
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	

Generating Levels and Playing
Super Mario Bros. with
Deep Reinforcement Learning
	

Using various techniques for level generation
and Deep Q-Networks for playing

University of Agder, 2020
Faculty of Engineering and Science
Department of Engineering Sciences

SUPERVISORS
Ph.D. candidate Per-Arne Andersen
Dr. Morten Goodwin

RUBEN NYGÅRD ENGELSVOLL
ANDERS GAMMELSRØD
BJØRN-INGE STØTVIG THORESEN

Abstract

This thesis aims to explore the behavior of two competing reinforcement learning agents

in Super Mario Bros. In video games, PCG can be used to assist human game designers

by generating a particular aspect of the game. A human game designer can use generated

game content as inspiration to build further upon, which saves time and resources. Much

research has been conducted on AI in video games, including AI for playing Super Mario

Bros. Additionally, there exists a research field focused on PCG for video games, which

includes generation of Super Mario Bros. levels. In this thesis, the two fields of research

are combined to form a GAN-inspired system of two competing AI agents. One agent is

controlling Mario, and this agent represents the discriminator. The other agent generates

the level Mario is playing, and represents the generator. In an ordinary GAN system, the

generator is attempting to mimic a database containing real data, while the discriminator

attempts to distinguish real data samples from the generated data samples. The Mario

agent utilizes a DQN algorithm for learning to navigate levels, while the level generator

uses a DQN-based algorithm with different types of neural networks. The DQN algorithm

utilizes neural networks to predict the expected future reward for each possible action.

The expected future rewards are denoted as Q-values. The results show that the generator

is capable of generating content better than random when the generator model takes a

sequence of tiles as input and produces a sequence of predictions of Q-values as output.

i

Acknowledgments

We want to thank our supervisors Ph.D. candidate Per-Arne Andersen and Dr. Morten

Goodwin, for help and support during the span of writing this thesis. We received much

helpful information, and anytime we asked questions, we would always receive useful

feedback. We also want to thank Mr. Haoi Nhien Vu for allowing us to use his Overleaf

template for our master’s thesis.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.2.1 Field of research . 2

1.3 Problem statement . 2

1.4 Contributions . 3

2 Background 5

2.1 Reinforcement Learning . 5

2.1.1 Q-learning . 6

2.1.2 Deep Q-Networks . 7

2.1.3 Experience replay . 8

2.1.4 Recurrent Neural Networks . 8

2.1.5 Generative Adversarial Networks 10

2.1.6 Procedural Content Generation . 12

2.2 Related work . 12

3 Methods 27

v

3.1 Generative Playing Networks . 27

3.2 Experiments . 28

3.3 Mario agent . 30

3.4 Level generator . 33

3.4.1 Generator network model . 33

3.4.2 Map generation . 35

3.4.3 Experience gathering . 39

3.4.4 Reward function . 41

3.4.5 Generator training . 44

3.5 Hyperparameters . 48

4 Experimental results 50

4.1 Seq2Tile generation . 50

4.2 Seq2Seq generation . 55

5 Discussion 60

5.1 Learning outcomes . 61

5.2 Future development . 62

6 Conclusion 65

References 69

A Mario observation space A-1

B Generator action space A-3

vi

C Code listings A-4

D Experiment configurations A-10

vii

List of Figures

2.1 Example model of an RL algorithm. In this model, the agent derives actions

through a neural network [1]. 5

2.2 Q-table featuring 11 environment states and four possible actions for each

state. 7

2.3 Diagram showing connected LSTM cells [2] 9

2.4 Generative Adversarial Networks architecture [3]. 11

3.4 Visualization of the LSTM network input and the new chunk of tiles on

the map. 37

3.5 The generator memory contains indexes representing tiles in the order they

were generated. The red field is the sliding window, while the blue field is

the new tile inserted into the memory. 38

3.6 The connection between the replay memory and the transitions. 40

3.7 Generator reward function with v′ = 0.3. 43

3.8 Generator reward function with v′ = 1. 43

3.9 Generator reward function with v′ = 3. 43

viii

4.1 Result for the Mario agent competing against the Seq2Tile generator. The

x-axis shows the number of steps the Mario agent has performed and the

y-axis shows the episode reward. The graph is split up as a result of the

program restarting multiple times during training. 52

4.2 Unfiltered episode reward for the Seq2Tile generator. 52

4.3 Episode reward for the Seq2Tile generator with the Savitzky-Golay filter

applied with window size 1,001 and polynomial degree 4. 53

4.4 Seq2Tile results with each tile labeled with its Q-value. 54

4.5 Example of random generation. 55

4.6 Result for the Mario agent competing against the Seq2Seq generator. The

x-axis shows the number of steps the Mario agent has performed and the

y-axis shows the episode reward. The graph is split up as a result of the

program restarting multiple times during training. 56

4.7 Unfiltered episode reward for the Seq2Seq generator. 56

4.8 Episode reward for the Seq2Seq generator with the Savitzky-Golay filter

applied with window size 1,001 and polynomial degree 4. 57

4.9 Seq2Seq results with each tile labeled with its Q-value. 59

ix

List of Equations

2.1 Q-function. 6

2.2 Agent reward. 24

3.1 Epsilon decay. 39

3.2 Generator reward function. 41

3.3 Optimal Mario velocity. 42

x

List of Listings

3.1 Pseudocode for Mario reward function. The full method is listed in Listing

C.1. 30

3.2 Action space list. 32

3.3 Seq2Tile create_generator method. 33

3.4 Seq2Seq create_generator method. 35

3.5 Pseudocode for the generate method in level_gen. The full method is listed

in Listing C.2. 35

3.6 Pseudocode of the initialization of training and target lists in the train

method. The full method is listed in Listing C.3. 44

3.7 Pseudocode for updating Q-values in the train method. The full method

is listed in Listing C.3. 45

3.8 Pseudocode of the Seq2Tile generation model fitting. The full code is listed

in Listing C.4. 46

3.9 Pseudocode of the Seq2Seq generation model fitting. The full code is listed

in Listing C.5. 47

C.1 Reward function for the Mario agent. A-4

C.2 generate method in level_gen.py. A-5

C.3 train method in generation.py. A-7

C.4 Fitting the Seq2Tile generation model. A-8

xi

C.5 Fitting the Seq2Seq generation model. A-9

D.1 Configuration file constants.py . A-10

xii

List of Tables

2.1 Overview of related work. 26

3.1 The most relevant hyperparameters. 49

A.1 Tiles and entities in the Mario agent’s observation space. A-2

B.1 Tiles and entities in the generator’s observation space. A-3

xiii

Abbreviations

A2C Advantage Actor-Critic . 23, 25

AI Artificial Intelligence . i, 3, 14, 16, 25, 26, 50, 55

API Application Programming Interface . 33

ASP Answer Set Programming. 17

CIS Computational Intelligence Society . 14

CMA-ES Covariance Matrix Adaption Evolution Strategy . 20, 21

DNN Deep Neural Network . 6, 7

DQN Deep Q-Networks . i, 7, 16, 25, 30, 63–65

DRL Deep Reinforcement Learning . 3, 6, 12

FFNN Feed-Forward Neural Network. 8, 16

GAN Generative Adversarial Networks i, viii, 2, 3, 10–12, 20, 21, 25, 26

GPN Generative Playing Networks . 25–27

GVGAI General Video Game AI . 16, 17, 24, 26

IEEE Institute of Electrical and Electronics Engineers. 14

xiv

IMPALA Importance Weighted Actor-Learner Architectures . 63

LSTM Long Short-Term Memory viii, 2, 8–10, 21, 22, 25, 26, 28, 33, 34, 37, 38, 44, 60,

65

MDP Markov Decision Process . 18, 20

PCG Procedural Content Generation . i, 5, 12, 17–19, 23–25, 62

PPCG Progressive Procedural Content Generation . 17, 18

PPO Proximal Policy Optimization . 63

RL Reinforcement Learning . viii, 2, 3, 5, 6, 18, 19, 23, 25, 61, 62

RNN Recurrent Neural Network. 8, 29

Seq2Label Sequence-to-Label . 33

Seq2Seq Sequence-to-Sequence. . ix, xi, xii, 14, 16, 17, 25, 26, 29, 34, 35, 38, 47, 55–60,

A-9

Seq2Tile Sequence-to-Tile ix, xi, 14, 16, 17, 25, 26, 28, 29, 33, 36, 46, 50, 52–54, 56, 58,

60, A-8

xv

1 | Introduction

Super Mario Bros. is a side-scrolling game consisting of two-dimensional levels where the

player takes control over Mario and attempts to navigate towards the flagpole located at

the far-right side of each level, marking the goal of the level. Each level consists of various

tiles, which are their basic building blocks. In this thesis, an attempt is made to create

and play levels using two deep reinforcement learning agents; one for creating the levels

and one for moving Mario through the levels. This thesis attempts to lay the groundwork

for further research within the topic of multi-agent reinforcement learning in Super Mario

Bros. by creating a framework suited to incorporate artificial intelligence agents into an

emulated version of the game. This framework is used to test how the level generator agent

and the Mario agent coincide and evolve in a competition. The Mario agent attempts

to traverse a generated level by moving towards the flagpole to the right. Meanwhile,

the level generator attempts to create challenging, but completable levels for the Mario

agent. The results show that the generator can create levels containing obstacles given

enough training, although the levels are not always completable. Most of the focus in

this thesis is directed towards the level generator, as reinforcement learning algorithms

for controlling Mario have already obtained optimal solutions for many existing levels [4].

1.1 Motivation

Procedural content generation in video games has a lot of useful applications in assisting

game designers. Some examples include level generation, sound generation, and game

architecture. In Super Mario Bros., the level generation aspect is especially interesting,

and some research has already been conducted within this specific topic as can be seen in

subsection 2.2. The existing approaches for this problem focus on generating entire levels

before they can be played. In this thesis, a different approach will be explored, where

the level is generated while Mario is navigating through it. The level generator should

1

1.2. GOAL CHAPTER 1. INTRODUCTION

generate new level content slightly in front of the sliding window which is visible to the

player, and receive feedback derived from player actions when the player reaches the newly

generated content. The motivation for this thesis is to investigate if the generator will

be able to create coherent levels and how often, if at all, the generator creates impossible

level segments.

1.2 Goal

The goal is to use a system consisting of two reinforcement learning agents to automat-

ically create as challenging levels as possible, which Mario can complete without any

human interference.

1.2.1 Field of research

To be able to reach this goal, research within Reinforcement Learning (RL), Long Short-

Term Memory (LSTM) networks, and Generative Adversarial Networks (GAN) is essen-

tial. The RL agent generating levels will have similarities to a GAN generator in the sense

that it learns from the feedback the RL agent controlling Mario provides. The RL agent

controlling Mario essentially replaces the discriminator of a traditional GAN. The RL

agent generating levels will also utilize LSTM to improve its ability to create meaningful

sequences of tiles.

1.3 Problem statement

This thesis presents a system of two RL agents. The first agent is a level generator which

will generate levels for Super Mario Bros., column by column. The second agent will be

controlling Mario and try to move to the right as quickly as possible. The level generator

is supposed to generate levels possible to complete and adhere to a particular difficulty.

The levels should not be impossible, meaning a wall of bricks or an impossible gap in the

2

1.4. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

ground should never appear. The generator will start without any prior knowledge about

the game or its goal; It will only receive rewards as feedback for its actions.

The problem statement for this thesis can be summarized in the following research ques-

tion:

Is it possible to design and implement a system where a Super Mario Bros. level is

generated continuously, while the level is being played by an RL agent controlling Mario?

Following the problem statement comes the hypotheses that:

1. It is possible to generate Super Mario Bros. levels using a system of two AI-

algorithms to generate and test levels.

2. It is possible to train the level generator to create levels fitting the player’s skill

level.

1.4 Contributions

The contribution this thesis aims to provide to the state-of-the-art within Artificial Intel-

ligence (AI) is to test if a GAN-inspired Deep Reinforcement Learning (DRL) system can

both generate and evaluate levels in Super Mario Bros. simultaneously. This thesis can

contribute to further development of the GAN method and DRL. Combining GAN with

DRL systems has been done before, but the field is still relatively new, and this thesis

will attempt to provide a new perspective to the research. The thesis could eventually be

used to gradually develop more challenging environments for other AI systems. Dynami-

cally changing environments can be a potential workaround to the problem of overfitting.

Overfitting means that the AI memorize the training data rather than finding a general

predictive rule [5]. Autonomous driving is a developing field of research within RL. If

this thesis can provide an environment where the scenarios are increasingly difficult, it

could provide a useful learning environment for this field. The research could potentially

3

1.4. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

be used for learning purposes for schools, more precisely a personalized learning program

for each student. A personalized learning program could be especially useful for learning

impaired students.

4

2 | Background

This chapter aims to explain some of the existing technologies and techniques within the

field of RL. The most fundamental technologies used in this thesis will be explained first,

followed by related work and the state-of-the-art within Procedural Content Generation.

2.1 Reinforcement Learning

Reinforcement Learning is a branch of machine learning where an agent interacts with an

environment and receives a reward defined by a reward function. The agent will attempt

to maximize the cumulative reward, which in most cases means it will try to predict

expected future reward following a particular action and act accordingly. RL applications

consist of a continuous cycle where an agent observes the state of the environment, an

action is chosen and performed, and a reward is given to the agent. Based on the received

reward, the agent will adjust the probabilities of performing the possible actions for the

corresponding environment state1.

Figure 2.1: Example model of an RL algorithm. In this model, the agent derives actions
through a neural network [1].

1Depending on the implementation, the agent may also adjust action probabilities for environment
states that are similar to the current state.

5

2.1. REINFORCEMENT
LEARNING

CHAPTER 2. BACKGROUND

The RL model shown in Figure 2.1 is an example of a Deep Reinforcement Learningmodel.

The difference between RL and DRL is simply that DRL applications make use of a Deep

Neural Network (DNN) in the action decision process. Any RL model is essentially just

a function mapping an environment state to an action. Consequently, an RL model aims

to construct a list of state-action pairs, which is used to select an optimal action a given

a state s.

2.1.1 Q-learning

Q-learning is a popular approach for RL applications with relatively simple environments.

It equips agents with the ability to learn to act optimally in Markovian domains by

experiencing the consequences of actions, without needing them to build maps of the

domains [6].

Q-learning agents pick actions based on probabilistic reward. The probabilistic reward

is based on the current environment state and action and calculated using a Q-function,

seen in Equation 2.1.

Qnew(st, at)← (1−α) ·Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·
(learned value︷ ︸︸ ︷

Rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

·max
a

Q(st+1, a)︸ ︷︷ ︸
max future Q

)
(2.1)

Equation 2.1: Q-function.

The equation describes how Q-values are updated for state-action pairs. By observing

the state st an agent finds itself in at timestep t, it can evaluate the quality of each action

a it can perform in that state. This gives the agent access to an exhaustive list of future

Q-values which it can use to determine the best action to take. The action the agent

takes at timestep t is denoted at. This will result in the agent receiving a reward Rt. The

agent observes the new environment state, and can now perform the same evaluation as

earlier, where it checks the quality of each possible action. The action with the maximum

6

2.1. REINFORCEMENT
LEARNING

CHAPTER 2. BACKGROUND

Q-value in this new state is denoted max
a

Q(st+1, a). The learning rate and discount factor

are hyperparameters. At this point, the agent has all the needed information to update

the Q-value Q(st, at), as seen in Equation 2.1. When the agent finds itself in state st at

a later point, it will have a better idea of which actions are good and which are bad.

The basic principle of Q-learning is to use a Q-table to map each possible environment

state to Q-values for each action the agent can take in the given environment state. The Q-

values express the quality of an action, where a high Q-value indicates a favorable action,

and a low Q-value indicates an unfavorable action. Given the state of the environment, a

greedy agent will always choose the action with the highest Q-value. If the agent is non-

greedy, it will sometimes choose a random action instead of the action with the highest

Q-value. Figure 2.2 shows an example of a Q-table.

Figure 2.2: Q-table featuring 11 environment states and four possible actions for each state.

2.1.2 Deep Q-Networks

One of the issues with Q-learning is that it is not scalable. However, it is possible to

combine Q-learning with a DNN, which makes it scalable. Combining these two methods

results in deep Q-learning, and DNNs that approximate the Q-function are called Deep

Q-Networks (DQN). The DQN takes a state as input and approximates the Q-values for

7

2.1. REINFORCEMENT
LEARNING

CHAPTER 2. BACKGROUND

each action based on the input state [7].

2.1.3 Experience replay

Experience replay is a method of storing and retrieving the experiences of an agent,

without having to perform any calculations on the experiences when retrieving them. Ex-

perience replay maintains a buffer of information from transitions containing the current

state, the selected action in that state, the reward received for the selected action, and

the next state as a result of the selected action. The experience replay is used to train

the network on the stored information in random order as opposed to training on the in-

formation in the chronological order it was experienced, which makes the learning phase

separate from gaining experience. It also allows the collected experience to update the

agent’s network more than once, as a single transition can be selected as part of a training

session multiple times.

2.1.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are often used to lay the foundation for algorithms

used for sequential data and are used by Apple’s Siri and Google’s Assistant. It remem-

bers its input in an internal memory, which makes it ideally suited for machine learning

problems that involve sequential data.

Long Short-Term Memory

Long Short-Term Memory networks are an extension for RNNs, extending the memory

such that relevant information persists over a long period of time. In ordinary Feed-

Forward Neural Networks, each layer consists of a number of artificial neurons. LSTM

networks replace these neurons with LSTM cells, shown in Figure 2.3.

8

2.1. REINFORCEMENT
LEARNING

CHAPTER 2. BACKGROUND

Figure 2.3: Diagram showing connected LSTM cells [2]

The figure displays a diagram of LSTM cells, where xt denotes the input at timestep t,

and ht denotes the output at timestep t. Each cell also has a cell state. The diagram

shows the cell state entering each cell at the top left input arrow, and leaving the cell at

the top right output arrow. The cell state holds information about previous data, and

each cell can manipulate its cell state by utilizing gates. The gates in an LSTM cell are

structures used to open or close the flow of information. Each cell has three gates: the

forget, input, and output gate.

The forget gate is used to decide if information should be forgotten. The forget gate takes

the previous cell’s output concatenated with the current cell’s input and puts it through

a sigmoid layer, which outputs a number between 0 and 1 for each number the cell state

carries. If the forget gate outputs a 0, no information passes through it. On the other

hand, if the forget gate outputs a 1, all the information is allowed to pass. The cell state

is updated by performing element-wise multiplication of each value in the cell state and

the forget gate output.

The input gate controls what new information is stored in the cell state. A sigmoid

function selects which information should be updated. A tanh function creates new values

that could be inserted into the cell state. Both functions use the previous cell’s output

concatenated with the current cell’s input data as input. The output from the sigmoid

9

2.1. REINFORCEMENT
LEARNING

CHAPTER 2. BACKGROUND

and tanh functions are multiplied element-wise and added to the cell state.

The output gate determines what information should be passed as output from the cell.

The cell state is not updated at this gate and will be passed directly to the next cell.

However, the cell state is also used to determine the output of the cell. The cell state

is forked and passed through a tanh function, and the previous cell’s output is passed

through a sigmoid function. These two values are multiplied element by element and

result in the output from the cell, ht at timestep t [2].

The LSTM layer calculates a number of output values, dependent on how many cells the

layer contains. These output values can later be connected to other neural network layers,

such as dense layers, to produce predictions.

2.1.5 Generative Adversarial Networks

Generative Adversarial Networks were first introduced by Goodfellow et al. [8]. The sys-

tem confines an adversarial process where two neural networks are trained simultaneously;

a generator and a discriminator. The generator is a neural network taking random noise

as input, and producing output that resembles the data in the dataset containing real data

after training. The goal of the generator is to output data that is indistinguishable from

the real data to trick the discriminator into classifying the generated data as real data.

The discriminator is a neural network trained to classify input data as either real or fake.

The discriminator receives a sample as input from either the real data or the generator’s

output. The discriminator then attempts to determine whether the input comes from the

dataset or if it comes from the generator and outputs 1 for real or 0 for fake, respectively.

Figure 2.4 shows the architecture of a GAN.

10

2.1. REINFORCEMENT
LEARNING

CHAPTER 2. BACKGROUND

Real data

Figure 2.4: Generative Adversarial Networks architecture [3].

The generator and discriminator together constitute the GAN model. The generator re-

ceives random noise as input, and the output is a measure of how realistic the generator

output is, ranging from 0 to 1. Training a GAN is synonymous with training the gen-

erator. During the generator training, the expected output label is set to 1 since the

generator should produce realistic data that makes the discriminator output values close

to 1. Since the generator initially produces random data, the loss is high. Therefore, the

back-propagation will adjust the weights of the generator model to produce more realis-

tic data. During the generator’s training, the discriminator is set to non-trainable. The

discriminator is only used as a classifier and should not change during the learning pro-

cess of the generator. he system implemented for this thesis is relatively comprehensive,

and many experimentswere run with faulty implementations that were uncovered after

the experiments’ resultswere ready. The faulty implementations resulted in much time

being cut from the availabletraining time for the final experiments The discriminator and

generator are trained successively in a loop consisting of four main steps:

1. Set the discriminator to trainable.

2. Train the discriminator by feeding samples from the real data in addition to samples

from the generator, and have the discriminator classify them.

11

2.2. RELATED WORK CHAPTER 2. BACKGROUND

3. Set the discriminator to non-trainable.

4. Train the generator by feeding random noise into the GAN model, and have the

discriminator classify the output from the generator.

The loop runs until both the generator and the discriminator are unable to improve any

further [9].

2.1.6 Procedural Content Generation

Procedural Content Generation (PCG) is a name for various methods that generate con-

tent using computer procedures, or algorithms. The content is generated using a random

or pseudo-random process, resulting in an unpredictable range of possible content. In

terms of games, the content can be levels, maps, game rules, textures, and stories [10].

In 2016 a book that would accompany all research fields within this definition along with

the keyword "games" was released. In this book, there is detailed research, including level

generation in Super Mario Bros., or commonly an open-source alternative Infinite Mario

Bros. [11].

2.2 Related work

In this section, related work will be discussed initially, before gradually moving towards

state-of-the-art within PCG. PCG is a somewhat broad subject, primarily due to the

popularity of video games taking advantage of PCG. Many techniques exist for PCG, and

it can be adopted in many forms. However, this thesis focuses on PCG through DRL.

As of writing this thesis, PCG, combined with DRL, is a relatively unexplored field of

research with much potential. A central figure in the PCG for games community is Dr.

Togelius at New York University [12].

12

2.2. RELATED WORK CHAPTER 2. BACKGROUND

Procedural Level Design for Platform Games

This paper describes a procedural level design algorithm identifying and grouping pre-

existing content based on the effect the content has on the player agent. The level design

algorithm will then, based on the grouping of the content, be able to generate a level

with some complexity and difficulty associated with it. The content is represented in a

four-layer hierarchy and focuses on the repetition, rhythm, and connectivity of the four

layers. The game’s physics engine allows the level generator to understand how the game

works and possibilities the player has, which can then be used to calculate the difficulty

of the level.

Pattern recognition is an essential aspect of the level generator. It starts with a list of all

the components available, as well as the start and endpoint of a cell. A cell is an area of

the level where the size is determined by the physical space in addition to some degree

of randomness. The cell is generated from the components, and their set parameters

are used in a hill-climbing algorithm. Hill-climbing is a technique where the generator is

always attempting to reach the highest peak, meaning the most optimal solution. In order

to do this, it uses the components’ parameters to find the best match and sub-dividing

components between the start and finish points. The next cell or cells are then selected

based on predetermined values for the level.

The paper suggests personalized content generation based on player action, using this

kind of level generation. However, it has not been implemented by the time of writing the

paper. The authors did not find any other paper depicting the development of personalized

content, so they had nothing to compare with the personalized content generation.

The results of the research show that the algorithm works, and it is capable of generating

patterns successfully. However, an algorithm for building cell structures had not been

implemented at the time the paper was written. [13].

The work shown in [13] by Compton et al. is based on patterns and rules. The level

13

2.2. RELATED WORK CHAPTER 2. BACKGROUND

generator does not learn to generate levels. It instead uses predetermined parameters

to generate levels. In this thesis, Sequence-to-Sequence (Seq2Seq) and Sequence-to-Tile

(Seq2Tile) is used to generate levels. The generation is dynamic and not based on prede-

termined parameters.

The 2010 Mario AI Championship

Super Mario Bros. has been a popular research field for Artificial Intelligence, and a

Super Mario Bros. AI community was established in 2009.

In 2010 the Institute of Electrical and Electronics Engineers (IEEE) Computational In-

telligence Society (CIS) held The 2010 Mario AI championship, where a competition was

held to create a level generator, a gameplay track, and a learning track in Infinite Mario

Bros. The winner in the level generator category used a Probabilistic Multi-pass generator

[14].

Launchpad: A Rhythm-Based Level Generator for 2-D Platformers

Launchpad uses rhythm groups to generate levels, where rhythm is a way to identify the

design of a level. This paper defines rhythm as a group with three main properties: type,

length, and density. They are non-overlapping sets of components that encapsulate an

area of challenge. The level geometry is based on the rhythm of the player actions within

each rhythm group.

Launchpad is based on user input, meaning that the user decides the parameters for the

rhythm. Launchpad also has a physics model that maintains information about the play-

ing agent’s capabilities in order to avoid generating obstacles the playing agent is unable

to overcome. Based on the input from the rhythm decided by the player, Launchpad can

generate a variety of different geometries for the level. Critics decide the final geometry.

14

2.2. RELATED WORK CHAPTER 2. BACKGROUND

One critic is decided by the general path the designer wants the agent to follow, and

the other is a component frequency critic which analyses the components in the level

compared to the probability of the component to occur. The component frequency critic

uses chi-square goodness-of-fit [15] to find the level with the best component distribution

to the desired style.

Launchpad works for level generation through input and rules, but the design is, as the

authors admit, limited to a particular type of game and a specific playing style [16].

Automatic level generation for platform video games using Genetic Algorithms

In this paper, the goal was to generate levels for Prince of Persia using Genetic Algorithms

and to make the algorithm general enough for other platform games.

The algorithm is based on working with levels that are divided into cells. The genetic

algorithm will group generated levels with specific genotypes. If these genotypes work

well, they will be more likely to appear in the following generation. The generated levels

are referred to as individuals, and a fitness function evaluates these individuals.

The fitness function evaluates several aspects of each individual. The path structure uses

the possible movements to evaluate whether all cells in the individual are reachable and

that the path is not linear. Additionally, each cell is evaluated individually to ensure

they are sensible and valid. Aesthetics and the amount of space used is also included in

this evaluation. A high fitness score will make the individual more likely to stay in the

gene pool. The individuals can be subject to mutation and crossover, which causes the

levels to change and introduces new genotypes to the gene pool. The genetic algorithm

generates the layout of the levels. Components and enemies are added in post-processing

using rule-based algorithms.

The results show that the genetic algorithm is capable of generating a level that is not

15

2.2. RELATED WORK CHAPTER 2. BACKGROUND

straight forward and achieving a good fitness score. This paper describes a different

method of generating levels, and does not generate levels based on a playing agent, but

instead uses a fitness function based on rules and algorithms. Hence, the generation of

levels is comparable. However, while the paper describes learning from a rule-based fitness

function, the level generator introduced in this thesis is based on an AI-controlled agent.

Furthermore, the level generation in the paper is genetic, while the level generators in the

Seq2Tile and Seq2Seq algorithms in this thesis are based on Deep Q-Networks [17].

General Video Game AI: a Multi-Track Framework for Evaluating Agents,

Games and Content Generation Algorithms

General Video Game AI (GVGAI) is a framework meant to design General Game Artificial

Intelligence. The framework has been used for video game AI competitions.

The framework allows level generation with settings for the level generation and rule

generation. FFNN Models govern both settings so that agents can evaluate the generated

content.

The framework supplies the level generator with necessary information about the game

for generating a level. The levels are generated in a two-dimensional matrix of charac-

ters where the characters represent game sprites. The most relevant part of this paper

is the level generation, and therefore the paper will be isolated to this subject. The

paper explains three methods for the level generation: constructive, search-based, and

constraint-based.

The constructive method works in a rule-based manner. The framework identifies the role

of sprites and uses the solid sprites to construct the outline for the level. The method

also includes cellular automata, N-gram, and labeled patterns.

Search-based methods rely on simulations to test levels and verify that they are playable.

16

2.2. RELATED WORK CHAPTER 2. BACKGROUND

The constraint-based method uses Answer Set Programming (ASP) rules to generate

levels. ASP rules are split into three specific rule types. The first type is basic rules

that will keep the level’s content simple; for example, one sprite per tile. The second will

have game-specific rules; for example, only one flag per Super Mario Bros. level. The

third type is additional rules to minimize the search space; for example, a maximum or a

minimum number of each sprite.

The paper describes the level generators as different in efficiency and accuracy, and the

level generators can generate completable levels. The constructive method is efficient but

also unreliable. The search-based and the constraint-based methods take more time but

use the same principle as the Seq2Tile and Seq2Seq algorithms, where the fitness function

is based on the performance of an automated agent [18].

Illuminating Generalization in Deep Reinforcement Learning through Proce-

dural Level Generation

Using GVGAI, this paper attempts to utilize Progressive Procedural Content Generation

(PPCG) in order to generate levels. PPCG introduces the idea of generating new levels

where the learning algorithm controls the level’s difficulty. The idea is that the learning

algorithm will increase the difficulty of levels as the agent learns.

If the agent successfully completes a level, the algorithm will introduce a level it considers

more difficult than the completed level. On the other hand, if the agent loses a level, an

easier level will be presented subsequently. The difficulty changes incrementally such that

all previous episodes influence the difficulty, hence the progressive part of PPCG.

The paper is mostly comparing the performance of the agent in four different games using

four different training approaches. The four games tested are Zelda, Solarfox, Frogs, and

Boulderdash. The training approaches use either a human-generated level, a random

human-generated level, levels generated using PPCG, or levels generated using PCG X.

17

2.2. RELATED WORK CHAPTER 2. BACKGROUND

In PCG X, X ranges between 0 and 1 and denotes the difficulty of the generated level.

PCG 1 means the difficulty of the level is relatively high from the beginning and stays high

during the entire training process. The agents’ performances in the various environments

are then compared, as well as the performance of each method of level generation in each

game.

PPCG is classified as a search-based method for level generation. Through its learning

algorithm, it attempts to classify the difficulty of each level by looking at the distribution

of elements.

The results and conclusion show that PPCG results with improved agents. The dynamic

difficulty allows agents to become more capable of solving complex levels. However, in

Solarfox and Boulderdash, PPCG did not achieve the maximum training difficulty. As a

result, PCG performed better than PPCG. The paper also proves that it is imperative to

subject RL agents to environments of varying difficulty, such that agents adapt to new

environments more easily [19].

PCGRL: Procedural Content Generation via Reinforcement Learning

According to the best of the writers’ knowledge, using an RL algorithm in PCG is a

completely new science. Togelius et al. mention that the difference between using RL

in PCG and the previous approaches is that RL in PCG searches the policy space to

generate content, while other methods search the space of game content. Togelius et al.

also mention that generating content through RL would also be much faster than the

search-based methods.

The content is not generated as a whole level at once, but instead as an iterative task.

The content can be seen as a Markov Decision Process (MDP), where the agent gets input

and responds with an action for each step.

18

2.2. RELATED WORK CHAPTER 2. BACKGROUND

The level generation starts with a level populated by random tiles. At each step, the

generator is allowed to make a small change. The generation is then judged by the

system based on the level’s target goal, and the agent is assigned a reward.

Togelius et al. attempt to create a PCGRL framework, where the algorithm can be

implemented for any game. In order to make this easy, the framework is broken down into

three parts: Problem module, the Representation module, and the Change Percentage.

The Problem module provides all the information about the current generation tasks. An

example of the information provided is the size of the level and the type of objects that

can occur for Super Mario Bros. The module assesses the change in the quality of the

generated content and determines when the goal is reached.

The representation model is responsible for defining the state space, action space, and

transition function. Its role is to initialize the problem, maintaining the current state,

and modify the state based on the agent’s action.

Change percentage defines how many tiles the generator is allowed to change. The amount

of change the agent is allowed to do affects the training of the agent. If the change

percentage is low, the generator will become more reactive.

For the experiments, the framework is implemented as an OpenAI Gym [20] interface,

which makes it easy to incorporate existing RL algorithms. The Stable Baselines library

is used to train the RL agents. This library is an improved implementation of OpenAI

baselines [21]. The experiment uses Proximal Policy Optimization to train the agents.

The paper shows that the generator searches in the content generator space rather than

the content space to make content generation an iterative improvement problem.

The paper concludes that the generator performed well in the Binary problem. The

algorithm was also tested with Zelda and Sokoban, where it struggled to design challenging

19

2.2. RELATED WORK CHAPTER 2. BACKGROUND

levels, but generated a significant amount of playable levels [22].

The work of Togelius et al. shows that they generate a random map and then allow the

generator to change the map according to certain values. This random map generation can

be compared to the latent vector representation used in Generative Adversarial Networks.

The paper also describes generating the content iteratively and compares it to a Markov

Decision Process.

Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative

Adversarial Network

Volz et al. attempt to emulate the creation of game levels using Generative Adversarial

Networks on the game Super Mario Bros. in this paper. The GAN uses Covariance

Matrix Adaption Evolution Strategy (CMA-ES) to find ideal inputs to the GAN from its

latent vector space.

The GAN is trained in phase 1, where the network is fed with real level samples encoded

as a multi-dimensional array to train. To differentiate the tiles in the multi-dimensional

array, each tile is represented as a distinct integer. The generator operates on a Gaussian

noise vector and attempts to output levels using the same representation as the sample

levels use. The discriminator will attempt to distinguish between real and generated

levels.

Phase 2 trains the generator It takes a latent vector representing the level as input and

generates a level consisting of tiles from the vector representation. However, the level is

not represented in the same format as in the latent vector. The reason is that the CMA-

ES introduces exploration for the generator, meaning that the vector space is searched

for desirable properties and distribution of tiles.

The paper’s experiments are split into two distinct sections, one being representation-

20

2.2. RELATED WORK CHAPTER 2. BACKGROUND

based testing and the other being agent-based training. Representation-based training

uses CMA-ES to optimize a certain distribution of tiles. This representation wants to

investigate if the approach can generate a certain amount of floor tiles. It also wants to

investigate if the ratio between ground tiles and enemies can be used to generate levels

of multiple subsections that gradually increase in difficulty. Agent-based testing includes

an agent that provides the generator with playthrough data to test the playability of the

generated maps. The agent’s fitness function is based on the number of jumps the agent

performs and the distance it traverses in the level. The generator is discouraged from

creating levels that can not be completed by using the fitness function.

The results show that the generator can generate playable maps and that the GAN based

level generation is controllable. In the agent-based testing, the generator attempts to de-

sign levels optimized for a certain number of jumps. The paper points out that the fitness

function was a difficult aspect of the experiments, and could use some improvements. It

is also pointed out that LSTM could be used to fix broken structures [23].

Volz et al. use GAN to improve the generation of levels. The agent in this paper uses a

simple fitness function to improve the map generation, whilst this thesis uses an agent that

trains as the maps are generated, and the generator will, depending on the performance

of the agent, adjust the generated maps.

Super Mario as a String: Platformer Level Generation Via LSTMs

In this paper, Summerville and Mateas attempt to use Long Short-Term Memory to

generate levels from a corpus of Super Mario Bros. levels.

LSTM blocks can consist of multiple layers with multiple LSTM blocks per layer. Sum-

merville and Mateas use three internal layers, with 512 LSTM blocks per layer. The

network’s input layer is one-hot encoded. The final LSTM layer goes to a softmax layer,

which acts as a categorical probability distribution for the one-hot encoding.

21

2.2. RELATED WORK CHAPTER 2. BACKGROUND

The network is trained using Torch7 [24], and 200 timesteps are back-propagated at a

time. The network uses dropout to avoid overfitting [25].

To allow the LSTM to have a probability distribution over possible next items and predict

the most likely item, Summerville and Mateas arranged the data in sequences. However,

they identified multiple drawbacks with representing data this way: the LSTM was unable

to identify previously unseen slices in the data, and the size of input was drastically

increased. Instead, Summerville and Mateas chose to represent the data as tiles in a

sequence. The tiles are grouped, which allows the generator to separate their effects.

Summerville and Mateas identify three methods of generating the map, Bottom-To-Top

vs. Snaking, Path information, and Coloumn depth. Bottom-To-Top means that the

level is generated from the bottom of the level to the top. Snaking means that the level

alternates between being generated from Bottom-To-Top and Top-To-Bottom. Snaking

proves to improve locality in the sequence. Path information introduces tiles representing

the path of an A* agent playing the level. Column depth denotes how far the generator

has progressed in generating a level.

These three methods can be switched on and off, and eight separate networks were run

with different combinations of these methods. Only Snaking was used during testing. The

network with all three methods active proved to have the lowest error. Path information

proved to be very important for the network. Without it, all other methods proved worse

with them active than with them inactive.

The results Summerville and Mateas present show that the playing agent is capable of

completing 97% of the levels when they are generated with Snaking, Path information,

and Column depth all active. These results come from a trained network with 4000

generated levels, 2000 from above ground seed, and 2000 from below ground seed. The

generated levels were also compared to human-generated levels. In all measured aspects,

Snaking-Path-Depth matched the standard deviation except in the percentage of the

level taken up by the optimal path through the level, where it has a much higher value.

22

2.2. RELATED WORK CHAPTER 2. BACKGROUND

This result indicates that the generator dedicates more tiles to the optimal path than

human-generated levels. Still, 97% is higher than previous PCG approaches, according

to Summerville and Mateas. It also seems that the generated levels are similar to a

human-generated levels [26].

Fully Differentiable Procedural Content Generation through Generative Play-

ing Networks

On February 18th, 2020 this paper concerning PCG was released, written by Philip Bon-

trager and Julian Togelius. The paper depicts research where a level generator and a

playing agent work in tandem using an Advantage Actor-Critic (A2C) RL algorithm.

The paper describes a cooperative adversary relationship between the level generator and

the playing agent. The generator wants to make the level challenging for the playing

agent, without exceeding the agent’s ability to solve the generated levels, as this leads to

negative reward for both adversaries.

The cooperation between the generator and the playing agent will be further explained

after a brief explanation of how they work individually. The agents are based on the RL

algorithm know as A2C.

The playing agent will be rewarded based on whether or not the level is completed. The

time it takes the agent to either complete the level or lose, is added as a positive or a

negative reward, respectively. The agent’s reward ranges from 0 to 1. Equation 2.2 shows

the algorithm.

The generator loop will update the generator to create environments. It is updated by

sampling a minibatch of latent variables and mapping them to environments that are

evaluated by the agent. The procedure will then update the weights of the generator.

The network will be updated a few times solely to increase diversity as the generator can

23

2.2. RELATED WORK CHAPTER 2. BACKGROUND

R(Sn) =


1− n

N
, if agent wins

1 + n
N
, if agent loses

−1, if environment does not compile
0, else

(2.2)

Equation 2.2: Agent reward.

create very similar levels.

The playing agent works without any input from the generator; all it is meant to do

is to play the levels it is given and learn to maneuver them to the best of its ability.

The generator is, however, very dependant on the playing agent’s performance, and will

attempt to create an environment that is best suited for the playing agent’s current

abilities.

The entire experiment was conducted on the GVGAI framework, which has previously

been described.

The research showed inconsistent results, where the level generator would occasionally

create maps that could not be completed. The research does, however, suggest that

the level generator can learn and that the interaction between the agent and the level

generator does lead to progressively more complex environments [27].

Summary

Procedural Content Generation in games has been around for a very long time, where the

first instances were in roguelike games such as Beneath Apple Manor (1978) and Rogue

(1980). Different approaches to PCG has been explored and described in this section, and

this summary will attempt to summarize and compare the approaches explored.

Most commonly, rule-based approaches are used for PCG, as seen in [13] and [16]. Rule-

24

2.2. RELATED WORK CHAPTER 2. BACKGROUND

based approaches use rules and algorithms in order to generate playable levels. The

incorporation of Artificial Intelligence for PCG has become increasingly popular.

Frameworks for AI and PCG have been used for several pieces of research. These frame-

works include the framework by Perez-Liabana [18].

Julian Togelius at New York University has become a central figure in PCG and was

involved in [14], [19], [22], and [18], all referenced in this section. He also wrote the book

describing the progress PCG and playing agents have made within games in [11]. There

may also be several other papers Togelius was involved in that could be relevant but are

not referenced in this thesis.

Mourato et al. [17] and Volz et al. [23] use fitness functions instead. Summerville and

Mateas [26] use an A* agent to generate the level from the path the agent takes. Togelius

et al. introduce the problem with overfitting for RL agents without dynamic environments

and highlight this in their paper [19]. Similar to this thesis, Togelius et al. [27] use a

playing agent controlled by Advantage Actor-Critic to train the generator. In this thesis,

however, Deep Q-Networks are used to train the generator.

This thesis proposes a GAN-inspired system to make the agent and the generator interact.

The design is very similar to Generative Playing Networks (GPN) seen in the paper by

Bontrager and Togelius [27], with some key differences found in subsection 3.1. GAN is

also used in work by Volz et al. [23], although rather than using it for interaction between

the generator and agent, it is only used to train the generator.

In this thesis, Long Short-Term Memory is used in the generator model. Two variations

were explored; Sequence-to-Sequence, and Sequence-to-Tile. The generation is done as

an iterative task, where only a part of the level is generated at each step. The iterative

generation is also described in PCGRL by Togelius et al. [22]. LSTM generation is also

seen in Summerville and Mateas [26].

25

2.2. RELATED WORK CHAPTER 2. BACKGROUND

Table 2.1 shows an overview of related work by categorizing the works in terms of Playing

Agent, Rule-based generator, year of publication, and source. Playing agent indicates

whether the levels are tested using a playing agent controlled by AI, where the generator

generates levels influenced by the playing agent’s performance. Rule-based means that

the level generator is controlled by rules and not any form of AI.

Name Playing agent Rule-based Year Source
Platform Games No Yes 2006 [13]

Launchpad No Yes 2011 [16]
Genetic Algorithm No Partially 2011 [17]

GVGAI Yes No 2019 [18]
Illuminating Yes Yes 2018 [19]
PCGRL Yes Yes 2020 [22]
GAN Yes No 2018 [23]
LSTM Yes No 2016 [26]
GPN Yes No 2020 [27]

Seq2Tile & Seq2Seq Yes No 2020 -

Table 2.1: Overview of related work.

26

3 | Methods

This chapter aims to elaborate on the methods used, and the experiments implemented

for this thesis.

The implementation of this Generative Playing System in Super Mario Bros. builds upon

the implementation from the PythonSuperMario GitHub repository created by Marblexu

[28].

3.1 Generative Playing Networks

The relationship between the agents in the implemented system is similar to that of

Generative Playing Networks, introduced by Philip Bontrager and Julian Togelius [27]. A

key difference is that the environment agent policy π and the environment value estimator

Q have been replaced with the level generator. The implemented system consists of two

symbiotic agents; one controlling Mario, and the other generating the level. The objective

for the agent controlling Mario is to move towards the flagpole marking the goal of the

level as quickly as possible without dying. The objective for the level generator is to

create challenging levels suited to the player’s skill level.

The relationship between the two agents is symbiotic because the actions of one agent

directly affect the other agent. More precisely, the average velocity of Mario over any given

generated chunk in a level determines the generator’s reward for generating that particular

chunk. Hence, the Mario agent affects the reward given to the generator. On the other

hand, the generator is creating the map the Mario agent is navigating. Consequently,

the generator is affecting the observation space of the Mario agent. Figure 3.1 shows the

architecture of the implemented system.

27

3.2. EXPERIMENTS CHAPTER 3. METHODS

Figure 3.1: The architecture of the implemented system.

3.2 Experiments

In this thesis, two experiments are conducted. The two experiments differ by the model

the generator utilizes in order to generate new level content. Both generator models

include LSTM layers. However, the output shapes of the networks are different.

The first experiment implements an LSTM network, which accepts a sequence of previ-

ously generated tiles as input. It predicts Q-values of a single new tile following the last

tile in the input. The predicted Q-values are used to pick new tiles to be inserted into

the game. This model has similarities to sequence labeling models, and the experiment is

labeled Seq2Tile generation.

The second experiment also implements an LSTM network, which accepts a sequence of

previously generated tiles as input. However, instead of predicting Q-values of a single

new tile, it predicts Q-values for a sequence of new tiles. The Q-values are, like in the

28

3.2. EXPERIMENTS CHAPTER 3. METHODS

first experiment, used to pick new tiles to be inserted into the game. The model in this

experiment is based on Seq2Seq models, and the experiment is therefore labeled Seq2Seq

generation.

The generator generates tiles in chunks. A chunk is simply a set number of columns of

tiles in the game. The generator generates chunks slightly ahead of the visible sliding

window the Mario agent can observe. When the Mario agent has successfully traversed

a generated chunk, the generator is given a reward according to how quickly Mario was

able to cross the chunk. The reward is saved in a transition that is inserted into a replay

memory. This replay memory is later used to update the generator Q-values, through an

experience replay. The Q-values are updated in a Q-Learning fashion, using a Bellman-

based equation.

Figure 3.2 visualizes the difference in the generator network between the two experiments.

The Seq2Tile generator generates a single tile at a time while the Seq2Seq generator

generates a sequence of tiles in one prediction. Thus, the Seq2Seq generator should have

a better basis for learning the inherent connection between different tiles and recognize

structures that fit well together. Furthermore, the Seq2Seq generator is exceptionally

faster in regards to level generation and training. The most prominent reason is that the

Seq2Seq generator only produces one prediction per generated chunk while the Seq2Tile

generator produces one prediction per tile.

Figure 3.2: Many-to-one and many-to-many RNN topologies [29].

29

3.3. MARIO AGENT CHAPTER 3. METHODS

The system implemented for this thesis can be found on the master branch of the GitHub

repository: https://github.com/bjotho/SMBgen. The conducted experiments are stored

in separate branches.

3.3 Mario agent

The Mario agent utilizes a DQN to learn a state-action policy, using the RLlib library

[30]. Since the library allows the learning process to be distributed, multiple instances

of the environment are created, and each Mario agent uses a central policy. For each

timestep, the Mario agent observes the environment, selects an action to perform using

the central policy, and receives a reward from the environment. The reward function for

the Mario agent is defined in the MarioEnv class in mario_env.py and pseudocode for

the method can be seen in Listing 3.1 below.

Listing 3.1: Pseudocode for Mario reward function. The full method is listed in Listing C.1.
1 def mario_reward :

2 """ Pseudocode for the Mario reward function """

3

4 # Set reward to difference in current x- position and last x- position

5 reward = difference in mario x- position

6

7 # Add difference in remaining time to reward

8 reward += difference in game clock

9

10 If mario is dead:

11 reward = -15

12

13 return reward

The Mario agent is rewarded for moving right, and punished for moving left. The agent

also receives a small punishment each time the game clock counts down one second.

Additionally, the Mario agent receives a harsh punishment when Mario dies or the time

runs out.

30

https://github.com/bjotho/SMBgen

3.3. MARIO AGENT CHAPTER 3. METHODS

The observation space of the Mario agent consists of a square of tiles surrounding Mario

in a specified radius, where Mario marks the center of the square, see Figure 3.3.

Figure 3.3: A visualization of an observation made by the Mario agent with the observation
radius set to 5. 0.42 represents an empty tile, 0.5 represents a box, and 0.64 represents a solid
tile.1

1A complete overview of the observation space of the Mario agent is listed in appendix A.

31

3.3. MARIO AGENT CHAPTER 3. METHODS

The action space of the Mario agent is defined by one of three possible lists defined in

actions.py. These lists are:

• RIGHT_ONLY

• SIMPLE_MOVEMENT

• COMPLEX_MOVEMENT

Throughout this thesis, the only action space list used was COMPLEX _MOVEMENT,

which consists of the following button combinations seen in Figure 3.2:

Listing 3.2: Action space list.
1 COMPLEX_MOVEMENT = [

2 [’NOOP ’],

3 [’right ’],

4 [’right ’, ’A’],

5 [’right ’, ’B’],

6 [’right ’, ’A’, ’B’],

7 [’A’],

8 [’left ’],

9 [’left ’, ’A’],

10 [’left ’, ’B’],

11 [’left ’, ’A’, ’B’],

12 [’down ’],

13 [’up ’]

14]

NOOP (no operation) means the agent does not provide any input to Mario at the given

timestep. Right, left, up and down refers to pressing the respective direction on the

directional-pad, where right and left moves Mario in the corresponding direction, up

makes Mario climb up climbable surfaces, and down allows Mario to descend into vertical

pipes, or crouch if Mario is big. Pressing the A button makes Mario jump, while the B

button can be held down in order to make Mario sprint, or it can be pressed once to

32

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

shoot a fireball if Mario has obtained the fire flower upgrade. When multiple buttons are

supplied in a list, all of these buttons are pressed simultaneously.

3.4 Level generator

The level generator is a separate agent from the Mario agent, and the Generator class is

defined in the generation.py file.

3.4.1 Generator network model

Throughout the different experiments, a variety of neural network models have been tested

with the generator, and different methods of generating new map content were tested.

Seq2Tile LSTM generation

A Seq2Label model is a model that predicts a label from a sequence of items. In this

variant of the generator network, a Seq2Tile model is used, which is similar to a Seq2Label

model. The input is a sequence of one-hot encoded tiles, and the output is a list of Q-

values used to derive a single new tile. The network utilizes an LSTM layer to handle the

sequence of previously generated tiles. The network is created with Tensorflow’s Keras

API, defined in the create_generator method shown in Listing 3.3.

Listing 3.3: Seq2Tile create_generator method.
1 model = Sequential ()

2 model .add(Input (shape =(c. MEMORY_LENGTH , len(c. GENERATOR_TILES))))

3 model .add(LSTM(c. LSTM_CELLS))

4 model .add(Dense (len(c. GENERATOR_TILES), activation =’linear ’))

5 model . compile (loss=’mse ’, optimizer =Adam(lr=c. LEARNING_RATE), metrics =[’accuracy ’])

c.MEMORY_LENGTH is the number of preceding tiles the generator model will receive

33

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

as input when predicting a new tile, and len(c.GENERATOR_TILES) is the number of

different tiles the generator can predict. c.LSTM_CELLS denotes the number of LSTM

cells used in the LSTM layer, meaning how many timesteps the model can look back

from the newest tile. The Dense layer condenses the number of outputs down to the

number of different tile types, such that each output node corresponds to the Q-value of

one particular tile. The activation in the final dense layer is set to linear, meaning the

output from the nodes in that layer, remains unchanged. The reason is that the generator

is predicting Q-values for each tile instead of the label for a new tile. The Q-values are

continuous variables; hence the problem the generator solves is a regression problem as

opposed to a classification problem where the output is discrete. Mean squared error is

used as the loss. By using mean squared error as the loss function, the optimizer will be

able to measure the distance from a predicted Q-value to a target Q-value and adjust the

network’s weights accordingly.

Seq2Seq LSTM generation

A Seq2Seq model is a model that takes a sequence of items as input and outputs another

sequence of items. In this variant of the generator network, the items are one-hot en-

coded tiles. The network used for the Seq2Seq LSTM generation also uses LSTM layers,

although this variant has one LSTM layer for handling the sequence of previously gen-

erated tiles, as well as one LSTM layer for predicting Q-values of future tiles. The final

LSTM layer provides a two-dimensional list containing Q-values, where the number of lists

corresponds to the number of tiles in a chunk. The number of tiles in a chunk is defined by

self.gen_size, where the generation size is dependent on the number of tiles per column,

and the number of columns per chunk. The network is defined in the create_generator

method shown in Listing 3.4.

34

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

Listing 3.4: Seq2Seq create_generator method.
1 model = Sequential ()

2 model .add(LSTM(units =self.gen_size , input_shape =(c. MEMORY_LENGTH , len(c. GENERATOR_TILES))

↪→))

3 model .add(RepeatVector (self. gen_size))

4 model .add(LSTM(units =self.gen_size , return_sequences =True))

5 model .add(TimeDistributed (Dense (len(c. GENERATOR_TILES), activation =’linear ’)))

6 model . compile (loss=’mse ’, optimizer =Adam(lr=c. LEARNING_RATE), metrics =[’accuracy ’])

3.4.2 Map generation

The level_gen.py file is the python file used to generate the level in the Super Mario

Bros. game. This file contains a generate method. The pseudocode for this method is

shown in Listing 3.5. When called, the method creates a dictionary of different tile and

entity types with associated coordinates and Q-values. This tiles dictionary is built in

the build_tiles_dict method. Coordinates and Q-values for each tile are inserted into a

list and appended to the corresponding list in the tiles dictionary. The dictionary is then

used to provide arguments for appropriate methods for inserting the new content into the

map.

Listing 3.5: Pseudocode for the generate method in level_gen. The full method is listed in

Listing C.2.
1 def generate :

2 """ Pseudocode for the generate method """

3

4 # Create empty dictionary

5 tiles = {}

6

7 # Fill dictionary keys with strings representing tile types

8 # Map each tile type to an empty list

9 tiles .keys = tile types

10 tiles [type] = empty list

35

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

11

12 # Call generator to generate new level content

13 new_tile_columns = generator . generate ()

14

15 # Fill tiles dictionary using build_tiles_dict method

16 iterate over each column in new_tile_columns :

17 tiles = build_tiles_dict (column)

18

19 Add new tiles and entities to respective sprite groups

When the read variable specified in Level class is False, the generate method in the

Generator class is used to create a list of encoded values, which in turn is used to build

the dictionary of tile and entity types. The encoded values are stored in a two-dimensional

list. The encoding corresponds to the ID field in the table in Appendix B, and this list

is returned to the generate method in level_gen.py. The tiles dictionary is built in the

build_tiles_dict method, and the new map content is inserted into the level.

The generate method defined in generation.py is responsible for generating a list of strings

representing columns of tiles that will be inserted into the generated level. Each character

in the strings is an encoded value for a tile or enemy, with the same encoding as mentioned

above. The method also returns a two-dimensional list of Q-values corresponding to the

generated tiles.

Seq2Tile LSTM generation

When c.RANDOM_GEN is set to False, the generator model is used to derive new tiles

using the internal memory of previously generated tiles. Figure 3.4 shows an example

of input data to the generator network, and where the new tiles appear. In the Figure,

the two solid tiles at the bottom of each column are inserted automatically. They are

not included in the network input or output. The length of the input to the generator

network is determined by c.MEMORY_LENGTH. The number of generated columns

depends on c.GEN_LENGTH. The generator input is retrieved from the self.memory list

in the Generator class, which is a one-dimensional list of previously generated tiles in

36

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

order from oldest to newest. The new map is generated tile-by-tile, and the generator

input works like a sliding window where each newly generated tile is inserted into the

generator memory, and the window slides one tile forward, see Figure 3.5. If the memory

list is shorter than c.MEMORY_LENGTH, it is padded with empty tiles at the beginning.

It is then provided as input to the LSTM network.

Figure 3.4: Visualization of the LSTM network input and the new chunk of tiles on the map.

37

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

Figure 3.5: The generator memory contains indexes representing tiles in the order they were
generated. The red field is the sliding window, while the blue field is the new tile inserted into
the memory.

Seq2Seq LSTM generation

The generate method in the Generator class works slightly differently in the Seq2Seq

LSTM generation implementation. The difference is that this implementation only calls

predict on the generator network once to create a chunk of tiles, as opposed to once per

tile in a chunk.

Epsilon

Epsilon is the factor of exploration, meaning how often the generator will pick the tile

with the highest Q-value (greedy) versus how often the generator will pick a random tile

(non-greedy). When the generator is greedy and chooses the tile with the highest Q-value,

the generator prioritizes exploitation, as opposed to when the generator chooses a random

tile and prioritizes exploration. The epsilon variable is simply a measure of how likely

the generator is to perform a greedy action versus a non-greedy action. The start epsilon

value is set when the generator is initialized, and the default value is 1.0. Epsilon will

gradually decay throughout training and will end at a specified minimum value denoted

by c.MIN_EPSILON. Epsilon is updated each time the environment is done, meaning

when Mario dies, runs out of time, or completes the level. Epsilon is updated according

to the formula seen in Equation 3.1.

38

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

ε =

max(εmin, ε · εdecay), if ε > εmin

εmin, otherwise
(3.1)

Equation 3.1: Epsilon decay.

For this thesis, two different approaches for greedy selection were tested. One approach is

to determine greedy selection for each tile, such that the generator will check if it should

perform a greedy tile selection or a random tile selection for each tile. The other approach

is to determine greedy selection for an entire chunk of tiles, which means the generator

will generate c.GEN_LENGTH columns of tiles, where all of these tiles will be generated

with either greedy tile selection or non-greedy tile selection. This chunk-based greedy

selection can be toggled with the CHUNK_BASED_GREEDY constant.

3.4.3 Experience gathering

The generator utilizes an experience replay architecture for training. The experience is

stored in a replay memory, which is a double-ended queue containing transitions ordered

from oldest to newest. c.REPLAY_MEMORY_SIZE adjusts the maximum size of the

replay memory. Since it is a double-ended queue, the oldest transitions in the queue are

removed first when the queue is full.

Transitions are added to the replay memory when Mario has successfully traversed a

chunk of generated tiles. Each transition is a tuple of five elements, as seen in Figure 3.6

39

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

Figure 3.6: The connection between the replay memory and the transitions.

• state

The state is a list of tiles leading up to the first tile of the generated chunk in the

transition, where the generated chunk is the action the generator performed. The

state list is used to create the input for the generator network, and the length of

the list can be adjusted with c.MEMORY_LENGTH.

• action

The action is a list of the tiles that were generated, and Mario was able to navigate

across. The size of this list is determined by how many tiles are generated for

each generation. The generation size can be adjusted by c.GEN_LENGTH, and

c.INSERT_GROUND. The constant c.COL_HEIGHT sets the number of tiles per

column. If c.INSERT_GROUND is True, two solid tiles will be placed at the bottom

of each column, and not included in the action list. c.GEN_LENGTH refers to the

number of generated columns per generation.

• reward

The reward is simply a float corresponding to the generator’s reward as a conse-

quence of the action, given the state. The reward is calculated when a transition is

to be inserted into the replay memory, as the reward is dependent on the average

velocity of Mario across the generated chunk.

40

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

• new_state

The new_state is a list of tiles representing the state for the next transition. The

length of the new_state list is the same as the state list, and the new_state list

includes tiles from the action list, as those are the most recently generated tiles.

• done

The done flag is used to denote if a state in a transition is a terminal state to avoid

using future state Q-values during training for a terminal state.

For each timestep, the check_gen_reward method is called in level_gen.py after the game

logic has been updated. This method checks if Mario has traversed a generated chunk and

compiles relevant data for inserting a new transition into the replay memory. It then calls

update_replay_memory in the Generator class, which uses the provided data to insert

the transition into the replay memory.

3.4.4 Reward function

The generator reward is calculated in calc_gen_reward and is defined in Equation 3.2.

Reward =

sin(π
2v′v), if v < v′

e−
1
2 (v−v′)2

, otherwise
(3.2)

Equation 3.2: Generator reward function.

Where v is the average velocity of Mario across the generated chunk and v’ is the optimal

Mario velocity. These velocities are measured in pixels per frame. The optimal Mario

velocity is always greater than zero, and therefore the range of the generator reward is

between 0 and 1. The reward is close to 1 when the average Mario velocity is close to the

optimal Mario velocity.

Since the objective of the level generator is to create difficult but completable maps, the

41

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

generator is rewarded according to how quickly Mario can move across a chunk. The

optimal Mario velocity is defined in Equation 3.3.

v′ = xflag − (xmario + wmario)
t · base_fps (3.3)

Equation 3.3: Optimal Mario velocity.

Where xflag is the x-position of the flagpole marking the goal of the level, xmario is the

current x-position of the leftmost edge of the Mario sprite, and wmario is the width of the

Mario sprite. All these distances are measured in pixels. Therefore, the fraction numerator

corresponds to the pixel distance between Mario and the flagpole. In the denominator, t

refers to the time left on the game clock, and base_fps is the number of frames rendered

(and game updates) before the game clock counts down one second.

Therefore, the optimal Mario velocity is the average velocity Mario needs to maintain to

reach the goal flag exactly when the time runs out. When Mario moves towards the flag,

the nominator of the optimal Mario velocity fraction will decrease. However, the time left

on the clock is constantly decreasing, making the denominator of the fraction decrease

simultaneously. If Mario moves towards the goal faster than the optimal velocity, the

generator should create more difficult maps. On the other hand, if Mario moves too slowly

across the map, the generator should create easier maps. In both cases, the generator will

gain sub-optimal rewards. Therefore, the generator should attempt to find a difficulty

suited to Mario’s skill level. Figures 3.7, 3.8 and 3.9 show the generator reward function

with three different cases of optimal Mario velocity.

42

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

Figure 3.7: Generator reward function with v′ = 0.3.

Figure 3.8: Generator reward function with v′ = 1.

Figure 3.9: Generator reward function with v′ = 3.

43

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

3.4.5 Generator training

The generator is trained in the train method in the Generator class. The implementation

of the train method differs slightly between the various generator network architectures,

where the only difference is the shape of the input X and target y lists used for fitting

the generator model to accommodate the different shapes accepted by the networks.

When c.TRAIN_GEN is set to True, the train method in the Generator class is invoked

from the generate method in level_gen.py, which in turn means the generator will be

trained at most once per generated chunk. The training starts only if the replay memory

contains a sufficient amount of transitions, specified by c.MIN_REPLAY_MEMORY

_SIZE.

When a training session begins, a minibatch is created by selecting random transitions

from the replay memory. The number of transitions in the minibatch is specified by

c.MINIBATCH_SIZE.

The LSTM network is then used to create predictions of new sequences following each

original state in the minibatch. It is also used to create predictions of sequences following

all the new states in the minibatch.

Listing 3.6 shows pseudocode for the initialization of the training process.

Listing 3.6: Pseudocode of the initialization of training and target lists in the train method.

The full method is listed in Listing C.3.
1 # Only start training if we have enough transitions in replay memory

2 if number of transitions in replay memory < minimum number of transitions :

3 return 0

4

5 # Get a minibatch of random samples from replay memory

6 minibatch = random sample from replay_memory

7

44

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

8 # Get current states from minibatch and create list of predicted sequences

9 current_states = list of states from minibatch

10 current_predicted_sequences = list of predictions given current_states

11

12 # Get future states from minibatch , and create new list of sequence predictions

13 new_states = list of new states from minibatch

14 future_predicted_sequences = list of predictions given new_states

Training and target lists are initialized, and the minibatch is enumerated.

For each non-terminal state, a list of max future Q-values is created, along with a new

list of Q-values where the reward is added to each Q-value in the max_future_Qs list. If

a state is terminal, all the values in the new_Qs list are set to reward.

The Q-values predicted for the current state are updated, but only the Q-values for the

tiles that were generated on the map. The Q-values for the other tiles remains unchanged.

Listing 3.7 shows pseudocode for the described procedure.

Listing 3.7: Pseudocode for updating Q-values in the train method. The full method is listed

in Listing C.3.
1 # Create empty input and target lists , X and y

2 X = empty list

3 y = empty list

4

5 # Enumerate transitions

6 enumerate index and transition in minibatch :

7

8 # If not a terminal state , get new qs from future states , otherwise set it to reward

9 if not transition .done:

10 max_future_Qs = max Q- values for Qs in the current index of

↪→ future_predicted_sequences

11 new_Qs = list of transition . reward added to the current max_future_Qs with a

↪→ slight discount

12 else:

13 new_Qs = list of transition . reward

14

45

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

15 Get the Q- values of the tiles generated in transition . action .

16 Update the corresponding Q- values in current_predicted_sequences to new_Qs

Seq2Tile generation

The generator only predicts one new tile for each prediction. The generator input is

formatted as a list containing a "sliding window" of tiles, which moves one tile forward

for each prediction, as shown in lines 1 to 6 in Listing 3.8 below. The generator input

list will contain lists of tiles, where each tile list moves one tile forward. The tile lists are

one-hot encoded to match the input shape of the generator network.

The generator input and target Q-values are appended to the input X and target y lists,

as shown on lines 8 to 10 in Listing 3.8.

After the transitions have been processed, the generator model is fitted with the training

data, as shown on lines 12 to 18 in Listing 3.8.

Listing 3.8: Pseudocode of the Seq2Tile generation model fitting. The full code is listed in

Listing C.4.
1 # Insert sliding window states into X

2 generator_input = empty list

3 Iterate i from 0 to the number of generated tiles :

4 tmp_state = list of tiles skewed i tiles from the start of transition .

↪→ current_state

5 One -hot encode tmp_state and append it to generator_input

6

7 # Append to training data

8 Append generator_input to X

9 Append updated current_predicted_sequences to y

10

11 # Fit on all transitions in minibatch

12 iterate i from 0 to the number of training samples in X:

13 generator .fit(X[i], y[i])

14

15 return 1

46

3.4. LEVEL
GENERATOR

CHAPTER 3. METHODS

Seq2Seq generation

The current state in the transition is all the input the generator needs to produce the

predictions. The only remaining formatting for the generator input is to one-hot encode

the current state.

The generator input and target Q-values are appended to the input X and target y lists.

After the transitions have been processed, the generator model is fitted with the training

data.

Listing 3.9 shows pseudocode describing the finalization of the training data and the

fitting process.

Listing 3.9: Pseudocode of the Seq2Seq generation model fitting. The full code is listed in

Listing C.5.
1 # One -hot encode current state from transition

2 generator_input = transition . current_state one -hot encoded

3

4 # Append to training data

5 Append generator_input to X

6 Append updated current_predicted_sequences to y

7

8 # Fit on all transitions in minibatch

9 generator .fit(X, y)

10

11 return 1

47

3.5.
HYPERPARAMETERS

CHAPTER 3. METHODS

3.5 Hyperparameters

The run configurations rely on a significant number of hyperparameters. These can be

tuned to achieve better results. The configurations used for the conducted experiments

are outlined in Table 3.1. Only the most relevant parameters are listed. The full config-

urations can be found in Appendix D.

Parameter Value Effect

INSERT_GROUND True
Determines if two solid tiles should
be inserted at the bottom of each

generated column.

READ True
Determines if the generator reads
and generates tiles from a text file
of previously generated content.

WRITE False
When WRITE is True, the

generator will write the generated
content to a text file.

SNAKING True

When SNAKING is True,
previously generated tiles will

alternate between being read from
top to bottom and from bottom to
top. Otherwise, tiles will only be

read from bottom to top.

CHUNK_BASED_GREEDY False

Sets greedy or non-greedy actions
for all tiles in a chunk if True.

Otherwise, the generator
determines greedy or non-greedy

action on each tile.

GREEDY False Generator only performs greedy
actions when True.

LEARNING_RATE 0.001 Learning rate for the generator.

MEMORY_LENGTH 64

Number of previously generated
tiles used as input for the LSTM
networks, also denotes the number
of LSTM units in the Seq2Seq

model.

48

3.5.
HYPERPARAMETERS

CHAPTER 3. METHODS

EPSILON_DECAY 0.995 Factor of decay for epsilon. Epsilon
decays after each episode.

MIN_EPSILON 0.01 Minimum epsilon value.

REPLAY_MEMORY_SIZE 100 Maximum number of transitions in
the replay memory.

MIN_REPLAY_MEMORY_SIZE 50

The minimum amount of
transitions required in the replay
memory before the training starts

for the generator.

MINIBATCH_SIZE 10
Number of transitions sampled
from the replay memory for each

generator training session.

DISCOUNT 0.99 Factor of discount for future
rewards.

OSB_RADIUS 10 The observation radius of the Mario
agent.

OBS_FRAMES 21 Number of stacked frames in the
Mario agent’s observation.

Table 3.1: The most relevant hyperparameters.

49

4 | Experimental results

In this section, the results obtained from the experiments are discussed. The findings are

then compared to the hypotheses defined in section 1.3.

The first hypothesis claims that it is possible to generate Super Mario Bros. levels by using

a system of two AI-algorithms to generate and test levels. The experiments described in

this chapter show that this is indeed possible.

The second hypothesis claims that it is possible to train the generator to create levels

fitting to the player’s skill level. Some of the results below indicate that the difficulty

of the generated levels are adapted to the player’s skill level. However, more training is

required to verify the hypothesis.

4.1 Seq2Tile generation

The Seq2Tile generator was used to generate level content tile-by-tile, which the Mario

agent evaluated by playing the generated level. Together, these two AI-algorithms con-

firm the first hypothesis defined in section 1.3. The Seq2Tile generator was trained for

approximately 4,300 episodes, and Figure 4.2 shows the unfiltered generator reward for

each episode. The reward does not appear to increase nor decrease during the training

and does not converge at any point. The reward could indicate that the generator did

not finish training or that the Mario agent was able to converge faster than the generator.

Figure 4.1 shows the results of the training for the Mario agent. The graph is split up due

to the program restarting multiple times during training, which can make it quite hard to

read. However, the graph seems to indicate that the mean episode reward has somewhat

stabilized at approximately 120, which may indicate that the generator and the Mario

agent are improving at the same rate. However, it can also mean that both agents are

50

4.1. SEQ2TILE
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

at a stand-still. The step number on the x-axis starts at approximately 6 million because

the same checkpoint was used to train earlier generator models.

The Mario agent’s rewards and the generator’s rewards are connected since the more

transitions Mario can traverse, the more reward both agents receive. This is naturally

dependent on how quickly the Mario agent is able to traverse the generated level. Since the

generator will never receive a negative reward, the more transitions Mario can traverse,

the better for the generator.

Figure 4.3 shows the episode reward for the generator with the Savitzky-Golay filter

applied.Drops in the reward can be clearly seen around episode 500-1250 and episode

2500-3000. This could correlate to when the program had to restart. Upon a restart,

all the variables are reset to their initial values, except the agent models and the replay

memory, which are loaded from disk. However, variables such as epsilon will be reset to

their initial values, which could drastically change the generator’s behavior.

Figure 4.1 shows indents in the generator reward which may match up with the restarting

of the program. However, it is difficult to be sure, as many of the recorded statistics

have been skewed and overlap due to the restarts and model saving interval. Since the

generator models are saved for every 100 training sessions by default, some models from

an earlier episode could be loaded after a restart, and this may cause the lines in the

graph to overlap.

51

4.1. SEQ2TILE
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

-20
0

20
40
60
80

100
120
140
160

5.8M 6M 6.2M 6.4M 6.6M 6.8M 7M 7.2M 7.4M

Figure 4.1: Result for the Mario agent competing against the Seq2Tile generator. The x-axis
shows the number of steps the Mario agent has performed and the y-axis shows the episode
reward. The graph is split up as a result of the program restarting multiple times during
training.

Figure 4.2: Unfiltered episode reward for the Seq2Tile generator.

52

4.1. SEQ2TILE
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.3: Episode reward for the Seq2Tile generator with the Savitzky-Golay filter applied
with window size 1,001 and polynomial degree 4.

Figure 4.4 shows an example of a level generated by the Seq2Tile generator along with

Q-values associated with each generated tile. During training, the generator starts by

performing random actions, and as the epsilon value decays, it progressively performs

more greedy actions. Therefore, the generator was configured to only perform greedy

actions during the evaluation. The generator was also set to be non-trainable as it was

being evaluated.

The Q-values on the tiles are quite low, meaning it expects a low reward for generating the

tiles. The reason why the Q-values are low is probably that the generated level appears

to be impossible for the Mario agent to complete. The generated level indicates that the

generator is not able to create levels fitting to the player’s skill level, which deems the

second hypothesis defined in section 1.3 false. Comparing the results in Figure 4.4 with

a generator generating random tiles, as seen in Figure 4.5, the random generator appears

to give Mario a better chance at moving forward than the Seq2Tile generator.

53

4.1. SEQ2TILE
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.4: Seq2Tile results with each tile labeled with its Q-value.

54

4.2. SEQ2SEQ
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.5: Example of random generation.

4.2 Seq2Seq generation

In this experiment, the generator takes a sequence of tiles as input and predicts a sequence

of tiles as output. The Mario agent evaluates the level’s content. Working together, the

two AI-algorithms confirm the first hypothesis defined in section 1.3. The Seq2Seq gener-

ator was trained for approximately 12,200 episodes, and Figure 4.7 shows the unfiltered

generator reward for each episode. Figure 4.6 shows the results of the training for the

Mario agent. Again, the graphs are split up due to the program restarting multiple times

during training. In this case, the filtered reward graph in Figure 4.8 shows more divots

and slightly lower reward than the Seq2Tile generator on average. The reason for both

55

4.2. SEQ2SEQ
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

could be that the program restarted more during this training than the Seq2Tile training.

-20

0

20

40

60

80

100

120

8M 8.5M 9M 9.5M 10M 10.5M 11M

Figure 4.6: Result for the Mario agent competing against the Seq2Seq generator. The x-axis
shows the number of steps the Mario agent has performed and the y-axis shows the episode
reward. The graph is split up as a result of the program restarting multiple times during
training.

Figure 4.7: Unfiltered episode reward for the Seq2Seq generator.

56

4.2. SEQ2SEQ
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.8: Episode reward for the Seq2Seq generator with the Savitzky-Golay filter applied
with window size 1,001 and polynomial degree 4.

The generated levels have a maximum length of 8,505 pixels or almost 200 tiles. Mario’s

start position is at x-position 110, meaning the distance from Mario to the flag is 8,395

pixels. Since the game clock starts at 301 seconds, it can count down 300 seconds before

Mario loses. Furthermore, since the Mario agent receives -1.0 reward each time the game

clock ticks down one second, the minimum reward the Mario agent can receive when

completing a level is 8,095.

None of the graphs showing the Mario agent’s episode rewards are remotely near the

minimum possible reward Mario can obtain when completing a level. Hence, the generated

levels are too difficult for the Mario agent, and the generator has not been able to adhere

to a suitable difficulty, as hypothesized in section 1.3. However, the generator and Mario

agent may adapt after more training.

It should be noted that even though the generator rewards appear to be very low compared

to the mean episode reward of the Mario agent, the Mario agent has a significantly larger

pool of rewards it can collect compared to the generator. The Mario agent receives

a reward of 1.0 for each pixel Mario moves to the right. The generator can receive a

57

4.2. SEQ2SEQ
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

maximum reward of 1.0 for each transition Mario traverses. When one transition consists

of five columns of tiles, where each tile is 43 pixels wide, the reward ratio between the

Mario agent and the generator is 215:1 in the optimal scenario for the generator.

Figure 4.9 shows the results of the Seq2Seq generator along with Q-values associated with

each generated tile. As with the Seq2Tile generator, the generator was configured to be

non-trainable and only perform greedy actions during the evaluation. The reward the

generator can receive for generating any given tile ranges between 0 and 1. However, the

Q-values printed on each tile in Figure 4.9 range between 0.001 and 0.005, which is very

low, especially considering the Q-values also account for future rewards. We believe the

reason for this is the behavior of the Mario agent.

When the generator is set to greedy and non-trainable, it will always generate the same

level. When evaluating with these settings, we observed that the Mario agent always

jumped directly into the column of enemies and died. Judging by the layout of the

beginning of the level, it seems possible for Mario to advance at least to the brick wall by

waiting for the enemies to fall to the ground before jumping on them. When attempting to

evaluate the generated level with a human player controlling Mario, it was indeed possible

to advance to the brick wall. However, Mario can only jump over four tiles vertically, and

the high brick wall is five tiles in height, which makes it impossible to pass. It is even

impossible to overcome by bouncing on an enemy, as this does not provide sufficient

altitude for Mario. Judging by the Q-values, however, it is not far-fetched to believe that

the generator attempted to create an obstacle for Mario. The generator put the highest

Q-value of 0.003 on the bottom brick, 0.002 on the next, and 0.001 on the following three

bricks. After these, the Q-value of an air tile overtook the Q-value of the brick tile.

This behavior could indicate that the generator knows it should generate a certain number

of bricks to create an obstacle, but it does not know precisely how many. The behavior

is also an indication that the second hypothesis defined in section 1.3 can be deemed

valid, but more training is needed to conclude. Regardless, the results observed in Figure

4.9 show that the generator can generate levels with inherent structure. By comparing

58

4.2. SEQ2SEQ
GENERATION

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.9 to Figure 4.5, which showcases a generator randomly generating tiles, it can

be argued that the Seq2Seq generator has learned some structure for generating levels in

Super Mario Bros.

Figure 4.9: Seq2Seq results with each tile labeled with its Q-value.

59

5 | Discussion

In this chapter, we discuss the thesis in its entirety. We will look at each of the conducted

experiments and compare them against each other, and connect our findings to the rel-

evant theory. Next, we discuss the learning outcomes of this thesis. Finally, using this

learning outcome, we will examine the thesis’ future development.

The system implemented for this thesis is relatively comprehensive, and many experiments

were run with faulty implementations that were uncovered after the experiments’ results

were ready. The faulty implementations resulted in much time being cut from the available

training time for the final experiments.

When it comes to the Seq2Tile LSTM generation model versus the Seq2Seq LSTM genera-

tion model, they had some advantages and disadvantages. One advantage of the Seq2Tile

LSTM model is that the output shape of the network allows trained models to work with

different generation sizes without having to train the model from scratch. The genera-

tor predicts tiles one-by-one, and the input works like a sliding window. The number of

generated columns and tiles per column can be changed and tested with the same model.

The major disadvantage with the Seq2Tile LSTM model is that it is very slow, both when

it comes to generating new tiles and training the generator. The reason is that the model

has to produce one prediction per generated tile.

While working on the experiments with the LSTM generation, we considered the size of

the replay memory. The size was initially set to 10,000. However, this may lead to the

generator training on outdated experience as the Mario agent improves over time. A large

replay memory allows early experience from when the Mario agent was not very good at

traversing the level to be included in training for a long time. To avoid this, we set the

replay memory size to 100. The smaller size will make the generator train on more recent

60

5.1. LEARNING
OUTCOMES

CHAPTER 5. DISCUSSION

and relevant experience.

Because the implemented system consists of a multi-agent environment with distributed

workers updating the Mario agent’s policy, the training process requires a substantial

amount of processing power. Additionally, the game runs extra slowly when there are

a significant amount of enemies present within the update radius of Mario. Since we,

unfortunately, did not have access to the university’s best hardware, the training process

was far more time-consuming than we had anticipated. We trained the seq2seq generator

model for two days straight on the best hardware we had access to, and it only completed

12,200 episodes. Considering that the graph for the generator reward never converged,

we would deem the training amount insufficient.

5.1 Learning outcomes

As the Generative Playing System described in this thesis is built upon the Super Mario

Bros. Python implementation by Marblexu, a significant amount of time was spent to

get familiar with the implementation. The implementation was made using the pygame

library, and throughout this work, we became more familiar with and obtained a better

understanding of the library.

The implemented framework is incorporated into an OpenAI gym environment. As such,

we learned how to design and implement a gym environment from scratch using the gym

library.

The Mario agent was implemented through the Ray RlLib library, which is a library

focusing on scalability and distributed workflow in RL applications. We learned a great

deal about RlLib, including how distributed workers are used to update a central policy,

and how to use RlLib with a custom gym environment.

Q-Learning was used extensively for the implementation of the generator, and the process

of implementing the generator was highly educational. We learned how an experience

61

5.2. FUTURE
DEVELOPMENT

CHAPTER 5. DISCUSSION

replay is used to store experience and how Q-values are updated through a Q-function.

Furthermore, we learned how to design and tune a reward function for an RL agent to

suit our needs.

Throughout the writing of this thesis, we have learned about current state-of-the-art

techniques within PCG, and we have gained a more profound understanding of the RL

paradigm in general.

5.2 Future development

This thesis has created a framework for conducting experiments within reinforcement

learning in Super Mario Bros. This framework can be used and developed further for

similar projects revolving around multi-agent competition in Super Mario Bros.

One major issue we encountered while working with the RlLib library was that it would

occasionally cause the program to crash, either due to a shortage of memory, or some

other unknown cause. In order to mitigate this problem, we let our program simply

restart and continue from where it left off. This solution did cause some unwanted side-

effects, such as the fragmented graphs showing Mario’s performance. Additionally, each

time the program restarted, it would reset all the variables other than the agent models

and the replay memory, which were saved to disk. As a result, variables such as epsilon

were reset multiple times during training, which would drastically affect the generator’s

behavior. The program would also have to be restarted manually from time to time,

which further restricted how much the agents were trained. Therefore, finding the cause

of the program crashing and fixing it should be prioritized in the future.

The tested generator models were relatively similar. However, they do not need to be.

Different network models could be tested in the future, such as convolutional models,

which may be more adept at spotting patterns in input data and correlate this to the

output. Additionally, the experiments rely on a significant number of hyperparameters,

62

5.2. FUTURE
DEVELOPMENT

CHAPTER 5. DISCUSSION

which could be optimized further to achieve better results.

The Mario agent utilized the Ape-X DQN algorithm for training, which is a reasonable

choice considering the algorithm has achieved excellent results in 57 Atari games com-

pared to other reinforcement learning algorithms [31]. However, other algorithms can

also be tested for training the Mario agent, such as Importance Weighted Actor-Learner

Architectures (IMPALA) or Proximal Policy Optimization (PPO).

The Mario agent’s observation space includes several tiles that the generator is unable to

create, which means the observation space of the Mario agent can be decreased. Another

change that can be made is to convert from a normalized observation space where each tile

is represented as a number in the range [0, 1], to a one-hot encoded representation. These

changes could improve the Mario agent’s performance since the various tiles become more

distinct from each other.

An attempt was made to implement a curiosity-based reward for the Mario agent, as

this will improve the Mario agent’s performance on chaotic maps. However, the exist-

ing implementations of curiosity are challenging to incorporate into our implementation.

The problem mainly lies in making the curiosity implementation cooperate with RlLib.

However, it would be beneficial to include in the future, if possible.

RlLib allows the Mario agent to use distributed workers in order to explore the environ-

ment. With distributed workers, each worker has a separate python process, and each

worker is interacting with its own instantiated environment. Since the generator is in-

stantiated inside the environment, each worker is competing with a separate generator,

and the generators have no way to communicate. A drawback of this design is that only

one of the generators’ models are saved to disk as a result of the generator with the

least amount of training progress overwriting the previously saved models with its mod-

els. The issue can be fixed by swapping the environment type RlLib instantiates for the

Mario agent. Instead of using a single-agent environment, a multi-agent environment can

be used, which is described in the Ray RlLib documentation [32].

63

5.2. FUTURE
DEVELOPMENT

CHAPTER 5. DISCUSSION

As previously mentioned, the generator was trained with an experience replay of size

100 due to the problem of training on outdated experience. Implementing a prioritized

experience replay is an alternative method for mitigating the problem of training on

outdated or irrelevant experience. This type of experience replay is utilized in the Ape-X

DQN algorithm used by the Mario agent and could be implemented in the generator in

the future.

Optimizing the implementation of the game could make it run faster and allow quicker

training. The generator sometimes filled the whole map with enemies or animated blocks,

which made the game run slowly. We changed the game to only update objects within

a certain radius from Mario, which made the game run significantly faster. However, we

believe the implementation could be further optimized, allowing even faster training.

64

6 | Conclusion

In this thesis, a system consisting of two symbiotic reinforcement learning agents was

implemented into a Super Mario Bros. framework. The goal was to have the agents

engage in a competition, where the agent controlling Mario would attempt to navigate

through the generator’s challenging but completable levels. The generator was trained

without any prior experience of how the game works or what its goal was. The Mario

agent utilized the Ape-X DQN algorithm while the generator implemented a DQN-based

algorithm with LSTM. It is possible to create new level content that the Mario agent

can interact with by giving the generator a sequence of previously generated tiles as

input to predict Q-values of new tiles. The results show that the amount of training is

insufficient to draw any immediate conclusions regarding the difficulty of the generated

content. However, observing the generated level content reveals that the generator has

attempted to create structured obstacles for the Mario agent. If the generator can be

trained more, we believe it will learn to create levels suited to the player’s skill level.

65

References

[1] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep reinforcement

learning for datacenter-scale automatic traffic optimization.” https://dl.acm.org/

citation.cfm?doid=3230543.3230551, Aug 2018. Accessed: Dec. 17, 2019.

[2] Colah, “Understanding lstm networks.” https://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Accessed: May. 27, 2020.

[3] G. Developers, “Overview of gan structure.” https://developers.google.com/

machine-learning/gan/gan_structure?hl=th. Accessed: May. 12, 2020.

[4] roclark, “Super mario bros. dqn.” https://github.com/roclark/

super-mario-bros-dqn#Progress. Accessed: May. 19, 2020.

[5] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM comput-

ing surveys (CSUR), vol. 27, no. 3, pp. 326–327, 1995. Accessed: May. 26, 2020.

[6] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine Learning, vol. 8,

pp. 279–292, 05 1992.

[7] V. Mnih, K. Kavakcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-

tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis, “Human-level control through deep reinforcement learning.” https:

//www.nature.com/articles/nature14236, 2015. Accessed: Dec. 17, 2019.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets.” arxiv, https://arxiv.

org/pdf/1406.2661v1.pdf, Jun 2014. Accessed: Feb. 18, 2020.

[9] N. Shibuya, “Understanding generative adversarial net-

works.” https://medium.com/activating-robotic-minds/

66

https://dl.acm.org/citation.cfm?doid=3230543.3230551
https://dl.acm.org/citation.cfm?doid=3230543.3230551
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://developers.google.com/machine-learning/gan/gan_structure?hl=th
https://developers.google.com/machine-learning/gan/gan_structure?hl=th
https://github.com/roclark/super-mario-bros-dqn#Progress
https://github.com/roclark/super-mario-bros-dqn#Progress
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://arxiv.org/pdf/1406.2661v1.pdf
https://arxiv.org/pdf/1406.2661v1.pdf
https://medium.com/activating-robotic-minds/understanding-generative-adversarial-networks-4dafc963f2ef
https://medium.com/activating-robotic-minds/understanding-generative-adversarial-networks-4dafc963f2ef
https://medium.com/activating-robotic-minds/understanding-generative-adversarial-networks-4dafc963f2ef

REFERENCES REFERENCES

understanding-generative-adversarial-networks-4dafc963f2ef. Accessed:

May. 19, 2020.

[10] “What pcg is.” http://pcg.wikidot.com/what-pcg-is. Accessed: May. 27, 2020.

[11] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation in Games.

Springer Publishing Company, Incorporated, 1st ed., 2016. Accessed: May. 05, 2020.

[12] “Julian togelius.” https://engineering.nyu.edu/faculty/julian-togelius. Ac-

cessed: May. 21, 2020.

[13] K. Compton and M. Mateas, “Procedural level design for platform games,”

p. 109–111, 2006. Accessed: May. 12, 2020.

[14] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu, T. Hashiyama,

N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi, G. Smith, and R. Baum-

garten, “The 2010 mario ai championship: Level generation track,” IEEE Transac-

tions on Computational Intelligence and AI in Games, vol. 3, pp. 332–347, Dec 2011.

Accessed: Feb. 18, 2020.

[15] W. J. Ridgman, “Statistical methods, ames: Iowa state university press (1989),” The

Journal of Agricultural Science, vol. 115, no. 1, p. 76–79, 1990.

[16] G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha, “Launchpad:

A rhythm-based level generator for 2-d platformers,” p. 16, 03 2011. Accessed: May.

13, 2020.

[17] F. Mourato, M. Santos, and F. Birra, “Automatic level generation for platform

videogames using genetic algorithms,” p. 8, 11 2011. Accessed: May. 13, 2020.

[18] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M. Lucas,

“General video game ai: A multitrack framework for evaluating agents, games, and

content generation algorithms,” IEEE Transactions on Games, vol. 11, no. 3, pp. 195–

214, 2019. Accessed: May. 07, 2020.

67

https://medium.com/activating-robotic-minds/understanding-generative-adversarial-networks-4dafc963f2ef
https://medium.com/activating-robotic-minds/understanding-generative-adversarial-networks-4dafc963f2ef
https://medium.com/activating-robotic-minds/understanding-generative-adversarial-networks-4dafc963f2ef
http://pcg.wikidot.com/what-pcg-is
https://engineering.nyu.edu/faculty/julian-togelius

REFERENCES REFERENCES

[19] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi, “Pro-

cedural level generation improves generality of deep reinforcement learning,” CoRR,

vol. abs/1806.10729, 2018. Accessed: May. 20, 2020.

[20] “Openai gym.” https://gym.openai.com/. Accessed: May. 25, 2020.

[21] “Openai baselines.” https://openai.com/blog/openai-baselines-dqn/. Accessed: May.

25, 2020.

[22] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Procedural content gen-

eration via reinforcement learning.” arxiv, https://arxiv.org/pdf/2001.09212v1.

pdf, Jan 2020. Accessed: Jan. 31, 2020.

[23] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving mario

levels in the latent space of a deep convolutional generative adversarial network,”

in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

’18, (New York, NY, USA), p. 221–228, Association for Computing Machinery, 2018.

Accessed: Jan. 13, 2020.

[24] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environment

for machine learning,” 2011. Accessed: May. 26, 2020.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal of

Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. Accessed: May.

26, 2020.

[26] A. Summerville and M. Mateas, “Super mario as a string: Platformer level generation

via lstms,” 2016. Accessed: Feb. 25, 2020.

[27] P. Bontrager and J. Togelius, “Fully differentiable procedural content generation

through generative playing networks,” 2020. Accessed: May. 07, 2020.

[28] Marblexu, “Pythonsupermario.” Github, https://github.com/marblexu/

PythonSuperMario, 2019. Accessed: Jan. 23, 2020.

68

https://arxiv.org/pdf/2001.09212v1.pdf
https://arxiv.org/pdf/2001.09212v1.pdf
https://github.com/marblexu/PythonSuperMario
https://github.com/marblexu/PythonSuperMario

REFERENCES REFERENCES

[29] S. Kaushik, “Engineering intelligent nlp applications using deep learn-

ing - part 2.” https://www.slideshare.net/saurabhkaushikin/

engineering-intelligent-nlp-applications-using-deep-learning-part-2.

Accessed: May. 26, 2020.

[30] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and

I. Stoica, “Ray rllib: A composable and scalable reinforcement learning library,”

CoRR, vol. abs/1712.09381, 2017.

[31] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt,

and D. Silver, “Distributed prioritized experience replay.” https://arxiv.org/pdf/

1803.00933.pdf. Accessed: May. 15, 2020.

[32] “Multi-agent and hierarchical.” The Ray Team Revision, https://docs.ray.io/

en/master/rllib-env.html#multi-agent-and-hierarchical. Accessed: May. 21,

2020.

69

https://www.slideshare.net/saurabhkaushikin/engineering-intelligent-nlp-applications-using-deep-learning-part-2
https://www.slideshare.net/saurabhkaushikin/engineering-intelligent-nlp-applications-using-deep-learning-part-2
https://arxiv.org/pdf/1803.00933.pdf
https://arxiv.org/pdf/1803.00933.pdf
https://docs.ray.io/en/master/rllib-env.html#multi-agent-and-hierarchical
https://docs.ray.io/en/master/rllib-env.html#multi-agent-and-hierarchical

A | Mario observation space

Table A.1 shows the exhaustive list of tiles and entities included in the Mario agent’s

observation space.

Image Name ID Value

star x 0.0

1-up u 0.07142857142857142

mushroom m 0.14285714285714285

fireflower i 0.21428571428571427

fireball o 0.2857142857142857

flagpole f 0.3571428571428571

air _ 0.42857142857142855

box q 0.5

brick b 0.5714285714285714

solid tile s 0.6428571428571428

A-1

goomba 0 0.7142857142857142

koopa 1 0.7857142857142857

fly koopa 2 0.8571428571428571

fire koopa
(bowser) 5 0.9285714285714285

fire w 1.0

Table A.1: Tiles and entities in the Mario agent’s observation space.

A-2

B | Generator action space

Table B.1 shows the exhaustive list of tiles and entities included in the generator’s action

space.

Image Name ID

air _

box q

brick b

solid tile s

goomba 0

koopa 1

Table B.1: Tiles and entities in the generator’s observation space.

A-3

C | Code listings

Listing C.1 shows the reward function for the Mario agent.

Listing C.1: Reward function for the Mario agent.
1 def _reward (self):

2 """ Mario reward function """

3

4 # Current x- value of mario

5 current_x = self.game. state_dict [c. LEVEL]. player .rect.x

6

7 # Difference in current x- value and last x- value

8 reward = current_x - self. mario_x_last

9

10 # Update last x- value

11 self. mario_x_last = current_x

12

13 # Time left on game clock

14 clock_now = self.game. state_dict [c. LEVEL]. overhead_info .time

15

16 # Difference in remaining time. Clock counts down from 300 ,

17 # hence no clock tick: reward += 0, clock tick: reward += -1

18 reward += self. clock_last - clock_now

19

20 # Update last clock value

21 self. clock_last = clock_now

22

23 # If mario is dead , set reward to -15

24 if self.game. state_dict [c. LEVEL]. player .dead:

25 reward = -15

26

27 return reward

A-4

Listing C.2 shows the generate method in level_gen.py.

Listing C.2: generate method in level_gen.py.
1 def generate (self):

2 tiles = {}

3 for item in self. GEN_DICT . items ():

4 item = item [-1]

5 tiles [item] = []

6

7 if self.read:

8 line_num = 0

9 limit = self. gen_line + c. GEN_LENGTH

10 with open(self. map_gen_file) as file:

11 for line in file:

12 if line_num >= limit :

13 break

14 if line_num >= self. gen_line :

15 tiles = self. build_tiles_dict (tiles , line)

16 line_num += 1

17

18 if self. gen_line >= self. gen_file_length :

19 self.read = False

20 else:

21 new_terrain = []

22 q_values = []

23 if self. map_data [c. GEN_BORDER] >= self. map_data [c. MAP_FLAGPOLE][0][’x’] - c.

↪→ GEN_PX_LEN or c. ONLY_GROUND :

24 for _ in range (c. GEN_LENGTH):

25 new_terrain . append (str(c. SOLID_ID * 2))

26 else:

27 new_terrain , q_values = self. generator . generate ()

28

29 flag_x = self. map_data [c. MAP_FLAGPOLE][0][’x’]

30

31 # Check if the generator has reached the flag

32 if not self. generator_done :

33 gen_border = self. player .rect.x + self. player .rect.w + c. GEN_DISTANCE + c.

↪→ GEN_PX_LEN

34 self. generator_done = gen_border >= flag_x

35 self. gen_list . append ({c. GEN_LINE : self.gen_line ,

36 c.DONE: self. generator_done })

37

38 # Check if self. gen_list entries still should be added to generator replay memory

A-5

39 elif not self. gen_list_done :

40 offset = 4 * c. GEN_PX_LEN + int(c. MEMORY_LENGTH * c. TILE_SIZE / self.

↪→ generator . tiles_per_col)

41 gen_border = self. player .rect.x + self. player .rect.w + offset

42 self. gen_list_done = gen_border >= flag_x

43

44 # Check if mario has reached the flag

45 elif not self. mario_done :

46 gen_border = self. player .rect.x + self. player .rect.w

47 self. mario_done = gen_border >= flag_x

48

49 # Build tiles dict using encoded tiles in new_terrain

50 for n, line in enumerate (new_terrain):

51 try:

52 tiles = self. build_tiles_dict (tiles , line , q_values [n])

53 except IndexError :

54 tiles = self. build_tiles_dict (tiles , line)

55

56 # Add new tiles and entities to respective sprite groups

57 self. setup_brick_and_box (tiles [’bricks ’], tiles [’boxes ’])

58 self. setup_solid_tile (tiles [’steps ’], self. step_group , 0, 16)

59 self. setup_solid_tile (tiles [’ground ’], self. ground_group , 0, 0)

60 self. setup_solid_tile (tiles [’solid ’], self. solid_group , 432 , 0)

61 self. setup_enemies (tiles [’enemies ’])

62

63 if self. gen_line > c. PLATFORM_LENGTH and c. PRINT_Q_VALUES :

64 for q_data in tiles [’air ’]:

65 textsurface = self. q_font . render (q_data [2] , True , (255 , 255 , 255))

66 self. background .blit(textsurface , (q_data [0] + 5, q_data [1] + 15))

67

68 if c. TRAIN_GEN and not self. mario_done and self. insert_zero_index :

69 # Update weights in generator network and increment training_sessions if model is

↪→ trained

70 self. training_sessions += self. generator . train ()

71

72 if not (self. training_sessions % c. GEN_MODEL_SAVE_INTERVAL)\

73 and self. training_sessions > self. generator . start_checkpoint :

74 self. generator . save_model (num=self. training_sessions)

75 self. generator . save_replay_memory (num=self. training_sessions)

A-6

Listing C.3 shows the beginning of the train method in generation.py.

Listing C.3: train method in generation.py.
1 def train (self):

2 """ Train the generator model if replay memory is large enough .

3 Return 1 if the generator model is trained , 0 otherwise """

4

5 # Only start training if we have enough transitions in replay memory

6 if len(self. replay_memory) < c. MIN_REPLAY_MEMORY_SIZE :

7 return 0

8

9 print (" Training on", c. MINIBATCH_SIZE , " transitions ")

10

11 # Get a minibatch of random samples from replay memory

12 minibatch = random . sample (self. replay_memory , c. MINIBATCH_SIZE)

13

14 # Get current states from minibatch and create list of predicted sequences

15 current_states = np. array ([transition [0] for transition in minibatch])

16 current_predicted_sequences = np. array (self. predict_new_states (current_states ,

↪→ return_qs =True))

17

18 # Get future states from minibatch , and create new list of sequece predictions

19 new_current_states = np. array ([transition [3] for transition in minibatch])

20 future_predicted_sequences = np. array (self. predict_new_states (new_current_states ,

↪→ return_qs =True))

21

22 X = []

23 y = []

24

25 # Enumerate transitions

26 for index , (current_state , action , reward , new_current_state , done) in enumerate (

↪→ minibatch):

27

28 # If not a terminal state , get new qs from future states , otherwise set it to

↪→ reward

29 if not done:

30 max_future_Qs = [np.max(qs) for qs in future_predicted_sequences [index]]

31 new_Qs = np. array ([reward + c. DISCOUNT * fqs for fqs in max_future_Qs])

32 else:

33 new_Qs = np. array ([reward for _ in range (len(future_predicted_sequences [index

↪→]))])

34

35 # Update Q- values for given state

A-7

36 current_qs = current_predicted_sequences [index]

37 for n, action_n in enumerate (action):

38 current_qs [n][action_n] = new_Qs [n]

Listing C.4 shows the fitting part of the train method in generation.py for the Seq2Tile

generation.

Listing C.4: Fitting the Seq2Tile generation model.
1 # Insert sliding window states into X

2 generator_input = []

3 for i in range (self. gen_size):

4 state_slice = max (0, i - c. MEMORY_LENGTH)

5 tmp_state = np. concatenate ((current_state [i:], action [state_slice :i]))

6 generator_input . append (self. one_hot_encode (tmp_state))

7

8 # Append to training data

9 X. append (generator_input)

10 y. append (current_qs)

11

12 # Fit on all transitions in minibatch

13 X = np. array (X)

14 y = np. array (y)

15 for i in range (len(X)):

16 self. generator .fit(X[i], y[i], batch_size =self.gen_size , verbose =0, shuffle =False

↪→ , callbacks =[self. tensorboard])

17

18 return 1

A-8

Listing C.5 shows the fitting part of the train method in generation.py for the Seq2Seq

generation.

Listing C.5: Fitting the Seq2Seq generation model.
1 # One -hot encode current state from transition

2 generator_input = self. one_hot_encode (current_state)

3

4 # Append to training data

5 X. append (generator_input)

6 y. append (current_qs)

7

8 # Fit on all transitions in minibatch

9 X = np. array (X)

10 y = np. array (y)

11 self. generator .fit(X, y, batch_size =c. MINIBATCH_SIZE , verbose =0, shuffle =False ,

↪→ callbacks =[self. tensorboard])

12

13 return 1

A-9

D | Experiment configurations

Listing D.1 shows constants.py which is the configuration file for the experiments.

Listing D.1: Configuration file constants.py
1 # Settings

2

3 __author__ = ’marble_xu ’

4

5 DEBUG = False

6 DEBUG_START_X = 110

7 DEBUG_START_Y = 534

8

9 SCREEN_HEIGHT = 600

10 SCREEN_WIDTH = 800

11 SCREEN_SIZE = (SCREEN_WIDTH , SCREEN_HEIGHT)

12

13 ORIGINAL_CAPTION = ’Super Mario Bros.’

14

15 # COLORS

16 # R G B

17 GRAY = (100 , 100 , 100)

18 NAVYBLUE = (60, 60, 100)

19 WHITE = (255 , 255 , 255)

20 RED = (255 , 0, 0)

21 GREEN = (0, 255 , 0)

22 FOREST_GREEN = (31, 162 , 35)

23 BLUE = (0, 0, 255)

24 SKY_BLUE = (39, 145 , 251)

25 YELLOW = (255 , 255 , 0)

26 ORANGE = (255 , 128 , 0)

27 PURPLE = (255 , 0, 255)

28 CYAN = (0, 255 , 255)

29 BLACK = (0, 0, 0)

30 NEAR_BLACK = (19, 15, 48)

31 COMBLUE = (233 , 232 , 255)

32 GOLD = (255 , 215 , 0)

33

A-10

34 BGCOLOR = WHITE

35

36

37 SIZE_MULTIPLIER = 2.5

38 BRICK_SIZE_MULTIPLIER = 2.69

39 SOLID_SIZE_MULTIPLIER = 2.69

40 BACKGROUND_MULTIPLER = 2.679

41 GROUND_HEIGHT = SCREEN_HEIGHT - 62

42

43 GAME_TIME_OUT = 301

44

45 # STATES FOR ENTIRE GAME

46 MAIN_MENU = ’main menu ’

47 LOAD_SCREEN = ’load screen ’

48 TIME_OUT = ’time out ’

49 GAME_OVER = ’game over ’

50 LEVEL = ’level ’

51

52 # MAIN MENU CURSOR STATES

53 PLAYER1 = ’1 PLAYER GAME ’

54 PLAYER2 = ’2 PLAYER GAME ’

55

56 # GAME INFO DICTIONARY KEYS

57 BASE_FPS = ’base fps ’

58 COIN_TOTAL = ’coin total ’

59 SCORE = ’score ’

60 TOP_SCORE = ’top score ’

61 LIVES = ’lives ’

62 CURRENT_TIME = ’current time ’

63 LEVEL_NUM = ’level num ’

64 PLAYER_NAME = ’player name ’

65 PLAYER_MARIO = ’mario ’

66 PLAYER_LUIGI = ’luigi ’

67

68 # MAP GENERATION

69 GENERATE_MAP = True

70 RANDOM_GEN = False

71 TRAIN_GEN = True

72 LOAD_GEN_MODEL = True

73 INSERT_GROUND = True

74 ONLY_GROUND = False

75 READ = True

76 WRITE = False

77 SAVE_LEVEL = False

78 PRINT_GEN_REWARD = False

79 PRINT_Q_VALUES = False

A-11

80 SNAKING = True

81 CHUNK_BASED_GREEDY = False # If False -> Tile based greedy (greedy determined for each

↪→ individual tile)

82 GREEDY = False # Only perform greedy actions

83 UPDATE_RADIUS = 1 * SCREEN_WIDTH

84 GEN_DISTANCE = 2 * SCREEN_WIDTH

85 GEN_HEIGHT = 580

86 GEN_LENGTH = 5

87 PLATFORM_LENGTH = 5

88 Y_OFFSET = 64

89 COL_HEIGHT = 13

90 TILE_SIZE = 43

91 GEN_PX_LEN = GEN_LENGTH * TILE_SIZE

92 GEN_MODEL_SAVE_INTERVAL = 100 # Number of training sessions

93 REP_MEM = ’rep_mem ’

94 GEN_BORDER = ’gen_border ’

95 GEN_LINE = ’gen_line ’

96 TIMESTEP = ’timestep ’

97 PLAYER_X = ’player_x ’

98 REWARD = ’reward ’

99 OPTIMAL_V = ’optimal_v ’

100 DONE = ’done ’

101

102 # GENERATION IDENTIFIERS

103 AIR_ID = ’_’

104 GROUND_ID = ’g’

105 BRICK_ID = ’b’

106 BOX_ID = ’q’

107 STEP_ID = ’t’

108 SOLID_ID = ’s’

109 PIPE_ID = ’p’

110 FLAG_ID = ’f’

111 COIN_ID = ’c’

112 MUSHROOM_ID = ’m’

113 FIREFLOWER_ID = ’i’

114 FIREBALL_ID = ’o’

115 STAR_ID = ’x’

116 LIFE_ID = ’u’

117 GOOMBA_ID = ’0’

118 KOOPA_ID = ’1’

119 FLY_KOOPA_ID = ’2’

120 PIRANHA_ID = ’3’

121 FIRESTICK_ID = ’4’

122 FIRE_KOOPA_ID = ’5’

123 FIRE_ID = ’w’

124 ENEMY_IDS = [GOOMBA_ID , KOOPA_ID , FLY_KOOPA_ID , PIRANHA_ID , FIRESTICK_ID , FIRE_KOOPA_ID ,

A-12

↪→ FIRE_ID]

125 SOLID_IDS = [GROUND_ID , BRICK_ID , BOX_ID , STEP_ID , SOLID_ID , PIPE_ID]

126

127 TILES = [

128 STAR_ID ,

129 LIFE_ID ,

130 MUSHROOM_ID ,

131 FIREFLOWER_ID ,

132 FIREBALL_ID ,

133 FLAG_ID ,

134 AIR_ID ,

135 BOX_ID ,

136 BRICK_ID ,

137 SOLID_ID ,

138 GOOMBA_ID ,

139 KOOPA_ID ,

140 FLY_KOOPA_ID ,

141 FIRE_KOOPA_ID ,

142 FIRE_ID

143]

144

145 GENERATOR_TILES = [

146 AIR_ID ,

147 BOX_ID ,

148 BRICK_ID ,

149 SOLID_ID ,

150 GOOMBA_ID ,

151 KOOPA_ID

152]

153

154 # GENERATION NETWORK PARAMETERS

155 LEARNING_RATE = 0.001

156 MEMORY_LENGTH = 64

157 EPSILON_DECAY = 0.995

158 MIN_EPSILON = 0.01

159 REPLAY_MEMORY_SIZE = 100

160 MIN_REPLAY_MEMORY_SIZE = 50

161 MINIBATCH_SIZE = 10

162 DISCOUNT = 0.99

163

164 # GYM COMPONENTS

165 ENV_NAME = ’MarioEnv ’

166 ACTION_KEYS = 323

167 EVALUATE = False

168 SKIP_MENU = True

169 HUMAN_PLAYER = False

A-13

170 LOAD_CHECKPOINT = True

171 PRINT_OBSERVATION = False

172 PRINT_LEVEL = False

173 OBS_RADIUS = 10

174 OBS_SIZE = 2 * OBS_RADIUS + 1

175 OBS_FRAMES = OBS_SIZE

176

177 # MAP COMPONENTS

178 MAP_IMAGE = ’image_name ’

179 MAP_MAPS = ’maps ’

180 SUB_MAP = ’sub_map ’

181 MAP_GROUND = ’ground ’

182 MAP_PIPE = ’pipe ’

183 PIPE_TYPE_NONE = 0

184 PIPE_TYPE_IN = 1 # can go down in the pipe

185 PIPE_TYPE_HORIZONTAL = 2 # can go right in the pipe

186 MAP_STEP = ’step ’

187 MAP_BRICK = ’brick ’

188 STEP_NUM = ’step_num ’

189 BRICK_NUM = ’brick_num ’

190 TYPE_NONE = 0

191 TYPE_COIN = 1

192 TYPE_STAR = 2

193 MAP_BOX = ’box ’

194 TYPE_MUSHROOM = 3

195 TYPE_FIREFLOWER = 4

196 TYPE_FIREBALL = 5

197 TYPE_LIFEMUSHROOM = 6

198 MAP_ENEMY = ’enemy ’

199 ENEMY_TYPE_GOOMBA = 0

200 ENEMY_TYPE_KOOPA = 1

201 ENEMY_TYPE_FLY_KOOPA = 2

202 ENEMY_TYPE_PIRANHA = 3

203 ENEMY_TYPE_FIRESTICK = 4

204 ENEMY_TYPE_FIRE_KOOPA = 5

205 ENEMY_RANGE = ’range ’

206 MAP_CHECKPOINT = ’checkpoint ’

207 ENEMY_GROUPID = ’enemy_groupid ’

208 MAP_INDEX = ’map_index ’

209 CHECKPOINT_TYPE_ENEMY = 0

210 CHECKPOINT_TYPE_FLAG = 1

211 CHECKPOINT_TYPE_CASTLE = 2

212 CHECKPOINT_TYPE_MUSHROOM = 3

213 CHECKPOINT_TYPE_PIPE = 4 # trigger player to go right in a pipe

214 CHECKPOINT_TYPE_PIPE_UP = 5 # trigger player to another map and go up out of a pipe

215 CHECKPOINT_TYPE_MAP = 6 # trigger player to go to another map

A-14

216 CHECKPOINT_TYPE_BOSS = 7 # defeat the boss

217 MAP_FLAGPOLE = ’flagpole ’

218 FLAGPOLE_TYPE_FLAG = 0

219 FLAGPOLE_TYPE_POLE = 1

220 FLAGPOLE_TYPE_TOP = 2

221 MAP_SLIDER = ’slider ’

222 HORIZONTAL = 0

223 VERTICAL = 1

224 VELOCITY = ’velocity ’

225 MAP_COIN = ’coin ’

226

227 # COMPONENT COLOR

228 COLOR = ’color ’

229 COLOR_TYPE_ORANGE = 0

230 COLOR_TYPE_GREEN = 1

231 COLOR_TYPE_RED = 2

232

233 # BRICK STATES

234 RESTING = ’resting ’

235 BUMPED = ’bumped ’

236 OPENED = ’opened ’

237

238 # MUSHROOM STATES

239 REVEAL = ’reveal ’

240 SLIDE = ’slide ’

241

242 # Player FRAMES

243 PLAYER_FRAMES = ’image_frames ’

244 RIGHT_SMALL_NORMAL = ’right_small_normal ’

245 RIGHT_BIG_NORMAL = ’right_big_normal ’

246 RIGHT_BIG_FIRE = ’right_big_fire ’

247

248 # PLAYER States

249 STAND = ’standing ’

250 WALK = ’walk ’

251 JUMP = ’jump ’

252 FALL = ’fall ’

253 FLY = ’fly ’

254 SMALL_TO_BIG = ’small to big ’

255 BIG_TO_FIRE = ’big to fire ’

256 BIG_TO_SMALL = ’big to small ’

257 FLAGPOLE = ’flag pole ’

258 WALK_AUTO = ’walk auto ’ # ignoring key input in this state

259 END_OF_LEVEL_FALL = ’end of level fall ’

260 IN_CASTLE = ’in castle ’

261 DOWN_TO_PIPE = ’down to pipe ’

A-15

262 UP_OUT_PIPE = ’up out of pipe ’

263

264 # PLAYER FORCES

265 PLAYER_SPEED = ’speed ’

266 WALK_ACCEL = ’walk_accel ’

267 RUN_ACCEL = ’run_accel ’

268 JUMP_VEL = ’jump_velocity ’

269 MAX_Y_VEL = ’max_y_velocity ’

270 MAX_RUN_SPEED = ’max_run_speed ’

271 MAX_WALK_SPEED = ’max_walk_speed ’

272 SMALL_TURNAROUND = .35

273 JUMP_GRAVITY = .31

274 GRAVITY = 1.01

275

276 # LIST of ENEMIES

277 GOOMBA = ’goomba ’

278 KOOPA = ’koopa ’

279 FLY_KOOPA = ’fly koopa ’

280 FIRE_KOOPA = ’fire koopa ’

281 FIRE = ’fire ’

282 PIRANHA = ’piranha ’

283 FIRESTICK = ’firestick ’

284

285 # GOOMBA Stuff

286 LEFT = ’left ’

287 RIGHT = ’right ’

288 JUMPED_ON = ’jumped on ’

289 DEATH_JUMP = ’death jump ’

290

291 # KOOPA STUFF

292 SHELL_SLIDE = ’shell slide ’

293

294 # FLAG STATE

295 TOP_OF_POLE = ’top of pole ’

296 SLIDE_DOWN = ’slide down ’

297 BOTTOM_OF_POLE = ’bottom of pole ’

298

299 # FIREBALL STATE

300 FLYING = ’flying ’

301 BOUNCING = ’bouncing ’

302 EXPLODING = ’exploding ’

303

304 # IMAGE SHEET

305 ENEMY_SHEET = ’smb_enemies_sheet ’

306 ITEM_SHEET = ’item_objects ’

A-16

	Introduction
	Motivation
	Goal
	Field of research

	Problem statement
	Contributions

	Background
	Reinforcement Learning
	Q-learning
	Deep Q-Networks
	Experience replay
	Recurrent Neural Networks
	Generative Adversarial Networks
	Procedural Content Generation

	Related work

	Methods
	Generative Playing Networks
	Experiments
	Mario agent
	Level generator
	Generator network model
	Map generation
	Experience gathering
	Reward function
	Generator training

	Hyperparameters

	Experimental results
	Seq2Tile generation
	Seq2Seq generation

	Discussion
	Learning outcomes
	Future development

	Conclusion
	References
	Mario observation space
	Generator action space
	Code listings
	Experiment configurations

