Firstly, the variable “classes”

1policy value “steps”, and the “steps” variable is not the same
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is changed to the number of classes, one for pole location detection, and
two for component detection. Secondly, in the last convolutional layer,
filter depth must be adjusted to filters = (classes+ 5) · 3 (i.e., 18, and
21).

5.2.2 Detection stages

Detection of electrical mast is the most crucial step in the entire process;
the pipeline depends on it. Similar work has presented good accuracy in pole
detection [46][47][48]. However, as stated in Section 3.2, none of this result
could be applied in a real situation. To work with complex environments,
the model must get complex features. The dataset Pole-location presented
in Section 4.3 is built to include this complexity, with 3562 raw images from
multiple classified positions across Southern Norway, high diversity in pole
types, light conditions, pole placement, pole distance, and image quality -
Appendix B illustrates image types even further. Because of the immense
resolution in the original images, the trained dataset is resized to 608x608,
which is the same size as the input size of the model.

Detection of components is the second step. In this step the pole should
already have been detected, and RoI provided. Related work for component
detection have gone for a more direct detection [45][50], except [54], which
uses a similar approach. What all approaches have in common is the lack
of the entire pole. To cope with this, a Direction B is proposed to be
included in the pipeline to achieve higher feature extraction of components
by first detecting the pole top and present a new RoI. However, a direct
detection is included in the experiment as well, to speed up the pipeline
and to see what alternative is preferable. The size of input images is in
the original size from the cropped out images; the difference in accuracy is
immense when more features are kept (further discussed in Section 6.2).
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5.3 Object Classification

Goal 3 states: Identify and implement an applicable model suitable to clas-
sifying components given from goal two in regards to fault detection and
quality assurance.

The theoretical work compassed in Chapter 3 displays the EfficentNet fam-
ily as the best state-of-the-art classifier capable of running on a normal
computer. The EfficentNet family is a flexible model where a small change
in the φ value would increase depth, width, and input resolution. Although,
this φ value is already fine-tuned by the authors of the model and spread
across eight baselines; B0 to B7. The paper does not specify how the values
change from the original B0 model up to the B7. However, these values
are defined in the source code2. The code demonstrates how the width and
depth coefficient values change from 1.0 φ at both dimensions in B0 to 2.0
in width φ and 3.1 in depth φ in B7 - discluding the even larger B8 and L2
backbone from this comparison.

Table 5.1: EfficentNet-B0 baseline network [35, Tab 1]

Stage Operator Resolution Channels Layers

i F̂i Ĥi × Ŵi Ĉi L̂i

1 Conv3x3 224 x 224 32 1
2 MBConv1, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 28 x 28 112 3
7 MBConv6, k5x5 7 x 7 192 4
8 MBConv6, k3x3 7 x 7 320 1
9 Conv1x1 & Pooling & FC 7 x 7 1280 1

Nonetheless, the third value is perhaps the most significant for the given
situation to determine what baseline works best for the given classification
problem; input resolution. When width and depth of EfficentNet increases,

2https://github.com/tensorflow/tpu/blob/master/models/official/

efficientnet/efficientnet_builder.py#L28
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the recommended resolution size also expand. B0 has a recommended value
of 224x224, while B7 recommends 600x600 - three-layer color channels are
invariably implied. The dimension of component images from a raw out-
cropped state is small. Thus, the input dimension for EfficentNet was de-
cided to be small, which meant that a large baseline network should not be
needed for a satisfactory result.

To give a clearer understanding of the baseline model, Table 5.1 describes
the B0 backbone, and this is the building-block for the entire EfficentNet
family. The result related to EfficentNet goes further into the structure
placed around the network, but before that, a few key statements related
to each classification task must be laid out.

5.3.1 Quality classification

Image quality classification is from the author’s knowledge never proposed
before in the field of power line inspection to ensure a sufficient amount of
information within an image. With the increase of UAVs, this is a technique
that can feedback information to a drone to determine if it should retake an
image before it is to far gone or to later control the quality of data provided
by a third-party supplier.

Since EfficentNet is the best in what it does, it was not found rational to use
YOLO for handling the classification part directly. This adds an additional
layer to the pipeline but increases the whole quality of the process. Even so,
by discluding the object detection part, fine-tuning can quickly be performed
for classification, which was shown necessary because of the limited data.

Agder Energy defined the split between “good” and “bad” to be the visibility
of the benzel coil at insulators, for other power grid companies this might not
apply for them. However, overlooking a critical fault because of lousy image
quality can be more expensive than labeling a few images to determine the
quality of the data. It should be mentioned that an expert has not surveyed
the quality dataset, the author had to improvise to establish a line between
the classes, and because of this, we can not contradict that a few images
are wrongly classified.
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5.3.2 Fault classification

Classifying objects from each other is the most fundamental part of visual
AI. The classifier’s primary objective in the thesis situation is to determine
if a component contains a possible fault that can be devastating over time
for a given transmission network if not detected. Compared to a standard
dataset, determining the difference between a dog and a cat, this type of
data requires most often an expert in the field of power line inspection to
find the most subtle faults. Since the author has narrowed experience in
what to see after, and top-cap is a simple and highly used, it was a functional
component for proving a concept. Figure 5.2 visual illustrates the difference
between the three defined fault levels, discarding the different types of top-
cap from the illustration, such as black and metal-based top-caps. It should
be mentioned that the category “bad” is not a standard used by Agder
Energy, although the author did not want to classify a damaged top-cap as
“good”.

Just as Subsection 5.3.1, YOLO is not directly used because of the limited
data available, and the possibility to tune a model to fit a defined problem
would never be surpassed by including the problem directly in the YOLO
detection task. This allows the possibility for an endless amount of classifi-
cation tasks to be done on the detected components - allowing the pipeline
to be fitted for the needs of a given company.

Figure 5.2: Top-cap classification categories
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Experiments and Results
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Chapter 6

Result and Discussion

This chapter presents the experimental results from the proposed solution in
chapter 5 and discussion related to the findings – the sections are numerically
ordered by the presented steps in the proposed design from Section 5.1.

Section 6.1, 6.2, and 6.3 presents the result for detecting objects with
YOLOv3 and YOLOv4. More specifically, Section 6.1 demonstrates pole
detection as a classification problem. Section 6.2 continues with classifi-
cation of the specific component without pole-top zoom, and Section 6.3
expands upon this with pole-top first detected. Section 6.4 and 6.5 present
results related to classification of objects with EfficentNet, Where section 6.4
focuses on testing the proposed image quality detection method and uses
student’s t-test to control that the result can not be directly calculated,
while 6.4 focuses on fault detection of top-caps. The last section (6.6) takes
the relevant results and sums it up.
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6.1 Electrical pole detection

Pole detection shows excellent results in the standard AP50, and YOLOv4
lifted the strict-detection AP75 with 7.1% from the previous YOLOv3 net-
work, seen in Table 6.1.

Both methods followed the recommended amount of iteration regarding
batch size and amount of classes before stopping the training process. Be-
cause of limited video memory, the subdivision variable was 32 for YOLOv3
and 64 for YOLOv4, which means that the amount of information loaded
into video memory is Batchsize

subdivisions .

As explained in Section 4.3, the applied dataset contained 3562 images,
where 2500 images are for training and 1062 for testing. A minimal change
regarding better feature extraction was done when moving over to YOLOv4.
The image size used for YOLOv3 training was 512x512 – a fitting match
in size since it must be dividable with 32. However, since YOLOv3 and
YOLOv4 use 608x608 as input, the image size got resized, not from 512x512,
but from the original raw image.

Table 6.1: Result for electrical pole detection

Method Backbone AP30 AP50 AP75

YOLOv3 DarkNet53 - 96.1 84.8
YOLOv4 CSPDarkNet53 98.2 97.7 90.0

There have been mentioned a few papers with different results in form of
precision in regards to detection of pole: 89.8% [48], and 96% [46]. The
YOLOv4 method has outperformed them all (as seen in Table 6.1) with-
out picking out or fix unexceptional bad examples within the test data,
demonstrated in Appendix B.
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6.2 Component detection – Direction A

After the pole detection, the information outside the boundary box is cropped
away, leaving the system with a defined area to focus on for component de-
tection. Presented papers [45][50] have gone for a more direct discovery
of insulators and other components. However, illustrated in Table 6.2 and
based on documented literature in Chapter 3, there should be no reason to
discuss further which approach gives the best precision. Appendix A gives
additional information in regards to FP, FN, and TP on the result, and
Appendix C present visual images of the result.

Table 6.2: Result for component detection with direct discovery

Method Component AP30 AP50 AP75

YOLOv3 Insulator 98.09 97.51 46.68
YOLOv4 Insulator 91.15 90.14 47.09

YOLOv3 Top-cap 94.80 93.70 30.40
YOLOv4 Top-cap 84.54 84.14 30.03

The images used for training and testing in Table 6.2 were the raw image
size after cropping. The impact of using the original size compared to input
size is significant. An earlier test done with YOLOv3 using image size pre-
processed before training to 512x512 gave a completely different score not
suitable for automation. At AP50 the insulator scored 69.54% and top-cap
had 83.23%.

The author was bewildered by the extreme differences between YOLOv3 and
YOLOv4 shown in Table 6.2, and it should be noted that they both used the
same dataset for training and testing. However, without performing more
experiments, the author believes the Mosaic hyperparameter might be re-
sponsible. This function makes the input image mutch smaller and includes
multiple other images side by side, making the already small component
mutch smaller.
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6.3 Component detection – Direction B

The pole-detection dataset is labeled for detecting an entire pole if possi-
ble. However, the size of the pole is immensely large compared to most
components located on the pole. Making it, in theory, harder for an ob-
ject detection method to extract features based on the components, so by
locating the pole-top beforehand, gives better feature extraction compared
to direct detection.

Table 6.3: Result for component detection after pole-top is discovered

Method Component AP30 AP50 AP75

YOLOv3 Insulator 98.01 96.94 48.13
YOLOv4 Insulator 97.95 97.64 52.61

YOLOv3 Top-cap 89.73 88.51 21.98
YOLOv4 Top-cap 91.23 89.27 30.57

Table 6.3 present the result for this method. Where YOLOv4 have increased
the insulator detection with barley 0.13% accuracy at AP50 compared to
YOLOv3 in the direct detection test, but cannot keep up on top-cap detec-
tion. Appendix A gives a full overview of additional result, and Appendix
D present visual images of the result given from the detector.
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6.4 Component quality detection

6.4.1 Student’s t-test

One hypotheses for this thesis was: The quality of an image can not entirely
be represented based on the number of pixels wrapping a component. For
testing this statement, a student’s t-test has been used. This test only
works with one-dimensional data, so images presented illustrate the pixel
value in the x- and y-axis independently. Where the graph’s x-axis is the
pixel value, while y-axis is the density in percentage of point distributed.

(a) Normal distribution in X-axis (b) Normal distribution in Y-axis

Figure 6.1: A normal distribution graph with equal variance, 0% dominant edge
removal

Figure 6.1 uses 400 data points from each classified group – setting the
degree of freedom to 798. By calculating the t-value separately for each
axis, the t-score for the x-axis is 10.77, and for the y-axis, it is 14.08. To set
a meaningful confidence level for a null hypothesis, the highest value must
be less than 3.3, which both axes have surpassed.

Figure 6.2 discludes the most dominant points from the dataset used in the
previous figure by stripping away the 20% lowest points from “bad quality”
and the 20% highest points from “good quality”, this change the degree of
freedom down from 798 to 638. The difference is still too significant in the
y-axis with a t-value equal to 5.351. However, on the x-axis, the t-value is
equal to 2.44. This value gives 1.5% confidence that there is no significant
difference between the classes.
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(a) Normal distribution in X-axis (b) Normal distribution in Y-axis

Figure 6.2: A normal distribution graph with equal variance, 20% dominant edge
removal

Because of the unequal variance in the two populations, a Welch’s t-test
was tested. All available data points from the class brown insulator were
applied, making the degree of freedom 1178 (i.e., 452 good, 728 bad). Nev-
ertheless, including more results just expanded the difference between the
two populations.

(a) Normal distribution in X-axis (b) Normal distribution in Y-axis

Figure 6.3: A normal distribution graph with unequal variance

Even if there is a significant difference between the sets discluding the null
hypothesis, there is still an overlap between what is determined “good” and
“bad”, as seen in Figure 6.1, 6.2 and 6.3. This indicates that it is not always
possible to count pixels – stating that the hypothesis was partially correct;
an alternative hypothesis Ha.
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6.4.2 Result – EfficentNet

EfficentNet has produced excellent results in accuracy 0.93±0.02, precision
0.89±0.03, and recall 0.95±0.02. However, the result in Figure 6.4b was
not straightforward – a dozen different tests were required to find a perfect
fit.

(a) Amsgrad inactive (b) Amsgrad active

Figure 6.4: Classifying image quality with EfficentNet-B0 – the red lines represent
training data, while the green lines represent validation data.

Without going too much into details of the process, a few structural changes
are necessary to grasp. The method used was EfficentNet-B0; more exten-
sive baselines did easily overfit the classifier and required a smaller batch size
– which was the major contributor to high precision. By using AMSGrad
[55], the model converged faster and gave more stable loss (seen in Figure
6.4a and 6.4b). There were added two FC-layers at the end of the model
container 1280 nodes each (Table 6.4), by changing the activation function
from ReLU to TanH did not possess much difference in accuracy and preci-
sion, but gave a small increase in recall and a decrease in loss. Even if there
was no sign of a reasonable convergence, the learning-rate used for optimiza-
tion was the recommended α value 1e−3 [56]. The α value was decreased

every fifth epoch with a multiplication of 0.85
epoch number

5 to fine-tune the
weights1. Tuning the exponential decay rate β2, showed promising results
in developing the accuracy by increasing the value with 2e−4 – the change
was so minimal that it is not included in the results.

Small changes to the backbone and the optimizer can increase the score

1No source, just recommended in a forum and gave promising results
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even further, although the essential factor for a more robust model rests
on the dataset. Using an image data generator to increase the number of
images has been a contributing factor. However, the current dataset relies
on brown insulators, which is a decreasing factor in modern power lines.

Table 6.4: Architecture – Image Quality Assurance

Stage Operator Channels Layers

i F̂i Ĉi L̂i

1 Input Layer 128x128 128x128
2 EfficentNet-B0: Model 128x128 18
3 FC & TanH 1280 2
4 FC & Sigmoid 1 1
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6.5 Component fault detection

Having an imbalance in the class sizes is a significant problem – if the
balance gets too big, it can be preferable for the model only to choose the
more substantial alternative. Seen in Figure 4.2b the difference between the
classes “good”, “bad”, and “gone” are so imbalanced the trained model did
not surpass 85% accuracy, which is close to the exact number for guessing
“good”. The usage of the performance metric F1score (equation 2.4) would
be a good alternative, except when working with softmax – precision and
recall is outputting the same as accuracy making the information unreliable.

A survey on data collection [57] states that the amount of data is the major
bottleneck in machine learning, and another paper [58] demonstrates that
an increase in the batch size is often better for a model than a decrease in
the learning rate. Limited time makes the first alternative unwise, and be-
cause of available video memory, the batch size cannot increase any further
without cutting down on image size.

Working with extreme imbalance classes are nothing new, multiple papers
[59][60][61] have proposed possible solutions such as oversampling, cost-
sensitive learning, and performance metrics. Weighting classes have been
experimented with in this project, but without access to useful performance
metrics in Keras (i.e., precision and recall), this alternative was not consid-
ered any further – if someone wants to recreate the experiment, the fine-
tuned weights would be close to useless for them. Oversampling was also
considered, but Keras already has an oversampling method integrated when
training and validating. In a worst-case scenario, this would create the same
data at the validation side, making the result seem more appealing. Instead
of oversampling the data, we can go in the other direction and undersample
it.

Multiple undersampling algorithms can be used [60] – divided into random
and informative. Working with images makes it hard to make an informa-
tive distinguishing. Alternatives such as pixel density, image darkness, and
noise could be eliminating factors. However, this is considered too much
manipulation of the end-result, whereby “random” was considered the best
choice. To balance the data, the class “good” was cut with almost 400
images from white top-caps and all 227 examples of black top-caps.

The result viewed in Figure 6.5a consists of three classes similar in size,
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containing an extremely minimal dataset of approximately 35 images in each
class. With this minimalistic dataset, the accuracy achieved is 0.78±0.02.

Table 6.5: Architecture – Fault Detection

Stage Operator Channels Layers

i F̂i Ĉi L̂i

1 Input Layer 128x128 1
2 EfficentNet-B1: Model 1280 18
3 FC & ReLU & Dropout 0.5 640 2
4 FC & Softmax 3 1

(a) Three classes (b) Two classes

Figure 6.5: Classifying top-cap fault with EfficentNet-B1 – the red lines represent
training data, while the green lines represent validation data.

The model from insulator classification in Subsection 6.4.2, was initially
used. However, with a dataset only 1/10 in size, overfitting occurred fast.
To handle this, the architecture was changed to include a dropout layer
after each FC layer with a value of 0.5, the activation function was changed
back to ReLU since it gave a more stable validation accuracy, the num-
ber of weights in the FC layers was changed down to 640, the backbone
EfficentNet-B0 was increased to B1, and the split between validation and
training was increased from 20% to 50% to provide better and more stable
validation result. Table 6.4 and 6.5 displays the different choices made in
the architecture.

“Bad” top-caps have a high similarity to “good” top-caps, and from similar
work [52][54], this type of class has never been considered. Because of this
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high similarity and lack of examples, the author believes the accuracy of
0.78± 0.02 could be even higher if we only considered “gone” and “good”
as the only two alternatives. Figure 6.5b illustrate a situation where there
are only two classes – this gives following result: Accuracy 0.93 ± 0.01,
recall 0.93 ± 0.01, and precision 0.91 ± 0.01. The architecture used is
similar to Table 6.5, although the last stage is changed to a binary classifier;
sigmoid activation.

6.6 Summary

There have been presented a lot of results in this chapter. Before concluding
this thesis, a short summary of the result must be addressed.

The proposed design in Section 5.1 is a multi-layer pipeline with two possible
directions tested to find the best approach in regards to mAP. A deeper
presentation of the result can be found in Appendix A, and more visual
results are displayed in Appendix B, C, and D. To sum up the pipeline in
regards to best result:

1. Pole detection – 97.7 mAP with YOLOv4

2. Component detection – 95.6 mAP with YOLOv3

3. Quality classification – 93% accuracy with EfficentNet-B0

4. Fault detection – 93% accuracy with EfficentNet-B1

Since direction B (6.3) has less mAP than direction A (6.2) it is not included
into the list since it is meant to sum up the best possible approach.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has taken a deep-learning based approach for fault detection
of power lines and proposed a new model for improving and automating
the inspection process. A one-stage objection detector is concluded to be
the most suitable model to implement in the detection structure because of
its capability to work post and during detection. YOLOv3 and YOLOv4
have proven good result, even if YOLOv4 is a newer model and have a
better result at MS COCO, the result YOLOv3 present overall is the best
model for the given task. Nevertheless, both models have surpassed ear-
lier documented results, and thereby presenting state-of-the-art power line
detection.

The proposed model also includes a quality assurance detector that can
assist the UAV or provide a score of a post-inspection dataset. The quality
of an image is a critical factor for fault detection, and the result shows that
it is a working concept that is more suitable than calculating the abundance
of features based on pixels. However, the t-test illustrates that the quality
of an image can be represented based on the number of pixels wrapping a
component but can not entirely be based on it.

Undersampling the fault detection dataset took a significant part of the
available data. Nonetheless, the fine-tuned model managed to produce a
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7.2. Future Work Conclusion and Future Work

promising result - It illustrates the possibility for a deep learning-based
approach to be used for out phasing a physical inspection as long the dataset
gets sufficient. However, with the presented result, this approach will be
safer as a supporting tool until an expert can no longer exceed the detector.

7.2 Future Work

This thesis has presented a new way to work with power line inspection
images, and presented results are promising. However, the approach has
only worked with truth images, i.e., images predefined by a human. To
move forward, the author wants to state three areas for future work.

A full pipeline experiment would be an interesting approach to move forward
with to see the start-to-end result. With a fully functional pipeline the last
step in Section 5.1 could be tested on UAV images. However, this requires
a computer with a bit of processing power to give a high-speed response.

Further improving the datasets with more components and examples would
most likely increase the result even further and make the detector more
robust. The pole detection and component detection have excellent results,
but the focus should be on improving the classification data before adding
more components. A pipeline expert at top-cap faults is more beneficial than
a pipeline that finds a modest amount of faults across multiple components.

The proposed image quality detector has only been theoretically tested,
and all used images are based on the author’s opinion in regards to “bad”
and “good”. This concept has shown excellent results, but a future dataset
should be developed by an expert in the field, and should contain other
components for more adaptability.
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Appendix A

Results – Detection Outputs

Appendix A presents all out-put values provided from the object detectors
in Table A.1 and A.2. Most numbers are represented on the same dataset,
although YOLOv3 (layer 1) pole detection had 64 images less to test on and
500 images less to train on compared to the YOLOv4 experiments (at layer
1).

A1



Results – Detection Outputs

Table A.1: Overall results numerical sorted based on layer. (1) pole detection,
(2) component detection at Direction A, (3) component detection at Direction B

Layer Method IoU mAP Precision Recall TP FP FN

1 YOLOv3 50 96.12 98 93 985 24 69
1 YOLOv3 75 84.79 88 85 899 124 155
1 YOLOv4 30 98.20 97 97 1083 38 29
1 YOLOv4 50 97.38 96 96 1066 43 46
1 YOLOv4 75 90.01 90 90 1004 117 108
2 YOLOv3 30 96.44 97 96 534 18 24
2 YOLOv3 50 95.61 97 96 535 17 23
2 YOLOv3 75 38.54 59 59 327 225 231
2 YOLOv4 30 87.84 43 93 521 694 37
2 YOLOv4 50 87.14 43 93 520 695 38
2 YOLOv4 75 38.56 28 61 343 872 215
3 YOLOv3 30 93.87 93 93 514 37 36
3 YOLOv3 50 92.73 93 93 510 41 40
3 YOLOv3 75 35.05 58 59 322 229 228
3 YOLOv4 30 94.59 88 97 532 74 18
3 YOLOv4 50 93.45 87 96 530 76 20
3 YOLOv4 75 41.59 58 64 353 253 197

A2



Results – Detection Outputs

Table A.2: Full information of component results grouped by direction. Direction
A represents the entire pole, and Direction B represents the pole-top.

Direction Method Class IoU AP TP FP

A YOLOv3 Insulator 30 98.09 407 9
A YOLOv4 Insulator 30 91.15 394 517
A YOLOv3 Insulator 50 97.51 408 8
A YOLOv4 Insulator 50 90.14 394 517
A YOLOv3 Insulator 75 46.68 262 154
A YOLOv4 Insulator 75 47.09 275 636
A YOLOv3 Top-cap 30 94.80 127 9
A YOLOv4 Top-cap 30 84.54 127 177
A YOLOv3 Top-cap 50 93.70 127 9
A YOLOv4 Top-cap 50 84.14 126 178
A YOLOv3 Top-cap 75 30.40 65 71
A YOLOv4 Top-cap 75 30.03 68 236
B YOLOv3 Insulator 30 98.01 402 8
B YOLOv4 Insulator 30 97.95 410 41
B YOLOv3 Insulator 50 96.94 399 11
B YOLOv4 Insulator 50 97.64 409 42
B YOLOv3 Insulator 75 48.13 270 140
B YOLOv4 Insulator 75 52.61 286 165
B YOLOv3 Top-cap 30 89.73 112 29
B YOLOv4 Top-cap 30 91.23 112 33
B YOLOv3 Top-cap 50 88.51 111 30
B YOLOv4 Top-cap 50 89.27 121 34
B YOLOv3 Top-cap 75 21.98 52 89
B YOLOv4 Top-cap 75 30.57 67 88

A3





Appendix B

Results – Pole Detection

Appendix B includes images from the test dataset for pole detection. The
method presented is the one with the most significant result in regards to
pole detection, YOLOv4. The images have never been seen previously by
the system and include situations that have not been given a good result.
Figure B.1 contains images where a pole is located but the detector can
not see it. Figure B.2 illustrates a situation where it has outperformed the
dataset – it detects poles not labeled, and one image where the detector
disagrees with the pole size.
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Results – Pole Detection

Figure B.1: Pole detection results with no detection of visible poles
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Results – Pole Detection

Figure B.2: Detecting existing poles, but not marked as truth
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Appendix C

Results – Direction A

Appendix C includes images from the test dataset for component detection
with a direct approach (Direction A). The method presented is the one with
the most significant result in regards to component detection, YOLOv3.
The images have never previously been seen by the system and illustrate
situations where something was not correct, or it failed to predict the labeled
component. Figure C.1 display components the detector were unable to
detect, while Figure C.2 illustrates situations where a wrong prediction was
made. This can be a situation where it predicts the wrong class, or it
predicts the correct class, but the dataset did not contain it.
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Results – Direction A

Figure C.1: Direction A – missed prediction; FN
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Results – Direction A

Figure C.2: Direction A – wrong prediction; FN or FP.
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Appendix D

Results – Direction B

Appendix D includes images from the test dataset for component detection
with the top-pole approach (Direction B). The method presented is the
one with the most significant result in regards to component detection,
YOLOv4. The images have never previously been seen by the system and
illustrate situations where something was not correct, or it failed to predict
the component. Figure D.1 display components the detector were unable
to detect, while Figure D.2 illustrates situations where a wrong prediction
was made. This can be a situation where it predicts the wrong class, or it
predicts the correct class, but the dataset did not contain it.
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Results – Direction B

Figure D.1: Direction B – Missed prediction; FN.
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Results – Direction B

Figure D.2: Direction B – wrong prediction; FN or FP.
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