

The Application of the Tsetlin
Machine in Checkers

MARTIN BRÅTEN

SUPERVISOR

Ole-Christoffer Granmo

University of Agder, 2020

Faculty of Engineering and Science

Department of ICT

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of ICT
c© 2020 Martin Br̊aten. All rights reserved

Abstract

The Tsetlin Machine has shown promising results in the domain of board games such as Axis
& Allies, showing that the Tsetlin Machine may be a contender to more well-known machine
learning algorithms. This research aimed to find out how suitable the Tsetlin Machine is for the
domain of Checkers, and how to best utilize it for the purpose of playing Checkers. In order to
research this, the following questions had to be answered: Which Tsetlin Machine Configuration
is best suited for predicting the results of Checkers games? To what degree can the Tsetlin Ma-
chine predict the results of Checkers games? How well can a Checkers player using the Tsetlin
Machine compete against Kingsrow?

These questions were answered by creating a functional Checkers player with a Tsetlin Machine
predictor, for both to be tested. This was done by investigating how best to create datasets
from a collection of data, which OCA 2.0 was chosen for, testing various configurations of the
multiclass Tsetlin Machine with these datasets for finding well-fitted hyper-parameters and to
find the most suited Tsetlin Machine configuration for predicting the results of Checkers boards.
By self-play, further improvements were made.

The proposed solution was a Checkers player using a tree search with the depth of three and a
minimal amount of manually set rules, making it easier to evaluate the proposed Tsetlin Ma-
chine predictor. The solution was shown to be the multiclass weighted Tsetlin Machine with
positive boost using the hyper-parameters: clauses: 19000, treshold: 40000 and s: 9; which
was trained on the third K-Fold of the dataset NoDupeCheck StandardEnd, which was mini-
mally altered from the data source. It utilized a separate Tsetlin Machine predictor for each
color, achieving accuracies of 72.21% and 72.12% respectively, and proved to be more accurate
in this domain than numerous other machine learning algorithms. The Checkers player itself
was not able to compete with Kingsrow, but beat a Checkers player making moves at random
and was shown to have the skill comparable with that of a beginner-level human Checkers player.

The code for the proposed solution can be accessed through the following URL: https://

github.com/Fiskesuppen/TsetlinMachine-Checkers

KEY WORDS: Machine learning, Multiclass Tsetlin Machine, American Checkers, English
Draughts, Kingsrow, OCA 2.0, Tree search .

iii

https://github.com/Fiskesuppen/TsetlinMachine-Checkers
https://github.com/Fiskesuppen/TsetlinMachine-Checkers

Table of Contents

Abstract iii

Glossary vii

List of Figures xi

List of Tables xiii

I Research Overview 1

1 Introduction 3

1.1 Motivation . 3

1.2 Thesis definition . 3

1.2.1 Research Questions . 4

1.2.2 Hypotheses . 4

1.3 Contributions . 5

1.4 Method . 5

1.5 Thesis outline . 6

2 Background 7

2.1 Checkers . 7

2.2 Tsetlin Machine . 12

2.3 K-Fold Cross Validation . 16

2.4 Tree Search . 17

2.5 Precision, Recall and FScore . 19

3 State-of-the-art 21

3.1 Chinook . 21

3.1.1 Chinook dataset . 22

3.2 Kingsrow . 22

3.2.1 Kingsrow dataset . 23

3.3 Cake . 24

3.4 Nemesis . 24

3.5 CheckerBoard . 25

3.6 Contributions . 25

II Contributions 27

4 Proposed Solutions 29

v

Table of Contents Table of Contents

4.1 Data source . 31
4.1.1 Open Checkers Archive 2.0 . 31

4.2 Creation of Datasets . 32
4.2.1 Base structure . 32
4.2.2 Base structure for extraction of multiple boards 33
4.2.3 Base structure without duplication checks 34
4.2.4 Transformation into boards . 35
4.2.5 Transformation into binary . 36

4.3 Dataset Compositions . 39
4.3.1 StandardEnd . 39
4.3.2 EndSecondThird . 40
4.3.3 EndToEight . 41
4.3.4 StandardPureMetaData . 42

4.4 Predictor . 44
4.5 Checkers Player . 45

4.5.1 Structure . 47

III Experiments and Results 51

5 Tests and Findings of the Tsetlin Machine 53
5.1 Hyper-parameter Testing . 53
5.2 Adaptive epochs . 55
5.3 Tsetlin Machine Configurations . 60

5.3.1 Data . 60
5.3.2 Findings . 61

5.4 Accuracy . 62
5.4.1 Data . 63
5.4.2 Findings . 65

6 Tests and Findings of the Checkers Player 67
6.1 Draw Rule Misinterpretation . 67
6.2 Learnings of Self-Play . 68
6.3 Comparisons of Checkers players . 71

7 Alternative Machine Learning Algorithms 75

8 Conclusion and Future Work 77
8.1 Conclusion . 77
8.2 Future Work . 79

References 85

vi

Glossary

Python Python is a programming language, and is the programming language mainly used in
this research. 12

Self-play The act of playing against yourself. In this paper, it refers to a Checkers player
playing against itself.. xiii, 5, 30, 45, 67, 68, 72

vii

List of Figures

2.1 The starting board of English Draughts/American Checkers. All pieces shown
are pawns. Gold represents the black player. White represents the white player.
Picture reprinted CheckerBoard [1]. 8

2.2 The possible non-capture moves a black pawn may perform given no pieces nor
borders blocks its path. This pawn started from the top, direction of movement
must be away from the starting side of the board for the given player. The
directions illustrated also illustrates the directions this black pawn may perform
capture moves. Figure adapted from CheckerBoard [1]. 8

2.3 The possible non-capture moves a black king may perform given no pieces nor
borders blocks its path. Captures may only happen in the directions illustrated.
Figure adapted from CheckerBoard [1]. 9

2.4 A board having two kings, which is different from pawns by having stars on them.
Picture reprinted from CheckerBoard GUI [1]. 9

2.5 A board showing a capture situation for white player. Figure adapted from
CheckerBoard [1]. 10

2.6 A king capturing both up and down, which a pawn can not. Figure adapted from
CheckerBoard [1]. 11

2.7 A trap to capture a king. Figure adapted from CheckerBoard [1]. 11

2.8 White player’s last piece is blocked in which makes the game end in a draw.
Picture reprinted from CheckerBoard [1]. 12

2.9 The Tsetlin automaton. Illustration adapted from the Powerpoint presentation
”Tsetlin Machine Tutorial 4”, 2019, by Ole-Christoffer Granmo [2]. 12

2.10 An illustration of both a positive and a negative clause, consisting of Tsetlin
automata. Together; these are called a conjunctive clause. Bold text beneath
each Tsetlin automaton of a Clause indicates the rule the Clause is most likely
to evaluate the input for. Illustration adapted from Ole-Christoffer Granmo’s
Tsetlin Machine paper from 2018 [3]. 13

2.11 An illustration of a Tsetlin Machine, consisting of conjunctive clauses. Illustration
adapted from Ole-Christoffer Granmo’s Tsetlin Machine paper from 2018 [3]. . . 14

2.12 An illustration of the Multiclass Tsetlin Machine with three classes. Illustration
adapted from Ole-Christoffer Granmo’s Tsetlin Machine paper from 2018 [3]. . . 14

2.13 This project’s implementation of K -Fold cross validation, 10 splits; 10 datasets
based on the same data . 16

2.14 A visual representation of a tree search performed in the game of Checkers, reach-
ing depth three. 17

2.15 A visual representation of a Left-To-Right Pre-order tree traversal, adaptation of
slide number three of [4]. 18

2.16 A visual representation of a Left-To-Right Breadth-first tree traversal [5]. 18

ix

List of Figures List of Figures

4.1 Simplified overview of the solution; flow from data all the way to the Checkers
script. The Checkers player may take the place of Player 1, Player 2 or both.
TM is short for Tsetlin Machine. 30

4.2 Simplified flow of the Checkers player as well as the functionality for accepting
moves from an external Checkers player. If the Checkers player find no moves,
the Checkers player has lost. 31

4.3 A visual representation of a board. Black pieces are golden and white pieces are
silver in this picture. Picture adapted from CheckerBoard [1]. 36

4.4 A visual representation of the first 32 bits of a board in binary form; displaying
black pawns. Figure adapted from CheckerBoard [1]. 37

4.5 A visual representation of the second 32 bits of a board in binary form; displaying
black kings. Figure adapted from CheckerBoard [1]. 37

4.6 A visual representation of the third 32 bits of a board in binary form; displaying
white pawns. Figure adapted from CheckerBoard [1]. 38

4.7 A visual representation of the fourth 32 bits of a board in binary form; displaying
white kings. Figure adapted from CheckerBoard [1]. 38

4.8 A visual representation of the left and right edges taken into account for metadata
attribute number five. Picture adapted from CheckerBoard [1]. 42

4.9 A visual representation of the rows the checkers board was split into when finding
metadata number six and seven. Picture adapted from CheckerBoard [1]. 43

4.10 Checkers board as represented by the Tsetlin Checkers player. 46

4.11 Checkers board as accepted as input without the use of CheckerBoard. 46

4.12 Checkers board as accepted as input by the use of CheckerBoard. Picture adapted
from CheckerBoard [1]. 46

4.13 Changes from the previous Checkers board displayed by the Tsetlin Checkers player. 47

4.14 The move the Tsetlin Checkers players has performed as shown in its command
line interface. 47

4.15 The tree search process performed by the Checkers player, showing only the moves
(boards). Board pictures reprinted from CheckerBoard [1] 48

4.16 The tree search process performed by the Checkers player, showing how predic-
tions affects the choice of what move to make. 49

5.1 Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000,
s 9, NoDupeCheck StandardEnd using adaptive epochs. Text to the left show
printouts during training of the Tsetlin Machine with the achieved accuracies for
each epoch. The table show what information the adaptive epochs function store.
This training was cut off at 38 epochs due to adaptive epochs kicking in. 56

5.2 Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s 9,
dataset NoDupeCheck StandardEnd using adaptive epochs. Data fetched from a
complete 10 K-Fold run. This graph show a blue line indicating at what percent
the adaptive epochs function cut-off the training on average during the testing
of the 10 K-Folds. The orange plot show the accuracy that was achieved during
training at each epoch, averaged for each of the 10 K-Folds. 58

5.3 Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s
9, dataset NoDupeCheck StandardEnd using adaptive epochs. Data fetched from
K-Fold number 3. This graph show a blue line indicating at what percent the
adaptive epochs function cut-off the training. The orange plot show the accuracy
that was achieved during training at each epoch. 59

x

List of Figures List of Figures

5.4 Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s
9, dataset NoDupeCheck StandardEnd using adaptive epochs. Data fetched from
K-Fold number 4. This graph show a blue line indicating at what percent the
adaptive epochs function cut-off the training. The orange plot show the accuracy
that was achieved during training at each epoch. 59

xi

List of Tables

4.1 Dataset data of StandardEnd without dupe check. 39

4.2 Dataset data of StandardEnd with dupe check. 40

4.3 Dataset data of StandardEnd without dupe check. 40

4.4 Dataset data of EndSecondThird with dupe check. 40

4.5 Dataset data of EndSecondThird without dupe check. 41

4.6 Dataset data of EndToEight with dupe check. 41

4.7 Dataset data of EndToEight without dupe check. 41

4.8 Dataset data of StandardPureMetaData with dupe check. 44

4.9 Dataset data of StandardPureMetaData without dupe check. 44

4.10 Accuracy data for Tsetlin predictor, Player 1 (Black) trained and tested on
NoDupeCheck StandardEnd K-Fold number 3 where it reached the accuracy of
72,21% during training. 45

4.11 Accuracy data for Tsetlin predictor, Player 2 (White) trained and tested on
NoDupeCheck StandardEnd K-Fold number 3 with inverted loss and win data
results where it reached the accuracy of 72,12% during training. 45

4.12 The hyper-parameters used for both Checkers predictors. 45

5.1 Data of how many percent points the resulting accuracy varies. Data gathered
from 10 train/tests, 100 K-Folds in total. Using the best found dataset composi-
tion, Tsetlin Machine configuration and hyper-parameters and adaptive epochs,
max 200 epochs. Data from Table 5.2. 54

5.2 Comparison of no adaptive epoch vs adaptive epoch both for each run and for
each individual K-Fold. Data gathered from 10 train/tests, 100 K-Folds in total.
Using best found dataset composition, Tsetlin Machine configuration and hyper-
parameters, 200 epochs. 56

5.3 Comparison of no adaptive epoch vs adaptive epoch both for each run and for
each individual K-Fold. Data gathered from 10 train/tests, 100 K-Folds in to-
tal. Using best found dataset composition, Tsetlin Machine configuration and
hyper-parameters, 200 epochs. Complimentary table for Table 5.2, showing the
advantage of using adaptive epochs. 57

5.4 Best found hyper-parameters, as well as the achieved accuracy, for various configu-
rations of the Tsetlin Machine ran on the dataset composition: the NoDupeCheck
version of StandardEnd. 61

5.5 The full names of the Tsetlin Machine configurations presented in Table 5.4 . . . 61

5.6 Accuracy (Acrcy) for each of the ten K-Folds of NoDupeCheck StandardEnd
achieved by the weighted Tsetlin Machine with positive boost, using the hyper-
parameters Clauses: 19000, Treshold: 40000, S: 9, achieving the mean accuracy
of 71.69%. 63

xii

List of Tables List of Tables

5.7 Best found hyper-parameters, as well as the achieved accuracy of the weighted
Tsetlin Machine with positive boost, for various dataset compositions. Player
1 and Player 2 was trained and tested on NoDupeCheck StandardEnd’s K-Fold
number three . 63

5.8 STATS, from Chapter 2.5, for predicting wins. Player 1 and Player 2 was trained
and tested on NoDupeCheck StandardEnd’s K-Fold number three. 64

5.9 STATS, from Chapter 2.5, for predicting losses. Player 1 and Player 2 was trained
and tested on NoDupeCheck StandardEnd’s K-Fold number three. 64

5.10 STATS, from Chapter 2.5, for predicting draws. Player 1 and Player 2 was trained
and tested on NoDupeCheck StandardEnd’s K-Fold number three. 65

6.1 1000 matches between of self-play using the Checkers player with the use of the
Tsetlin predictors of Player 1 and Player 2 as explained in Chapter 5.4. 68

6.2 Results of 100 matches played between two Checkers players where the only dif-
ference is what side they play as, as well as the Tsetlin Machine predictor they
use; Player 1 and Player 2 respectively. 69

6.3 Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor and an opponent randomly selecting legal moves. . . . 69

6.4 Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor and the Checkers player using Player 1 with loss and
win predictions inverted as its Tsetlin Machine predictor. 69

6.5 Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor and the Checkers player using a predictor saying every
move leads to win, tree search with -9 and 9 score for guaranteed losses and wins
was still in use. 70

6.6 Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor, but guaranteed wins and losses are set to 1 and 0
instead of 9 and -9, and the Checkers player using Player 2 as its Tsetlin Machine
predictor. 70

6.7 Results of 10 games played between the Checkers player using Player 1 as its
Tsetlin Machine predictor, and Kingsrow using the settings: hashtable 256, endgame
DB 3136 and level 10 seconds. No side-switch. 72

6.8 Results of 10 games played between the Checkers player using Player 1 as its
Tsetlin Machine predictor, and Kingsrow using the settings: hashtable 8, endgame
DB 64 and level 2 seconds. No side-switch. 72

6.9 Results of 10 games played between the human player and 247 Checkers using
the settings: difficulty expert and force-jump on. Side-switch half-way through
was performed . 72

6.10 Results of 10 games played between 247 Checkers using the settings: difficulty
expert and force-jump on, and the Checkers player using Player 2 as its Tsetlin
Machine predictor. No side-switch . 73

6.11 Results of 10 games played between the Checkers player using its appropriate
Tsetlin Machine predictor and the human player. Side-switch half-way through
was performed . 73

7.1 Achieved accuracies of the most interesting dataset compositions for various ma-
chine learning algorithms, including the weighted Tsetlin Machine with positive
boost. NDC is short for NoDupeCheck . 76

xiii

Part I

Research Overview

1

Chapter 1

Introduction

This chapter explains the goal of this research, and what method is going to be used for reaching
this goal. Related research questions and hypotheses are also listed, as well as a short overview
of this paper.

1.1 Motivation

The Tsetlin Machine is an emerging machine learning algorithm which has proven to be suitable
for playing games such as Axis & Allies, achieving better predictions of the datasets in games
than Logistic Regression; as well as Naive Bayes in Axis & Allies in data sparse environments
[3]. This show that the Tsetlin Machine has potential which should be investigated further and
in more contexts, such as the game Checkers. This research investigate how well the Tsetlin
Machine may perform in this environment compared to other machine learning implementations
as well as how to best utilize the data available.

1.2 Thesis definition

The goal of this research is to find out how suitable the Tsetlin Machine is for predicting the
results of Checkers games, how suitable the Tsetlin Machine is for playing the game both against
human opponents and existing machine Checkers players as well as how to make the Tsetlin
Machine play Checkers the best it possibly can. In order to investigate this, the following research
questions were made as well as ways to measure the results. Hypotheses corresponding to the
research questions, which were mostly based on earlier experiences with the Tsetlin Machine, is
listed further below.

3

1.2. Thesis definition Introduction

1.2.1 Research Questions

Research question 1: Which Tsetlin Machine configuration is best suited for predicting the
results of Checkers games?

-Measured by thorough testing of multiple configurations of the Tsetlin Machine against a small
collection of unseen test data.

Research question 2: To what degree can the Tsetlin Machine predict the results of Checkers
games?

-Measured by testing the capabilities of the Tsetlin Machine by making it predict unseen test
data, and evaluating its accuracy for each of the three possible outcomes of a Checkers match.

Research question 3: How well can a Checkers player using the Tsetlin Machine compete
against Kingsrow?

-Measured by having the Tsetlin Machine play Checkers against Kingsrow, then compare the
outcomes after numerous matches.

1.2.2 Hypotheses

Hypothesis 1: The Weighted Tsetlin Machine will be the most suitable configuration for
predicting the results of Checkers games as this configuration has proven its strength in other
board games previously [3]. Although, the Weighted Convolutional Tsetlin Machine might prove
itself a strong contender.

Hypothesis 2: The Tsetlin Machine will be able to predict the results of Checkers games cor-
rectly most of the time, and will also be a better Checkers player than a human non-professional
Checkers player.

Hypothesis 3: The Checkers player using the Tsetlin Machine will not have a positive win
ratio over Kingsrow, which is well-refined as well as being likely to have access to an enormous
dataset. Although, if Kingsrow’s dataset is available and rather small; the Tsetlin Machine may
have a chance to be able to compete with Kingsrow.

4

1.3. Contributions Introduction

1.3 Contributions

This paper investigates the Tsetlin Machine’s potential as a Checkers player and how best to
utilize this machine learning algorithm in this domain. The findings of this paper should be
suitable for being adapted for domains similar to Checkers. The contributions of this paper is
summarized as follows:

• The most suitable Tsetlin Machine configuration for this domain is explained and demon-
strated, as well as how this configuration was found.

• How best to transform the available data into dataset compositions allowing the Tsetlin
Machine to classify Checkers boards as accurately as possible.

• A method of ”adaptive epochs” allowing the training of the Tsetlin Machine to stop when
no general increase in accuracy is demonstrated, which simplify the parameter testing of
the Tsetlin Machine allowing researchers to set a maximum amount of training epochs
limiting the need for retraining with an increased number of epochs and prevents the
Tsetlin Machine from over-training.

1.4 Method

The research process started by studying how other machine Checkers players function and find-
ing a source of data. It further progressed by finding the way of best utilizing the data found
and systematically test various Tsetlin Machine configurations for these and finding well-fitted
hyper-parameters. Then the best way of training a Tsetlin Machine predictor was investigated.
The next step was to find a suitable way of utilizing this Tsetlin Machine predictor in a Checkers
player. After this; more testing was performed, enabled by the use of self-play which was used
to find ways to improve the Checkers player. After this, testing was commenced in order to
evaluate the proposed solution. The Tsetlin Machine predictor was compared to other machine
learning algorithms and the Checkers player was compared to Checkers players of varying skill
levels; ranging from a Checkers player picking moves at random to Kingsrow.

Even though this research propose a Checkers player, it had a heavy focus on researching the
capability of the Tsetlin Machine itself. Therefore; the tree search of the Checkers player was
kept very simple. If a more advanced tree search such as Monte Carlo Tree Search was to be
used; it would be more difficult, albeit not impossible, to research the use of the Tsetlin Ma-
chine itself in this domain [6]. This is also the reason for the Checkers player not including more
man-made rules than what was proposed.

5

1.5. Thesis outline Introduction

1.5 Thesis outline

This research propose the following in the domain of Checkers: a Tsetlin Machine predictor with
well-fitted hyper-parameters, using the optimal configuration and well-fitted hyper-parameters,
and a Checkers player which incorporate this predictor. The structure of this paper, along with
its content, is listed below:

• Research overview

– Background

∗ Relevant background is presented and explained. This includes various methods
used as well a the game of Checkers.

– State-of-the-art

∗ Existing solutions and tools are presented. This includes Kingsrow and other
machine Checkers players.

• Contributions

– Proposed Solutions

∗ All that which together is the proposed solution is presented; both what these
are, how they function and how these were created. This includes the dataset
compositions, the Tsetlin Machine predictors and the Checkers player itself.

• Experiments and Results

– Tests and Findings of the Tsetlin Machine

∗ Comparisons and tests of the various Tsetlin Machines are presented. These
tests and comparisons were performed both for finding the solution, as well as
validating it.

– Tests and Findings of the Checkers Player

∗ Comparisons and tests of the Checkers player are presented; both tests of various
versions of itself, but also against other Checkers players.

– Alternative Machine Learning Algorithms

∗ The proposed Tsetlin Machine configuration are compared to other machine
learning algorithms for the dataset compositions investigated.

– Conclusion and Future Work

∗ The conclusion of this research is presented, in addition to improvements that
could or should have been made to further improve both the solution and the
reliability of the presented results.

6

Chapter 2

Background

There is quite a bit of background knowledge that was utilized during this research. Most no-
tably is the game itself; Checkers, as well as the Tsetlin Machine and commonly used methods of
creating machine players. Checkers has many variants and variant rules, but American Check-
ers/English Draughts were chosen as this is the variant that seemingly is most played in the
world of machine players

2.1 Checkers

Checkers refers not to a specific game, but a family of games [7]. The rules and board size differs
among the families of Checkers and their sub-variants. There are three families of checkers:
International Draughts/American Pool Checkers, Spanish Draughts and the smallest; English
Draughts/American Checkers. In the latter family, there are three variants: English Draughts,
Italian Draughts and Gothic Checkers. English Draughts, often called American Checkers, was
the first Checkers variant to be arranged a world championship for; starting in 1840. English
Draughts, is therefore one of the most widespread Checkers variant and do have some strong
machine players showing promising results [7][8][9].

Checkers is a board game with two players, where the goal is to eliminate all the opponent’s
pieces in order to win [7]. If any player has no pieces left, but can no longer move any piece; the
game results in a draw. The size of a Checkers board is typically either eight by eight, ten by
ten or twelve by twelve and have somewhere between eight and thirty pieces on each side. The
structure of the board and the rules also varies slightly. English Draughts/American Checkers
has a board of eight by eight and twelve pieces on each side. The boards look similar to those of
Chess, where the board consists of black and white squares which are only diagonally connected
to squares with the same color as themselves. Only black squares are playable and the board
is not symmetric. On each player’s side of the board, their corner on the right-hand side is not
playable as seen in Figure 2.1. Also, the black/colored player is the starting player; this is gold
in this example.

7

2.1. Checkers Background

Figure 2.1: The starting board of English Draughts/American Checkers. All pieces shown are
pawns. Gold represents the black player. White represents the white player. Picture reprinted
CheckerBoard [1].

There are two kind of pieces; pawns and kings. Pawns may only move and capture in such a way
that they move away from their starting position and are transformed into kings if they land on
a square on the opposite edge of the board in relation to their starting side [7][10]. Figure 2.2
show the direction a black pawn may move, given it started from the top.

Figure 2.2: The possible non-capture moves a black pawn may perform given no pieces nor
borders blocks its path. This pawn started from the top, direction of movement must be away
from the starting side of the board for the given player. The directions illustrated also illustrates
the directions this black pawn may perform capture moves. Figure adapted from CheckerBoard
[1].

8

2.1. Checkers Background

Kings may move and capture in any diagonal direction as shown in Figure 2.3. Kings may be
differentiated from pawns by placing two pieces on top of each other, turn the piece upside down,
or mark it by other means such as marking it with a crown or a star as seen in Figure 2.4.

Figure 2.3: The possible non-capture moves a black king may perform given no pieces nor
borders blocks its path. Captures may only happen in the directions illustrated. Figure adapted
from CheckerBoard [1].

Figure 2.4: A board having two kings, which is different from pawns by having stars on them.
Picture reprinted from CheckerBoard GUI [1].

Only one piece may be moved during a single turn, all moves are performed diagonally and a
piece may only travel to a free diagonal square right next to it unless a capture move is per-
formed [7][10]. A piece may not jump over allied pieces, but do jump over enemy pieces during
a capture move. Capture moves can happen if a piece it normally would be able to move to
contains an enemy piece and also has a free square behind it. The enemy piece that were jumped

9

2.1. Checkers Background

over gets ”captured” and is removed from the game; be it king or pawn. If a capture move can
be taken, then a capture move must be taken. If the piece that performed the capture move
lands on a square that grants it the opportunity to capture another piece, it must do so.

Some Checkers variants states that the player must capture as many pieces as possible dur-
ing a turn, but this is not the case in American Checkers/English Draughts. The player simply
must perform a capture move if possible, but it must continue its capture moves until it can
capture no more. Figure 2.5 shows a piece in the position for a capture move. The white player
must move either one of the two pieces shown having a red or blue line. Both possible moves
leads a piece to another capture move which must be performed. If multiple captures from that
situation were to arise, a choice would have to have been made.

Figure 2.5: A board showing a capture situation for white player. Figure adapted from Checker-
Board [1].

Figure 2.6 shows how a king can capture both downwards and upwards. By sacrificing a piece,
a player may force the opponent to put a piece of their own into a bad situation as shown in
Figure 2.7 where the black player is capturing a king of the opponent.

10

2.1. Checkers Background

Figure 2.6: A king capturing both up and down, which a pawn can not. Figure adapted from
CheckerBoard [1].

Figure 2.7: A trap to capture a king. Figure adapted from CheckerBoard [1].

A player lose if the player has no pieces left [10]. The game end in a draw if a player is
unable to perform any legal move while still having pieces left or neither player can force a win.
A depiction of a situation where the white player is unable to perform av move is shown in
Figure 2.8. Additionally; players may agree upon a draw. For the rest of this report, English
Draughts/American Checkers shall be referred to as Checkers.

11

2.2. Tsetlin Machine Background

Figure 2.8: White player’s last piece is blocked in which makes the game end in a draw. Picture
reprinted from CheckerBoard [1].

Checkers has around 5x1020possible positions, which should be a tough challenge for any machine
algorithm to play well [11]. The creators of the Chinook project has concluded Checkers to be
a draw.

2.2 Tsetlin Machine

The Tsetlin Machine is the machine learning algorithm of interest for this research. There are
two Python libraries of the Tsetlin Machine available: ”pyTsetlinMachine” and ”pyTsetlinMa-
chineParallel” which features the ability to be run in parallel leading to a faster run speed [12].
The Tsetlin Machine is a machine learning algorithm based on the Tsetlin automaton [3]. The
Tsetlin automaton outputs either one of two possible outputs. For simplicity, the possible out-
puts may be called positive and negative. It gets rewarded or penalized for the output which in
turn affects the probability of what the Tsetlin automaton’s next output will be. An illustration
of this can be seen in Figure 2.9 where the farther left the automata’s state is, the higher the
probability for the next action to be negative and vice versa with the right side for positive
output. This particular Tsetlin automaton has six states in total, but the amount of states may
be less or more if wanted.

Figure 2.9: The Tsetlin automaton. Illustration adapted from the Powerpoint presentation
”Tsetlin Machine Tutorial 4”, 2019, by Ole-Christoffer Granmo [2].

12

2.2. Tsetlin Machine Background

These Tsetlin automata are then put into sets called clauses, and then organized into a Tsetlin
Machine as seen in Figure 2.10 and Figure 2.11 [3]. The amount of Tsetlin automata for each
clause is equal to the double of the amount of input the clause is allowed to use, as there are
two Tsetlin automata tied to each binary input; one which has an opinion on whether its binary
input should be positive (1) or not, and one which has an opinion on whether its binary input
should be negative (0) or not. The amount of data that a clause may use is affected by the hyper-
parameter s, which in turn affects the amount of Tsetlin automata for each clause. Additionally,
the amount of clauses is equal for each possible class to predict. Clauses form conjunctive clauses
which consists of two clauses; one which votes for whether it thinks the input data corresponds
to the class the clause belongs to, and the other votes for whether it thinks the input data does
not correspond to this class. For simplicity, these clauses can be called positive and negative
clauses. Figure 2.10 feature a conjunctive clause. They predict the class of data where each
datapoint consists of two bits. Together; they are called a conjunctive clause.

Figure 2.10: An illustration of both a positive and a negative clause, consisting of Tsetlin
automata. Together; these are called a conjunctive clause. Bold text beneath each Tsetlin
automaton of a Clause indicates the rule the Clause is most likely to evaluate the input for.
Illustration adapted from Ole-Christoffer Granmo’s Tsetlin Machine paper from 2018 [3].

The clauses in Figure 2.10 has learned a pattern in their input. Most likely: if the input is [0,1],
the positive clause would output 1 and the negative clause would output 0 ; together they tell
the Tsetlin Machine that the class they are tied to is the class this input represents. This is
just the most likely scenario as each Tsetlin automaton has a probability to output either 1 or
0 even if they are on a state far towards one end.

Figure 2.11 show these conjunctive clauses put into a Tsetlin Machine. If the input would
be larger than two bits, each clause would contain more automatas in order to handle the data.
This Tsetlin Machine feature eight conjunctive clauses, four for each of the two classes in this

13

2.2. Tsetlin Machine Background

example (1 and 0). That makes eight clauses per output. The amount of clauses is not set, and
may be expanded. The treshold function outputs 1 if a certain amount of conjunctive clauses
also outputs 1.

Figure 2.11: An illustration of a Tsetlin Machine, consisting of conjunctive clauses. Illustration
adapted from Ole-Christoffer Granmo’s Tsetlin Machine paper from 2018 [3].

This structure can further be transformed into the Multiclass Tsetlin Machine as seen in Figure
2.12, which is the variant of Tsetlin Machine used in this research as this Tsetlin Machine
supports multiple classifications rather than either 1 or 0 [3]. The multiclass Tsetlin Machine
shown below support three classes, but it could be expanded to support more as well. As with
the illustration below, the amount of clauses may also be increased.

Figure 2.12: An illustration of the Multiclass Tsetlin Machine with three classes. Illustration
adapted from Ole-Christoffer Granmo’s Tsetlin Machine paper from 2018 [3].

The Tsetlin Machine takes three variables, called hyper-parameters: clauses, treshold and s [3].
The clauses is not the total amount of clauses as described in the beginning of this chapter, but
the amount of clauses per class [13]. Treshold is shown in the illustration above, it determines

14

2.2. Tsetlin Machine Background

whether the signal should be a 1 or a 0 depending of how high the number input to it is.
Tweaking this input controls how many 1’s must be input to it for it to output a 1. s is used to
affect the amount of literals to be included in each clause. A literal is a pair of Tsetlin automata;
which react to the same bit. The lower the s, the lower the amount of Tsetlin automata in each
clause, and vice versa. A high s allows the clauses to learn rules involving more data.

For this research, there were three outcomes: loss (0), win (1) and draw (2). Specifying the
clauses hyper-parameter to be 100, would lead to there being 100 clauses per outcome [3]. 50
of the clauses per outcome find rules indicating that its outcome is not the correct outcome,
while the 50 other clauses per outcome find rules indicating that this is the correct outcome.
When the final prediction is to be performed by the Tsetlin Machine, there is a vote of a sort
where the negative and positive clauses of each possible outcome votes against each other in
order to come to an agreement of whether their respective clause is the most probable to be
the case for this specific situation, which were Checkers boards in this research. The possible
outcome with the most amount of positive agreement results in the final prediction of the board.

An option that is available for the Tsetlin Machine is boost true positive feedback, later
referred to as positive boost [13]. This may be an interesting option to investigate as Ole-
Christoffer Granmo mention in his paper from 2018 regarding the Tsetlin Machine that in
certain datasets; by boosting the rewarding of positive clauses when they produce true positive
outcomes; that is, when the clauses predicts positively on the correct outcome, the accuracy of
the predictions may improve [3].

There is a variant of the Tsetlin Machine that may be called the Weighted Tsetlin Ma-
chine [13][14]. The Weighted Tsetlin Machine introduces weights for each clause, dictating
how much value the vote of each clause has. With this weight attribute, it is possible to state
that some clauses/rules are more valuable than others, and may improve the accuracy of the
Tsetlin Machine. Tsetlin Machines utilizing weights may also achieve as high of an accuracy as
non-weighted Tsetlin Machines, while having a less amount of clauses; which would make the
Tsetlin Machine train faster.

Another variation of the Tsetlin Machine is the Convolutional Tsetlin Machine [15]. This
Tsetlin Machine looks for patterns during training by investigating the data in chunks. This
could lead to a higher prediction accuracy when trying to predict the result of a Checkers board.
In addition to the hyper-parameters: clauses, treshold and s, the Convolutional Tsetlin Machine
also incorporates the parameters: shape x, shape y, shape z, frame x and frame y. The shape
parameters define the shape of the board. During this research, most of the datasets that were
used had a binary representation of Checkers boards where the board were represented by four
series of bits, representing black pawns, black kings, white pawns and white kings respectively.
The playable Checkers board is four by eight. The shape parameters were therefore shape x
= 4, shape y = 8 and shape z = 4. The parameters frame x and frame y define a square or
rectangle which is the area to be investigated at a time. This area would move around the board
while training instead of making the Tsetlin Machine train at complete boards at a time. The
Convolutional Tsetlin Machine is most suited for situations that may be transformed into
board-like structures, such as board games and pictures.

It is worth noting that these versions of the Tsetlin Machine can be combined as wanted. That
is; The Tsetlin Machine may be weighted and/or have positive boost enabled. The same
goes for the Convolutional Tsetlin Machine. Variations of these were investigated in this

15

2.3. K-Fold Cross Validation Background

research and the Tsetlin Machine variations tested were based on the Multiclass Parallel Tsetlin
Machine. Multiclass for the ability to predict more than two outcomes and parallel for speed.

2.3 K-Fold Cross Validation

The idea of k -fold cross validation is to validate the performance of machine learning algorithms
more accurately than by training and testing the algorithm by using a single train/test set [16].
K -fold cross validation is to split the dataset into multiple parts, then train and test the machine
learning algorithm with every combination of train/test data. Averaging the results for all of
these combinations will give a better measurement of machine learning algorithms’ accuracy by
reducing the impact of lucky splits of train/test sets. An illustration of how the k -folds are
split up and restructured for this project’s implementation can be seen in Figure 2.13. In this
research; every K-Fold contains the whole dataset, but each of them vary by the split of training
and test data.

Figure 2.13: This project’s implementation of K -Fold cross validation, 10 splits; 10 datasets
based on the same data

16

2.4. Tree Search Background

2.4 Tree Search

Tree search typically refer to tree traversals, which is the act of traversing search trees [4][5].
Tree search is utilized in this research, but as a method of exploring possible moves in a Checkers
match, not to explore existing trees. There are multiple ways of performing a tree search/tree
traversal, such as in-order, pre-order, post-order, breadth first and more. The search used in
this research is breadth-first. Each type of tree traversal typically needs an order of which node
to start from within the rules of the selected tree traversal type. This may for example be
Left-To-Right, where the search starts from the left and moves to the right, or Right-To-Left
where the search starts from the right and moves to the left. In order to illustrate tree search in
a way that is as relevant for this project as possible, Figure 2.14 illustrates a search tree created
after exploring possible moves in Checkers. It was created using Left-To-Right Breadth-First
traversal. The top node represents the current board for which the player in question must
make a move for. The first row of nodes represents the moves the player may perform, while the
second row of nodes represents moves the opponent may perform if the respective parent node’s
move was to be performed. Lastly, the nodes of the third row represents the moves the player
in question may perform in response to the move of their respective parent’s node. Scores are
set on leaf nodes and are eventually averaged and set for their parent node resulting in the first
row showing both possible moves to perform as well as the value of picking each particular move
enabling a machine Checkers player to have a preference of what move to pick. If the search
starts from the left-most node, the search is called left-to-right traversal.

Figure 2.14: A visual representation of a tree search performed in the game of Checkers, reaching
depth three.

Pre-order is a tree traversal method that aims to search deep down the layers until reaching
a leaf, then searching the siblings and searching deep down for each of them until reaching
another leaf node [4][5]. When all sibling’s leaf grandchildren are found, the search moves one
layer up and continues the search for the next leaf nodes. Left-To-Right Pre-order tree traversal
is illustrated in Figure 2.15 where each number represents the order of which the node is found.

17

2.4. Tree Search Background

Figure 2.15: A visual representation of a Left-To-Right Pre-order tree traversal, adaptation of
slide number three of [4].

Breadth-first is a tree traversal method investigating each of a node’s children before moving
to each of their children [5]. In this way, a full depth-level is found before moving deeper.
Left-To-Right Breadth-first tree traversal is illustrated in Figure 2.16

Figure 2.16: A visual representation of a Left-To-Right Breadth-first tree traversal [5].

18

2.5. Precision, Recall and FScore Background

2.5 Precision, Recall and FScore

The accuracy of a machine learning algorithm’s predictions is typically a score shown in percent,
representing how well the algorithm is able to classify data. There exists a more in-depth method
of measuring how well a machine learning algorithm is able to predict a specific outcome/class,
which is by the calculation of the scores precision, recall and FScore [17][18]. This research use
the three possible outcomes of a Checkers match: loss, win and draw and these are therefore
the three classes the machine learning algorithm should be able to predict well for this research.
These three scores may be calculated for each of the possible classes. ”win” is the class in focus
for the examples when explaining what the scores are, but may be interchanged with any other
class if need be.

The three scores are as follows:

• Precision: The percentage of predicted wins that are actual wins.

• Recall: The percentage of wins in the tested data that was predicted to be wins.

• FScore: A way of summarizing of both precision and recall into a single score by calcu-
lating their harmonic mean.

These scores together may be called stats in the rest of this paper for simplicity’s sake. There
exists multiple ways of calculating the FScore, but for this research; the following formula was
used [18]:

FScore = 2 ∗ (
precision ∗ recall
precision + recall

)

Example
The test data contains 500 data points. 239 of these are wins, the rest; 261, are losses. The
machine learning algorithm predicts 340 wins, and 231 of these are actual wins. Given this
data and these predictions, the stats are calculated as follows [18]:

• Precision = 100 ∗ (correctly−predicted−wins
predicted−wins) = 100 ∗ (231

340) = 67.94%

• Recall = 100 ∗ (correctly−predicted−wins
total−wins−in−test−data) = 100 ∗ (231

239) = 96.65%

• FScore = 2 ∗ (precision∗recall
precision+recall) = 2 ∗ (67.94∗96.65

67.94+96.65) = 79.79%

Precision tells how precise the predictions are [17]. If the precision is high, it is highly likely
that a predicted win is actually a win. With a precision score of 67.94%, it would not be wise
to entirely rely on the prediction; but it would be unwise to guess against a win prediction as
the precision is of a level way above chance as there are three classes in the domain of Checkers.
Recall tells how many of the classes in question was predicted correctly. If the recall is high such
as 96.65%, it is highly likely that a predicted loss or draw is not a win. As FScore incorporate
both precision and recall, it may be used as a way of collectively evaluating the prediction
performance [18].

19

Chapter 3

State-of-the-art

This chapter gives an overview of previous work in the world of machine learning in English
draughts/American Checkers.

3.1 Chinook

The Chinook project started in 1989 with the goal of building a program capable of challenging
the world checkers champion [11][19]. The Chinook project earned the right to play in the
World Championship a single year after conception. Marion Tinsley was the 8-time Checkers
World Champion, he was highly respected as a Checkers player by the creators of Chinook;
Jonathan Schaeffer et al., and had a single recorded loss in Checkers between 1950 and 1991
[11][20][21]. Naturally, it was important for the Chinook project to beat Marion Tinsley. In
1992 Marion Tinsley narrowly won against Chinook in the title match. A rematch were held
in 1994, but Marion Tinsley unfortunately had to withdraw due to illness. Eight months later,
Marion Tinsley passed away. In 1996; having completed its eight-piece dataset, Chinook proved
itself to be much stronger than all human players, but whether it was able to beat Tinsley had
to go unanswered for a while [9]. The project was suspended in 1997, but were continued from
2001. The Chinook project expanded the database to include all possible boards containing up
to ten pieces present; 39 trillion positions. In 2007, it was announced that Checkers was weakly
solved by Chinook [11].

For reference, the three degrees of solving a game according to the creators of Chinook is ultra-
weakly solved, weakly solved and strongly solved [11]. The definitions are extracted from the
paper by the name ”Checkers is solved” by Jonathan Schaeffer et al. but the definitions are
widely acknowledged [22][23].

Ultraweakly solved: ”For the lowest level, ultraweakly solved, the perfect-play result, but
not a strategy for achieving that value, is known.”.
Weakly solved: ”For weakly solved games, both the result and a strategy for achieving it from
the start of the game are known.”
Strongly solved: ”Strongly solved games have the result computed for all possible positions
that can arise in the game.”

21

3.2. Kingsrow State-of-the-art

It is not known entirely how Chinook works, but its proof algorithm works as follows [11]. Chi-
nook utilizes retro-grade analysis together with its database containing information of endgame
boards and their win/loss/draw value. The algorithm starts not from the current board, but
from the end of the game, finding its way to the current board. All one-piece positions are
enumerated which determine their value. Then all two-piece positions are enumerated and an-
alyzed. Analyzing each position eventually directs the algorithm to a one-piece position with a
known value or a repeated position resulting in draw. This goes on until it has been performed
for all boards with up to ten pieces.

According to a document by the World Checkers & Draughts Federation from 2014, Chinook is
the World Man v Machine Champion [24][21].

3.1.1 Chinook dataset

The Chinook project’s dataset were available and has ”perfect information for all checker posi-
tions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions” according to
a website by the University of Alberta [25]. The dataset contains information about the board
and whether it results in a loss, win or at least a draw (draw or win) [26]. The generation of
this dataset relied on Chinook itself and a secondary program using the Df-pn algorithm as a
way to prove the result after having algorithms checking the legality of the board [11]. How
the first boards were proven, which Chinook relied on to make an assessment of new boards, is
unknown. This is a very large dataset, as it contains every single possible board with 8 or less
pieces as stated. Considering that the well known Chinook Checkers player use this dataset,
this dataset were therefore the first dataset that were considered to be used. The data is stored
in a database for limiting the storage space it takes as well as for making it faster to access for
the software. The database files are split by characteristics of boards; the base data, which is
the ”end-game”, contain data of boards with 2 through 6 pieces. The other files in the database
are split by more specific rules; not only are they split by the amount of pieces on the board,
but also by how many pieces there are on each side and the number of kings present on the
board. Considering Chinook rely on perfect information, being able to look up a specific type of
board quickly is key to its success. Unfortunately, the provided driver were not able to be run
in order to retrieve data from the database which made it difficult to retrieve the boards from
the Chinook dataset. The cost in terms of time to make the driver able to be run was estimated
to be too high.

3.2 Kingsrow

Kingsrow is a Checkers engine written by Ed Gilbert [27][8]. Kingsrow formerly used a manually
built and tuned evaluation function, which gave a board a score based on a number of factors.
Written by Ed Gilbert himself, found on Bob Newell’s website bobnewell.net dating back to the
17th of november 2018: ”This function computes a numeric score for a game position based on
a number of material and positional features. It looks at the number of men and kings of each
color, and position attributes including back rank formation, center control, tempo, left-right
balance, runaways (men that have an open path to crowning), locks, bridges, tailhooks, king
mobility, dog-holes, and several others.” [8].

22

3.2. Kingsrow State-of-the-art

The newest version of Kingsrow use machine learning techniques, logistic regression, and has
proven to be a better Checkers player than earlier renditions of Kingsrow, which it has learned
through playing against itself [8][28]. The machine learning evaluation view the board through
rectangles containing either 8 or 12 pieces. In the rectangles containing 8 pieces, any piece may
be present, but in the rectangles containing 12 pieces; no kings are present. Every combination
of pieces in these rectangles are given a score by the machine learning algorithm, and the sum
of these represents the final score given to the board.

Bob Newell mentions on his site that Ed Gilbert’s new version of Kingsrow is ”super-strong”,
although; he does not define this further [8]. In 2002, the Checkers World Championship in Las
Vegas was held where Kingsrow was competing against the machine Checkers players Nemesis
and Cake [29]. Nemesis won the tournament, Kingsrow took second place and Cake took third
and last place. The winner of this tournament was said to earn the right to play against Chinook
in the Man-Machine World Championship, but it is tough to find any source indicating Nemesis
playing against Chinook in any circumstance; even Nemesis’ former home-page is not active
anymore: https://www.nemesis.info/ [30]. A document by the World Checkers & Draughts
Federation from 2014 contain a list of all title holders [24][21]. In this writing, Chinook is stated
to still hold the title of World Man v Machine Champion, indicating that if Nemesis got to
challenge Chinook in a Man-Machine World Championship between it’s victory in Las Vegas
and 2014, Chinook defended the title.

3.2.1 Kingsrow dataset

Kingsrow use a dataset with boards of 2 through 10 pieces which use 102 GB of storage space
with the newest compressed version of the dataset [8][27]. It is unknown how many boards
is included in this dataset, but given that an article from 2019 by Bob Newell state that Ed
Gilbert created a new version of Kingsrow that use machine learning and create new data by
playing; implies that the former dataset was not complete [8]. There are two auxiliary endgame
databases that may also be used, but only one at a time in conjunction to the 2 through 10
pieces database [31]. These are the DTW (depth to win) database; allowing Kingsrow to play
the absolute shortest path to a win, eventually longest path to a loss, and MTC (depth to
conversion) which allows Kingsrow to take the shortest path to the next non-reversible move.
This dataset was unfortunately built similarly to the Chinook dataset which was presented in
chapter 3.1.1 and the provided driver was also unfortunately not possible to be run. The time
predicted to be needed to make it run was too high a cost for this research. However, the
Kingsrow player itself was possible to be run through the CheckerBoard GUI by Martin Fierz;
making it possible to play against Kingsrow [31].

23

3.3. Cake State-of-the-art

3.3 Cake

Inspired by the matches between Marion Tinsley and Chinook, Martin Fierz started program-
ming what would later be called the Checkers player Cake in the end of 1996 [28]. Cake was born
in 1999 when Martin Fierz decided to split the interface and the Checkers engine (player). The
Checkers player was given the name Cake and the interface was given the name CheckerBoard.

Most, if not all, traditional Checkers players used handmade evaluation functions not long ago
[8][28]. The evaluation function give a board a score by numerous factors and weights; such as
the amount of pieces and their positions, which are used to determine how much the Checkers
player should want to make each evaluated board to happen. Creating and fine-tuning evalua-
tion functions was more akin to art than science, according to Martin Fierz in his article about
Cake 1.87 from late 2019 [28]. This was of course very time consuming, and optimal tuning was
very difficult to achieve. Recently, quite a few Checkers players have gotten machine learning
implemented in order to improve the evaluation function, so did Cake. Cake had its evaluation
function improved by logistic regression.

While Kingsrow utilized machine learning for learning its own evaluation function and set its
weights, Martin Fierz wanted to implement machine learning into Cake without replicating the
method used in Kingsrow [28]. Cake kept its hand-crafted evaluation function, but the weights
of each of the 379 hand-made evaluation factors was optimized with logistic regression.

Martin Fierz has compared his Cake with Ed Gilbert’s Kingsrow numerous times [28]. They
did both also compete in the Las Vegas Computer Checkers World Championship in 2002 where
Kingsrow took second place; behind Nemesis, and Cake took third and last place [29]. On
the 18. of September 2019, one day before Ed Gilbert published a new version of Kingsrow,
Martin Fierz published an article about Cake 1.87 which featured a comparison between it and
Kingsrow 1.18f; both of which used machine learning [28][31]. Although Cake 1.87 did perform
significantly better than the older version of Cake which did not use machine learning, Cake
1.87 was easily beaten by Kingsrow 1.18f.

3.4 Nemesis

Not much is known about Nemesis as the website most sites refer to for more information seems
to be a half-finished website to be used for generic advertisement, https://www.nemesis.info/
[29][32][30]. What is known however; is that Nemesis has been the reigning World Computer
Champion since 2002 [21][24][29]. It is also known that it was created by Murray Cash [33].
It is assumed that Murray Cash has stopped developing Nemesis, although; Martin Fierz did
mention in a forum by ”The American Checker Federation” stating Murray Cash was working
on Nemesis 2 in march 2007 [34].

24

3.5. CheckerBoard State-of-the-art

3.5 CheckerBoard

CheckerBoard is a free Checkers interface program for the operating system Windows, created by
Martin Fierz [1][27][35]. It allows for both manual play by interaction by the use of the mouse
cursor, as well as both Checkers engine versus Checkers engine and human versus Checkers
engine. It can be used for playing against both Cake and Kingsrow, with various databases and
settings. In this research, it served as a means of playing against Kingsrow.

3.6 Contributions

This research propose the following:

• The multiclass weighted Tsetlin Machine with positive boost trained on a dataset made
by assembling final boards found in OCA 2.0 without the removal of duplicate data is the
best Tsetlin Machine configuration with the best available and accessible dataset for this
domain.

• Comparisons between methods of extracting data from OCA 2.0 and comparisons of var-
ious Tsetlin Machine configurations are presented.

• The Tsetlin Machine put in a tree search algorithm of depth tree makes for a Checkers
player able to play Checkers more successfully than making moves at random.

• The use of a function of adaptive epochs during hyper-parameter testing can reduce
both processing time and time spent by the researcher when finding the optimal hyper-
parameters.

• The Tsetlin Machine is generally more proficient in predicting outcomes of boards in the
domain of Checkers than various other machine learning algorithms, including Logistic
Regression and Decision Tree Classifier.

• The proposed Checkers player may be able to compete with highly tuned and skilled
Checkers players in the likes of Cake and Kingsrow by improving both the quality and the
quantity of data; as well as further tuning.

25

Part II

Contributions

27

Chapter 4

Proposed Solutions

This chapter explains in-depth what the proposed solutions are. This includes an explanation of
the chosen data source for this research; OCA 2.0, and why this data source was selected. The
most interesting and promising of the created dataset compositions from this data source are
presented, as well as the process of creating these dataset compositions. The Checkers board
predictor, the chosen Tsetlin Machine configuration with fitting hyper-parameters, is explained
as well as showing a short overview of the performance of the trained Tsetlin Machines used in
the Checkers player for the chosen dataset composition. Also, the Checkers player itself, and its
use of tree search; will be explained.

A simplified overview showing the flow from the data source, all the way to the Checkers player
is presented below; all of which is explained in-depth in this Chapter. Figure 4.1 show this
overview, with the Checkers player itself excluded. The dataset composition is created, then
trained on by the Tsetlin Machine for which to be used by the Checkers player in the Checkers
script. The Tsetlin Machine must be trained on a specific K-Fold, even though 10 K-Folds are
created. The Checkers player takes the place of Player 1, Player 2 or both. The same flow of
training the Tsetlin Machine would be used for evaluating its accuracy as well, however; without
saving the Tsetlin Machine and training on a full 10 K-Fold instead of just one.

29

Proposed Solutions

Figure 4.1: Simplified overview of the solution; flow from data all the way to the Checkers script.
The Checkers player may take the place of Player 1, Player 2 or both. TM is short for Tsetlin
Machine.

The flow of the functionality for accepting moves from an external Checkers player and the flow
of the Tsetlin Checkers player itself is shown in Table 4.2. Although; not much is going on in the
flow for accepting moves from an external Checkers player, it shows that no rules are enforced.
This is due to most other Checkers players enforce the rules of checkers and the implementation
was meant to be used for research purposes only; which means a researcher would oversee non-
self-play games. It would of course be beneficial to enforce these rules, but in the case of a
misplaced piece; the researcher could simply input the correct board and continue the game.

30

4.1. Data source Proposed Solutions

Figure 4.2: Simplified flow of the Checkers player as well as the functionality for accepting moves
from an external Checkers player. If the Checkers player find no moves, the Checkers player has
lost.

4.1 Data source

Both the dataset of Chinook and of Kingsrow was considered as valuable sources of data, but due
to non-functional access code and incomprehensible file formats; it was not possible to extract
information from these datasets as mentioned in Chapter 3.1 and 3.2. OCA 2.0 was chosen as
the data source for this research. The reasoning for choosing this particular source of data was
due to this dataset being the largest data source that was both available and accessible.

4.1.1 Open Checkers Archive 2.0

Open Checkers Archive 2.0, shortened ”OCA 2.0” is the dataset that was chosen for this research.
OCA 2.0 is not a very large dataset, but the data itself is simple to extract. OCA 2.0 contains logs
from real matches in American Checkers/English Draughts. Quite a few people were involved
in the creation of this dataset, but the most notable people are Hans l’hoest and Jim Loy [36].
Each datapoint has information of whether the match ended in a loss, win or draw, the name of
the two players and what colors they played, the name of the event where the match was held,
the date and location of this event and a representation of the board in the form of a list of
moves. As it was likely manually compiled, some comments are added for unique situations; for
example if one player chose to forfeit or an illegal move was made without this being noticed
until after the match. The base dataset contains 22622 datapoints, 22614 of these follows the
typical move-pattern of the data file and has no additional comments which might compromise

31

4.2. Creation of Datasets Proposed Solutions

the correctness of the match, 22578 of these are made of legal moves and 21702 of these are
unique datapoints; that is, the combination of both the final board and the result is unique for
each of these 21702 datapoints.

4.2 Creation of Datasets

The data from OCA 2.0 needed to be processed in order to be read by the Tsetlin machine, as
it required data in binary, while the result did not have this limitation. It was assumed that
the Checkers boards would be more relevant to train and test on than the moves made. The
data that were used were the moves made and the result of the match. These were checked
for formatting, checked for rule-breaking, assembled into boards and converted to binary. The
OCA 2.0 dataset did contain a noticeable amount of matches where additional notes regarding
irregularities such as overlooked rules, forfeits and matches that simply did not follow the rules
of English Draughts/American Checkers. Various different compositions of the data in OCA
2.0 were experimented with, some including boards where not all moves were added as an effort
to manufacture more data as well as datasets containing metadata of the boards. This section
will go in-depth of the handling of data during the creation of the numerous datasets created
for this research with the goal of finding the optimal usage of the OCA 2.0 dataset for the best
accuracy when fed to the Tsetlin Machine.

Various methods of creating dataset compositions based on the data in OCA 2.0 was attempted
in order to train the Tsetlin Machine to be highly accurate. The main idea for doing this was
to expand the existing data into more data, but alternative use of the data was also attempted.
How these dataset compositions were created can be seen and read about below.

4.2.1 Base structure

The base structure for creating boards out of the matches found in OCA 2.0, aimed to extract
the moves and match result from the source, transform these into legal boards in binary form
and distribute them across K-Folds along with each board’s respective result given by what
match from the data source they were generated from. In an attempt to clean the data as
much as possible, all duplicate data were removed. That is, for each combination of board and
result; only one were kept. The tweaking of the duplication checks did lead to multiple dataset
compositions down the line.

The base transformation process looked like this:

32

4.2. Creation of Datasets Proposed Solutions

Algorithm 1 Base Transformation for Dataset Composition

1: Pure data (22622 data points)
2: Moves and results extracted (22614 data points remaining)
3: Abnormal matches omitted, typically where comments about overlooked rules, forfeits

or wrong results were present or the moves listed did not follow the normal pattern for the
dataset

4: Transformed into legal boards (22578 data points remaining)
5: Transformed into binary
6: Duplicate data are removed (21702 data points remaining)
7: Data is distributed to K-Folds
8: 10 K-Folds provides 10% test data. Data with loss result (21,9%), win result (16,9%)

and draw result (61,5%) are distributed evenly across all 10 slices

4.2.2 Base structure for extraction of multiple boards

In order to generate more data from the data found in OCA 2.0, it was attempted to create
multiple boards from the same match by omitting moves from the list of moves before creating
the board. A particular dataset by the name of EndSecondThird used each match to create
three boards; one with all the moves performed, one with one whole turn removed and another
with two whole turns removed. Whole turns was removed, which means two moves due to each
player performing a single move each per turn, in order to keep the turn order intact. This made
it so that whenever the Tsetlin Machine was trained or tested, the data was based on boards
where the black side moves next. The way the data were distributed among the K-Folds, and
therefore train and test data, had to be altered in order to avoid having boards generated from
the same match exist in both the train data and test data for the same K-Fold run. The reason
for this is that having data from the same match be distributed across multiple K-Folds would
lead to the Tsetlin Machine being trained and tested on some data originating from the same
match for at least one K-Fold run, which would make the test data impure and the resulting
accuracy inaccurate. In other words; it would be like giving students parts of the answers for
some questions during an exam.

The base transformation process for multiple boards looked like this (numbers given for the
EndSecondThird dataset composition):

Algorithm 2 Base Transformation for Multiple Boards Dataset Compositions

1: Pure data (22622 data points)
2: Moves and results extracted (22614 data points remaining)
3: Abnormal matches omitted, typically where comments about overlooked rules, forfeits

or wrong results were present or the moves listed did not follow the normal pattern for the
dataset

4: Duplicate data are removed (22288 data points remaining)
5: Data is distributed to K-Folds
6: 10 K-Folds provides 10% test data. Data with loss result (21,8%), win result (16,8%)

and draw result (61,4%) are distributed evenly across all 10 slices
7: New lists of moves are added, but some of the moves are removed
8: Transformed into legal board
9: Transformed into binary

10: Duplicate data are removed

33

4.2. Creation of Datasets Proposed Solutions

4.2.3 Base structure without duplication checks

After not getting sufficient results, changes were made to the structure of how new datasets were
made. The removal of duplicate data remove information the Tsetlin Machine may learn from.
Datasets without duplication checks should in theory increase the accuracy of all usages of the
data in OCA 2.0, especially when including non-final boards. Non-final boards has an increased
risk of being identical with other boards as removing enough moves would eventually end in a
board equal to the starting position of the board; which many boards share. That many moves
were never omitted, but some of the effect were still there. These identical boards could lead
to either loss, win or draw. Keeping only a single copy of each of them would train the Tsetlin
Machine to believe that there would be an equal chance of either of the three results when in fact
two hundred boards resulting in draw could have been removed and just a few boards resulting
in win and loss; which could have otherwise made the Tsetlin Machine understand that these
boards are likely to lead to a draw. The no duplication check versions of dataset compositions
may be shortened to NoDupeCheck.

The base transformation process for multiple boards looked like this without the removal of
duplicates (numbers given for EndSecondThird dataset composition):

Algorithm 3 Base Transformation for NoDupeCheck, Multiple Boards Dataset Compositions

1: Pure data (22622 data points)
2: Moves and results extracted (22614 data points remaining)
3: Abnormal matches omitted, typically where comments about overlooked rules, forfeits

or wrong results were present or the moves listed did not follow the normal pattern for the
dataset

4: Data is distributed to K-Folds
5: 10 K-Folds provides 10% test data. Data with loss result (21,2%), win result (16%) and

draw result (62,8%) are distributed evenly across all 10 slices
6: New lists of moves are added, but some of the moves are removed
7: Transformed into legal boards
8: Transformed into binary

34

4.2. Creation of Datasets Proposed Solutions

4.2.4 Transformation into boards

As a measure to make sure the Tsetlin Machine used the best possible data to learn from, the
moves from OCA 2.0 were not just transformed into boards; but also screened for rule breaking
moves. If the script noticed an illegal move during the assembly of a board, the board were
trashed and it started assembling the next board. Unfortunately, not every single rule were
screened for, but an adequate amount of rules were implemented.

Implemented rules:

1. Piece check

(a) Ensure that the piece to move actually exist (Not an empty space).

2. Consistent turn order

(a) Black start, and no player may perform two actions in a row.

3. Direction check

(a) Ensure that pieces move in the allowed direction, kings are omnidirectional.

4. Capture check

(a) Ensure that the piece(s) to capture actually is(are) owned by the opponent and that
empty spaces are not attempted captured. This rule also ensure that the landing
spot(s) is(are) unoccupied.

5. Diagonal check

(a) Ensure that the piece(s) that is(are) attempted captured is(are) diagonal to the piece
attempting the capture(s).

Unimplemented rules:

1. Force capture check

(a) A rule of American Checkers states the following: If a capture move may be per-
formed, a capture move must be performed. If there are multiple possible captures,
one of them must be chosen. The data was not screened for this rule.

35

4.2. Creation of Datasets Proposed Solutions

4.2.5 Transformation into binary

The Tsetlin Machine did only accept binary input, excluding the result which could be just
about anything. For simplicity, this research transformed the three results: loss, win and draw
into the numbers 0, 1 and 2 respectively. The data itself was transformed into 0 ’s and 1 ’s. This
transformation was not as simple. A space on a Checkers board may be empty or contain one of
the following pieces: black pawn, black king, white pawn or white king. The board itself contain
32 squares where a piece may be placed. Boards with placed pieces were represented in binary
form by having 32 bits for each type of piece where 1 represent the fact that specific type of
piece is there and 0 represent its absence. This resulted in 32*4 bits which may be visualized
as four boards, where if all four boards has a 0 on bit 2; that square is empty. A visualization
of this transformation can be seen below; Figure 4.3 shows the board before it was transformed
into binary, while Figure 4.4, 4.5, 4.6 and 4.7 shows the binary boards for black pawns, black
kings, white pawns and white kings respectively. Some dataset compositions utilize metadata.
Metadata were made into integers which were easily transformed into binary form.

Figure 4.3: A visual representation of a board. Black pieces are golden and white pieces are
silver in this picture. Picture adapted from CheckerBoard [1].

36

4.2. Creation of Datasets Proposed Solutions

Figure 4.4: A visual representation of the first 32 bits of a board in binary form; displaying
black pawns. Figure adapted from CheckerBoard [1].

Figure 4.5: A visual representation of the second 32 bits of a board in binary form; displaying
black kings. Figure adapted from CheckerBoard [1].

37

4.2. Creation of Datasets Proposed Solutions

Figure 4.6: A visual representation of the third 32 bits of a board in binary form; displaying
white pawns. Figure adapted from CheckerBoard [1].

Figure 4.7: A visual representation of the fourth 32 bits of a board in binary form; displaying
white kings. Figure adapted from CheckerBoard [1].

38

4.3. Dataset Compositions Proposed Solutions

4.3 Dataset Compositions

Various dataset compositions were made in an attempt to get the best possible results with the
data available in OCA 2.0. At first, quite a few unique dataset compositions were made; but
were then remade when it was discovered that datasets with no duplication checks were showing
an improvement in the accuracy score when compared to similar datasets having duplication
checks. The reasoning for the duplication checks to exist in the first place was the assumption
of duplicates having a negative impact in the quality of the data as well as compromising the
integrity of the test data. After discussion with this research’s supervisor, it was noted that
removing duplicates from datasets were not the norm and keeping duplicate data does not nec-
essarily compromise the test data.

It is worth noting that the Convolutional Tsetlin Machine is incompatible with any dataset
containing anything else than a game board and were therefore not tested for these dataset
compositions. The reason for this is that the Convolutional Tsetlin Machine compares the data
in chunks, for example a square of two by two positions.

A couple things should be noted. The training data and test data split was made to be about
90%/10%. Also, the dataset compositions were made into 10 K-Folds in order to mitigate the
effect a lucky train/test-split and shuffle.

Details regarding the data within each dataset composition is listed in tables like Table 4.1
below, in each of the dataset compositions’ chapters respectively. The following table contains
information of the StandardEnd dataset composition without any duplication checks. ”Total
data” is the total amount of data in the dataset composition. ”Avg. train/test ratio” shows
the amount of test data compared to train ratio. This differs for each of the ten K-Folds and is
therefore averaged between these K-Folds. ”Loss ratio”, ”Win ratio” and ”Draw ratio” shows
the amount of each specific result compared to the rest of the results.

StandardEnd Without Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

22578 11.11% 21.2% 16.0% 62.8%

Table 4.1: Dataset data of StandardEnd without dupe check.

4.3.1 StandardEnd

StandardEnd is the most basic of all the dataset compositions created for this research. Its
generation code used the base structure listed in 4.2.1 Base structure, but it could just as well
have used the base structure for multiple boards shown in 4.2.2 Base structure for extraction of
multiple boards; but without the addition of non-final boards. This dataset composition simply
contain boards generated by performing every move in each match found in OCA 2.0 as well as
the result. This dataset composition therefore strictly contain endgame boards. This dataset
composition were put together both without and with duplicates, and more in-depth information
of both of these datasets can be seen in Table 4.2 and Table 4.3 respectively.

39

4.3. Dataset Compositions Proposed Solutions

With Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

21701 11.11% 21.9% 16.6% 61.5%

Table 4.2: Dataset data of StandardEnd with dupe check.

Without Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

22578 11.11% 21.2% 16.0% 62.8%

Table 4.3: Dataset data of StandardEnd without dupe check.

As this dataset was the simplest dataset composition in this research, the information given in
the tables above is valuable for understanding what type of data is available in OCA 2.0. As can
be seen in the tables above; OCA 2.0 does contain matches that mostly have a unique ending
and the amount of end-game boards that ended in a win for Player 1 is quite low.

4.3.2 EndSecondThird

As OCA 2.0 represents matches by a series of moves and not simply a final board, it is possible
to have each match/datapoint represented by multiple datapoints in a dataset composition by
simply not performing all the moves. EndSecondThird has utilized this in order to generate
more data for the Tsetlin Machine to hopefully learn better. EndSecondThird contains the final
boards just as StandardEnd, but also contains boards for the second-last and third-last rounds
resulting in a dataset composition that should in theory contain three times as many boards
as StandardEnd. This was done by not only including the final boards, but also boards where
the moves of the last round has been omitted and boards where both the moves of the final
round and second final round has been omitted. Naturally, this resulted in more data. This
dataset composition were put together both without and with duplicates, and more in-depth
information of both of these datasets can be seen in Table 4.4 and Table 4.5 respectively.

With Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

38143 10.8% 20.0% 16.7% 63.3%

Table 4.4: Dataset data of EndSecondThird with dupe check.

Without Duplication Check

40

4.3. Dataset Compositions Proposed Solutions

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

67745 11.11% 21.2% 16.0% 62.8%

Table 4.5: Dataset data of EndSecondThird without dupe check.

By comparing the amount of data of both versions of EndSecondThird, it can be seen that this
dataset composition does indeed contain more data than StandardEnd. A significant amount of
data however; are duplicates.

4.3.3 EndToEight

EndToEight can be considered an extension of EndSecondThird. EndSecondThird contain nine
boards for each board in OCA 2.0. One with all moves performed, one with one round worth
of moves removed and so on until eight moves have been removed. This was the largest dataset
composition used in this research. This dataset composition were put together both without
and with duplicates, and more in-depth information of both of these datasets can be seen in
Table 4.6 and Table 4.7 respectively.

With Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

183701 10.61% 23.0% 17.4% 59.7%

Table 4.6: Dataset data of EndToEight with dupe check.

Without Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

203302 11.11% 21.2% 16.0% 62.8%

Table 4.7: Dataset data of EndToEight without dupe check.

Naturally, even more duplicates exist in this dataset composition than the other dataset com-
positions.

41

4.3. Dataset Compositions Proposed Solutions

4.3.4 StandardPureMetaData

StandardPureMetaData differs from the previously mentioned dataset compositions. As the
name implies, this dataset composition does not contain boards; but data about boards; hence
the name ”metadata”. In short, StandardPureMetaData was the dataset composition named
”StandardEnd”; transformed into somewhat more vague descriptions of boards. Each data point
in StandardPureMetaData consists of seven attributes as well as the result of the board it was
extracted from. The attributes were adapted/interpreted from a github repository by the user
SamRagusa [37]. The attributes are listed below.

1. Number of own uncrowned pieces

2. Number of opponent uncrowned pieces

3. Number of own kings

4. Number of opponent kings

5. Number of own pieces (crowned and uncrowned) on left and right edges of board

6. Integer value of own vertical center of mass

7. Integer value of opponent vertical center of mass

The four first attributes are quite self-explanatory. However; the fifth, sixth and seventh at-
tributes might be a bit more open to interpretation. Figure 4.8 shows what squares were consid-
ered edges when own pieces for attribute number five were counted. The sum of owned pieces,
both crowned and uncrowned, in the squares marked with the red circles is what made up
attribute number five.

Figure 4.8: A visual representation of the left and right edges taken into account for metadata
attribute number five. Picture adapted from CheckerBoard [1].

42

4.3. Dataset Compositions Proposed Solutions

Metadata number six and seven were calculated the same way, except metadata number six
only accounted for own(black) pieces while metadata number seven only accounted for the
opponent’s(white) pieces. The center of mass was for simplicity’s sake rounded to a single row,
and not for example somewhere in between row three and four. In order to find the vertical
center of mass for a player’s pieces, the following were performed. For each row, as shown in
Figure 4.9, a weight score was gathered. Pawns were worth one ”point” while kings were worth
two ”points”.

Figure 4.9: A visual representation of the rows the checkers board was split into when finding
metadata number six and seven. Picture adapted from CheckerBoard [1].

The sum of these values were stored, which will be referred as verticalsum. Another value,
referred to as verticalmultiplied, took into account which row the value was gathered from as
well as the value of the pieces on that row. verticalmultiplied was the sum of the scores for each
row multiplied with the row number the score came from; scores from row number one were
multiplied by one before being added to verticalmultiplied, scores from row number two were
multiplied by two and so on.

The final equation was as follows:

V erticalweights = roundDown(
verticalmultiplied

verticalsummed
)

The answer to this equation gave the vertical center of mass of a checkerboard for a given player.

As StandardPureMetaData does not consist of boards directly, the Convolutional Tsetlin Ma-
chine can not be used. This dataset composition were put together both without and with
duplicates, and more in-depth information of both of these datasets can be seen in Table 4.8
and Table 4.9 respectively.

43

4.4. Predictor Proposed Solutions

With Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

6907 11.11% 29.9% 25.9% 44.3%

Table 4.8: Dataset data of StandardPureMetaData with dupe check.

Without Duplication Check

Total data Avg. train/test ratio Loss ratio Win ratio Draw ratio

22578 11.11% 21.2% 16.0% 62.8%

Table 4.9: Dataset data of StandardPureMetaData without dupe check.

The size difference between the two variations of StandardPureMetaData is very noticeable
as 15671 datapoints were removed in the duplication check for the version with removal of
duplicates. The reason for there being a lot of duplicates is that this dataset composition
contains generalizations of the boards instead of the complete boards themselves. If each data
point had more varied and/or more attributes, more datapoints would be unique.

4.4 Predictor

The Tsetlin Machine has, as mentioned in Chapter 2.2, quite a few configurations and hyper-
parameters. In the process of finding the configuration of the Tsetlin Machine most suited for
predicting the outcomes of Checkers boards, multiple configurations of the Tsetlin Machine was
tested mainly on the dataset composition StandardEnd; hyper-parameter testing was performed
on the configurations individually and their K-Fold accuracies were compared. All Tsetlin Ma-
chine configurations tested during this research were configurations of the multiclass Tsetlin
Machine, which allows for predicting multiple outcomes of boards: loss, win and draw. The
Non-convolutional Tsetlin Machine with weighted clauses and positive boost enabled proved to
be more accurate than other Tsetlin Machine configurations tested. The dataset composition
making this Tsetlin Machine configuration the most accurate, after further dataset composi-
tion specific hyper-parameter testing, proved to be StandardEnd without duplication checks
(NoDupeCheck StandardEnd). Furthermore; the third K-Fold was shown to be the dataset
the chosen Tsetlin Machine was the most accurate for when trained and tested against. Table
4.10 and 4.11 shows an advanced view of the accuracies for each of the three outcomes when
testing against this dataset for the Checkers predictor for Player 1 (Black) and Player 2 (White)
respectively. Precision refers to how accurate the predictions are, recall refers to the amount of
the specific result was correctly predicted and the FScore is a result of the two former accuracies
which can be read more about in Chapter 2.5.

44

4.5. Checkers Player Proposed Solutions

Precision Recall FScore

Win 57% 44% 49%
Loss 67% 51% 58%
Draw 76% 87% 81%

Table 4.10: Accuracy data for Tsetlin predictor, Player 1 (Black) trained and tested on
NoDupeCheck StandardEnd K-Fold number 3 where it reached the accuracy of 72,21% dur-
ing training.

Precision Recall FScore

Win 60% 52% 55%
Loss 62% 49% 55%
Draw 77% 85% 81%

Table 4.11: Accuracy data for Tsetlin predictor, Player 2 (White) trained and tested on
NoDupeCheck StandardEnd K-Fold number 3 with inverted loss and win data results where it
reached the accuracy of 72,12% during training.

While the Tsetlin Machine for Player 1 (black) was trained on a particular K-Fold of NoDupeCheck
StandardEnd, the Tsetlin Machine for Player 2 (white) trained on an an altered version of this
K-Fold where losses and wins were inverted in an attempt to make sure the data did not favor
the black player when training a Tsetlin Machine to play in the position of the white player.

It is worth noting that only the mean accuracy for all ten K-Folds were used for comparing
different configurations of the Tsetlin Machine, not recall, precision and FScore nor by testing
a single K-Fold. The hyper-parameters for both predictors are shown in Figure 4.12.

Clauses Treshold S

19000 40000 9

Table 4.12: The hyper-parameters used for both Checkers predictors.

4.5 Checkers Player

The Checkers player itself functions using tree search, utilizing both predictions of the Tsetlin
Machine and rules for picking what move to make. The Tsetlin Machine predictors used is
mentioned in Chapter 4.4, where Player 1 (black) is used whenever the Checkers player plays as
the black player and Player 2 (white) is used whenever the Checkers player plays as the white
player. The Checkers player has functionality for self-play, play against a machine selecting
random moves and play against a human opponent; for both sides. The functionality for playing
against the Tsetlin Machine requires the use of the command line interface as no GUI has been
developed. The Checkers player visualizes Checkers boards as shown in Figure 4.10 where 1
represents black pawns, 2 represents black kings, 3 represents white pawns and 4 represents
white kings.

45

4.5. Checkers Player Proposed Solutions

Figure 4.10: Checkers board as represented by the Tsetlin Checkers player.

The moves played by the human opponent have to be input as a complete board, in one of two
formats. Either by the format used by CheckerBoard as demonstrated in Figure 4.12, which
allows for generating this format from the board it shows in its GUI, making it simple to extract
the board for input to the Tsetlin Checkers player. If CheckerBoard is not available for the
human player, a more visual input method of input may be used instead; as shown in in Figure
4.11.

Figure 4.11: Checkers board as accepted as input without the use of CheckerBoard.

Figure 4.12: Checkers board as accepted as input by the use of CheckerBoard. Picture adapted
from CheckerBoard [1].

Both input methods will show the user what squares was changed as shown in Figure 4.13. While
CheckerBoard does stop the human opponent from making illegal moves, the Checkers player

46

4.5. Checkers Player Proposed Solutions

has no such rule checks for the human Checkers player for either of the two input methods.
Figure 4.14 show how the move the Tsetlin Checkers player performs is portrayed.

Figure 4.13: Changes from the previous Checkers board displayed by the Tsetlin Checkers player.

Figure 4.14: The move the Tsetlin Checkers players has performed as shown in its command
line interface.

4.5.1 Structure

The whole solution consists of a single script; which loads the Tsetlin Machine predictor(s),
handle the turn order between both players and contain the Checkers player itself. Even though
the Checkers player is contained within this Checkers script, it is highly independent and could
easily be replaced by two human players for example.

The Checkers player use a combination of rules and a Tsetlin Machine predictor to pick the
optimal move. This is guided by a tree search algorithm performing Left-To-Right Breadth-first
search with a depth of three moves. The search tree in question is not a preexisting tree, but a
tree to be built while performing the tree search by searching for possible moves to perform, for
both players. The search is performed as follows: the Checkers player’s legal moves are found,
the opponent’s legal moves are found for these and then the Checkers player finds legal moves
it can react with before the Tsetlin Machine predictor predict whether the resulting Checkers
boards are a loss (0), a draw (0,5) or a win (1). These scores are averaged and represent the
value of the move that lead to these boards, which is the possible moves the opponent could
perform. The values of the possible moves the opponent could perform are then averaged giving
a value to each of the possible moves the Checkers player could perform. The move with the
highest score is then selected, resolving ties with random selection. The Left-To-Right Breadth-

47

4.5. Checkers Player Proposed Solutions

First search order is illustrated in Chapter 2.4. In code, all moves are stored as boards where the
move in question has been performed. Each node has both this board/move and the value/score
of it. If the score is not resolved yet and the node in question is not a leaf node, it will contain
both the move it represents as well as its child’s moves in code. This is due to the whole tree is
stored in a single list.

Additionally, guaranteed wins are given a score of 9 and guaranteed losses are given a score
of -9. Guaranteed losses may happen in depth two if the opponent cannot perform any legal
move in response to the Checkers player’s move. Guaranteed losses may happen in depth three if
the Checkers player cannot perform any legal move in response to a possible move performed by
the opponent. The implemented Tsetlin Machine predictor has no way of stating that a move is
guaranteed to lead to a win or a loss as all predicted losses, draws and wins are treated the same
respectively. Placing such an extreme value hinders the Checkers player from committing huge
mistakes. The term ”committing” is used as the Tsetlin Machine might have an internal sense
of how correct it think it is if it has implemented weights which could, if interpreted correctly,
allow it to not only tell what the result of the board most likely will be; but also how certain it
is in its prediction.

Figure 4.15 shows an illustration of how the tree may look after reaching depth three, showing
only the moves. This illustration is not simplified, these are the actual moves that would be
found in the tree search if the ”Current Checkers Board” were to be input. Normally, the tree
would be much larger as only two pieces are left on the board in this illustration.

Figure 4.15: The tree search process performed by the Checkers player, showing only the moves
(boards). Board pictures reprinted from CheckerBoard [1]

Figure 4.16 shows an illustration of the tree search, showing how the score values are given and
how they affect the final decision of what move to make. This illustration is a bit extravagant
as having this many moves leading to guaranteed losses or wins (values of -9 and 9) is not com-
mon. Having a tree search searching even deeper would likely provide more accurate predictions
making the Checkers player play better, however; the cost of processing time would increase
drastically the deeper the search is performed.

48

4.5. Checkers Player Proposed Solutions

Figure 4.16: The tree search process performed by the Checkers player, showing how predictions
affects the choice of what move to make.

The process of finding legal moves follows the rules of Checkers where moving a piece may only
be performed if no capture moves may be made. For the simplicity of programming’s sake, this
is performed for every piece; omitting non-capture moves if any legal capture moves was found
after finding all legal moves. If a capture move leads to another possible capture, this capture
move must be performed; continuing until the piece in question can perform no more capture
moves. This may be called a chain-capture, or multi-capture. If a piece is able to perform
multiple capture moves, within or outside of chain-capture moves, all the legal variations of
the captures the piece may perform is stored as separate moves as all of them lead to different
boards once performed. Below, a more structured explanation of how legal moves are found is
listed.

49

4.5. Checkers Player Proposed Solutions

Algorithm 4 The Process of Finding Legal Moves

1: Find all owned pieces
2: for Each of the owned pieces do
3: Find all possible moves
4: Find all possible directions the piece is allowed to move
5: Find all legal capture moves for this piece
6: for Each legal capture move for this piece do
7: Continue each capture move completely
8: Store each legal path
9: end for

10: if No legal capture moves for this piece is found then
11: Find all legal moves for this piece; if any
12: end if
13: if any legal capture moves for this piece is available then
14: Store these
15: end if
16: end for
17: if any legal capture moves are found for any piece then
18: These are considered legal moves
19: end if
20: if no legal capture moves are found then
21: Non-capture moves are considered legal; if any
22: end if

50

Part III

Experiments and Results

51

Chapter 5

Tests and Findings of the Tsetlin
Machine

This chapter show both the capabilities of the Tsetlin Machine in this domain, as well as show
how the testing for finding the best Tsetlin Machine configuration and dataset composition was
performed. But first, here are some general information regarding all the tests of the Tsetlin
Machine shown in this chapter.
Tsetlin Machine configurations refers to the various settings, or configurations, the Tsetlin Ma-
chine may have; such as having weights enabled, positive boost and being convolutional.
All Tsetlin Machines are multiclass, they may output 0 (loss), 1 (win) or 2 (draw).
Tsetlin Machines are trained and tested by K-Folds, more precisely; ten copies of the same data
where the difference is dictated by the split between train and test data.
The Tsetlin Machines are compared by their accuracy for a given dataset composition. This
accuracy may sometimes be referred to as ”mean accuracy”. The accuracy refers to the aver-
age of the accuracies achieved in the test-procedure during training on each of the ten K-Fold
datasets.
Training are run with the adaptive epochs method as shown in Chapter 5.2, with the maximum
amount of epochs set to 500 unless specified otherwise.
NoDupeCheck refers to the version of the given dataset composition which had no duplicate
data removed during its creation. For example; NoDupeCheck StandardEnd is the version of
StandardEnd that includes all duplicates.

Additionally; the Tsetlin Machine has an element of random within. This means; by train-
ing a Tsetlin Machine multiple times without any change of dataset, configuration or hyper-
parameters, the achieved accuracy may not be the same. This is explained further in Chapter
5.1.

5.1 Hyper-parameter Testing

An important part of making the Tsetlin Machine the most accurate it can be, is to provide
it with the optimal hyper-parameters. What the optimal hyper-parameters are is affected by
the configuration of the Tsetlin Machine as well as the dataset it is trained and tested on. The
process of finding optimal, or near optimal, hyper-parameters for the Tsetlin Machine relied

53

5.1. Hyper-parameter Testing Tests and Findings of the Tsetlin Machine

on a rough estimation using past experience and methodical testing. An initial set of hyper-
parameters was set, and one hyper-parameter was tweaked at a time. The Tsetlin Machine was
trained multiple time, where the hyper-parameter in focus was the only hyper-parameter to be
tweaked between each run. A single script typically was set to run between 3 to 7 different values
for the hyper-parameter in focus. The values typically varied between a third of the guessed
value to a number as large as three times larger, in ascending order. If the accuracy continue
to increase the lower, or the higher, the value; more tests with the same hyper-parameter in
focus was performed with numbers covering the direction providing the higher accuracy. This
was continued until the accuracy started to decrease. Then the hyper-parameters with the best
accuracy was selected and the procedure continued with another hyper-parameter in focus.

The combination of hyper-parameters might be just as important as their individual values,
making this procedure unsuited for finding the absolute best set of hyper-parameters. However;
in order to find the absolute best set of hyper-parameters, every possible combination of hyper-
parameters; within reason, might have to be investigated. Given the time cost and likely low
improvement in accuracy, this might not be worth it.

There are some general effects that are noticed, most of which can be seen by seeing the fig-
ures in Chapter 5.3. The lower the amount of clauses, the faster the training will be at the
cost of accuracy. Having the optimal amount of clauses is better than having a high amount
of them, increasing the amount of clauses too much negatively affect both accuracy and speed.
Weighted variants of the Tsetlin Machine generally favors a higher amount of treshold than their
non-weighted counterparts. Positive boost may affect the preferred hyper-parameters. Positive
boost do generally boost the accuracy of the Tsetlin Machine.

When comparing two Tsetlin Machine configurations where the difference is reasonably small,
such as 0.3 percent points, it might be the case that the conclusion of which one is better is wrong
due to the randomness of the Tsetlin Machine. Table 5.1 show how varying the resulting accu-
racies can be using the best found Tsetlin Machine, dataset composition and hyper-parameters.
The left-most column display the variance when comparing the achieved accuracies for each of
the 10 K-Folds, over 10 runs of training the Tsetlin Machine. The right-most column display the
variance when comparing the mean accuracy of the 10 K-Folds for each of the 10 runs respec-
tively. The latter is the accuracy score typically used for comparing Tsetlin Machine results.
As the variance for this accuracy is as low as 0.5, a difference by more than one percent may be
considered a clear lead; while a difference of 0.2 for example; is not sufficient to differ the two.

Avg. for each full K-Fold For each run

Variance 4.23 0.5

Table 5.1: Data of how many percent points the resulting accuracy varies. Data gathered from
10 train/tests, 100 K-Folds in total. Using the best found dataset composition, Tsetlin Machine
configuration and hyper-parameters and adaptive epochs, max 200 epochs. Data from Table
5.2.

54

5.2. Adaptive epochs Tests and Findings of the Tsetlin Machine

5.2 Adaptive epochs

Setting the optimal amount of epochs to be run is important, but is also more demanding than
other hyper-parameters to tweak as studying the progress over a set amount of epochs is needed
in order to investigate how the epoch should be tweaked. In order to make this process less
demanding as well as making it more optimal, adaptive epochs was implemented.

Adaptive epochs was meant to allow the Tsetlin Machine to run for as many epochs as it need
for getting optimal results. ”As many epochs as it need” was defined as ”as long as the accuracy
increases”. Two implementations of adaptive epochs were tested, but the second version proved
to be more reliable and was therefore used for the majority of this research. Both versions cut
off at 500 epochs as 50 has been proven to be overkill in similar projects as well as early testing
of early versions of the Checkers dataset. Both methods compare the accuracy of recent epochs
with the accuracy of less recent epochs. The epochs are stored in a list, if there is no data
recorded yet; the accuracy is considered 0 for the missing epochs. As long as the accuracy of
an epoch is not way below the previous epochs’ accuracy, both versions of adaptive epochs will
run at least 20 (21 for the second version) epochs as at least one value of zero would be in the
list of the accuracies of the less recent epochs which has a significant impact on the average of
the list.

• First version: if the average of the 20 last epochs is higher than the average of the 10
last epochs, no more epochs are run for that K-Fold.

• Second version: if the average of the 10 previous epochs are lower than the average of
the 11 epochs before those, no more epochs are run for that K-Fold.

The second version seem to increase the accuracy by 1-2 percent with the same parameters and
dataset when compared to the first version. Running 200 epochs proved to give worse results
for tests run by the use of the same dataset with the same hyper-parameters without the use
of adaptive epochs; StandardEnd, Clauses: 15000, Treshold: 12000, S: 25, Epochs: 200. The
adaptive epoch testing ended after around 40-60 epochs per k-fold, but had the ability to continue
up to 500 epochs if consistent improvement was shown. Figure 5.1 show what information the
adaptive epochs, version two, function store when it decide to cut off training.

55

5.2. Adaptive epochs Tests and Findings of the Tsetlin Machine

Figure 5.1: Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s
9, NoDupeCheck StandardEnd using adaptive epochs. Text to the left show printouts during
training of the Tsetlin Machine with the achieved accuracies for each epoch. The table show
what information the adaptive epochs function store. This training was cut off at 38 epochs due
to adaptive epochs kicking in.

Further testing was continued once it was decided what was the best found dataset composition,
Tsetlin Machine configuration and hyper-parameters. The following tables was found by testing
the weighted Tsetlin Machine with positive boost using the dataset composition NoDupeCheck
StandardEnd with the following hyper-parameters: clauses 19000, treshold 40000, s 9 and a
maximum epochs of 200. Table 5.2 show the advantage of using adaptive epochs. The data
was gathered from running ten train/test cycles, of ten K-Folds each. Adaptive epochs was
programmed not to stop the training, but to store the accuracy it would have ended with if
adaptive epochs was enabled. It shows the lowest achieved accuracy, highest achieved accuracy,
the average accuracy and the difference between the highest and lowest achieved accuracy for
both the use of adaptive epochs and without. This information is shown when using the resulting
accuracy of each of the ten K-Folds for each of the ten runs (100 data points), but also when
using the mean accuracies for each of the 10 full K-Fold runs in the two left-most columns (10
data points).

For each K-fold: 200 epochs Adapt. Epochs Avg. for each run: 200 epochs Adapt. Epochs

Lowest 68.64% 69.7% 70.13% 71.38%
Highest 73.22% 73.93% 70.8% 71.88%
Average 70.46% 71.59% 70.50% 71.59%
Variance 4.58 4.23 0.67 0.5

Table 5.2: Comparison of no adaptive epoch vs adaptive epoch both for each run and for each
individual K-Fold. Data gathered from 10 train/tests, 100 K-Folds in total. Using best found
dataset composition, Tsetlin Machine configuration and hyper-parameters, 200 epochs.

56

5.2. Adaptive epochs Tests and Findings of the Tsetlin Machine

During the ten train/test runs performed to gather data for Table 5.2, adaptive epochs would
try to cut-off training at epoch number 29 the lowest, and epoch number 81 the highest which
is an amount significantly smaller than 200. By studying this table, it can be seen that adaptive
epochs beat training this Tsetlin Machine for 200 epochs. Table 5.3 show exactly how much
better adaptive epochs are than training this Tsetlin Machine for 200 epochs. The numbers
displayed are the difference between the scores for and without the use of adaptive epochs using
the scores from Table 5.2 above.

For each K-fold: Gain by Adapt. Epochs Avg. for each run: Gain by Adapt. Epochs

Lowest 1.06 1.25
Highest 0.71 1.08
Average 1.13 1.09
Variance -0.35 -0.17

Table 5.3: Comparison of no adaptive epoch vs adaptive epoch both for each run and for
each individual K-Fold. Data gathered from 10 train/tests, 100 K-Folds in total. Using best
found dataset composition, Tsetlin Machine configuration and hyper-parameters, 200 epochs.
Complimentary table for Table 5.2, showing the advantage of using adaptive epochs.

This table, Table 5.3, show that the use of adaptive epochs in this scenario improve the accuracy
by more than one percent on average while providing just a little more consistent results, seen by
comparing the Average and Variance scores respectively. Figure 5.2 show the average accuracy
training was cut off at compared to the average accuracy achieved at each epoch for a single
full 10 K-Fold run using the best found Tsetlin Machine, dataset and hyper-parameters. This
graph show that adaptive epochs may be beaten by more fitting amounts of epochs, and could
be tweaked to increase its effectiveness. However, the perfect amount of epochs varies for each
K-Fold as seen in Figures 5.3 and 5.4 which makes it tricky to pick the perfect amount of epochs
without the use of an adaptive method.

57

5.2. Adaptive epochs Tests and Findings of the Tsetlin Machine

Figure 5.2: Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s 9,
dataset NoDupeCheck StandardEnd using adaptive epochs. Data fetched from a complete 10
K-Fold run. This graph show a blue line indicating at what percent the adaptive epochs function
cut-off the training on average during the testing of the 10 K-Folds. The orange plot show the
accuracy that was achieved during training at each epoch, averaged for each of the 10 K-Folds.

In the two figures below, Figure 5.3 and 5.4, the cutoff accuracy of the adaptive epochs are
shown for two K-Folds ran for the same K-Fold evaluation session. The accuracies shown for
these K-Folds show that the optimal amount of epochs to train for is different for both of these.
Therefore; the optimal amount of epochs cannot be set manually.

58

5.2. Adaptive epochs Tests and Findings of the Tsetlin Machine

Figure 5.3: Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s 9,
dataset NoDupeCheck StandardEnd using adaptive epochs. Data fetched from K-Fold number
3. This graph show a blue line indicating at what percent the adaptive epochs function cut-off
the training. The orange plot show the accuracy that was achieved during training at each
epoch.

Figure 5.4: Weighted Tsetlin Machine with positive boost, clauses 19000, treshold 40000, s 9,
dataset NoDupeCheck StandardEnd using adaptive epochs. Data fetched from K-Fold number
4. This graph show a blue line indicating at what percent the adaptive epochs function cut-off
the training. The orange plot show the accuracy that was achieved during training at each
epoch.

59

5.3. Tsetlin Machine Configurations Tests and Findings of the Tsetlin Machine

5.3 Tsetlin Machine Configurations

By testing on various dataset compositions, the weighted Tsetlin Machine with positive boost
proved to be the most accurate Tsetlin Machine configuration; detailed in Chapter 5.4. The
dataset compositions tested on was mainly StandardEnd, EndSecondThird and EndToEight; all
of which were created using strict duplication removal. This Tsetlin Machine configuration was
therefore chosen as the one Tsetlin Machine configuration to move forward with while developing
and evaluating new dataset compositions.

Once the NoDupeCheck version of StandardEnd proved to be the dataset composition allowing
the weighted Tsetlin Machine with positive boost to achieve the highest accuracy out of all the
created dataset compositions as shown in Chapter 5.4; it would be interesting to see exactly
how much higher of an accuracy this Tsetlin Machine configuration achieve compared to other
Tsetlin Machine configurations for this dataset composition. This allowed for validating the
theory of the weighted Tsetlin Machine with positive boost being the most accurate Tsetlin
machine configuration for this domain, which turned out to be true.

5.3.1 Data

This chapter present the achieved accuracy of each Tsetlin Machine configuration tested with
the best hyper-parameters found for that particular Tsetlin Machine configuration using the
dataset composition NoDupeCheck StandardEnd, except the Tsetlin Machine result displayed
in the first row of Table 5.4. This Tsetlin Machine use the best found hyper-parameters for
the weighted Tsetlin Machine with positive boost, which was the Tsetlin Machine configura-
tion which achieved the highest accuracy for this dataset composition. This data may be used
for demonstrating the importance of well-fitted hyper-parameters, both for the specific dataset
composition and for the specific Tsetlin Machine configuration. These accuracies was achieved
by the use of adaptive epochs during training as explained in Chapter 5.2.

The Tsetlin Machine configurations and the three hyper-parameters used, in addition to the
mean accuracy of the ten K-Folds is presented in Table 5.4. The convolutional Tsetlin Machine
configurations used these settings for their search window: Shape x: 4, Shape y: 8, Shape z:
4, Frame x: 2 and Frame y: 2. All of these parameters are explained further in Chapter 2.2.
The full name of each of the Tsetlin Machine Configurations presented in the table below, are
displayed in Table 5.5

60

5.3. Tsetlin Machine Configurations Tests and Findings of the Tsetlin Machine

TM Configuration Clauses Treshold s Average accuracy

TM 19000 40000 9 56.84%
TM 12000 50 27 67.39%

wght TM 15000 12000 27 70.68%
TM pos 12000 50 27 68.16%

wght TM pos 19000 40000 9 71.69%
conv TM 16000 30000 30 64.07%

wght conv TM pos 10000 30000 30 67.23%
conv TM pos 10000 30000 30 64.53%

wght conv TM pos 10000 30000 30 67.16%

Table 5.4: Best found hyper-parameters, as well as the achieved accuracy, for various config-
urations of the Tsetlin Machine ran on the dataset composition: the NoDupeCheck version of
StandardEnd.

Shortened Name Full Name

TM Tsetlin Machine
wght TM Weighted Tsetlin Machine
TM pos Tsetlin Machine with positive boost

wght TM pos Weighted Tsetlin Machine with positive boost
conv TM Convolutional Tsetlin Machine

wght conv TM Weighted Convolutional Tsetlin Machine
conv TM pos Convolutional Tsetlin Machine with positive boost

wght conv TM pos Weighted Convolutional Tsetlin Machine with positive boost

Table 5.5: The full names of the Tsetlin Machine configurations presented in Table 5.4

5.3.2 Findings

There are numerous observations that may be made off of the performance of the Tsetlin Ma-
chine configurations presented in Table 5.4 in Chapter 5.3.1, these are presented below.

When comparing the accuracies achieved by the standard Tsetlin Machine, found in row one
and two of Table 5.4, the configuration shown in row one; using the best found hyper-parameters
for the weighted Tsetlin Machine with positive boost, achieved a far lower accuracy than when
using the hyper-parameters presented in row two even though it used more clauses. This show
that well-fitted hyper-parameters has a significant impact on the accuracy the Tsetlin Machine
is able to achieve.

The best convolutional Tsetlin Machine configuration, the weighted Convolutional Tsetlin Ma-
chine, performs worse than the worst performing non-convolutional Tsetlin Machine; which is
the Standard Tsetlin Machine. If the hyper-parameters, and the other variables, are close to
optimal; then the Convolutional Tsetlin Machine is not as useful for predicting games in this
domain as its non-convolutional counterpart.

Positive boost generally lives up to its name, during testing it normally showed some increase

61

5.4. Accuracy Tests and Findings of the Tsetlin Machine

in the accuracy of various Tsetlin Machine configurations. This is reflected in Table 5.4 shown
above, but the increase in accuracy for the various Convolutional Tsetlin Machines does not hold
true. When comparing the accuracies of the Standard Tsetlin Machine and the weighted Tsetlin
Machine with their respective counterparts with positive boost, it can be seen that positive
boost increases the achieved accuracy by 0.89% on average. The weighted Convolutional Tsetlin
Machine did not benefit from having positive boost enabled, showing a decrease in accuracy by
0.07%. But the Convolutional Tsetlin Machine do show an increase in accuracy with positive
boost. The average increase by positive boost shown with the Convolutional Tsetlin Machine
variants is 0.195%. It is worth noting that the results are heavily affected by the randomness of
training the Tsetlin Machine; the weighted Convolutional Tsetlin Machine may have had a lucky
training and the weighted Convolutional Tsetlin Machine with positive boost may have had an
unlucky training. The randomness of training the Tsetlin Machine is described in Chapter 5.1.

Weights significantly increases the accuracy of all configurations of the Tsetlin Machine. When
comparing the achieved accuracies of the Tsetlin Machines with their weighted counterparts, it
can be seen that the average increase in accuracy is 3.15% and the increase in accuracy does
not seem to be affected by the use of positive boost.

Given these findings, it should be clear why the weighted Tsetlin Machine with positive boost
was chosen for the Checkers player’s Tsetlin predictors.

5.4 Accuracy

This chapter shows how accurate the weighted Tsetlin Machine with positive boost is when
predicting boards of the investigated dataset compositions. The weighted Tsetlin Machine with
positive boost was shown to be the most accurate of all the tested Tsetlin Machine configu-
rations in Chapter 5.3. This chapter will show that the dataset composition NoDupeCheck
StandardEnd is the dataset composition allowing this Tsetlin Machine configuration to achieve
the highest accuracy of the investigated dataset compositions. More dataset compositions was
created and tested on, but these are the most promising and interesting.

The results of the Tsetlin predictors for Player 1 and for Player 2, shown in Tables 5.7, 5.8,
5.9 and 5.10, was achieved by the same pre-trained Tsetlin Machines used for the Checkers
player’s Tsetlin predictors. They were both trained on K-Fold number three and the scores
shown was acquired by testing on the third K-Fold’s test data as to not allow them to be
tested on the exact same data they were trained on. All other scores shown was generated
from a full ten K-Fold train/test. The reasoning for selecting the third K-Fold for the Checkers
player’s Tsetlin predictors to be trained on was due to the fact that K-Fold number three of
NoDupeCheck StandardEnd was showing a general trend of providing a slightly higher accuracy
than those of other K-Folds. Although, the accuracies achieved did vary significantly and no
K-Fold in particular provided the highest accuracy consistently. Table 5.6 shows the accuracies
achieved for each K-Fold by the weighted Tsetlin Machine with positive boost on NoDupeCheck
StandardEnd using its best found hyper-parameters: clauses: 19000, treshold: 40000 and c: 9,
where it can be seen the highest accuracy achieved was achieved on K-Fold number three.

62

5.4. Accuracy Tests and Findings of the Tsetlin Machine

K-Fold 1 2 3 4 5 6 7 8 9 10

Acrcy 70.77% 72.4% 72.57% 72.29% 71.35% 71.18% 72.33% 71.72% 71.07% 71.26%

Table 5.6: Accuracy (Acrcy) for each of the ten K-Folds of NoDupeCheck StandardEnd achieved
by the weighted Tsetlin Machine with positive boost, using the hyper-parameters Clauses: 19000,
Treshold: 40000, S: 9, achieving the mean accuracy of 71.69%.

5.4.1 Data

This Chapter contains accuracies achieved by the weighted Tsetlin Machine with positive boost
for each of the investigated datasets, and also shows the hyper-parameters used in order to
achieve these results. This information is found in Table 5.7. Additionally, more specialized
scores are also displayed in order to better understand how good this Tsetlin Machine is for
predicting the three outcomes; win, loss and draw. These scores may be referred to as STATS
for simplicity. This information can be found in Table 5.8 for win STATS, Table 5.9 for loss
STATS and Table 5.10 for draw STATS. The STATS scores are precision, recall and FScore
as explained in Chapter 2.5. These three stats explained shortly in terms of the accuracy of
predicting wins: precision show the percentage of predicted wins being actual wins, recall show
the percentage of wins which was predicted to be wins and FScore is a way of summarizing both
precision and recall into one score by calculating their harmonic mean [17][18].

Dataset Composition Clauses Treshold s Average accuracy

StandardEnd 15000 40000 15 69.79%
EndSecondThird 13000 80000 20 69.41%

EndToEight 15000 160000 68 63.38%
StandardPureMetaData 20000 40000 9 48.39%

NoDupeCheck StandardEnd 20000 40000 9 71.35%
NoDupeCheck StandardEnd 19000 40000 9 71.44%

P̂layer 1 19000 40000 9 72.21%

P̂layer 2 19000 40000 9 72.12%
NoDupeCheck EndSecondThird 15000 40000 15 70.65%

NoDupeCheck EndToEight 60000 80000 40 67.73%
NoDupeCheck StandardPureMetaData 15000 40000 15 66.53%

Table 5.7: Best found hyper-parameters, as well as the achieved accuracy of the weighted
Tsetlin Machine with positive boost, for various dataset compositions. Player 1 and Player 2
was trained and tested on NoDupeCheck StandardEnd’s K-Fold number three

63

5.4. Accuracy Tests and Findings of the Tsetlin Machine

Dataset Composition WIN Precision Recall FScore

StandardEnd 58% 36% 44%
EndSecondThird 59% 32% 41%

EndToEight 54% 23% 32%
StandardPureMetaData 47% 32% 48%

NoDupeCheck StandardEnd 59% 42% 49%
NoDupeCheck StandardEnd 59% 41% 48%

P̂layer 1 57% 44% 49%

P̂layer 2 60% 52% 55%
NoDupeCheck EndSecondThird 60% 38% 46%

NoDupeCheck EndToEight 53% 31% 39%
NoDupeCheck StandardPureMetaData 56% 23% 32%

Table 5.8: STATS, from Chapter 2.5, for predicting wins. Player 1 and Player 2 was trained
and tested on NoDupeCheck StandardEnd’s K-Fold number three.

Dataset Composition LOSS Precision Recall FScore

StandardEnd 62% 48% 54%
EndSecondThird 61% 40% 48%

EndToEight 58% 32% 41%
StandardPureMetaData 49% 41% 45%

NoDupeCheck StandardEnd 62% 52% 56%
NoDupeCheck StandardEnd 62% 52% 57%

P̂layer 1 67% 51% 58%

P̂layer 2 62% 49% 55%
NoDupeCheck EndSecondThird 62% 47% 54%

NoDupeCheck EndToEight 57% 43% 48%
NoDupeCheck StandardPureMetaData 55% 32% 40%

Table 5.9: STATS, from Chapter 2.5, for predicting losses. Player 1 and Player 2 was trained
and tested on NoDupeCheck StandardEnd’s K-Fold number three.

64

5.4. Accuracy Tests and Findings of the Tsetlin Machine

Dataset Composition DRAW Precision Recall FScore

StandardEnd 73% 87% 79%
EndSecondThird 72% 89% 80%

EndToEight 65% 88% 75%
StandardPureMetaData 49% 63% 55%

NoDupeCheck StandardEnd 76% 86% 80%
NoDupeCheck StandardEnd 76% 86% 81%

P̂layer 1 76% 87% 81%

P̂layer 2 77% 85% 81%
NoDupeCheck EndSecondThird 74% 87% 80%

NoDupeCheck EndToEight 72% 86% 78%
NoDupeCheck StandardPureMetaData 69% 90% 78%

Table 5.10: STATS, from Chapter 2.5, for predicting draws. Player 1 and Player 2 was trained
and tested on NoDupeCheck StandardEnd’s K-Fold number three.

5.4.2 Findings

Firstly, when comparing the accuracies of the two NoDupeCheck StandardEnd tests in Table
5.7, it can be seen that a higher amount of clauses does not necessarily allow the Tsetlin Machine
to achieve a higher accuracy. This was widely shown during hyper-parameter testing.

Other than NoDupeCheck StandardEnd proving to allow this Tsetlin Machine to achieve the
highest accuracy, the detailed accuracies tables, Tables 5.8, 5.9 and 5.10, also show that this
Tsetlin Machine does not predict wins very accurately in any dataset composition shown. How-
ever, it has shown to be adept at predicting draws. This is most likely due to the data source;
and therefore the dataset compositions, containing a large amount of draws as explained in
Chapter 4.1.

Additionally, these tables show that the removal of duplicates had a negative impact on all
dataset compositions (StandardEnd, EndSecondThird, EndToEight and StandardPureMeta-
Data). Naturally, StandardEnd was affected the least. EndToEight and EndSecondThird was
attempts at generating more data out of the limited data available. EndToEight contain more
generated data by removing moves just as EndSecondThird, but had some boards with more
moves removed compared to EndSecondThird as explained in Chapter 4.3. Logically, this lead
to a huge amount of duplicate data which was removed. Additionally; equal boards with dif-
ferent results could have different outcomes which is believed to be even more detrimental to
EndToEight with duplicates removed as in some cases; there could be three identical boards
among its datapoints all with three different results which would likely teach the Tsetlin Ma-
chine that all three outcomes are just as likely. The NoDupeCheck version would allow for
multiple identical boards in this case, teaching the Tsetlin Machine which outcome is more
likely. StandardPureMetaData do not contain generated data, but is built by the principle of
generalization of the boards. This generalization created a large amount of duplicate data which
made the removal of duplicates heavily affect this dataset composition and its accuracy. It can
be concluded that the removal of duplicate data has a negative impact on the achieved accuracy.

65

Chapter 6

Tests and Findings of the Checkers
Player

This chapter show some of the findings learned through both self-play and through playing
against other Checkers players. This is useful both for finding ways to improve the Checkers
player and to test its skill. A draw rule misinterpretation is also explained in Chapter 6.1, as
this misinterpretation negatively affect the accuracy of the results of all games.

6.1 Draw Rule Misinterpretation

If a player is unable to make any legal move, the player might be out of pieces meaning the player
lost. It was not taken into consideration that whenever a player is unable to move any pieces due
to their pieces being blocked in, the match should end in draw. In this implementation, having
all blocked in pieces resulted in a loss to the player unable to perform any legal move. This
rule misinterpretation makes some matches where the result should have been a draw, but was
concluded to be a win for the opponent instead. Luckily, a match very rarely ends by blocking
all of a player’s pieces in. A thousand self-plays has been run, as seen in Figure 6.1, where only
three cases was recorded. Additionally; over thirty matches was played with manual observation
recording no cases of a match ending in this way. In other words, on average; 0.3% of self-play
games is ended with the wrong result. The effect is less if the Tsetlin Checkers player is playing
against another machine Checkers player which do enforce this rule correctly. The two Checkers
players used in this experiment are the same Checkers player made for this research, using the
two pre-trained Tsetlin predictors mentioned in Chapter 5.4 achieving accuracies of 72.21% and
72.12% respectively.

67

6.2. Learnings of Self-Play Tests and Findings of the Checkers Player

1000 matches Player 1 wins Player 2 wins Draws

Achieved results 717 137 146
Correct results 716 135 149

Change in total 0.3%

Table 6.1: 1000 matches between of self-play using the Checkers player with the use of the
Tsetlin predictors of Player 1 and Player 2 as explained in Chapter 5.4.

It is worth noting that the Tsetlin Checkers player has a mechanism in its tree search where the
value of 9 is set for all moves making the opponent unable to perform any legal moves, which
increase the chance of this happening as this mechanism do not differentiate between having no
pieces left and having all pieces blocked in. The former should be counted as a loss and the latter
as a draw, but both are counted as loss in the implemented Checkers player. Therefore, this
rule misinterpretation is more likely to happen when the Checkers player is playing against itself
than other players as both Tsetlin Checkers players would be inclined to pick moves making the
opponent unable to make any legal moves.

6.2 Learnings of Self-Play

The Checkers player’s self-play capability was frequently used during this research in order to
compare different implementations of the Checkers player itself, and also; to compare different
Tsetlin Machine predictors to each other. This chapter discuss some of the findings of self-played
Checkers matches, most of which lasted 100 games. Most of the Checkers matches used the
Tsetlin Machine predictor for Player 1 or the Tsetlin Machine for Player 2 which are described
further Chapter 4.4. Both the Tsetlin Machine predictor for Player 1 and Player 2 were trained
using the third K-Fold of the dataset composition NoDupeCheck StandardEnd, although Player
2 was trained with losses and wins reversed in order to train in the place of the white player.
Both used the hyper-parameters: clauses: 19000, treshold: 4000, s: 9 and achieved the accuracy
of 72.21% and 72.12% respectively. No side-switch was performed during the 100 games pre-
sented in this chapter. Each table presented in this chapter shortly show what type of Checkers
players was playing against each other, the amount of wins each player achieved, as well as draws.

The Checkers player playing against itself using the Tsetlin Machine for Player 1 and Player 2
respectively show that Player 1 has a clear lead, as seen in Table 6.2. It is unclear whether this
is solely due to Player 1 having an accuracy of 0.09 percent points higher than that of Player 2
or if the black; and therefore starting, player has a huge advantage. Nevertheless, tests versus
other machine Checkers players should include a side swap half-way through the duel just to be
certain no player has side-advantage. As Table 6.2 use the best found Checkers player for both
sides, it serve as a baseline for comparisons in this Chapter.

68

6.2. Learnings of Self-Play Tests and Findings of the Checkers Player

Black White Draw

Players Player 1 Player 2
Results 70 13 17

Table 6.2: Results of 100 matches played between two Checkers players where the only difference
is what side they play as, as well as the Tsetlin Machine predictor they use; Player 1 and Player
2 respectively.

Testing the Checkers player using Player 1 as its Tsetlin Machine predictor against an opponent
selecting a random legal move proves the Checkers player has some skill in Checkers. This can
be seen in Table 6.3, showing the results of 100 matches between these Checkers players. With
the perfect score of 100 games won out of 100 games, this test is not suitable for investigating
any increase in skill when tweaking the Checkers player.

Black White Draw

Players Player 1 Random Player
Results 100 0 0

Table 6.3: Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor and an opponent randomly selecting legal moves.

As mentioned in Chapter 4.4, Player 2 is a separate Tsetlin Machine from Player 1 in order to
make sure the Tsetlin Machine predicting the outcomes for the white player’s moves was trained
for this specific purpose. In order to test whether this was an improvement over inverting the
wins and losses output from Player 1 instead of using Player 2, 100 matches were played between
the Checkers player using Player 1 as its Tsetlin Machine predictor against the Checkers player
using Player 1 with inverted loss and win predictions as its Tsetlin Machine predictor. The
results can be seen in Table 6.4. The white player did win almost as many times as seen in
the baseline Figure 6.2, however; there is a significant difference in the amount of draws. Even
though Player 1 has shown a higher accuracy, it performs worse against itself when inverting
wins and losses than its counterpart which is trained for the perspective of the white player;
Player 2.

Black White Draw

Players Player 1 Inverted Player 1
Results 80 11 9

Table 6.4: Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor and the Checkers player using Player 1 with loss and win predictions
inverted as its Tsetlin Machine predictor.

As mentioned in Chapter 4.5.1, the Checkers player attempts to force moves that automatically
leads to a win as well as avoid giving the opponent the opportunity to do the same by setting
the large scores of 9 and -9. Table 6.5 show 100 games between the Checkers player using Player
1 as its Tsetlin Machine predictor and the Checkers player with a predictor claiming all moves

69

6.2. Learnings of Self-Play Tests and Findings of the Checkers Player

to be winning moves. This table show whether the use of the 9 values is more important than a
good Tsetlin Machine predictor. Although the white player managed to net a draw, this table
show that the use of a predictor is important for reaching the skill of the proposed Checkers
player.

Black White Draw

Players Player 1 Always-win-predictor
Results 99 0 1

Table 6.5: Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor and the Checkers player using a predictor saying every move leads to
win, tree search with -9 and 9 score for guaranteed losses and wins was still in use.

Given the results found in Table 6.5, it would be interesting to see how well the Checkers player
using Player 1 as its Tsetlin Machine predictor; giving moves guaranteeing wins and losses the
scores of 1 and 0 instead of 9 and -9, would compare against the Checkers player using Player
2 as its Tsetlin Machine predictor. 100 games were played between these two Checkers players
to investigate this, and the results can be seen in Table 6.6. Comparing these results to the
baseline, Table 6.2, the effect of guaranteeing wins and losses can be seen. It can be seen that
the effect of giving moves leading to guaranteed wins and losses the scores of 9 and -9 does not
have any significant effect on the skill of the Checkers player. It is worth noting that even if
1 and 0 are set in place of 9 and -9, the way the scores themselves are set makes the scoring
of 1 for guaranteed wins more effective than a typical win predicted by the Tsetlin Machine.
Forced wins which are given the score of 9, or 1 in this scenario, are given in depth two of the
tree search and moves guaranteeing wins have no child nodes. As explained in Chapter 4.5.1,
all moves that are not leaf nodes are given the average score of their children. This means that
the move in depth one leading to the board in depth two which guarantee a win, is given a
score of 1 which is the highest score any move may have in this scenario. For a move to be
considered equally as good as a move leading to a guaranteed win; all of its children must lead
to boards the Tsetlin Machine predictor predicts to a win. Therefore the rule of giving the score
of 1 to guaranteed wins still provide somewhat of a higher score than typically seen in the tree
search of the Checkers player. As for the rule of giving 0 to guaranteed losses, in depth three;
this provides no more weight in comparison to other scores as the Tsetlin Machine predictor
performs predictions of moves’ results in depth three. When giving these boards the score of
0 instead of -9, the Tsetlin Machine predictor is merely prevented from wrongly predicting the
result as well as save time.

Black White Draw

Players Player 1 no 9’s Player 2
Results 69 14 17

Table 6.6: Results of 100 matches played between the Checkers player using Player 1 as its
Tsetlin Machine predictor, but guaranteed wins and losses are set to 1 and 0 instead of 9 and
-9, and the Checkers player using Player 2 as its Tsetlin Machine predictor.

70

6.3. Comparisons of Checkers players Tests and Findings of the Checkers Player

6.3 Comparisons of Checkers players

In order to measure how competent the Checkers player was in the game of Checkers, it was vital
to have it play against other Checkers players. Therefore, the Checkers player played against the
following opponents: strong Kingsrow, Weak Kingsrow, human opponent and 247 Checkers. The
order the opponents is presented in is also the order of their presumed skill in Checkers. Some of
the duels included a side-switch half-way through the match in order to avoid giving any player
an unfair advantage. The Checkers player used the Tsetlin Machine predictors; Player 1 when
playing as black and Player 2 when playing as white. A total of ten games were played for each
duel as all games had to be played by hand, which was very time consuming, due to the Tsetlin
Checkers player exclusively running on the operating system Linux, and CheckerBoard; which
Kingsrow rely on, was written exclusively for the operating system Windows. Games against
247 Checkers were performed by hand through its website, ”www.247checkers.com” [38]. It is
worth noting that these games were completed beyond games found in the dataset used by the
Tsetlin Checkers player’s Tsetlin Machine predictors; OCA 2.0, which consist of games deemed
finished by human players without being fully finished in terms of Checkers rules as mentioned
in Chapter 4.1. This means that the Tsetlin Machine predictor may not have been trained on a
notable amount of boards that might arise by the end of a Checkers game.

As the Tsetlin Checkers player had functionality for communication with CheckerBoard through
the ability to read manual print-outs from CheckerBoard, CheckerBoard was used as a means
of playing against the Tsetlin Checkers player even when not playing against Kingsrow using
CheckerBoard.

CheckerBoard feature various settings for tweaking the performance of Kingsrow. Strong Kingsrow
and weak Kingsrow differ only in the way certain parameters were tweaked. Both strong
Kingsrow and weak Kingsrow utilized the full 2 through 10 win-loss-draw dataset without any
auxiliary databases [31]. The options tweaked between strong and weak Kingsrow were hashtable,
ranging from 8 to 2048, endgame DB, ranging from 0 to 6912, and level which may range from
instant to infinite. The two former settings was impossible to maximise due to limited hardware
capabilities, and the level parameter was set to a time close to the typical time the Tsetlin
Checkers player would use for picking a move when setting up smart Kingsrow. The Kingsrow
version used was Kingsrow 1.19a, which use machine learning [8][27].

Table 6.7 show the results of 100 games between the Tsetlin Checkers player using Player 1
as its Tsetlin Machine predictor and Kingsrow using some pretty strong settings: hashtable 256,
endgame DB 3136 and level 10 seconds. Kingsrow’s level was set to 10 seconds as the Tsetlin
Checkers player typically used 10 seconds at most when selecting a move. No side-switch was
performed for this duel. The Tsetlin Checkers player has proven to be the most skillful when
playing as the black player, as seen in Chapter 6.2, and should therefore have an advantage when
only playing as the black side. Unfortunately, the strong Kingsrow won all ten games. This was
expected as this was the opponent that was presumed to be the most skillful of the opponents
to be challenged.

71

6.3. Comparisons of Checkers players Tests and Findings of the Checkers Player

Black White Draw

Players Tsetlin Kingsrow Strong
Results 0 10 0

Table 6.7: Results of 10 games played between the Checkers player using Player 1 as its Tsetlin
Machine predictor, and Kingsrow using the settings: hashtable 256, endgame DB 3136 and level
10 seconds. No side-switch.

Another ten games was played, but this time around; Kingsrow used weaker settings which
should decrease its performance. The Tsetlin Checkers player used Player 1 as its Tsetlin
Machine predictor, Kingsrow used the following settings: hashtable 8, endgame DB 64 and level
2 seconds. No side-switch was performed for these games either. The results can be seen in
Table 6.8. Once again, Kingsrow won all ten games against the Tsetlin Checkers player. This
means that, not only is Kingsrow better than the Tsetlin Checkers player, Kingsrow is in another
league. It was presumed that the Tsetlin Checkers player would not have performed better in
the place of the white player given the outcomes shown during self-play as detailed in Chapter
6.2.

Black White Draw

Players Tsetlin Kingsrow Weak
Results 0 10 0

Table 6.8: Results of 10 games played between the Checkers player using Player 1 as its Tsetlin
Machine predictor, and Kingsrow using the settings: hashtable 8, endgame DB 64 and level 2
seconds. No side-switch.

Once it was discovered what the Tsetlin Checkers player cannot do; defeat Kingsrow, it was
time to find out what it can do. Two possible opponents it could be able to beat was proposed:
a human player and a Checkers player featured in an online Checkers game. The human player
was me, the same human performing this research. I had barely played more than ten games of
Checkers before this research and I would therefore call myself lacking in skill in this department.
The online Checkers game chosen was 247 Checkers, using its hardest mode; expert mode [38].
Also, 247 Checkers had the option force-jump on as this rule was enforced both by CheckerBoard
and by the Tsetlin Checkers player. In order to gauge the difference in skill between 247 Checkers
and me, a duel of ten games with side-switch was played as seen in Table 6.9. As seen in this
table, 247 Checkers proved to be much more skillful than me in Checkers.

Human player 247 Checkers Draw

Results 1 8 1

Table 6.9: Results of 10 games played between the human player and 247 Checkers using the
settings: difficulty expert and force-jump on. Side-switch half-way through was performed

The Tsetlin Checkers player using Player 2 as its Tsetlin Machine predictor had a duel of ten
games versus 247 Checkers on expert mode. The Tsetlin Checkers played at its weakest side,

72

6.3. Comparisons of Checkers players Tests and Findings of the Checkers Player

white, all ten matches as 247 Checkers did not feature a mechanism of transforming the board
whenever a side-switch were to occur. As the Checkers board is not symmetrical, this made it
thoroughly difficult to manually move and interpret what Checkers piece to move and where to
place it when reading the output from the Tsetlin Checker player when it attempted to play as
the black player. The results can be seen in Table 6.10. The Tsetlin Checkers player certainly
proved to be in the same league as 247 Checkers, but was beaten by a significant amount of
wins.

Black White Draw

Players 247 Checkers Tsetlin
Results 6 3 1

Table 6.10: Results of 10 games played between 247 Checkers using the settings: difficulty ex-
pert and force-jump on, and the Checkers player using Player 2 as its Tsetlin Machine predictor.
No side-switch

The final duel presented in this chapter is the Tsetlin Checkers player versus me. Side-switch
was performed mid-way through the games, and the Tsetlin Checkers player used Player 1 and
Player 2 as its Tsetlin Machine predictors for their intended sides. The results can be seen in
Table 6.11. The Tsetlin Checkers player achieved marginally worse results against me than 247
Checkers, even though I had no chance against 247 Checkers.

Tsetlin Human player Draw

Results 4 6 0

Table 6.11: Results of 10 games played between the Checkers player using its appropriate
Tsetlin Machine predictor and the human player. Side-switch half-way through was performed

With the results of these games, it can be concluded that the proposed Checkers player is
unable to compete with Kingsrow using its 2 through 10 dataset and performs worse than both
a very new human Checkers player and the online Checkers game; 247 Checkers. The Checkers
player has proven to play better than a player selecting random moves, as seen in Chapter 6.2.
Therefore the skill level of the Checkers player is somewhere between a player selecting random
legal moves and a very new Checkers player, or a comparable machine Checkers player.

73

Chapter 7

Alternative Machine Learning
Algorithms

This chapter demonstrate and discuss the performance of the weighted Tsetlin Machine with
positive boost using its best found hyper-parameters for the eight investigated dataset compo-
sitions, compared to the performance of various alternative machine learning algorithms.

Below, a list presents the various machine learning algorithms used for the comparisons of this
chapter. Of these, Logistic Regression might be the most important to compare to the Tsetlin
Machine as this machine learning algorithm is used by both Kingsrow and Cake; as explained
in Chapters 3.2 and 3.3.

• Log Reg - Logistic Regression using lbfgs and max iter: 1000, elsewise default parameters
[39][40].

• DTC - Decision Tree Classifier using default parameters [39].

• SGD - Stochastic Gradient Descent for Classification using default parameters [39].

• GNB - Naive Bayes Gaussian using default parameters [39].

• MNB - Multinomial Naive Bayes using default parameters [39].

• BNB - Bernoulli Naive Bayes using default parameters [39].

• TM - weighted Tsetlin Machine with positive boost using the best found hyper-parameters:
clauses: 19000, treshold: 40000, s: 9 and adaptive epochs with maximum epochs set to
500.

The list above also show the shortened names of each of the machine learning algorithms featured
in Table 7.1, which show each of these machine learning algorithms’ achieved accuracy for each of
the eight most interesting dataset compositions. NDC refers to NoDupeCheck which means the
dataset composition was created without removing any duplicate data. Most of the alternative
machine learning algorithms use the default parameters, which may make this comparison a
little unfair; so this should be taken note of when comparing these results.

75

Alternative Machine Learning Algorithms

Log Reg DTC SGD GNB MNB BNB TM

StandardEnd 69.33% 54.69% 66.30% 56.34% 63.18% 62.95% 69.79%
EndSecondThird 69.86% 55.79% 67.48% 58.61% 64.78% 64.21% 69.41%

EndToEight 63.2% 50.52% 59.79% 55.8% 59.42% 57.83% 63.38%
StandardPureMetaData 53.51% 26.49% 51.46% 26.10% 45.81% 45.58% 48.39%

NDC StandardEnd 69.93% 57.55% 67.66% 59.44% 64.46% 64.02% 71.44%
NDC EndSecondThird 68.91% 57.71% 66.24% 59.75% 64.38% 65.72% 70.65%

NDC EndToEight 65.98% 57.05% 63.11% 59.08% 63.31% 62.13% 67.73%
NDC StandardPureMetaData 64.78% 66.56% 63.34% 17.11% 63.23% 62.73% 66.53%

Table 7.1: Achieved accuracies of the most interesting dataset compositions for various machine
learning algorithms, including the weighted Tsetlin Machine with positive boost. NDC is short
for NoDupeCheck

Studying the results shown in Figure 7.1, it can be seen that the variances in accuracies achieved
by the machine learning algorithms for the dataset compositions generally vary in the same pat-
tern the accuracy of the weighted Tsetlin Machine with positive boost do. But there are some
interesting differences.

Every single machine learning algorithm is more accurate on EndSecondThird than of Standar-
dEnd, except the Tsetlin Machine. Also, the accuracies achieved on the NoDupeCheck versions
of the dataset compositions are generally higher than on their counterparts where duplicate data
has been removed. However; GNB on StandardPureMetaData and both Log Reg and MNB on
EndSecondThird achieved higher accuracies than on the NoDupeCheck versions of these dataset
compositions. This may mean that for these machine learning algorithms, more data does not
necessarily allow for a higher accuracy.

The Tsetlin Machine performed better overall, but it did not achieve the highest accuracy
for every single dataset composition. On NoDupeCheck StandardPureMetaData, the Decision
Tree Classifier achieved the highest accuracy, but it did generally achieve accuracies far below
the accuracies achieved by the Tsetlin Machine. Logistic Regression achieved a better accuracy
than any other machine learning algorithm presented for both EndSecondThird and Standard-
PureMetaData and typically achieved the second highest accuracy, behind the Tsetlin Machine,
on most other dataset compositions. This do include NoDupeCheck StandardEnd, where Lo-
gistic Regression achieved an accuracy 1.51 percent points lower than the accuracy achieved by
the Tsetlin Machine.

The weighted Tsetlin Machine with positive boost proved to beat all other presented machine
learning algorithms on NoDupeCheck StandardEnd, but Logistic Regression proved itself as a
strong machine learning algorithm which might be able to beat the Tsetlin Machine if it was to
be tested with settings tweaked for this particular dataset composition.

76

Chapter 8

Conclusion and Future Work

This chapter contains the conclusion of the whole research. It also contains a short discussion of
what could have been done differently in this research as well as suggestions on how the solution
possibly could be further improved in the future.

8.1 Conclusion

The goal of this research was to research how well the Tsetlin Machine could be utilized in
the domain of Checkers, and find out how it would compare to other Checkers players ranging
from highly skilled such as Kingsrow; to a beginner-level human Checkers player. How to best
configure the Tsetlin Machine and its Checkers player was also to be researched. Due to the
lack of accessible data found, it was also important to research how to best utilize the limited
data available.

Numerous hypotheses existed, which this research aimed to prove; or disprove. It was hy-
pothesized that the weighted Convolutional Tsetlin Machine would do well in this domain, but
the weighted Tsetlin Machine would perform better; and be able to correctly predict the results
of Checkers boards most of the time. The Checkers player was hypothesized to be better at
Checkers than a human non-professional player, but be nowhere near beating Kingsrow and
other Checkers player at this level.

OCA 2.0 was chosen as the data source, as it was the largest collection of Checkers games
found which it was possible to extract data from. Various dataset compositions off of OCA 2.0
was attempted, including some utilizing metadata and some which contained multiple boards
generated from a single match in OCA 2.0; and variations of these which removed duplicate
data. NoDupeCheck StandardEnd, which contained complete boards from OCA 2.0 without
removal of duplicate data, proved to be the dataset composition which allowed most configura-
tions of the Tsetlin Machine to achieve their highest accuracy out of the investigated dataset
compositions.

Various configurations of the multiclass Tsetlin Machine was investigated; the Tsetlin Machine
and the Convolutional Tsetlin Machine; both with and without weights and positive boost re-
spectively. Both the use of weights and positive boost did show an increase in the accuracy

77

8.1. Conclusion Conclusion and Future Work

achieved by the Tsetlin Machines, and the Convolutional Tsetlin Machine proved to perform
worse than its non-convolutional counterpart. The weighted Tsetlin Machine with positive boost
was shown to achieve the highest accuracy of the investigated configurations of the Tsetlin Ma-
chine, as was hypothesized; with the addition of positive boost. However; the Convolutional
Tsetlin Machine was expected to perform better than its performance in this research. Also, I
was not aware of the existence of positive boost when starting this research which is why this
was not included in the hypothesis.

A function for automating the process of finding the appropriate amount of epochs to train
for, and in turn improving the accuracy achieved during the training of the Tsetlin Machine,
was proposed and tested. This function was called adaptive epochs, which made the Tsetlin
Machine stop training when its average accuracy was declining for too many epochs. This also
saves time when performing hyper-parameter testing as tests would not have to be redone with
a more fitted amount of epochs.

The act of hyper-parameter testing was greatly simplified by the use of adaptive epochs, but
it was still challenging and time-consuming to find well-fitted values for clauses, treshold and s
for every single Tsetlin Machine configuration investigated. It was concluded that the best
found hyper-parameters for the weighted Tsetlin Machine with positive boost, training on
NoDupeCheck StandardEnd, was the following: clauses: 19000, treshold: 40000 and s: 9.

In order to save a trained Tsetlin Machine to be used in the Checkers player, it had to be
decided which of the ten K-Folds of NoDupeCheck StandardEnd it was going to use. K-Fold
number three proved to be the K-Fold of which the selected Tsetlin Machine configuration
achieved the highest accuracy for. It was decided that separate Tsetlin Machine predictors was
going to be used for each side; black and white. Both Tsetlin Machines trained on data from
K-Fold number three of NoDupeCheck StandardEnd. However; the Tsetlin Machine trained for
the white player had the wins and losses in its data inverted in order to make it train in the
perspective of the white player. This proved to be a better solution than simply using the same
Tsetlin Machine, with wins and losses flipped for its output when used for the white player. The
Tsetlin Machine for the black player, Player 1, achieved an accuracy of 72.21% and the Tsetlin
Machine for the white player, Player 2, achieved an accuracy of 72.12%. This accuracy is far
above 50%, which means the Tsetlin predictors was able to predict outcomes of Checkers games
correctly ”most of the time”.

The Checkers player utilized tree search with a depth of three, coupled with simple rules and
the use of the Tsetlin Machine to play Checkers. The tree search with a depth of three proved to
be the depth needed for the Checkers player to perform better than an opponent picking moves
at random; even when reducing the effect of the built-in rules. This of which; proved that the
Checkers player had some skill in Checkers, thanks to the Tsetlin Machine.

The Checkers player was tested against two configurations of Kingsrow, an online Checkers
game by the name 247 Checkers and me; in the order of their assumed skill level. The Checkers
player lost ten out of ten matches against Kingsrow; even when changing its settings for making
it easier to beat. Kingsrow was also shown to have a much larger dataset than what OCA 2.0
had stored. The Checkers player narrowly lost against both 247 Checkers and me, a rather inex-
perienced Checkers player. It was hypothesized that the Checkers player would be proven to be
a better Checkers player than a non-professional Checkers player, which proved to be false. With
this, the Checkers player created by this research; has proven to have a skill level somewhere be-

78

8.2. Future Work Conclusion and Future Work

tween a beginner-level human Checkers player and an opponent selecting legal moves at random.

While the proposed Checkers player was not able to perform on the same level as a highly
skilled and fine-tuned Checkers player such as Kingsrow, it did remarkably well given the lim-
ited data its Tsetlin Machine predictors was trained on and its rather shallow tree search. Since
the Tsetlin Machine performed better than Kingsrow’s machine learning algorithm, Logistic Re-
gression, using NoDupeCheck StandardEnd, the Tsetlin Machine may also perform around the
same level as Logistic Regression, or possibly better, when using larger datasets also. There-
fore; more data could be the solution for making the proposed Checkers player a contender to
well-known Checkers players.

8.2 Future Work

There are numerous things that should have been performed differently; given more time, and
things that could have been improved both for this research and the proposed solution. Below,
each proposed change or improvement are listed in the order of assumed simplicity.

Further hyper-parameter optimization: Hyper-parameter optimization can be a lengthy,
but rewarding process. This takes time both in terms of computing time, but labor time as
well. Further hyper-parameter optimization should have been performed. Some full ten K-
Fold train/test runs took anywhere between four hours to three days. This highly depended
the amount of clauses used, the size of the dataset and the processing power available. For this
research, a shared computer was used with the following specs: CPU: Intel Xeon E5520 2.27GHz,
RAM: 32155 MB. This computer was available through the web-browser using JupyterLab [41].
The available processing power highly depended on the load from other users using this service
as well as the amount of processes I ran at once. Additionally; the parallel library for the Tsetlin
Machine had a memory leak which led to processes getting killed. This hindered hyper-parameter
testing significantly. The memory leak was manually fixed near the end of the research process,
but killed processes still occurred from time to time.

Test dataset without draw: No tests without draw was performed. It is unknown whether
the removal or ignoring of draw could have increased the prediction accuracy of the Tsetlin
Machine. It was assumed the removal of 60% of the data, which would occur when removing
draws, would lead to worse performance.

Fix the draw rule misinterpretation: As explained in Chapter 6.1, the cases where a player
has pieces left without any legal place to move them; was considered a loss to the player in
question. This should have been a draw. Although this has proven to have little effect in actual
games, it should be corrected.

Better data: The ending boards in the games contained in OCA 2.0 were not true end Check-
ers boards as moves could still be performed. These games were ended because two human
players agreed on the result of the match; which neither the proposed Checkers player nor
Kingsrow/CheckerBoard does. Therefore; games in this research would continue until one op-
ponent could not move any more pieces. It could be safe to assume that the Tsetlin Machine
predictor was not trained on boards similar to those which could be found at the end of games
without human interruption.

79

8.2. Future Work Conclusion and Future Work

Deeper tree search: A tree search of depth tree is not very deep, but processing time would
increase drastically if the depth would be increased to five; which would be the next logical
depth to aim for. But, by making the Checkers player faster; this should be feasible. A deeper
search tree should in theory enable the Tsetlin Machine to be more accurate in its predictions as
well as enabling the Checkers player to have more values to average which in turn could increase
the skill of the Checkers player.

Study clauses: Each clause in a trained Tsetlin Machine contains Tsetlin automata, each of
which holds a state. By interpreting these; it is possible to find out what rule that specific
clause has learned. Doing this might uncover knowledge which could be used to understand and
improve the Tsetlin Machine, or its configuration. As the proposed Tsetlin Machine predictor
utilized weights to determine which clauses were the most important, these could be utilized to
find the clauses the Tsetlin Machine itself deem the most important.

Optimization: By optimizing the Checkers player, it could be run significantly faster. There are
many ways the implementation of the proposed solution could have been improved, for example
writing it in C++ instead of Python. One notable change which is not as drastic however; is
to have the Tsetlin Machine predictor evaluate all boards at once. During the research, it was
noted that the speed of the Checkers player improved drastically by having the Tsetlin Machine
predictor evaluate multiple boards at once, rather than one by one. Therefore; in the proposed
solution, each board with the same parent node were sent to the Tsetlin Machine predictor
together. This could be further exploited by having all boards to be evaluated in depth three,
be evaluated at once.

Tsetlin Machine predictor with weighted scores: A prototype of a Checkers player using
a modified evaluation function for the Tsetlin Machine predictor was created. This Checkers
player tried to utilize the outputs of each state, and their weight, of the Tsetlin Machine in order
to take into account the certainty of the Tsetlin Machine. The goal of this was to enable the
Tsetlin Machine predictor to differentiate between losses, draws and wins respectively, which
was theorized to increase the skill of the Checkers player drastically. A win prediction with low
certainty was scored lower than a win prediction with high certainty, while still being scored
higher than most draw predictions. A loss prediction with low certainty was scored higher than
loss predictions with high certainties as a low certainty loss prediction would be more likely to be
incorrect. This prototype had a significantly higher computing time than the proposed Checkers
player, and the achieved skill was considerably lower. Whether this prototype was unsuccessful
due to inadequate score-tuning or the Tsetlin Machine not being certain in predictions it should
have been certain, is unknown. It is worth nothing though, with the little testing this prototype
got to perform; it achieved a rather even score after about 90 games against the proposed
solution using Player 2 as its Tsetlin Machine predictor.

Further improvement of adaptive epochs: As shown in Chapter 5.2, the adaptive epochs
function was showing room for improvement. By investigating the achieved accuracy over the
epochs for each K-Fold, it should be possible to improve the tuning of the function in order to
increase its performance further.

The implementation of opening moves: In tournament play, games are typically played
with a small amount of moves played by drawing from a book of opening moves which are then
played two games on; having a side-switch in-between [10][28]. This is done as a measure for
reducing the amount of games ending in draw, which in turn could make Checkers matches more
exciting. This was not implemented in the proposed solution, but should be implemented in

80

8.2. Future Work Conclusion and Future Work

order to better conform with tournament rules.

Implement Monte Carlo tree search: The implementation of Monte Carlo tree search
should in theory allow the Checkers player to achieve significantly better results in games as it
allows for very deep searches [6]. This was attempted implemented, but was ultimately dropped
early in the research due to difficulties in implementation, leading to a high cost of valuable
research time. Using Monte Carlo tree search could also increase the difficulty in studying the
Tsetlin Machine as this tree search is much more fluid than a constant tree search with a depth
of three.

81

References

[1] Martin Fierz. Checkerboard. http://www.fierz.ch/checkerboard.php, 2008. Accessed:
17.5.2020.

[2] Ole-Christoffer Granmo. Tsetlin machine tutorial 4, 2019. Accessed: 5.4.2020.

[3] Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit Driven Approach
to Optimal Pattern Recognition with Propositional Logic. arXiv preprint arXiv:1804.01508,
2018.

[4] Todd Wittman. Lecture 18: Tree traversals. https://web.archive.org/web/

20150213195803/http://www.math.ucla.edu/~wittman/10b.1.10w/Lectures/Lec18.

pdf, unknown. Accessed: 18.5.2020.

[5] University of Alberta. Lecture 8, tree traversal. http://webdocs.cs.ualberta.ca/

~holte/T26/tree-traversal.html, unknown. Accessed: 18.5.2020.

[6] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree
search: A new framework for game ai. 01 2008.

[7] Wikipedia contributors. Draughts. https://en.wikipedia.org/wiki/Draughts, 2020.
Accessed: 7.5.2020.

[8] Bob Newell. Machine learning comes to kingsrow. http://www.bobnewell.net/nucleus/
checkers.php?itemid=1177, 2018. Accessed: 31.3.2020.

[9] ALEXIS C. MADRIGAL. How checkers was solved. https://www.theatlantic.com/

technology/archive/2017/07/marion-tinsley-checkers/534111/, 2017. Accessed:
7.5.2020.

[10] Wikipedia contributors. English draughts. https://en.wikipedia.org/wiki/English_

draughts, 2020. Accessed: 7.5.2020.

[11] Y. Bjornsson A. Kishimoto M. Muller R. Lake P. Lu S. Sutphen J. Schaeffer, N. Burch.
Checkers is solved. https://science.sciencemag.org/content/sci/317/5844/1518.

full.pdf, 2007. Accessed: 1.4.2020.

[12] Centre for Artificial Intelligence Research (CAIR). Repositories. https://github.com/

cair, 2020. Accessed: 9.5.2020.

[13] Ole-Christoffer Granmo. pytsetlinmachineparallel. https://github.com/cair/

pyTsetlinMachineParallel, 2020. Accessed: 9.5.2020.

83

http://www.fierz.ch/checkerboard.php
https://web.archive.org/web/20150213195803/http://www.math.ucla.edu/~wittman/10b.1.10w/Lectures/Lec18.pdf
https://web.archive.org/web/20150213195803/http://www.math.ucla.edu/~wittman/10b.1.10w/Lectures/Lec18.pdf
https://web.archive.org/web/20150213195803/http://www.math.ucla.edu/~wittman/10b.1.10w/Lectures/Lec18.pdf
http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
https://en.wikipedia.org/wiki/Draughts
http://www.bobnewell.net/nucleus/checkers.php?itemid=1177
http://www.bobnewell.net/nucleus/checkers.php?itemid=1177
https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
https://en.wikipedia.org/wiki/English_draughts
https://en.wikipedia.org/wiki/English_draughts
https://science.sciencemag.org/content/sci/317/5844/1518.full.pdf
https://science.sciencemag.org/content/sci/317/5844/1518.full.pdf
https://github.com/cair
https://github.com/cair
https://github.com/cair/pyTsetlinMachineParallel
https://github.com/cair/pyTsetlinMachineParallel

References References

[14] K Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. Extending the
tsetlin machine with integer-weighted clauses for increased interpretability. arXiv preprint
arXiv:2005.05131, 2020.

[15] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W.
Omlin, and Geir Thore Berge. The Convolutional Tsetlin Machine. arXiv preprint
arXiv:1905.09688, 2019.

[16] Sanjay. M. Why and how to cross validate a model? https://towardsdatascience.com/

why-and-how-to-cross-validate-a-model-d6424b45261f, 2018. Accessed: 6.4.2020.

[17] Wikipedia contributors. Precision and recall. https://en.wikipedia.org/wiki/

Precision_and_recall, 2020. Accessed: 17.5.2020.

[18] Wikipedia contributors. F1 score. https://en.wikipedia.org/wiki/F1_score, 2020.
Accessed: 16.5.2020.

[19] Jonathan Schaeffer. One Jump Ahead: Computer Perfection at Checkers. Springer Science
Business Media, 2008.

[20] Wikipedia Contributors. Marion tinsley. https://en.wikipedia.org/wiki/Marion_

Tinsley, 2019. Accessed: 11.5.2020.

[21] World Checkers Draughts Federation. Historical champions. http://www.wcdf.net/

champions_hist.htm, unknown. Accessed: 25.5.2020.

[22] M.J.H. Herule and L.J.M. Rothkrantz. Solving games Dependence of applicable solving
procedures. Department of Software Technology, Department of Mediamatica, Faculty of
Electrical Engineering, Mathematics and Computer Sciences, Delft. University of Technol-
ogy, 2007.

[23] Louis Victor Allis. Searching for Solutions in Games and Artifcial Intelligence. CIP-
GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG, 1994.

[24] World Checkers Draughts Federation. World checkers draughts federation statutes bylaws.
http://www.wcdf.net/statutes.htm, 2014. Accessed: 11.5.2020.

[25] University of Alberta. Endgame databases. https://webdocs.cs.ualberta.ca/

~chinook/databases/, unknown publish date. Accessed: 31.3.2020.

[26] N. Burch R. Lake P. Lu S. Sutphen J. Schaeffer, Y. Bjornsson. Building the check-
ers 10-piece endgame databases. https://link.springer.com/content/pdf/10.1007/

978-0-387-35706-5_13.pdf, 2003. Accessed: 1.4.2020.

[27] Ed Gilbert. Kingsrow. http://edgilbert.org/Checkers/KingsRow.htm, 2019. Accessed:
31.3.2020.

[28] Martin Fierz. Making of - cake 1.87. http://www.fierz.ch/cake186.php, 2019. Accessed:
11.5.2020.

[29] Martin Fierz. Nemesis wins the computer checkers world championship in las vegas. http:
//www.fierz.ch/vegas.htm, 2009. Accessed: 11.5.2020.

[30] Wikipedia contributors. Checkerboard download. https://en.wikipedia.org/wiki/

Nemesis_(draughts_player), 2016. Accessed: 25.5.2020.

84

https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Marion_Tinsley
https://en.wikipedia.org/wiki/Marion_Tinsley
http://www.wcdf.net/champions_hist.htm
http://www.wcdf.net/champions_hist.htm
http://www.wcdf.net/statutes.htm
https://webdocs.cs.ualberta.ca/~chinook/databases/
https://webdocs.cs.ualberta.ca/~chinook/databases/
https://link.springer.com/content/pdf/10.1007/978-0-387-35706-5_13.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-35706-5_13.pdf
http://edgilbert.org/Checkers/KingsRow.htm
http://www.fierz.ch/cake186.php
http://www.fierz.ch/vegas.htm
http://www.fierz.ch/vegas.htm
https://en.wikipedia.org/wiki/Nemesis_(draughts_player)
https://en.wikipedia.org/wiki/Nemesis_(draughts_player)

[31] Ed Gilbert. Kingsrow for english/american checkers. http://edgilbert.org/

EnglishCheckers/KingsRowEnglish.htm, 2020. Accessed: 11.5.2020.

[32] Martin Fierz. Checkerboard download. http://www.fierz.ch/download.html, 2005. Ac-
cessed: 25.5.2020.

[33] Wyllie Online Draughts Club. A database dilema solved. http://www.wylliedraughts.

com/Platinum.htm, unknown. Accessed: 25.5.2020.

[34] Martin Fierz. Murray cash and nemesis? http://www.usacheckers.com/forum/

viewtopic.php?t=1292, 2007. Accessed: 25.5.2020.

[35] Wiki contributors. Martin fierz. https://www.chessprogramming.org/Martin_Fierz,
2019. Accessed: 17.5.2020.

[36] Martin Fierz. 3rd party add-ons. http://www.fierz.ch/download.php, 2009. Accessed:
31.3.2020.

[37] SamRagusa. Checkers-reinforcement-learning. https://github.com/SamRagusa/

Checkers-Reinforcement-Learning, 2017. Accessed: 19.4.2020.

[38] 24/7 Games LLC. 247 checkers. https://www.247checkers.com/, unknown. Accessed:
4.5.2020.

[39] scikit-learn developers. Martin fierz. sklearn.linear_model.LogisticRegression, 2019.
Accessed: 23.5.2020.

[40] Jorge Nocedal Jose Luis Morales. Ciyou Zhu, Richard Byrd. L-bfgs-b. http://users.

iems.northwestern.edu/~nocedal/lbfgsb.html, 2011. Accessed: 23.5.2020.

[41] Project Jupyter. Jupyterlab documentation. https://jupyterlab.readthedocs.io/en/

stable/, 2018. Accessed: 26.5.2020.

http://edgilbert.org/EnglishCheckers/KingsRowEnglish.htm
http://edgilbert.org/EnglishCheckers/KingsRowEnglish.htm
http://www.fierz.ch/download.html
http://www.wylliedraughts.com/Platinum.htm
http://www.wylliedraughts.com/Platinum.htm
http://www.usacheckers.com/forum/viewtopic.php?t=1292
http://www.usacheckers.com/forum/viewtopic.php?t=1292
https://www.chessprogramming.org/Martin_Fierz
http://www.fierz.ch/download.php
https://github.com/SamRagusa/Checkers-Reinforcement-Learning
https://github.com/SamRagusa/Checkers-Reinforcement-Learning
https://www.247checkers.com/
sklearn.linear_model.LogisticRegression
http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
https://jupyterlab.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/stable/

References References

UiA University of Agder
Master’s thesis
Faculty of Engineering and Science
Department of ICT

c© 2020 Martin Br̊aten. All rights reserved

86

	Glossary
	List of Figures
	List of Tables
	I Research Overview
	I Research Overview
	Introduction
	Motivation
	Thesis definition

	I Research Overview
	Introduction
	Thesis definition
	Research Questions
	Hypotheses

	I Research Overview
	Introduction
	Contributions
	Method

	I Research Overview
	Introduction
	Thesis outline

	I Research Overview
	Background
	Checkers

	I Research Overview
	Background
	Tsetlin Machine

	I Research Overview
	Background
	K-Fold Cross Validation

	I Research Overview
	Background
	Tree Search

	I Research Overview
	Background
	Precision, Recall and FScore

	I Research Overview
	State-of-the-art
	Chinook

	I Research Overview
	State-of-the-art
	Chinook
	Chinook dataset

	Kingsrow

	I Research Overview
	State-of-the-art
	Kingsrow
	Kingsrow dataset

	I Research Overview
	State-of-the-art
	Cake
	Nemesis

	I Research Overview
	State-of-the-art
	CheckerBoard
	Contributions

	II Contributions
	II Contributions
	Proposed Solutions

	II Contributions
	Proposed Solutions
	Data source
	Open Checkers Archive 2.0

	II Contributions
	Proposed Solutions
	Creation of Datasets
	Base structure

	II Contributions
	Proposed Solutions
	Creation of Datasets
	Base structure for extraction of multiple boards
	Base structure without duplication checks

	II Contributions
	Proposed Solutions
	Creation of Datasets
	Transformation into boards

	II Contributions
	Proposed Solutions
	Creation of Datasets
	Transformation into binary

	II Contributions
	Proposed Solutions
	Dataset Compositions
	StandardEnd

	II Contributions
	Proposed Solutions
	Dataset Compositions
	EndSecondThird

	II Contributions
	Proposed Solutions
	Dataset Compositions
	EndToEight

	II Contributions
	Proposed Solutions
	Dataset Compositions
	StandardPureMetaData

	II Contributions
	Proposed Solutions
	Predictor

	II Contributions
	Proposed Solutions
	Checkers Player

	II Contributions
	Proposed Solutions
	Checkers Player
	Structure

	III Experiments and Results
	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Hyper-parameter Testing

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Adaptive epochs

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Tsetlin Machine Configurations

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Tsetlin Machine Configurations
	Data

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Tsetlin Machine Configurations
	Findings

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Accuracy

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Accuracy
	Data

	III Experiments and Results
	Tests and Findings of the Tsetlin Machine
	Accuracy
	Findings

	III Experiments and Results
	Tests and Findings of the Checkers Player
	Draw Rule Misinterpretation

	III Experiments and Results
	Tests and Findings of the Checkers Player
	Learnings of Self-Play

	III Experiments and Results
	Tests and Findings of the Checkers Player
	Comparisons of Checkers players

	III Experiments and Results
	Alternative Machine Learning Algorithms

	III Experiments and Results
	Conclusion and Future Work
	Conclusion

	III Experiments and Results
	Conclusion and Future Work
	Future Work

	III Experiments and Results
	References

