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SAMMENDRAG 

 

INTRODUKSJON. Muskel power er rapportert å være en god indikator for funksjonell 

uavhengighet hos eldre. Individualisert power-trening basert på kraft-hastighets (K-h)-

profilering har fått økende oppmerksomhet for å optimalisere muskel power utvikling. Målet 

med denne studien er å undersøke effekten av tradisjonell- vs individualisert power-trening 

basert på K-h-profilering på maksimal power (Pmax), hurtighet på kraftutvikling (RFD), 

myoelektrisk aktivitet (EMG), og hurtighet på myoeletrisk aktivitet (RMA) hos eldre menn. 

 

METODE. førti-ni eldre menn (år = 67.7±5.3) gjennomgikk fysisk testing før og etter en 10-

ukers treningsintervensjon. Deltakerne ble randomisert til en individualisert (IT) eller en 

balansert treningsgruppe (BT) basert på K-h-profilering. K-h-profiler ble anskaffet fra Keiser-

benpress. RFD, EMG, og RMA data ble målt under en isometrisk maksimal frivillig 

kontraksjon i kneekstensjon. Pmax ble målt i kneekstensjon med gradvis økende belastning.  

 

RESULTAT. Forskjeller innen gruppene: BT økte Pmax (p=0.010), RFD peak20 (p=0.023), 

RFD50 (p=0.030), RFD100 (p=0.006), og RFD200 (p=0.001). Ingen forskjeller observert for 

RFD30. IT økte i peak EMG rectus femoris (p=0.008), mens alle gruppene økte i peak EMG 

vastus lateralis (BT: p=0.000; IT: p=0.000). Ingen økninger i RMA30, 50, 100 rectus femoris, 

mens både BT og IT økte i RMA200 rectus femoris (p=0.035; p=0.000). Ingen økninger i 

RMA30, 50 vastus lateralis, kun IT økte i RMA100 vastus lateralis (p=0.015), alle gruppene 

økte i RMA200 vastus lateralis. Gruppeforskjell mellom BT og IT ble kun observert i Pmax 

(p=0.019), RFD50 (p=0.045), og RFD200 (p=0.012). 

 

KONKLUSJON. Resultatene indikerer at en balansert treningstilnærming er mer fordelaktig 

for å forbedre Pmax og RFD hos eldre menn, uten forskjeller i EMG. Basert på disse 

resultatene bør forsiktighet utvises ved anbefaling av en individualisert treningstilnærming 

basert på K-h-profilering hos eldre menn. 

 
NØKKELORD. Power trening, kraft-hastighets profil, maksimal power, hurtighet på 

kraftutvikling, myoelektrisk aktivitet, hurtighet på myoelektrisk aktivitet, eldre menn 
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ABSTRACT 

 

INTRODUCTION. Muscle power is reported to be a good indicator of functional 

independency in elderly. Individualized power-training based on force-velocity (F-v) profiling 

has received increasing attention for optimizing muscle power development. The aim of this 

study is to investigate effectiveness of traditional- vs individualized power-training based on 

F-v profiling on maximal power (Pmax), rate of force development (RFD), myoelectric activity 

(EMG), and rate of myoelectric activity (RMA) in older men. 

 

METHOD. Forty-nine older men (67.7±5.3 years) underwent physical testing before and 

after a 10-week training intervention. Subjects were randomized to an individualized (IT) or a 

balanced power training group (BT) based on F-v profiling. F-v profiles were obtained from 

Keiser leg-press. RFD, EMG, and RMA data were collected under an isometric maximum 

voluntary contraction in leg extension. Pmax was measured with incremental loads in leg 

extension. 

 

RESULTS. Within-group increases only with BT in Pmax (p=0.010), peak RFD20 (p=0.023), 

RFD50 (p=0.030), RFD100 (p=0.006), and RFD200 (p=0.001). No within-group differences in 

RFD30. Between-group difference only in Pmax, RFD50, and RFD200 between BT and IT 

(p=0.019; p=0.045; p=0.012, respectively). Within-group differences for all groups in peak 

EMG vastus lateralis, while only IT increased in peak EMG rectus femoris. Within-group 

difference with BT and IT in RMA200 rectus femoris and vastus lateralis. Within-group 

difference only with IT in RMA100 vastus lateralis. No differences in the other RMA 

intervals. 

 

CONCLUSION. Results indicate balanced power training to be more beneficial for 

improving Pmax and RFD in older men, with no difference in EMG. Use caution when 

recommending an individualized training approach based on F-v profiling in older men. 

 

KEYWORDS. Power training, force-velocity profile, maximal power, rate of force 

development, myoelectric activity, rate of myoelectric activity, older men 
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1.0 Introduction 

The world’s population is continually ageing, and the elderly population is growing in almost 

every country in the world. The growing number of older persons, aged 60 and above, is 

projected to accelerate in the coming decades, according to data from the UN (United 

Nations, 2015). The number of older persons is projected to grow from 901 million in 2015 to 

1.4 billion in 2030, and the number of the oldest old, aged 80 and above, will increase from 

125 million people in 2015 to 434 million people in 2050 (United Nations, 2015). The 

increase in the older persons population is pressing on to become one of the most significant 

social transformations of the twenty-first century. Population ageing is relevant for nearly all 

parts of society, particularly for the goals on ensuring healthy lives and well-being in the 

elderly (United Nations, 2015). 

Physical functioning tends to decline as we get older, thus increasing incidence of disabilities 

related to walking and movement (Harvard University, 2016). Progressive loss of muscle 

strength, due to atrophy of muscle mass occurs naturally with advancing age. Reductions in 

muscle mass are primarily a consequence of losses of alpha motor neurons and the 

denervation of muscle fibers. Further, reductions in muscle cross-sectional area leads to a loss 

in ability to rapidly produce force, otherwise known as muscle power (Lohne-Seiler, Torstveit 

& Anderssen, 2013). Muscle power is reported to be positively associated with the ability to 

perform everyday activities and may be a predictor of functional dependency more than 

muscle strength is, seeing as muscle power declines more rapidly than muscle strength with 

advancing age (Lohne-Seiler et al., 2013). Voluntary movements requiring relatively high 

force production are likely to require rapid execution in day-to-day living, such as in trip 

recovery. Therefore, muscle power may be more useful in an aging population than isometric 

and isokinetic strength (Perkin, McGuigan, Thompson & Stokes, 2018). 

Since muscle power is the product of force and velocity, and that each individual is more 

likely to either be force dominant or velocity dominant, a more individualized approach to 

power training may prove beneficial for deterring decreases in muscle power in older adults 

compared with the traditional approach (Alcazar et al., 2018). In recent past, interest in 

assessing and evaluating the force-velocity (F-v) relationship in elderly has been increasingly 

growing. Results of a recent study assessing F-v relationship in elderly adults, showed that 

both quality of life and physical functioning as well as frailty was related to individual 

differences in the F-v relationship (Alcazar et al., 2018). Furthermore, they suggested that 
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interventions aimed at reversing age- and/or disuse-related impairments of muscle power 

evaluate the specific responsible mechanisms (force vs. velocity deficits) and act accordingly 

(Alcazar et al., 2018). 

1.1 Overall aim and hypothesis 

To the authors knowledge, there are currently no studies exploring the effectiveness of an 

individualized power training program based on F-v profiling in elderly adults. Therefore, the 

aim of this study is to investigate which training approach; traditional strength training or 

individualized power training based on F-v profiling is most effective to improving maximal 

power, rate of force development, myoelectric activity, and rate of myoelectric activity in 

elderly men. 

 

1.1.1 Hypothesis 

“Individualized power training based on F-v profiling is more effective in increasing maximal 

power, rate of force development, myoelectric activity, and rate of myoelectric activity in 

older men compared with a balanced power approach.” 
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2.0 Theoretical framework 

2.1 Sarcopenia 

Although there are slightly different variations in definition, sarcopenia may be described as 

age-associated loss of skeletal muscle mass and function, and the causes are multifactorial and 

can include disuse, change in endocrine function, and inflammation among more (Lynch, 

2011). Evidence suggest that skeletal muscle mass and strength decline in a linear fashion, 

and that by the age of 80-90 years old, up to 50% of mass may be lost (Walston, 2012). Peak 

muscle strength is shown to usually plateau sometime in the 30s and decline at a steady pace 

thereafter (Delmonico & Beck, 2016). Decreases in muscle mass is about 1 to 2% annually by 

the 5th decade of life and declines in muscle strength is suggested to be about 1.5% per year 

after aged 60 (Ogawa, Yakabe & Akishita, 2016). In addition, muscle power has been shown 

to decrease about 3 to 4% faster than muscle strength and should be of concern since muscle 

power better explains variance in physical functioning in older adults than muscle strength 

alone (Delmonico & Beck, 2016). While type I muscle fiber size seems to remain less 

affected during ageing, type II muscle fibers has shown to be 10 to 40% less observed in older 

adults compared with younger controls (Nilwik et al., 2013). Type II muscle fibers have 

demonstrated to have at least 6 to 10 times greater peak power compared with type I fibers 

(Wilson et al., 2012). This decline in muscle power in older adults heightens the risk potential 

for accidents due to muscle weakness, fatigue, and poor balance (McArdle, Katch & Katch, 

2015). Therefore, improving skeletal muscle power has been suggested to be the main target 

in developing resistance training interventions aimed at enhancing physical function and 

preserving independence later in life (Alcazar, Guadalupe-Grau, García-García, Ara & 

Alegre, 2017). 

 

2.2 Skeletal muscle power 

Muscle power is defined as the product of force and distance in a specified time and can be 

calculated using equations depending on direction. For linear motion: power = force x 

distance / time, and for rotational motion: power = moment x angular displacement / time. 

When applied to human exercise, muscle power = force x velocity of contraction (Everett & 

Kell, 2010). Therefore, one might think of power as how quickly or slowly muscle work is 

done (McGinnis, 2005).  
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2.2.1 Muscle power, ageing and physical capacity 

Age-related reductions in skeletal muscle power is greater compared with losses in skeletal 

muscle mass and strength and are more detrimental to overall health. Skelton et al. has one of 

the earliest reported measurements of age-related loss of skeletal muscle power in 1994. They 

reported that starting at age 40, adults lose 3 to 4% of their original skeletal muscle power 

each year (Bouchard, 2020). Multiple studies have since investigated age-related loss of 

skeletal muscle power, and results vary. However, longitudinal studies have demonstrated the 

best evidence, indicating a 1.2 to 2.9% loss of skeletal muscle power per year due to ageing 

(Bouchard, 2020). Falling is a major threat for elderly, therefore, mass, strength and power in 

the lower extremities is critical for independent functioning in later life (Trombetti et al., 

2016). Research by Bassey et al. in 1992 found leg extensor peak power to be predictive of 

chair rise performance, stair climbing, and gait speed among older adults, and has since been 

considered groundbreaking. 

 

2.3 Myoelectric activity 

Skeletal muscles work under voluntary control, meaning they will contract or relax when they 

receive electrical signals (Xiao, 2018). Myos is latin for muscle (Nigro & Politano, 2015), 

therefore, electrical activity from the nervous system that activates muscles (myos) is termed 

myoelectrical activity (Devasahayam, 2000). Age-related reductions in skeletal muscle 

strength and power is not only limited to changes in skeletal muscle systems but can also be 

attributed to changes in the nervous systems (Bouchard, 2020). Older adults experience 

reductions in peak force and time to reach peak force due to impairments in neuromuscular 

activation, leading to decreased skeletal muscle power (Bouchard, 2020). Age-related changes 

in the nervous system include loss of motor neurons and demyelination of axons in both the 

central and the peripheral nervous systems. These changes affect neuronal ability to conduct 

and transmit motor commands to skeletal muscles (Bouchard, 2020). 

 

2.3.1 Motor unit recruitment 

Skeletal muscle fibers are controlled by alpha motor neurons in the anterior horns of the 

spinal cord and in motor nuclei of the origin of the cranial nerves. A motor unit is the neuron 

and the specific muscle fibers that it innervates (Xiao, 2018). Axons of neurons branch as they 

adjoin muscles, creating terminal branches which end on individual muscle fibers (figure 1) 

(Xiao, 2018). Muscles and nerves interact at the neuromuscular junction (NMJ), a synaptic 
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link through which the peripheral nervous system contacts skeletal muscle fibers and 

regulates vital processes, such as voluntary movements and respiration (Lepore, Casola, 

Dobrowolny & Musarò, 2019). A presynaptic cell is the neuron that carries action potentials, 

whereas a postsynaptic cell is the muscle cell receiving it (Xiao, 2018). Force produced by 

skeletal muscles depends on the number of motor units recruited and the discharge rate of 

action potentials innervating each active motor unit (Hunter, Pereira & Keenan, 2016). Motor 

units are recruited according to the size principle, meaning relatively small alpha-

motoneurons innervating type I fibers are initially triggered at low force levels, whereas 

increasingly larger alpha-motoneurons that trigger type IIa and IIx fibers usually activates at 

higher force thresholds (Cormie, McGuigan & Newton, 2011). A motor unit will fail to 

contribute to force generation when a motor neuron and the innervated fibers are lost 

(Gonzalez-Freire, de Cabo, Studenski & Ferrucci, 2014). Research has provided clear 

evidence that changes in NMJ occur with advancing age. Nerve terminal area and the number 

of post-synaptic folds are reduced leading to a functional impairment of NMJ’s post-synaptic 

response (Gonzalez-Freire et al., 2014). Age-related loss of neurons is gradual, and ultimately 

irreversible (Gonzalez-Freire et al., 2014).  

 

 

 

 

2.3.2 Firing frequency 

Signaling frequency from the central nervous system to the motor unit is an integral part of 

muscle power production. Production of muscle power becomes greater with increasing signal 

frequency due to a stepwise increase in firing rate of motor units (Kraemer & Looney, 2012). 

Firing frequency of motor units (rate of myoelectric activity) is the rate of neural impulses 

transmitted from alpha-motoneurons to the muscle fibers (Cormie et al., 2011). If signal 

Figure 1 From Hof, 2010. A representation of all 

the elements of a motor unit. The neuromuscular 

junction is the communicative link between the 

neuron and the muscle fibers. 
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frequency exceeds a sufficiently high velocity, muscle fibers cannot relax in-between, and 

may therefore be re-stimulated while previous contractions is still occurring. Contractions will 

then merge at the peak of the previous contraction, resulting in a stronger and more powerful 

contraction (Kraemer & Looney, 2012). By estimation, when firing frequency of motor units 

increase from its minimum to its maximum, contraction force can increase by 300 to 1500% 

(Cormie et al., 2011). Moreover, firing frequency also affect rate of force development (RFD) 

of muscle contraction. Motor units have been reported to start firing at extremely high 

frequencies, followed by an abrupt decrease (Cormie et al., 2011). While only sustained for a 

short period of time, the initial frequency of the signal is assumed to be correlated with an 

increase in the number of doublets (a pair of action potentials at short intervals) discharged, 

thus resulting in an increased RFD (Cormie et al., 2011).  

 

2.4 Rate of force development 

RFD is commonly defined as the speed at which contractile elements of the muscle develop 

force (Aagaard, Simonsen, Andersen, Magnusson & Dyhre.Poulsen, 2002). RFD is derived 

either from the slope of the force-time curve (Δforce/Δtime) (figure 2) in isolated muscle 

preparations or calculated as the slope of the joint moment-time curve (Δmoment/Δtime) for 

intact joint actions (Aagaard et al., 2002). RFD reflects the rate at which muscle tension can 

be developed and is important in movements that require rapid action such as sprinting, 

jumping, or reversing a fall (Rodriguez-Rosell et al., 2018). Movements are classified as 

either slow (>250ms) or fast (<250ms) (Turner & Jeffreys, 2010). Muscles typically take a 

longer time (≥300ms) to reach maximum force, therefore, during fast limb movements, the 

short contraction time may not be enough to reach maximal muscle force. Consequently, any 

improvement in contractile RFD is highly significant because it enables the early phase of 

muscle contraction to achieve a higher level of muscle power (Aagaard et al., 2002). Most 

studies have indicated that RFD is the most precise term for rapid rise in force production 

(Rodriguez-Rosell et al., 2018). RFD enhances the quality of life in elderly (Hernández-Davó 

& Sabido, 2014), for instance, an elderly person can decrease risk of falling by being able to 

exert a rapid increase in muscle force (Aagaard et al., 2002). A plethora of RFD measuring 

strategies have been developed, among them are time-interval RFD and peak/maximal RFD 

(Haff, Ruben, Lider, Twine & Cormie, 2015). Time-interval RFD is calculated at various time 

intervals (e.g. 0-30ms, 0-50ms, 0-100ms, 0-200ms) by dividing the force at the end of the 

time interval with the duration of the time interval (Haff et al., 2015). Peak RFD is the largest 
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amount of RFD produced during a movement. The most common strategy to identify peak 

RFD is during various sampling windows (5ms, 10ms, 20ms etc) (Haff et al., 2015). For 

example, by measuring peak RFD every 20ms (0-20ms, 20-40ms, 40-60ms etc.) and simply 

identify the largest recorded value (Haff et al., 2015). 

 

 

Figure 2 From Brady, 2018. Force-time curve detailing start of contraction, peak force, RFD, change in force 

and time (ΔF/ΔT), and time to peak force. 

 

2.5 Assessing neuromuscular function 

2.5.1 Electromyography 

When a muscle is activated, an electrical discharge (myoelectric signal) is produced, which 

can be measured directly via electrodes (Bhattacharya & McGlothlin, 2012). These 

myoelectric signals yield information about the intensity and duration of a muscle contraction 

(Bhattacharya & McGlothlin, 2012). By using a needle and fine wire electrodes one can 

measure myoelectric activity of single motor units, however, when measuring myoelectric 

activity of muscles, surface electrodes are typically used (Bhattacharya & McGlothlin, 2012). 

Skeletal muscle activity is normally measured during voluntary muscle actions and by placing 

surface electrodes close to the muscle of interest (Devasahayam, 2000). Bipolar recording is 

usually preferred in EMG recording, in which two electrodes are placed near the muscle and 

the differential signal between them is recorded and observed (Devasahayam, 2000). The 

measured signal reflects the summation of all activated motor units within the electrode area 

(Bhattacharya & McGlothlin, 2012). 
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2.6 Resistance exercise training in older adults 

There is a large body of evidence suggesting resistance training to be an effective strategy to 

counteracting many of the undesirable physical consequences of ageing (Fragala et al., 2019). 

However, there are currently no standardized resistance training guidelines for improving 

muscle strength and power among older adults. Still, resistance training has proven to be safe 

and viable in this population, thus the general public guidelines by the American College of 

Sports Medicine (ACSM) may be suitable for older adults (Bouchard, 2020). ACSM’s current 

recommendation on frequency for strength training exercise is 2 to 3 days per week, but 

research has shown that as little as 1 day per week of strength training improved strength and 

physical function among elders (Seguin & Nelson, 2003). Research has provided strong 

evidence that resistance training for elderly can help mitigate losses of neuromuscular 

function and functional capacity, notably with the inclusion of power training exercise 

(Fragala et al., 2019).  

 

2.6.1 Power training and older adults 

Power training is characterized by performing traditional resistance training exercises at the 

highest possible velocity during the concentric phase of the lift and spending approximately 2 

to 3 seconds on the eccentric phase (Hazell, Kenno & Jakobi, 2007). Marsh et al. reported that 

power training is safe and effective at increasing strength and power of lower extremities in 

older adults (Marsh, Miller, Rejeski, Hutton & Kritchevsky, 2009). 

 

2.7 Force-velocity relationship 

Force multiplied by velocity equals power, and thus underpin the ability to be powerful. 

However, it is entirely possible for two individuals to display resembling power output even if 

their force and velocity capacities differ (Samozino et al., 2013). Theoretically, individuals 

are skewed toward either strength (force) or speed (velocity), which can hinder them in, for 

example, an explosive jumping movement. Determining whether an individual is force- or 

velocity-deficient may be advantageous (Jiménez-Reyes, Samozino, Brughelli & Morin, 

2017). The force-velocity (F-v) relationship is a representation of the inverse relationship 

between force and velocity (Cormie et al., 2011), meaning, as the velocity of a concentric 

muscle movement increases, the force produced will simultaneously decrease (Kraemer & 

Looney, 2012). This can be explained by the fixed amount of time it takes for cross-bridges to 

be attached and detached. The total number of cross-bridges attached decreases with 

increasing velocity of muscle contraction (Cormie et al., 2011). Maximal power will therefore 
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occur at an optimal combination of submaximal force and velocity values (Cormie et al., 

2011). 

 

2.7.1 Force-velocity profile 

A force-velocity profile (F-v profile) shows the proportion between an individual’s maximal 

force and velocity capabilities and can be determined by the slope of the F-v relationship 

(Samozino et al., 2013). An ideal/optimal F-v profile exists for every individual, representing 

the best balance between their force and velocity capacities (figure 3) (Samozino et al., 2013).  

For any given individual, relative contrast between actual and optimal F-v profile mirrors the 

magnitude and direction of the unevenness between force and velocity (F-v imbalance) 

(Jiménez-Reyes et al., 2017). Evaluation of F-v imbalance would theoretically help improve 

effectiveness of a training intervention aimed at improving power production, simply because 

one would customize training to focus on individual needs and effectively shift the actual 

profile toward the optimal profile (Jiménez-Reyes et al., 2017).  

 

 

2.7.2 Force-velocity profiling in older adults 

By evaluating F-v relationships in older adults one might identify neuromuscular deficits and 

design training interventions to help overcome them, thus enhancing physical performance 

(Alcazar et al., 2017). Evaluation of F-v relationships can be isotonic or isokinetic (Alcazar et 

al., 2017). Isotonic evaluation involves registering movement velocity exerted against 

Figure 3 From Morin, 2015. A representation of actual 

and optimal F-v profiles of 2 elite athletes. Player A is 

shown to be force dominant, whereas player B is 

velocity dominant. 
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increasing loads, whereas isokinetic evaluation means measuring force exerted at different 

constant velocities (Alcazar et al., 2017). Isokinetic evaluation is less advantageous since 

isokinetic movements are a rare occurrence in day-to-day functional tasks (Alcazar et al., 

2017). A study from 2017 by Alcazar et al. concluded that registering mean force and velocity 

from multiple increasing loads is valid, reliable and safe for assessing F-v relationships in 

older adults (Alcazar et al., 2017). In a study from 2017 investigating individualized 

resistance training based of F-v profiling in trained athletes, evidence suggest that targeted 

resistance training based on individual F-v profiling is an effective way to improve jumping 

performance in trained athletes (Jiménez-Reyes et al., 2017). Since jumping performance is 

highly influenced by the ability to produce muscle power in a short time frame (Cormie et al., 

2011), similar findings may emerge in an older population. 
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3.0 Method 

 
3.1 Study design  

This master thesis is part of a larger research project conducted by the University of Agder at 

the “Faculty of Health- and Sport Science”. Only the tests pertaining to this master thesis´ 

research question will be presented.  

 

The design of this study is a randomized controlled trial, designed to measure the effects of a 

traditional power training intervention versus an individualized power training intervention in 

healthy elderly men. A pilot test was done prior to baseline testing to evaluate the feasibility 

of the proposed test battery. The pilot test included a total of five elderly men, aged 60-78. 

Subjects were divided into groups of two and three in order to examine which would be most 

effective to use during pre- and post-testing. It was determined that groups of three subjects 

would be most time efficient. Furthermore, training programs were also tested to see if 

subjects would be able to complete all the different training exercises. Upon completion, it 

was decided that the reverse lunge exercise would replace the Bulgarian split squat due to 

subjects not being able to perform the exercise sufficiently.  

 

Prior to starting training intervention, each subject had to complete one week of 

familiarization testing, and two weeks of baseline testing in order to minimize any potential 

learning effect. After baseline testing, subjects were randomized to one of two intervention 

groups, either a balanced training group or an individualized training group based on their 

deficiencies in either strength or speed (see chapter 3.2). Before the intervention could begin, 

subjects had to attend two sessions of familiarization in order to learn the different exercises 

in the training program. The training intervention lasted for a duration of 10 weeks, and 

subjects trained two days per week. After five weeks of training, the training load was 

adjusted (see chapter 3.4). Upon completing the 10 weeks of training, subjects had to 

complete two rounds of post-testing with a week of rest in-between (Figure 4). 

 

 

 

 

 

 



20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Flowchart illustrating the progression of the study, including pilot testing, recruitment, randomization, training 

 intervention, midway adjustment, and all measuring points throughout the present study.  

PILOT TEST 

Recruitment period 

Newspaper article, posters, social media 

n = 49 

BASELINE TESTING 

3 weeks 

RANDOMIZATION 

 

Traditional power training 

n = 25 
Individual power training 

Force training 

n = 11 

Velocity training 

n = 13 

Training intervention 

5 weeks 

POST-TESTING 

2 weeks 

Adjustment of training load 

Training intervention 

5 weeks 
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3.2 Subjects 

Target subjects are healthy home-dwelling adult males, aged >60 years old. In order to 

determine sample size needed to detect any effect at the desired level of significance, a 

statistical power analysis was performed before recruitment and data collection. In order to 

detect a difference with 80% power at 5% α-level, we needed to include 20 subjects in each 

training group to find 8% difference between groups. Calculations are based on % change in 

lower body power as a dependent variable (Straight et al., 2016; Jiménez-Reyes et al., 2017). 

Furthermore, to account for any potential dropouts, 25 subjects in each group was deemed 

necessary. Subsequently, a target sample of 65 subjects were determined to be appropriate, 

including 15 subjects in a control group. 

 

Subjects were recruited in august 2019 by way of different strategies, which included: a 

newspaper article in the local newspaper (attachment 1), posters distributed in the immediate 

area (attachment 2) and by social media. A gathering was also arranged during this time for 

all potential subjects with the purpose of presenting information, both orally and in written 

form, concerning the project (attachment 3).  

 

Subjects had to meet certain criteria in order to be included (table 1), these are: male, aged 

>60, provide a written medical clearance from their personal physician (attachment 7). 

Subjects were excluded if they had any illnesses or injuries preventing them from safely 

participating in heavy resistance training, or if they had participated in systematic strength 

training six months prior to the study (table 1). Systematic or progressive strength training is 

defined as the continued improvement in a desired variable over time until the target goal has 

been achieved. Repetitions, sets, exercises, number of exercises, and frequency depends on 

the desired outcome in variables such as muscular strength, power, hypertrophy etc. (Kraemer 

et al., 2009). Meaning, subjects that trained strength training two or more times actively per 

week were excluded from the study. A total of 56 subjects in Kristiansand and the 

surrounding area aged 60-83 years old were recruited for this study. 
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Table 1 List of inclusion and exclusion criteria for participation. 

Inclusion criteria Exclusion criteria 

1. Male 

2. >60 years old 

3. No systematic resistance training 6 

months prior to pre-testing 

4. Medical clearance from personal 

physician 

1. Illnesses or injuries preventing 

participation in testing and training 

2. Participation in other forms of resistance 

training 

 

Training groups were a balanced power training group (BT), and an individualized power 

training group (IT). To prevent imbalance between training groups due to their different 

impact on outcomes, a stratified randomization was used. Subjects were stratified randomized 

into either the BT group or the IT group based on their F-v profile in Keiser leg-press. 

Subjects were rated based on their mean slope in Keiser leg-press, with the upper half 

considered as force dominant and the lower half as velocity dominant. Subjects were then 

randomized into either the BT group or the IT group using a random number generator.  

Subjects randomized to the IT training group received a power training program dependent on 

their F-v profiles, meaning they would train on their deficit. A subject in the IT group 

considered force dominant would train velocity, and a velocity dominant subject would train 

force. Subjects in the BT group received a comparable power training program independent of 

their F-v profiles (see chapter 3.4.1). Seven subjects would later dropout due to either injury, 

sickness or other work-related issues. Four dropouts were from the IT group, while the other 

three were from the BT group, bringing the total number of subjects down to 49 (table 2). 

 

Table 2 Number of subjects in each training group before and after accounting for dropouts. 

Groups n Dropouts n 

BT 

IT 

- Force deficient training group 

- Velocity deficient training group 

28 

28 

14 

14 

3 

4 

3 

1 

 

25 

24 

11 

13 

 

Total 56 7 49 
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3.3 Ethical considerations 

The study has been approved by the Norwegian Centre for Research Data (NSD) (attachment 

5), and permission was granted by the local ethics committee for the Faculty of Health and 

Sport Sciences at the University of Agder (FEK) to undertake this particular master thesis 

(attachment 6). All subjects were informed orally and in written form (attachment 3) of 

discomforts that may occur during the study such as fasting prior to measurement of body 

composition, and testing, and in some cases training to exhaustion, as well as risks associated 

with resistance training. Participation was voluntary and subjects could at any moment 

withdraw, if they wished to do so, without stating any reason. Written consent was obtained 

from all subjects (attachment 4). 

 

Collected data were anonymized and stored safely in digital form, only accessible to research 

personnel. Private subject information was also anonymized using person specific codes and 

could not be linked to the person’s identity. All data was exterminated when no longer useful. 

By giving a written consent, subjects had agreed to the publication of the anonymized data in 

journals, lectures and congresses. Each subject had a right to feedback of their own data, thus, 

test results was distributed to each subject after the analyzing process. 

The present study has been operated in accordance with the Declaration of Helsinki.  

 

3.4 Training intervention 

The training period lasted for 10 weeks, and subjects had to attend two sessions per week, for 

a total of 20 sessions. Subjects either trained Monday and Wednesday in the evening, or 

Tuesday and Thursday in the morning. Friday afternoon was used as a buffer for subjects who 

missed a session that week. Subject participation was recorded for each session, and subjects 

could be absent from training four times in total. If exceeded, the subject was excluded from 

the study. Subjects each received their own individual training sheet on which to log 

repetitions and sets completed for each exercise. Training sheets were handed out at the start 

and stored safely away at the end of each session by training personnel. Training load in each 

exercise was estimated from baseline results in Keiser leg-press for lower extremities, and 

bench press for upper extremities. Estimation of training load occurred after baseline testing, 

and prior to the training period. Training load was adjusted properly in the first week of 

training during familiarization using the repetitions in reserve method (RIR) (Helms, Cronin 

& Storey, 2016). RIR is a strategy that attempts to quantify perceived exertion of strength 
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exercise. If subjects that trained force (velocity dominant subjects in IT, and BT program 2), 

performed more than 10 repetitions, the training load was increased. Likewise, if subjects that 

trained velocity (force dominant subjects in IT, and BT program 1) performed more than 7-8 

repetitions, the training load was increased. Rest period was set to 2-3 minutes between each 

set. After five weeks of training, the load was adjusted once more using RIR to accommodate 

for adaptation. However, subjects training velocity did not increase training load during this 

time. Instead, training personnel measured velocity using a linear encoder connected to a 

laptop with dedicated software (MuscleLab; Ergotest, Langesund, Norway). This way, 

subjects were motivated to increase their velocity with each repetition performed. Subjects 

trained with close control of adherence in order to ensure their safety, provide guidance, and 

motivate them. Therefore, a minimum of one training instructor was always present during 

training. Subjects had knowledge of which training group they belonged to. Subjects had to 

warm up before each session and consisted of both a general and an exercise specific warm 

up. The general warm up was focused on light, low intensity running up a flight of stairs for 

5-10 minutes, followed by a set of different dynamic stretches. The exercise specific warm up 

focused on technique and was performed with a lower intensity (50% of training load) as an 

additional set in each exercise. Each session concluded with a collective core training in order 

to strengthen core muscles and build comradery between subjects. 

 

3.4.1 Training programs 

Training programs were split into two separate days, one for each session, customized with 

their own sets of exercises based on training groups. Velocity dominant subjects in the IT 

group trained with a focus on heavy lifting with an intensity of 70-80% of 1 repetition 

maximum (1RM), and 6-8 repetitions (table 5 & 6). Force dominant subjects in the IT group 

trained with a focus on velocity with a lower intensity, usually 20-50% of 1RM, and 5 

repetitions (table 7 & 8). BT combined force training and velocity training with no individual 

specificity (table 3 & 4). All subjects were instructed to perform each repetition as explosively 

as possible, meaning maximum velocity during the concentric movement of the lift. 
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Table 3 Traditional power training program 1, RIR = repetitions in reserve. 

Exercise Reps Sets Load 

(%1RM) 

RIR Rest Comment 

Sit-to-stand 5 4 50% x 2-3 min Weight vest/dumbbells 

Medicine ball press 5 4 20% x 2-3 min Lying press/throw 

Rowing 5 4 20% x 2-3 min Dumbbells 

Squat jump 5 4 -20% x 2-3 min De-load (resistance band) 

Shoulder press 5 4 50% x 2-3 min Dumbbells 

Core exercises x x x x x Varied 

 

Table 4 Traditional power training program 2, RIR = repetitions in reserve. 

Exercise Reps Sets Load 

(%1RM) 

RIR Rest Comment 

Leg press 6 3 80% 1-2 2-3 min Apparatus 

Bench press 6 3 80% 1-2 2-3 min Apparatus 

Lunge 5 3 50% 5-8 2-3 min Weight vest/dumbbells 

Pull-down 6 3 80% 1-2 2-3 min Apparatus 

Leg curl 6 3 80% 1-2 2-3 min Apparatus 

Core exercises x x x x x Varied 

 

Table 5 Individualized force training program 1, RIR = repetitions in reserve. 

Exercise Reps Sets Load 

(%1RM) 

RIR Rest Comment 

Squat 8 3 80% 1-2 2-3 min Barbell 

Chest press 8 3 80% 1-2 2-3 min Apparatus 

Step up 6 3 80% 1-2 2-3 min Dumbbells 

Rowing 8 3 80% 1-2 2-3 min Apparatus 

Shoulder press 8 3 80% 1-2 2-3 min Dumbbells 

Core exercises x x x x x Varied 
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Table 6 Individualized force training program 2, RIR = repetitions in reserve. 

Exercise Reps Sets Load 

(%1RM) 

RIR Rest Comment 

Leg press 6 3 80% 1-2 2-3 min Apparatus 

Bench press 6 3 80% 1-2 2-3 min Barbell 

Lunge 5 3 80% 1-2 2-3 min Dumbbells 

Pull down 6 3 80% 1-2 2-3 min Apparatus 

Leg curl 6 3 80% 1-2 2-3 min Apparatus 

Core exercises x x x x x Varied 

 

Table 7 Individualized velocity training program 1, RIR = repetitions in reserve. 

Exercise Reps Sets Load 

(%1RM) 

RIR Rest Comment 

Medicine ball press 5 4 20% x 2-3 min Lying press/throw 

Rowing 5 4 20% x 2-3 min Dumbbells 

Squat jump 5 4 -20% x 2-3 min De-load (resistance band) 

Shoulder press 5 4 40% x 2-3 min Dumbbells 

Leg curl 5 4 50% x 2-3 min Apparatus 

Core exercises x x x x x Varied 

 

Table 8 Individualized velocity training program 2, RIR = repetitions in reserve. 

Exercise Reps Sets Load 

(%1RM) 

RIR Rest Comment 

Sit-to-stand 5 4 Bodyweight x 2-3 min Weight vest/dumbbells 

Bench press 5 4 50% x 2-3 min Lying press/throw 

Lunge 5 4 50% x 2-3 min Dumbbells 

Pull down 5 4 50% x 2-3 min Overload (resistance 

band) 

Rowing 5 4 50% x 2-3 min Dumbbells 

Core exercises x x x x x Varied 
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3.5 Test procedure and measurements 

The test protocol consisted of a fasted dual-energy X-ray absorptiometry, unilateral leg-press 

power test, leg extension power test, and EMG and RFD measurements in leg extension. Leg-

press power test is presented in this thesis due to its role in the stratified randomization of 

subjects in this study. 

 

3.5.1 Dual-energy X-ray absorptiometry (DXA) 

Body composition was measured by dual-energy X-ray absorptiometry using a Lunar Prodigy 

(model 8743; GE Lunar Corporation, Madison, WI, USA). Subjects arriving for testing before 

noon, had to show up in a fasted state (no food or liquid consumption), whereas subjects 

arriving in the afternoon, were instructed to not eat or drink the last four hours before testing. 

Height and weight for each subject was recorded before the test, and bodily ornaments such as 

jewelry and watches were removed. Subjects were instructed to lay down on the DXA 

machine with legs straight and internally rotated, and with their arms slightly away and 

alongside the body. Subjects were scanned from head-to-toe in a supine position, measuring 

fat and lean muscle mass in arms, legs, and trunk.  

 

3.5.2 Leg press power test 

To complete a force-velocity profiling, Keiser Pneumatic Leg-Press was used (Keiser Sports 

Health Equipment Inc., Fresno, CA, USA). The knee angle was set to approximately 90˚ for 

all subjects using a Baseline 14-inch Stainless Steel 360 Degree Goniometer. During 

familiarization, testing procedure consisted of a six repetitions power test in a seated position 

with feet flat on each foot plate. The test consisted of five different incremental loads, with 

two attempts per load. Rest periods was set to 60-second intervals for the first two loads, 90-

second interval for the third load, and 120-second intervals for the fourth and fifth loads. 

Subjects were instructed to “push as hard and fast as possible” continuing for all repetitions or 

until failure. Furthermore, a 1RM for each subject had to be recorded. If subjects did not reach 

1RM in the first five loads, the load was increased by 5-10kg until 1RM was found.  

During baseline testing 1 and 2, the ten repetitions maximal power test in Keiser Pneumatic 

Leg-Press was used (Redden, 2018). The load was calculated from 1RM achieved during 

familiarization (table 9). Beginning at a low resistance, subjects were instructed to push “as 

hard and as fast as possible” continuing for 10 repetitions (incremental increase in load per 

repetition) or until failure. Subjects were encouraged to rest their legs in between repetitions 
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by removing their feet from the foot plates as the load got heavier. Subjects were always 

aware of the next load they were attempting. For each effort, peak force, velocity and power 

were recorded for each leg. Upon completing the force-velocity profiling, subjects got 2-3 

minutes of rest before attempting a new 1RM. 1RM was achieved by progressively increasing 

the resistance by 5-10kg until they were unable to complete another lift. When a subject failed 

to complete a lift, the load was reduced by 5kg at a time in order to accurately determine their 

1RM. Resistance started at the maximum resistance from the 10 repetitions maximal power 

test. Subjects received 2 minutes of passive rest between each completed lift. Resistance for 

the 10 repetitions maximal power test for baseline 2 was calculated using 1RM from baseline 

1. Test-retest reliability of slope was examined between pre-test 1 and 2 (CV=9.6%; 

ICC=0.81). 

 

Table 9 Example of repetitions and load in Keiser leg press power test based on 200kg 1RM. 

Repetition number 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Resistance based on 200kg 

1RM 

33 51 70 88 106 126 144 162 181 199 

Rest period (s) 3.0 4.2 5.8 8.1 11.4 15.8 22.1 30.8 43.0 60.0 

 

3.5.3 Leg extension power test 

Maximal power (Pmax) was measured in a single-joint movement, using a unilateral leg 

extension machine (G200 Knee Extension Machine, David Health Solutions Ltd., Helsinki, 

Finland). A similar leg extension procedure has been used to assess lower extremity muscle 

power in elders (Callahan et al., 2007). Leg extension machine was adjusted to 90˚ at the knee 

joint for all subjects, and they were seated and strapped in at the hips, torso and shins to 

prevent any aided movement. Testing procedure, outlined in table 10, consisted of a low 

velocity three-repetition warm-up, followed by three repetitions of high velocity, all at a low 

resistance (15 kg). After warming up, subjects performed two consecutive repetitions per leg, 

per load, starting with the right leg, and then the left leg. Subjects had to complete four 

incremental loads in total, starting at 15kg, and increasing to 20kg, 30kg, and finally 40kg. 

Subjects received 1-minute of passive rest between loads. Subjects were instructed to perform 

each repetition with maximum intended force and velocity, and to have a brief rest between 

the two repetitions. Test-retest reliability of Pmax was examined between pre-test 1 and 2 

(CV=4%; ICC=0.91). 
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Table 10 Illustration of test procedure for leg extension power test, including repetitions, load, and rest period. 

Repetition number Warm-up 

1st  

Warm-up 

2nd  

Warm-up 

3rd  

1st  2nd  3rd  4th  

Resistance (kg)  15 kg 15 kg 15 kg 15 

kg 

20 

kg 

30 

kg 

40 

kg 

Rest period (s) 10.0 10.0  10.0 60.0 60.0 60.0 60.0 

 

3.5.4 Electromyography and Rate of Force Development measurements 

A wireless EMG module (MuscleLab: Ergotest Innovation AS, Stathelle, Norway) and a 

surface electrode (Ambu BlueSensor M, Ballerup, Denmark) was used to measure 

myoelectrical activity of the rectus femoris and vastus lateralis muscle on both legs. A similar 

test procedure has been described elsewhere (Alkner et al., 1999). Myoelectric activity was 

measured in a seated position with the knee angle at 90˚ in a unilateral leg extension machine 

(G200 Knee Extension Machine, David Health Solutions Ltd., Helsinki, Finland). Hips, torso 

and shins were strapped in to prevent aided movement and ensure proper technique. To 

measure and evaluate myoelectric activity, subjects performed a maximum voluntary 

isometric contraction (MVIC). Peak EMG is based on the square root calculation (RMS), and 

reflects the mean power of the signal (+/- 250ms from peak measurement/signal). Subjects 

performed 3 repetitions of MVIC per leg, starting with the right leg. Each repetition was to be 

executed with maximum force and velocity and be held for 3-5 seconds. To prevent fatigue, 

subjects received 1-2 minutes of passive rest between each repetition. Two electrodes were 

attached side-by-side to each of the muscles. In order to gather EMG data as accurately as 

possible, the electrodes were attached after sites were shaven and cleaned. Sensor site was 

determined using a marker during ultrasound. Frequency of the EMG signal was set to 20-500 

Hz bandwidth and sampling frequency was 200 Hz. RFD was measured simultaneously from 

each repetition in the same test procedure by attaching a force sensor to the machine lever 

arm, connected to a desktop PC, using dedicated software (MuscleLab: Ergotest Innovation 

AS, Stathelle, Norway). The test-retest reliability for all measures was examined between pre-

test 1 and 2. Peak EMG rectus femoris (CV=16%; ICC=0.69), Peak EMG vastus lateralis 

(CV=15%; ICC=0.75), RMA rectus femoris 0-30 (CV=33%; ICC=0.35), RMA rectus femoris 

0-50 (CV=35%; ICC=0.38), RMA rectus femoris 0-100 (CV=38%; ICC=0.38), RMA rectus 

femoris 0-200 (CV=34%; ICC=0.35), RMA vastus lateralis 0-30 (CV=39%; ICC=0.35), 

RMA vastus lateralis 0-50 (CV=39%; ICC=0.52), RMA vastus lateralis 0-100 (CV=34%; 

ICC=0.50), RMA vastus lateralis 0-200 (CV=25%; ICC=0.46), RFD peak20 (CV=13%; 
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ICC=0.82), RFD 0-30 (CV=88%; ICC=0.42), RFD 0-50 (CV=79%; ICC=0.53), RFD 0-100 

(CV=66%; ICC=0.52), RFD 0-200 (CV=17%; ICC=0.72). 

 

3.6 Statistical analysis 

Statistical data analysis was completed in IBM SPSS 25 (IBM Corp. Released 2017. IBM 

SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Data was tested for 

normality using the Shapiro-Wilk normality test. Paired t-tests were used for within-group 

comparisons to assess pre to post changes in all measurements, and between-group 

comparisons were made using independent sample t-test (two-group comparison) and one-

way ANOVA (three-group comparison). An analysis of covariance (ANCOVA) was used to 

adjust for any baseline differences between groups. Data are presented as mean ± standard 

deviation, with 95% confidence interval. The level of significance was set to p<0.05. Test-

retest reliability was calculated using CV and ICC from consecutive pairwise comparisons, 

i.e. test 1 versus test 2, as recommended by Hopkins (Hopkins, 2000). Data were graphically 

presented using the software Prism 8 (San Diego, CA, USA, https://www.graphpad.com). 

4.0 Results 

4.1 Subject Characteristics 

Subject characteristics at baseline are outlined in Table 11, showing no significant baseline 

differences between training modalities (p>0.05). All 49 subjects completed the intervention 

with the required number of training sessions (minimum 80% attendance). 

 

Table 11. Subject characteristics 

Characteristic Main 

(n = 49) 

Force 

training 

(n = 11) 

Velocity 

training 

(n = 13) 

Balanced 

approach 

(n = 25) 

Individualized 

approach 

(n=24) 

Age (years) 67.7±5.3 67.8±1.4 67.9±1.2 

 

67±1.2 

 

67.8±4.4 

Height (cm) 178.9±7 178.2±2.4 

 

179.7±1.4 

 

178.8±1.6 

 

179±6.4 

Weight (kg) 83.4±10.5 79.3±3.4 

 

88.2±2.3 

 

82.6±2.2 

 

84.3±10.7 

Total fat mass 22.1±7. 20.1±2.4 

 

24.6±2.3 

 

21.7±1.3 

 

22.5±8.3 

Total lean 

mass 

57.9±5.4 56±1.7 60.3±1.1 

 

57.5±1.2 58.5±5.2 

Attendance 19.5±1 19.2±1.3 19.9±0.27 19.5±0.89 19.6±0.96 

Values are presented as mean ± SD. 

https://www.graphpad.com/
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4.2 Maximal Power 

Following the 10-week training intervention, a significant within-group increase in Pmax in leg 

extension was observed with BT (5.5±9.8%, p=0.010), but no significant within-group 

increase was observed with Force (1.2±6.1%, p=0.525), Velocity (-1.3±6.3%, p=0.358), or IT 

(-0.2±6.2%, p=0.778) (figure 5A). A significant between-group comparison was observed 

between BT and Velocity (p=0.028) (figure 5A) and between BT and IT (p=0.019) (figure 

5B). No significant group interaction was observed between Force and Velocity (p=0.331), or 

Force and BT (p=0.186) (figure 5A). 

 

Figure 5 Percentage change from pre to post in Pmax for A = all groups and B = individualized vs balanced. * significant 

change between groups, p<0.05; # significant change within group, p<0.05. 

4.3 Rate of Force Development 

A significant within-group increase was observed with BT for RFD peak20 from pre to post 

(13±24.5%, p=0.023) (figure 6A), whereas no significant within-group increase was observed 

with Force (-3.7±9.7%, p=0.171), nor Velocity (5.1±20.3%, p=0.604) (figure 6A). No 

significant within-group increase was observed with IT in RFD peak20 (1.1±16.6%, p=0.925) 

(figure 6B). A significant between-group comparison was observed between Force and BT 

(p=0.006) (figure 6A). 
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Figure 6 Percentage change from pre to post in RFD peak20 for A = all groups and B = individualized vs balanced.  

* significant change between groups, p<0.05; # significant change within group, p<0.05. 

 

No significant within-group changes were observed in RFD30 in any of the training modalities 

(Force: 30±69.4%, p=0.423; Velocity: 10±49.9%, p=0.819; BT: 41±65.7%, p=0.096; IT: 

19±59.2%, p=0455), and no significant differences between groups (figure 7A). A significant 

within-group increase was observed with BT for RFD50 (40±58.4%, p=0.030), whereas no 

significant difference was observed for any other training modality (figure 7B). A significant 

between-group comparison was observed between BT and IT in RFD50 (p=0.045) (figure 8B). 

In RFD100 a significant within-group increase was observed with BT (19±30.2%, p=0.006), 

whereas no other training modality had any significant difference from pre to post (figure 7C). 

Only BT increased significantly in RFD200 (16±24%, p=0.001) (figure 7D). A significant 

between-group comparison was observed between BT and IT in RFD200 (p=0.012) (figure 

8D). 
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Figure 7 Percentage changes from pre to post for all groups in A=RFD30, B=RFD50, C=RFD100, and D=RFD200. * significant 

change between groups, p<0.05; # significant change within group, p<0.05. 
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Figure 8 Percentage changes between individualized and balanced training approach from pre to post in A=RFD30, B=RFD50, 

C=RFD100, and D=RFD200. * significant change between groups, p<0.05; # significant change withing group, p<0.05. 

 

4.4 Myoelectrical Activity 

A significant within-group increase was observed in peak EMG rectus femoris with Velocity 

(12.8±14.5%, p=0.013) (figure 9A), and IT (13.3±16.6%, p=0.008) (figure 9B), whereas no 

significant increase was observed with the other training groups (Force: 14±19.5%, p=0.124; 

BT: 20.7±45.1%, p=0.058). No significant between-group difference was observed (figure 

9A, B). For peak EMG vastus lateralis, a significant within-group increase was observed in 

all training modalities (Force: 20.6±19.4%, p=0.005; Velocity: 14.5±18.2%, p=0.026; BT: 

15.7±19.5%, p=0.000; IT: 17.3±18.6%, p=0.000), but no significant difference was observed 

between groups (figure 10A, B). 
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Figure 9 Percentage change from pre to post in Peak EMG rectus femoris for A = all groups and B = individualized vs 

balanced. # significant increase within group, p<0.05. 

 

Figure 10 Percentage change from pre to post in Peak EMG vastus lateralis for A = all groups and B = individualized vs 

balanced. # significant increase within group, p<0.05. 

 

4.5 Rate of Myoelectrical Activity 

No significant within-group differences were observed in RMA30 rectus femoris with any of 

the training modalities (Force: 28±65.3%, p=0.354; Velocity: 29±59.3%, p=0.362; BT: 

23±57.2%, p=0.665; IT: 28±60.7%, p=0.180) (figure 11A, 8A). No significant changes were 

observed in RMA50 rectus femoris with any of the training modalities (Force: 31±77.8%, 

p=0.263; Velocity: 27±64.7%, p=0.406; BT: 28±50.8%, p=0.166; IT: 29±69.4%, p=0.152) 

(figure 11B, 8B). No significant differences were observed in RMA100 rectus femoris with any 
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of the groups (Force: 23±60.1%, p=0.276; Velocity: 21±38.1%, p=0.095; BT: 27±55.3%, 

p=0.137; IT: 21±48.2%, p=0.052) (figure 11C, 8C). No significant within-group difference 

were observed in RMA200 rectus femoris with Force (22±44.4%, p=0.092), whereas a 

significant within-group difference were observed in the remaining training groups (Velocity: 

23±17.1%, p=0.000; BT: 19±37.5%, p=0.035; IT: 23±31.8%, p=0.000) (Fig 11D, 12D). No 

significant between-group differences were detected in any of the four RMA intervals. 

 

Figure 11 Percentage changes from pre to post for all groups in A=RMA30, B=RMA50, C=RMA100, D=RMA200 rectus femoris. 

# significant increase within group, p<0.05. 
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Figure 12 Percentage change in A=RMA30, B=RMA50, C=RMA100, D=RMA200 rectus femoris individualized vs balanced. # 

significant increase within group, p<0.05. 

 

No significant within-group increases were observed with any of the training groups in 

RMA30 vastus lateralis (Force: 54±114.5%, p=0.348; Velocity: 9±52.4%, p=0.756; BT: 

49±145.7%, p=0.422; IT: 29±87.6%, p=0.497) (figure 13A, 14A). No significant differences 

were observed with any of the training groups in RMA50 vastus lateralis (Force: 49±74.3%, 

p=0.124; Velocity: 21±47.1%, p=0.546; BT: 38±96.4%, p=0.320; IT: 34±61.4%, p=0.103) 

(figure 13B, 14B). A significant within-group increase was observed in RMA100 vastus 

lateralis with IT (31±43.5%, p=0.015), but not in the remaining training modalities with 

(Force: 36±50.4%, p=0.097; Velocity: 26±38.3%, p=0.079; BT: 20±47.7%, p=0.222) (figure 

13C, 14C). A significant difference were observed within all training groups in RMA200 

vastus lateralis (Force: 31±30%, p=0.008; Velocity: 27±32.9%, p=0.026; BT: 22±31.3%, 

p=0.010; IT: 29±31%, p=0.000) (figure 13D, 14D). No significant between-group differences 

detected in RMA200 vastus lateralis. 
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Figure 13 Percentage changes from pre to post for all groups in A=RMA30, B=RMA50, C=RMA100, D=RMA200 vastus 

lateralis. # significant increase within group, p<0.05. 
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Figure 14 Percentage change in A=RMA30, B=RMA50, C=RMA100, D=RMA200 vastus lateralis individualized vs balanced. # 

significant increase within group, p<0.05. 
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5.0 Methodological discussion 

5.1 Study design 

The present study was conducted as a randomized controlled trial. According to literature, 

randomized controlled trials (RCT) is the most systematic and reliable method of study to 

assess whether a cause-effect relationship exists between an intervention and an outcome 

(Bhide, Shah & Acharya, 2018). Randomization reduces bias and balances subject 

characteristics (both known and unknown confounding factors) between groups, this produces 

high internal validity and allows for any variations in result to be attributed to the research 

intervention (Hariton & Locascio, 2018). RCTs are therefore considered the “gold standard” 

and regarded as one of the most valued research methodologies for investigating the 

effectiveness of an intervention (Houle, 2015). However, RCTs are not without flaws, one of 

the major drawbacks in this kind of study design is the problem with generalizability. Subjects 

who volunteer may not always be representative of the population being studied (Hariton & 

Locascio, 2018). Some subjects displayed high measurements during testing which may cause 

a ceiling effect, making it difficult to accurately measure that person’s true scores since the 

independent variable no longer has an effect on the dependent variable (Salkind, 2010). 

Another drawback to RCTs concerns the Hawthorne effect. Subjects awareness of being 

studied may possibly impact behavior (McCambridge, Witton & Elbourne, 2014), thus, 

obscuring the effect of research variables (Polit & Beck, 2017). 

 

5.2 Study sample 

49 (n=49) home-dwelling male subjects, aged >60 years old participated in the present study. 

Originally, there were 56 total subjects included, however, seven (n=7) subjects had to 

dropout due to various reasons. According to the power analysis performed prior to the 

recruitment period, target sample was 65 subjects (25 in each intervention group), including 

15 subjects in a non-training control group. However, since subject participation did not meet 

the initial target sample size, the control group had to be removed, limiting the study to a 

certain degree. First and foremost, there is a higher possibility of making a type II error since 

a sample size smaller than the ideal increases the chance of making an erroneous acceptance 

of false null hypothesis (H0) (Faber & Fonseca, 2014). Furthermore, having a non-training 

control group allows for an examination of what changes were caused by the intervention 

because only some subjects were exposed to it (Polit & Beck, 2017). Therefore, the 

termination of the control group places a limitation on the study since it provides an important 
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comparison (Polit & Beck, 2017). In addition, the subjects (and investigators) had knowledge 

of which training group subjects were assigned to, making the study non-blinded. The purpose 

of conducting an RCT is to eliminate bias, such as unconscious information bias by blinding 

the subjects (single-blind) or both subjects and investigators (double-blind) (Bhide et al., 

2018). However, it was not possible to blind subjects or investigators due to the nature of the 

study. It was unrealistic to request training personnel from the outside and subjects were 

informed of the differences separating the two training interventions. 

 

5.3 Training Intervention 

The training intervention period was initially 12 weeks but was shortened to 10 weeks due to 

time restraints. Previous research has suggested that training periods between 10 to 56 weeks 

for high-intensity training programs (>75% of 1RM) are sufficient for increasing skeletal 

muscle strength and power outputs in adults over 65 years old (Marcos-Pardo et al., 2019). 

Thus, a 10-week training intervention appear adequate for producing improvements in all 

measurements. Regarding training frequency, in the present study subjects trained two times 

per week for the whole training period. In a position stand on resistance training in healthy 

adults from the American College of Sports Medicine, a frequency of 2 to 3 days per week 

was recommended for power training novices (MSSE, 2009). Similar recommendations were 

outlined in a position statement on resistance training for older adults from the National 

Strength and Conditioning Association (Fragala et al., 2019). Therefore, since subjects were 

both novice in terms of resistance training and of the older population, a training frequency of 

2 days per week seem fair. Training load differentiated between each training program: 

training load for velocity varied between -20% (overload) and 50% of 1RM, force training 

was set at 80% of 1RM, whereas the balanced training approach combined the two. The 

literature suggests similar loads for increasing muscle power (heavy/force: >80% of 1RM, 

light/velocity: 30-60% of 1RM) (McArdle et al., 2015). Overload plyometric training 

(assisted using elastic equipment) has shown to be an effective method for producing a rapid 

increase in muscle power in both young and older individuals (Franchi et al., 2019). When 

estimating training load for balanced and force training groups, the repetitions in reserve 

(RIR) method was used. RIR may be an appropriate method for estimating training load for 

power training with the goal of developing the high-force end of the power spectrum (>80% 

1RM) (Helms et al., 2016). However, it is most likely not possible to determine actual RIR for 

low intensity high-velocity power training (Helms et al., 2016), thus RIR was reserved for 
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balanced and force training groups only in the present study. Before each training session, 

subjects had to perform an active warm-up protocol consisting of light jogging up a flight of 

stairs, as well as a task-specific warm-up as an additional set in each training exercise. Active 

warm-up tends to result in slightly better improvements in short-term performance (<10 

seconds) and the addition of a task-specific warm-up should provide further ergogenic 

benefits for most tasks (Bishop, 2003). 

 

5.4 Measurements 

Collection of data is necessary in order to examine the effects of an exercise intervention. A 

pretest-posttest design was, therefore, necessary in order to achieve this. However, in order to 

determine the feasibility of the testing protocol, a pilot test was conducted prior to beginning 

the study. Pilot tests have shown to be necessary and useful in providing the groundwork in a 

research project (Hassan, Schattner & Mazza, 2006). One of the most important issues 

regarding measurements of research variables is data quality, i.e. validity (the degree to which 

a test or instrument measures what it is supposed to measure) and reliability (how repeatable 

or consistent a measurement is) (Thomas, Nelson & Silverman, 2015). In order to increase 

measuring reliability, subjects had to complete two sessions of testing (for pre- and post-

testing) as well as one familiarization testing in order to eliminate any potential learning 

effect. Regarding validity, standardized protocols conducted in previous research were 

followed, in addition, tests were always supervised by the same test leader each time.  

 

5.4.1 Dual-energy X-ray Absorptiometry 

Measurements of subject body composition was performed using the Dual-energy X-ray 

absorptiometry (DXA). DXA is for the most part the preferred method for measuring bone 

and body composition (Shepherd, Sommer & Heymsfield, 2017) since it guarantees a precise 

assessment of the three main body components (i.e. bone mineral content, non-bone lean 

mass, and fat mass) (Ponti, Plazzi, Guglielmi, Marchesini & Bazzocchi, 2019). Furthermore, 

DXA is reported to be a reliable method for assessing skeletal muscle mass in in healthy men 

and women (Kim, Wang, Heymsfield, Baumgartner & Gallagher, 2002). There are other 

accurate methods for assessing skeletal muscle mass, such as computed axial tomography 

(CT) and magnetic resonance imaging (MRI), however, such methods are costly and limited 

(Kim et al., 2002). Thus, a DXA instrument offered an alternative and relatively inexpensive 
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method for measuring body composition. 

 

5.4.2 Leg press power test 

Subject randomization to different training groups were based on subjects’ slope in their 

force-velocity profiles. In order to do this a seated leg press protocol in the Keiser Pneumatic 

Leg-Press was used. Measurement of lower limb strength and power in this protocol has been 

reported to be a valid and reliable method (Redden et al., 2018). The test-retest reliability 

examined between pre-test 1 and 2 showed a coefficient of variation (CV) value of 9.6%, 

which can be considered less reliable than previously reported in other studies where a CV 

value ranging between 1.8 to 6% is considered “excellent” (Redden, 2019). Intraclass 

correlation coefficient (ICC) between pre-test 1 and 2 showed a value of 0.81, which is also 

lower than previously reported in the same protocol where a value of >0.92 is considered 

excellent (Redden, 2019). It is worth noting that these results are collected from 

professionally trained athletes and not older adults, in addition an unexpected movement 

technique may influence results, therefore, the need for extensive familiarization is important 

for removing any potential learning effect (Redden, 2019). Including an extra familiarization 

session may prove useful. 

 

5.4.3 Leg extension power test 

The test protocol for power assessment in leg extension consisted of an incremental load 

method. To our knowledge, the exact same protocol is not described anywhere else. However, 

a similar incremental load protocol in full-squat and bench press exercises has been described 

elsewhere (Pallarés et al., 2013), as well as a method for power assessment in the leg 

extension machine (load: 40% and 70% 1RM, isokinetic 90˚) (Callahan et al., 2007). The test-

retest reliability between pre-test 1 and 2 showed a CV value of 4% and an ICC value of 0.91, 

which can be considered excellent when, previously reported values of CV=9.5%, 4.0%, 

5,9%, ICC=0.80, 0.95, 0.90 (Sheppard, Cormack, Taylor, McGuigan & Newton, 2013) and 

ICC=0.80, 0.78, 0.84 (Callahan et al., 2007) in similar protocols are considered 

high/excellent. 

 

5.4.4 Electromyography 

EMG is an established evaluation tool for measuring myoelectric activity (Konrad, 2006) and 

was, therefore, conducted in order to directly measure subjects motor unit firing of vastus 
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lateralis and rectus femoris muscles in both legs. Single-joint activities held statically at 

middle positions within the range of motion typically gives the best results (Konrad, 2006). 

Thus, an isometric maximum voluntary contraction method was conducted. Similar test 

protocols can be described elsewhere (Alkner et al., 1999; Trajano, Seitz, Nosaka & 

Blazevich, 2019; Balshaw, Fry, Maden-Wilkinson, Kong & Folland, 2017). The test-retest 

reliability was measured between pre-test 1 and 2 and showed relatively high CV values 

(ranging from 15% to 39%) and low ICC values (ranging from 0.35 to 0.75) for all 

measurements, which can be considered less than good compared with results reported in 

previous studies (Fauth et al., 2010; Trajano et al., 2019). One of the major limitations in the 

EMG measurement is the problem of physiological “cross talk” (Konrad, 2006). Electrode 

placement sites were to be marked for each subject during ultrasound, however, this was not 

always done. The consequences of this can be problematic since neighboring muscles may 

produce a significant amount of EMG that is detected by the electrode. Although it typically 

does not exceed more than 10% to 15% of the overall signal, it may still interfere with the 

EMG recording (Konrad, 2006). Furthermore, results from a previous study suggest that 

proper surface electrode placement should follow the orientation of the muscle fiber (Ahamed 

et al., 2014). 

 

5.4.5 Rate of Force Development 

Rate of force development (RFD) was measured simultaneously as EMG during an isometric 

maximum voluntary contraction protocol consisting of three trials per leg. Peak RFD was 

determined from a moving sampling window of 20ms, which has been recommended in 

previous research (Rodriguez-Rosell et al., 2018). Time-intervals of 0-30ms, 0-50ms, 0-

100ms and 0-200ms was selected for measuring time-interval RFD. Similar time-intervals 

have been described elsewhere (Haff et al., 2015). Test-retest reliability between pre-test 1 

and 2 showed high CV (ranging from 66% to 88%) and low ICC values (ranging from 0.42 to 

0.53) for all time-intervals except RFD 0-200 (CV=17%; ICC=0.72) and RFD peak20 

(CV=13%; ICC=0.82). The reliability for RFD peak20 may be considered good since a 

previous study reported that a CV value of 12.9% for RFD peak20 met the reliability criteria 

(Haff et al., 2015). Although the reliability of RFD has consistently been found to be lower 

during the early phases of muscle contraction, the values found in the present study are still 

far from ideal. A study investigating RFD in an isometric mid-thigh pull test reported values 

of CV=15%, ICC=0.86 (0-50ms), CV=13%, ICC=0.85 (0-100ms), CV=8%, ICC 0.93 (0-
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200ms) (Suarez et al., 2019). Another study reported CV values of 12.8-16.6% for a 0-50ms 

time window to be less than ideal (Maffiuletti et al., 2016).  

 

5.5 Main strengths and weaknesses 

The main strengths of the present study were: (a) a solid study design, (b) a well thought-out 

and extensive test-protocol, (c) two pre- and post-tests with the same measurement 

instruments and test leaders for each test, (d) close control of adherence during training, as 

well as high attendance each training sessions.  

 

Whether or not the subjects themselves were representative of the population being studied is 

difficult to confirm since some of them were already in relatively good physical condition. 

One of the main limitations to the present study can be found in the reliability of some test 

measurements, mainly EMG and RFD. Poor reliability produces imprecise reflections of 

subjects’ true ability and have a fundamental impact on the results and the way they are 

interpreted. Furthermore, the small within-groups sample size can lead to type II errors. The 

lack of a control group further limits the study. 
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ABSTRACT 

INTRODUCTION. Muscle power is reportedly a good indicator of functional 

independency in elderly. Individualized power-training based on force-velocity (F-v) profiling 

has received increasing attention for optimizing muscle power development. This study aims 

to investigate effectiveness of individualized power-training program based on F-v profiling 

on maximal power (Pmax), rate of force development (RFD), myoelectric activity (EMG), and 

rate of myoelectric activity (RMA) in older men.  

METHOD. Forty-nine older men underwent physical testing before and after a 10-week 

training intervention. Subjects randomized to individualized (IT) or balanced power training 

groups (BT) based on F-v profiling. F-v profiles were obtained from Keiser leg-press. RFD, 

EMG, and RMA data were collected under an isometric maximum voluntary contraction in 

leg extension. Muscle power measured with incremental loads in leg extension. 

RESULTS. Within-group increases only with BT in Pmax (p=0.010), peak RFD20 (p=0.023), 

RFD50 (p=0.030), RFD100 (p=0.006), and RFD200 (p=0.001). No within-group differences in 

RFD30. Between-group difference only in Pmax, RFD50, and RFD200 between BT and IT 

(p=0.019; p=0.045; p=0.012, respectively). Within-group differences for all groups in peak 

EMG vastus lateralis, while only IT increased in peak EMG rectus femoris. Within-group 

difference with BT and IT in RMA200 rectus femoris and vastus lateralis. Within-group 

difference only with IT in RMA100 vastus lateralis. No differences in the other RMA 

intervals. 

CONCLUSION. Results indicate balanced power training more beneficial for improving 

Pmax and RFD in older men, with no difference in EMG. Use caution when recommending an 

individualized training approach based on F-v profiling in older men. 

 

KEYWORDS. Power training, force-velocity profile, maximal power, rate of force 

development, myoelectric activity, rate of myoelectric activity, older men 
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1 | INTRODUCTION 

  

Physical functioning tends to decline as we get older, thus increasing incidence of disabilities 

related to walking and movement1. Progressive loss of muscle strength, due to atrophy of 

muscle mass occurs naturally with advancing age2. Decrease in muscle mass is about 1 to 2% 

annually by the 5th decade of life and declines in muscle strength is suggested to be about 

1.5% per year after aged 603. In addition, muscle power has been shown to decrease about 3 

to 4% faster than muscle strength and should be of concern since muscle power better 

explains variance in physical functioning in older adults than muscle strength alone4. This 

decline in muscle power in older adults heightens the risk potential for accidents due to 

muscle weakness, fatigue, or poor balance5.  

 Age-related reductions in skeletal muscle strength and power is not only limited to 

changes in skeletal muscle systems but can also be attributed to changes in the nervous 

systems6. Skeletal muscles work under voluntary control, meaning they will contract or relax 

when they receive electrical signals7. Myos is latin for muscle8, therefore, electrical activity 

from the nervous system that activates muscles (myos) is termed myoelectric activity9. 

Skeletal muscle fibers are controlled by alpha motor neurons in the anterior horns of the 

spinal cord and in motor nuclei of the origin of the cranial nerves7. A motor unit is the neuron 

and the specific muscle fibers that it innervates7. Motor units are recruited according to the 

size principle, meaning relatively small alpha-motoneurons innervating type I fibers are 

initially triggered at low force levels, whereas increasingly larger alpha-motoneurons that 

trigger type IIa and IIx fibers usually activates at higher force thresholds10. Production of 

muscle power becomes greater with increasing signal frequency due to a stepwise increase in 

firing rate of motor units11. Firing frequency of motor units (rate of myoelectric activity) is the 

rate of neural impulses transmitted from alpha-motoneurons to the muscle fibers10. Moreover, 

rate of myoelectric activity also affects rate of force development (RFD) of muscle 

contraction10. RFD reflects the rate at which muscle tension can be developed and is 

important in movements that require rapid action such as sprinting, jumping, or reversing a 

fall12. RFD is shown to enhances the quality of life in elderly13, for instance, an elderly person 

can decrease risk of falling by being able to exert a rapid increase in muscle force14.  

 When a muscle is activated, an electrical discharge (myoelectric signal) is produced, 

which can be measured directly via electrodes15. These myoelectric signals yield information 

about the intensity and duration of a muscle contraction15. Myoelectric activity is normally 
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measured during voluntary muscle actions by placing surface electrodes close to the muscle of 

interest9. The measured signal reflects the summation of all activated motor units within the 

electrode area15.  

 There are currently no standardized resistance training guidelines for improving 

muscle strength and power among older adults6. However, research has provided strong 

evidence that resistance training for elderly can help mitigate losses of neuromuscular 

function and functional capacity, notably with the inclusion of power training exercise16. 

Power training is characterized by performing traditional resistance training exercises at the 

highest possible velocity during the concentric phase of the lift and spending approximately 2 

to 3 seconds on the eccentric phase17. Power training has shown to be more effective at 

improving performances in functional tasks compared with a traditional approach16. 

 Since power is the product of force multiplied by velocity, these two components 

underpin the ability to be powerful, moreover, it is possible for two individuals to display 

resembling power output even if their force and velocity capacities differ18. This force-

velocity (F-v) relationship is a representation of the inverse relationship between force and 

velocity10, meaning, as the velocity of a concentric muscle movement increases, the force 

produced will simultaneously decrease11. Maximal power will therefore occur at an optimal 

combination of submaximal force and velocity values10.  Theoretically, individuals are 

skewed toward either strength (force) or speed (velocity), which can hinder them in explosive 

movements. Determining whether an individual is force- or velocity-deficient may be 

advantageous19. 

 A force-velocity profile (F-v profile) shows the proportion between an individual’s 

maximal force and velocity capabilities and can be determined by the slope of the F-v 

relationship18. An ideal/optimal F-v profile exists for every individual, representing the best 

balance between their force and velocity capacities18. Jiménez-Reyes et al.19 investigated the 

effects of an individualized resistance training based of F-v profiling in trained athletes and 

suggests that targeted resistance training based on individual F-v profiling is an effective way 

to improve jumping performance in trained athletes. Since jumping performance is highly 

influenced by the ability to produce muscle power in a short time frame10, similar findings 

may emerge in an older population. Therefore, the aim of this 10-week randomized controlled 

trial was to investigate which training approach (traditional strength training or individualized 

power training based on F-v profiling) is more effective to improving maximal power, rate of 

force development, myoelectric activity, and rate of myoelectric activity in elderly men. 
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2 | MATERIALS AND METHODS 

 

2.1 | Subjects and study design overview 

Forty-nine healthy home-dwelling adult males (age = 67.7±5.3 years, body mass = 

83.4±10.5kg, stature = 178.9 ± 7cm) volunteered to participate in this study, which was 

approved by the Norwegian Centre for Research Data (NSD) (reference nr. 923574). 

Permission to conduct the study was granted by the local ethics committee for the Faculty of 

Health and Sport Science at the University of Agder and has been operated in accordance with 

the Declaration of Helsinki. Subjects had to be aged >60 years old and provide a written 

medical clearance from their personal physician in order to be included. Subjects were 

excluded if they had any illnesses or injuries preventing them from safely participating in 

heavy resistance training, and if they had participated in systematic strength training six 

months prior to the study. Participation was voluntary and subjects could at any moment 

withdraw, without stating any reason. Written consent was obtained from all subjects. 

Prior to starting training intervention, each subject had to complete one week of 

familiarization testing, and two weeks of baseline testing in order to minimize any potential 

learning effect. Subjects were stratified randomized into either a balanced training group (BT) 

or an individualized training group (IT) based on their F-v profile in Keiser leg-press. 

Subjects were rated based on their mean slope in Keiser leg-press, with the upper half 

considered as force dominant and the lower half as velocity dominant. Subjects were then 

randomized into either the BT group (n=25) or the IT group (n=24) using a random number 

generator. IT training group received a power training program dependent on their F-v 

profiles, meaning they would train on their deficit. A subject considered force dominant 

(n=13) would train velocity, and a velocity dominant subject would train force (n=11), these 

would become sub-groups of IT. BT group received a comparable power training program 

independent of their F-v profile, meaning a more traditional approach combining force and 

velocity.  

 The training intervention lasted for 10 weeks with two training sessions per week, for 

a total of 20 sessions. Estimation of load occurred after baseline testing, and prior to the 

training period. Training load was adjusted properly in the first week of training during 

familiarization using the repetitions in reserve method (RIR)20. After five weeks of training, 

the load was adjusted once more using the same method to accommodate for adaptation.  
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Subjects trained with close control of adherence in order to ensure their safety, provide 

guidance, and motivate them. Therefore, a minimum of one training instructor was always 

present during training. After the intervention, subjects had to complete two rounds of post-

testing with a week of rest in-between. Both subjects and investigators had knowledge of 

which training group they belonged to, making it non-blinded.  

 

2.2 | Training intervention 

 Training period lasted for 10 weeks, and subjects had to attend two sessions per week, 

for a total of 20 sessions. Subject participation was recorded for each session, and subjects 

could be absent from training four times in total. If exceeded, the subject was excluded from 

the study. Training programs were split into two separate days, one for each session, 

customized with their own sets of exercises based on training groups. Velocity dominant 

subjects in the IT group trained with a focus on heavy lifting with an intensity of 70-80% of 1 

repetition maximum (1RM), and 6-8 repetitions.  

 

2.2 | Test procedure and measurements 

 The test protocol consisted of a fasted dual-energy X-ray absorptiometry, unilateral 

leg-press power test, leg extension power test, and electromyography (EMG) and RFD 

measurements in leg extension. Leg-press power test is presented due to its role in the 

stratified randomization of subjects in this study. Force dominant subjects in the IT group 

trained with a focus on velocity with a lower intensity, usually 20-50% of 1RM, and 5 

repetitions. BT combined force training and velocity training with no individual specificity, 

with one session dedicated to heavy lifting, and the other to velocity. All subjects were 

instructed to perform each repetition as explosively as possible, meaning high velocity during 

the concentric movement of the lift. After five weeks of training, the load was adjusted once 

more using RIR to accommodate for adaptation. However, subjects training velocity did not 

increase training load during this time. Instead, training personnel measured velocity using a 

linear encoder connected to a laptop with dedicated software (MuscleLab; Ergotest, 

Langesund, Norway). This way, subjects were motivated to increase their velocity with each 

repetition performed. Subjects trained with close control of adherence in order to ensure their 

safety, provide guidance, and motivate them. Therefore, a minimum of one training instructor 

was always present during training. 
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2.2.1 | Dual-energy X-ray absorptiometry 

 Body composition was measured by dual-energy X-ray absorptiometry using a Lunar 

Prodigy (model 8743; GE Lunar Corporation, Madison, WI, USA). Subjects had to perform 

body assessment in a fasted state. Height and weight for each subject was recorded before the 

test, and bodily ornaments such as jewelry and watches were removed. Subjects were scanned 

from head-to-toe in a supine position, measuring fat and lean muscle mass in arms, legs, and 

trunk. 

 

2.2.2 | Leg-press power test 

 To complete F-v profiling, Keiser Pneumatic Leg-Press was used (Keiser Sports 

Health Equipment Inc., Fresno, CA, USA). Knee angle was set to approximately 90˚ for all 

subjects using a Baseline 14-inch Stainless Steel 360 Degree Goniometer. During 

familiarization, testing procedure consisted of a six repetitions power test in a seated position 

with feet flat on each foot plate. The test consisted of five different incremental loads, with 

two attempts per load. Subjects were instructed to “push as hard and fast as possible” 

continuing for all repetitions or until failure. Furthermore, a 1RM for each subject had to be 

recorded. If subjects did not reach 1RM in the first five loads, the load was increased by 5kg 

until 1RM was found.  

 During baseline testing, the ten repetitions maximal power test in Keiser Pneumatic 

Leg-Press was used21. The load was calculated from 1RM achieved during familiarization. 

Beginning at a low resistance, subjects were instructed to push “as hard and as fast as 

possible” continuing for 10 repetitions (incremental increase in load per repetition) or until 

failure. Subjects were always aware of the next load they were attempting. For each effort, 

peak force, velocity and power were recorded for each leg. Upon completing F-v profiling, 

subjects got 2-3 minutes of rest before attempting a new 1RM. 1RM was achieved by 

progressively increasing the resistance by 5-10kg until they were unable to complete another 

lift. When a subject failed to complete a lift, the load was reduced by 5kg at a time in order to 

accurately determine their 1RM. Test-retest reliability of slope was examined between pre-

test 1 and 2 (CV=9.6%; ICC=0.81). 

 

2.2.3 | Leg extension power test 

 Maximal power (Pmax) was measured in a single-joint movement, using a unilateral leg 

extension machine (G200 Knee Extension Machine, David Health Solutions Ltd., Helsinki, 

Finland). Leg extension machine was adjusted to 90˚ at the knee joint for all subjects, and 
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they were seated and strapped in at the hip, torso and shin to prevent any aided movement. 

Testing procedure consisted of a low velocity three-repetition warm-up, followed by three 

repetitions of high velocity, all at a low resistance (15 kg). After warming up, subjects 

performed two consecutive repetitions per leg, per load, starting with the right leg, and then 

the left leg. Subjects had to complete four incremental loads in total, starting at 15kg, and 

increasing to 20kg, 30kg, and finally 40kg. Subjects received 1-minute of passive rest 

between loads. Subjects were instructed to perform each repetition with maximum intended 

force and velocity, and to have a brief rest between the two repetitions. Test-retest reliability 

of Pmax was examined between pre-test 1 and 2 (CV=4%; ICC=0.91). 

 

2.2.4 | Electromyography and rate of force development 

 A wireless EMG module (MuscleLab: Ergotest Innovation AS, Stathelle, Norway) and 

a surface electrode (Ambu BlueSensor M, Ballerup, Denmark) was used to measure 

myoelectrical activity of the rectus femoris muscle and vastus lateralis muscle on both legs. 

Myoelectric activity was measured in a seated position with knee angle at 90˚ in a unilateral 

leg extension machine (G200 Knee Extension Machine, David Health Solutions Ltd., 

Helsinki, Finland). Hips, torso and shins were strapped in to prevent aided movement and 

ensure proper technique. To measure and evaluate myoelectric activity, subjects performed a 

maximum voluntary isometric contraction (MVIC). Peak EMG is based on the square root 

calculation (RMS), and reflects the mean power of the signal (+/- 250ms from peak 

measurement/signal). Subjects performed 3 repetitions of MVIC per leg, starting with the 

right leg. Each repetition was to be executed with maximum force and velocity and be held 

for 3-5 seconds. To prevent fatigue, subjects received 1-2 minutes of passive rest between 

each repetition. Two electrodes were attached side-by-side to each of the muscles. In order to 

gather EMG data as accurately as possible, the electrodes were attached after sites were 

shaven and cleaned. Sensor site was determined using a marker during ultrasound. Frequency 

of the EMG signal was set to 20-500 Hz bandwidth and sampling frequency was 200 Hz.  

 RFD was measured simultaneously from each repetition in the same test procedure by 

attaching a force sensor to the machine lever arm, connected to a desktop PC, using dedicated 

software (MuscleLab: Ergotest Innovation AS, Stathelle, Norway). Test-retest reliability for 

all measures was examined between pre-test 1 and 2. Peak EMG rectus femoris (CV=16%; 

ICC=0.69), Peak EMG vastus lateralis (CV=15%; ICC=0.75), RMA rectus femoris 0-30 

(CV=33%; ICC=0.35), RMA rectus femoris 0-50 (CV=35%; ICC=0.38), RMA rectus femoris 

0-100 (CV=38%; ICC=0.38), RMA rectus femoris 0-200 (CV=34%; ICC=0.35), RMA vastus 
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lateralis 0-30 (CV=39%; ICC=0.35), RMA vastus lateralis 0-50 (CV=39%; ICC=0.52), 

RMA vastus lateralis 0-100 (CV=34%; ICC=0.50), RMA vastus lateralis 0-200 (CV=25%; 

ICC=0.46), RFD peak20 (CV=13%; ICC=0.82), RFD 0-30 (CV=88%; ICC=0.42), RFD 0-50 

(CV=79%; ICC=0.53), RFD 0-100 (CV=66%; ICC=0.52), RFD 0-200 (CV=17%; ICC=0.72). 

 

2.3 | Statistical analysis 

 Statistical data analysis was completed in IBM SPSS 25 (IBM Corp. Released 2017. 

IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Data was tested 

for normality using the Shapiro-Wilk normality test. Paired t-tests were used for within-group 

comparisons to assess pre to post changes in all measurements, and between-group 

comparisons were made using independent sample t-test. An analysis of covariance 

(ANCOVA) was used to adjust for any baseline differences between groups. Data are 

presented as mean ± standard deviation, with 95% confidence interval. The level of 

significance was set to p<0.05. Test-retest reliability was calculated using CV and ICC from 

consecutive pairwise comparisons, i.e. test 1 versus test 2, as recommended by Hopkins22. 

Data were graphically presented using the software Prism 8 (San Diego, CA, USA, 

https://www.graphpad.com). 

 

3 | Results 

 Subject characteristics at baseline are outlined in Table 1, characteristics were 

generally balanced, showing no significant baseline differences between training modalities 

(p>0.05). All 49 subjects completed the intervention with the required number of training 

sessions (minimum 80% attendance). Seven subjects (IT: four, BT: three) dropped out due to 

either injury, sickness or other work-related issues. 

 

Table 1 Descriptive statistics at baseline 

Characteristic Main 

(n = 49) 

Force 

training 

(n = 11) 

Velocity 

training 

(n = 13) 

Balanced 

approach 

(n = 25) 

Individualized 

approach 

(n=24) 

Age (years) 67.7±5.3 67.8±1.4 67.9±1.2 

 

67±1.2 

 

67.8±4.4 

Height (cm) 178.9±7 178.2±2.4 

 

179.7±1.4 

 

178.8±1.6 

 

179±6.4 

https://www.graphpad.com/
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Weight (kg) 83.4±10.5 79.3±3.4 

 

88.2±2.3 

 

82.6±2.2 

 

84.3±10.7 

Total fat mass 22.1±7. 20.1±2.4 

 

24.6±2.3 

 

21.7±1.3 

 

22.5±8.3 

Total lean 

mass 

57.9±5.4 56±1.7 60.3±1.1 

 

57.5±1.2 58.5±5.2 

Attendance 19.5±1 19.2±1.3 19.9±0.27 19.5±0.89 19.6±0.96 

Notes: Values are presented as mean ± SD. 

 

Pmax improved significantly within BT group (5.5±9.8%, p=0.010) compared with IT group (-

0.2±6.2%, p=0.778) and its sub-groups of Force (1.2±6.1%, p=0.525) and Velocity (-

1.3±6.3%, p=0.358) (Table 2), and a significant between-group difference was observed 

between BT and IT, and BT and Force ([Figure 1 A, B] p=0.019; p=0.028, respectively). A 

significant within-group difference observed in Peak RFD20 with BT (13±24.5%, p=0.023) 

compared with IT (1.1±16.6%, p=0.925) and its sub-groups Force (-3.7±9.7%, p=0.171) and 

Velocity (5.1±20.3%, p=0.604) (Table 2). A significant between-group difference in Peak 

RFD20 was observed between BT and Force (p=0.006) (Table 2).  

 Significant within-group difference observed with BT in time-interval RFD50, 100, 200 

([Figure 2 B, C, D] 40±58.4%, p=0.030; 19±30.2%, p=0.006; 16±24%, p=0.001, 

respectively). No significant increase was observed within any group for RFD30, a significant 

between-group differences for RFD50 and 200 was observed between BT and IT ([Figure 2 B, 

D] p=0.045; p=0.012, respectively).  

 IT group and its sub-group velocity increased significantly in Peak EMG rectus 

femoris ([Figure 3 A, B] 13.3±16.6%, p=0.008; 12.8±14.5%, p=0.013, respectively), but no 

between-group differences were observed (Table 2). Significant within-group increases in 

peak EMG vastus lateralis was observed with all groups (BT: 15.7±19.5%, p=0.000; IT: 

17.3±18.6%, p=0.000; Force: 20.6±19.4%, p=0.005; Velocity: 14.5±18.2%, p=0.026), but no 

between-group differences observed (Table 2). 

 No significant within-group differences observed with any group for RMA30, 50, 100 

rectus femoris, no significant between-group differences either. Significant within-group 

increases observed with BT, IT and its sub-group Velocity in RMA200 rectus femoris ([Figure 

4 D] 19±37.5%, p=0.035; 23±31.8%, p=0.000; 23±17.1%, p=0.000, respectively). No 

significant within-group difference was observed with any group in RMA30, 50 vastus 

lateralis. Only IT increased significantly in RMA100 vastus lateralis ([Figure 5C] 31±43.5%, 
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p=0.015). All groups increased significantly from pre- to posttest in RMA200 vastus lateralis 

([Figure 5 D] BT: 22±31.3%, p=0.010; IT: 29±31%, p=0.000; force: 31±30%, p=0.008; 

velocity: 27±32.9%, p=0.026). 

 

Table 2 Percentage change with 95% CIs from pre-to post-test  

Dependent 

variable 

Force Velocity Balanced Individualized  

Within-group 

difference 

(95% CI) 

Within-group 

difference 

(95% CI) 

Within-group 

difference 

(95% CI) 

Within-group 

difference 

(95% CI) 

Between-group 

difference (95% CI) 

Pmax 

 

1.2 (-2.4, 4.8) -1.3 (-4.7, 2,1) 5.5 (1.7, 9.3) # -0.2 (-2.6, 2.3) BT vs IT -5.7 (-10.4, -

1) * 

BT vs Velocity 

-6.8 (-12.8, -0.7) * 

Peak RFD20 

 

-3.7 (-9.4, 2.1) 5.1 (3.4, 22.6) 13 (3.4, 22.6) # 1.1 (-5.6, 7.7) BT vs Force 

-16.5 (-32.1, -0.9) * 

Peak EMG 

rectus femoris 

 

14 (2.4, 25.5) 12.8 (4.9, 20.6) # 20.7 (3.1, 38.4) 13.3 (6.7, 20) #  

Peak EMG 

vastus lateralis 

20.6 (9.1, 32.1) # 14.5 (4.6, 24.3) # 15.7 (8.1, 23.4) # 17.3 (9.8, 24.7) #  

Notes: # significant within-group change, p<0.05; * significant between-group difference, p<0.05 

Abbreviations: Pmax, Maximal power; RFD20, Rate of force development 20ms window; EMG, 

Electromyography; BT, Balanced training group; IT, Individualized training group; CI, Confidence interval. 

 

 

 

Figure 1 Percentage change from pre- to posttest in Pmax for A=all groups and B=IT vs BT.  

Notes: Pmax, Maximal power; # significant within-group change; * significant between-group change. 
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Figure 2 Percentage change from pre- to posttest between BT and IT in A=RFD30, B=RFD50, C=RFD100, 

D=RFD200.  

Notes: RFD, Rate of force development. # significant within-group change; * significant between-group change. 

 

Figure 3 Percentage change in Peak EMG rectus femoris for A=all groups, B=IT vs BT. 

Notes: EMG, Electromyography. # significant within-group change. 
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Figure 4 Percentage change for BT and IT in A=RMA30, B=RMA50, C=RMA100, D=RMA200 rectus femoris. 

Notes: RMA, Rate of myoelectric activity. # significant within-group change. 
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Figure 5 Percentage change for BT and IT in A=RMA30, B=RMA50, C=RMA100, D=RMA200 vastus lateralis. 

Notes: RMA, Rate of myoelectric activity. # significant within-group change. 

 

4 | Discussion 

 The purpose of this study was to investigate the effects of an individualized power 

training program on Pmax, RFD, myoelectric activity, and rate of myoelectric activity in older 

men compared with a balanced training approach. Given the importance of muscle power in 

physical functioning in older adults, and the steep rate at which it declines2, improving muscle 

power is deemed a priority for preserving independence in later life23. A standardized 

resistance training program for improving muscle power among older adults is yet to be 

reported24. However, resistance training has generally proved to help mitigate decreases in 

neuromuscular function and functional capacity16. While there are studies investigating the 

effects of strength and power training in older adults25,26, no other studies, to our knowledge, 

have studied the effects of an individualized approach to power training based on F-v profiles 

in an older population.   

 The results of this study suggest that a traditionally balanced power training approach 

is generally more effective compared with an individualized approach based on F-v profile for 
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increasing muscle power and RFD in older men, which is unexpected. Ballistic performance 

is shown to be highly dependent upon the maximal power output generated by the lower 

limbs, as well as the individual combination of the underlying capabilities of force and 

velocity that make up the F-v profile19. Individuals are usually skewed towards one of these 

components, which may hinder optimal power production19. Improvements in muscle power, 

would in theory, be optimized by customizing a training program to focus on individual 

needs, decreasing this F-f imbalance19. 

 Several studies investigating individualized power training have reported 

contradictory results compared with the present study27, 28. Granted the population, and the 

specific measurements were not the same, Escobar Álvarez et al.27 investigated the 

effectiveness of a 9-week individualized F-v profile-based training during countermovement 

jumps (CMJ) in female ballet dancers. Results reported in this study showed significant 

differences in CMJ height, theoretical maximal force and velocity. They concluded that a 

training program addressing the F-v imbalance is an effective way to improve CMJ height in 

female ballet dancers. Jiménez-Reyes et al.19 recently investigated whether an individualized 

training approach based on individual F-v profiles would improve vertical jump performance 

in trained athletes. They reported that training on individual deficits lead to improved jump 

performance. Another study28 from 2015 with the aim of providing a practical vade mecum to 

readers on the use of an individualized training approach based on F-v profiling suggested 

that individual training programs would be most effective to improve ballistic performance in 

athletes28. However, one of the limitations they discussed is the fact that F-v profiling 

methods give information on what specific muscle power outputs should be developed (i.e. 

force versus velocity), but not how this should be done28. 

 Following the training intervention only BT showed significant increases from pre- to 

posttest in Pmax. Similar results are reported by de Vos et al.29 investigating the optimal load 

for increasing muscle power during explosive resistance training in older adults. Subjects 

were to perform each repetition with maximum velocity. Results showed that heavy resistance 

training (80% 1RM) may be the most effective strategy to increase muscle power in older 

adults. Henwood et al.30 reported in 2005 that a high-velocity (concentric phase) balanced 

training approach (training load 35-75% 1RM) significantly improved muscle power in 

healthy, independent older adults. Significant improvements in peak RFD20 was also only 

achieved in BT group. Similar results have been reported in contractile RFD after 14 weeks of 

heavy resistance training in young male adults by Aagaard et al.14. Tiggemann et al.31 reported 

that there were no significant differences in RFDmax between a traditional strength training 
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program and a power training program (training load: 45-65% 1RM) in healthy elderly 

women. A 2018 meta-analysis32 reported that explosive resistance training is effective to 

promote significant RFD gains in elderly persons.  

 Data is less clear in terms of RFD and RMA, but BT group tends to display greater 

within-group improvements, which is in line with a study by Newton et al.33 where it was 

reported that a resistance-training program combining exercises for increasing muscle mass, 

maximal force, and maximal power produced significant increases in maximal isometric 

strength, RFD, and EMG in both young and old men. Häkkinen et al.34 reported similar 

results, showing that a combination of heavy resistance training and low load velocity training 

lead to improvements in explosive force production of the knee extensor muscles in both 

middle-aged and elderly men and women. They attributed results to the importance of neural 

adaptations to strength and power development in older adults34. Such neural adaptations can 

be attributed to performing a contraction with maximal intent, since without intent, maximal 

power (regardless of load) is not possible35. When measuring velocity during the training 

intervention, the velocity group tended to not always perform the contraction at the highest 

possible speed, which might help explain why the BT group were more likely to display 

significant increases in measurements.  

 Furthermore, there is a fundamental relationship between strength and power, 

dictating that a person cannot possess a high degree of power without being relatively strong 

to begin with36. Previous research investigating the effects of individualized power training 

based on F-v profiling27, 19 did so in trained athletes, not older men with limited background in 

resistance training. This suggest that building a strong muscular basis in advance may provide 

a better fundament for individualized power training based on F-v profiling.  

 Reliability in both time-interval RFD and RMA in the present study can be considered 

poor, making it hard to assess the true effect of an individualized power training program 

based on F-v profiles. Although the test-retest reliability for peak RFD20 displayed good 

values (CV=13%; ICC=0.82), time-interval RFD showed high CV values (ranging from 66% 

to 88%) and low ICC values (ranging from 0.42 to 0.53). More of the same can be observed 

when examining test-retest reliability for myoelectric activity and rate of myoelectric activity. 

Test-retest reliability values for Peak EMG rectus femoris and vastus lateralis (CV=16%, 

ICC=0.69; CV=15%, ICC=0.75, respectively) may not be considered excellent, however, 

RMA rectus femoris (CV: ranging from 33% to 38%; ICC: ranging from 0.35 to 0.38) and 

vastus lateralis (CV: ranging from 25% to 39%; ICC: ranging from 0.35 to 0.52) values were 

rather poor in comparison. 
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 The poor reliability in EMG measurements may be attributed to the placement of 

EMG surface sensors. Sensor sites were to be determined and marked during ultrasound; 

however, this was not always done, thus making the test much less reliable than needed. One 

of the consequences of this is physiological “cross-talk”37, where neighboring muscles may 

produce a significant amount of EMG that is detected by the electrode. Although it typically 

does not exceed more than 10% to 15% of the overall signal, it may still interfere with the 

EMG recording37. Furthermore, results from a previous study suggest that proper surface 

electrode placement should follow the orientation of the muscle fiber38.  

 According to the power analysis performed, target sample was 65 subjects (25 in each 

intervention group), including 15 subjects in a yoga-exercising control group. However, since 

subject participation did not meet the initial target sample size, the control group had to be 

removed. The termination of the control group places a limitation on the study since control 

groups provides an important comparison39. In addition, subjects and investigators had 

knowledge of which training group subjects were assigned to, making the study non-blinded, 

further increasing bias40. 

 

5 | Perspectives 

 We found that BT resulted in noticeably greater within-group improvements compared 

with IT in Pmax, Peak RFD20, and RFD50, 100, 200, with no meaningful changes RFD30. EMG 

measurements showed insignificant results with both training groups. Although contradictory 

compared to similar studies19, 27 the results from the present study indicates that BT is a more 

beneficial training approach for increasing Pmax, and RFD compared with IT based on F-v 

profiling in older men. Future research should limit the methodological limitation presented in 

the study, such as EMG surface electrode placement, having a control group, and blinding 

(either single- or double blinding) to decrease potential bias. Additionally, building a strong 

muscular basis may provide a different outcome. In the interim, caution should be exercised 

when recommending an individualized training approach based on F-v profiling in older men. 
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Attachment 3: Information sheet 
 

Vil du delta i forskningsprosjektet 

 ”Kraft- hastighetsprosjektet og eldre”? 

 

 

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor 

formålet er å se på effekten av powertrening på fysisk funksjons 

nivå hos eldre menn. I dette skrivet gir vi deg informasjon om 

målene for prosjektet og hva deltakelse vil innebære for deg. 
 

Formål 
 

Mange eldre opplever at muskelstyrken er redusert sammenlignet med yngre år. Basert på 
forskning har man nå kunnskap om når i livet man er som sterkest og når det inntrer at man 
blir svakere, og ikke minst har man også nå kunnskap om hvorfor man blir svakere med 
økende alder.   
 
Som 25-30 åring er man på sitt sterkeste, og etter dette reduseres maksimal muskelstyrken 
gradvis for hvert år. Her må det understrekes at tapet er mindre hos de individer som trener 
styrke regelmessig sammenlignet med de som ikke gjør det. Den største reduksjonen i 
muskelstyrke har man etter fylte 60 år, og ved 80-års alder er muskelstyrken nesten halvert 
sammenlignet med det man oppnådde som 25-åring. Redusert muskelstyrke hos eldre 
individer er ofte forårsaket av tapt muskelmasse, gjennom blant annet en reduksjon i 
størrelsen på eksisterende muskelfibre og reduksjon i antall muskelfibre. Tapet av 
muskelfibre ser dessuten ut til å være større i type II-fiber (raske muskelfiber) enn i type I-
fiber (sene muskelfiber), noe som vil nedsette evnen til raske bevegelser og kraftproduksjon. 
Konsekvensen av disse endringer kan resultere i redusert funksjonsnivå, noe som også kan 
resultere i redusert livskvalitet for individet selv. Fysiske utfordringer i hverdagen som krever 
en viss muskelstyrke kan bli utfordrende, for eksempel å gå i trapper, forsere en høyde, løfte 
og bære tyngre gjenstander, hogge ved, reise seg opp fra stol og gange i mer eller mindre 
ulent terreng. Mange opplever også at balanse evnen forringes når man bli eldre, noe som 
kan ha sammenheng med kombinasjonen av redusert kraftutvikling i muskel og redusert 
impulshastighet i nervene. Man blir med andre ord både «svakere og tregere», og det tar 
lengre tid å gjenvinne en overbalanse. Benhelse ser også ut til å forringes grunnet økende 
alder i seg selv, i tillegg er inaktivitet en risikofaktor grunnet redusert belastning på 
skjelettet.   
 
I den senere tid har forskerne hatt fokus på det man kaller for muskelpower, som er evnen 
til å utvikle stor muskelkraft i kombinasjonen med høy hastighet. Muskelpower ser ut til å 
reduseres mer enn muskelstyrke med økende alder. Det vil si ca. 3% reduksjon av power per 
år kontra ca. 1% reduksjon av styrke per år fra fylte 25-30 år. Forskning viser at det det ser ut 
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til å være en sammenheng mellom økt muskelpower og forbedret funksjonsevne hos eldre. 
Sammenhengen mellom muskelpower og funksjon er større enn sammenhengen er mellom 
muskelstyrke og funksjon. Powertrening har vist å øke evnen til å utføre raske bevegelser, 
for eksempel gjenvinne balanse etter et hopp (overbalanse), samt å kunne krysse 
fotgjengerfeltet på «grønn mann» raskt nok. Et slikt treningsregime hvor hastighet på 
bevegelsen blir vektlagt vil trolig ha en større betydning enn maksimal styrke ved 
gjennomføring av slike daglige aktiviteter hos eldre. Muskelpower er trolig en mer overlegen 
indikator på fysisk funksjonsnivå hos eldre individer sammenlignet med maksimal 
muskelstyrke.  
 
Siden muskelpower er avhengig av både muskelkraft og hastighet på bevegelsen, og 
forholdet mellom dem, har det vist seg at kraft-hastighetsforholdet (også kalt kraft- 
hastighetsprofil) vil være nyttig å ha fokus på når man utformer individuelt tilpasset trening 
og treningsprogram for idrettsutøvere for dermed å kunne påvirke idrettslig prestasjon best 
mulig. Her trekker man paralleller til eldre individer, der man ønsker å se på kraft- hastighets 
forholdet for å kunne tilpasse individuell power trening for derigjennom å påvirke 
funksjonen best mulig. Det vil si at man avdekker hva individet er svakest på, kraft eller 
hastighet, og trener dermed på nettopp dette.  
 
Tidligere forskning har sett på effekter av det vi omtaler som tradisjonell powertrening (ikke 
individuelt tilpasset) hos eldre, men når det gjelder effekt av individuelt tilpasset 
powertrening (basert på kraft- hastighetsforholdet) hos eldre er det svært begrenset med 
forskning. Det er nettopp det som er bakgrunnen for dette prosjektet. I tillegg så gjenstår 
kunnskap om mulige årsaksforklaringer til eventuelt forbedret muskelpower og 
funksjonsnivå etter en periode med powertrening. Har disse eventuelle effekter noen 
sammenheng med endringer i muskel og nerve (muskelarkitektur og muskelaktivering) når 
eldre trener denne type individualisert power trening? Disse forhold ønsker vi også å belyse. 
I tillegg ønsker vi å undersøke om denne type trening kan påvirke helserelatert livskvalitet, 
balanseevne og benhelse.  
 
Gjennom dette prosjektet ønsker vi å belyse følgende problemstilling: 
 

Hvilken effekt har individuell tilpasset powertrening sammenlignet med tradisjonell 
power trening på muskelpower, muskelstyrke, muskelarkitektur, muskelaktivering og 
fysisk funksjonsnivå hos eldre menn? I tillegg; hvordan påvirker disse to 
treningsregimer helserelatert livskvalitet, benhelse og balanseevne?  
 
 
I dette prosjektet vil det også bli forsøkt å utvikle en valid Smarttelefon App som kan 
brukes til testing og trening hvor eldre på en enkel og reliabel måte kan vurdere 
kraft-hastighetsforholdet og derigjennom trene muskelpower basert på individuell 
tilpasning. Med denne Appèn har vi også som mål å bruke som et eHelse verktøy. 
Med en slik App kan man trene på en sikker og korrekt måte hjemme alene eller 
sammen med venner helt uavhengig av test- og treningsekspertise. 
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Det blir gjennomført testing før og etter en 12-ukers treningsperiode, hvor det legges til 
rette for gruppetrening med instruktør to ganger per uke. Deltakerne randomiseres (tilfeldig 
loddtrekning) i tre grupper; kontrollgruppe som får tilbud om yoga, individuell tilpasset 
powertreningsgruppe og tradisjonell powertreningsgruppe. 
 
Dette er en del av et forskningsprosjekt hvor det inngår en doktorgrads studie og fem 
mastergrads studier.  
 
 
Hvem er ansvarlig for forskningsprosjektet? 
 
Universitet i Agder, Institutt for idrettsvitenskap og kroppsøving er ansvarlig for prosjektet. 
 
Under vises en oversikt over samarbeidspartnere/-institusjoner. 
 

 
 
Hvorfor får du spørsmål om å delta? 
 
Du som får dette brevet er mann 60 år og eldre. Du har din hjemstedsadresse i Kristiansand 
og omegn. Du har fått informasjon om dette prosjektet via annonse i Fædrelandsvennen, eller 
gjennom «flyers» delt ut i ditt nærmiljø. Du har deltatt på vårt første informasjonsmøte som 
ble holdt i UiA`s lokaler. På dette møtet kom det blant annet frem at for å kunne delta må det 
innhentes en helseerklæring fra din fastlege som bekrefter at du ikke lider av noen form for 
sykdom eller har andre lidelser som gjør deg helsemessig forhindret fra å bli inkludert som 
deltaker i dette prosjektet. Det vil si at du helsemessig må være «klarert» for å kunne bli 
inkludert i prosjektet som skal se på effekter av powertrening. Du må ikke trene annen form 

Table 4. Key project partners 

Institution  International collaborators  Role description  

UU  Dr. Ingrid Demmelmaier  Expert in behavior and lifestyle 
change  

Institution  National collaborators  Role description  

UiA/UU  Prof. Sveinung Berntsen*  PI, Expert in exercise oncology, 
physical activity and health  

UiA  Dr. Hilde Lohne-Seiler  Expert in strength training of 
elderly  

UiA  Prof. Monica K. Torstveit  Expert in bone health  

UiA  Thomas Bjørnsen Phd (c)  Expert in exercise physiology  

UiA  Dr. Bjørge H. Hansen  Expert in measures of physical 
activity  

UiA  Dr. Kristin Haraldstad  Expert in health-related quality 
of life  

UiA  Dr. Folke Haugland  Expert in computer programming  

   

UIA  Kolbjørn Lindberg, MSc  Expert in force-velocity 
measurements  

NIH/UiA  Prof. Truls Raastad  Expert in muscle physiology  

NIH/OLT  Dr. Gøran Paulsen  Expert in exercise 
physiology/power training  

NIH  Prof. Olivier Seynnes  Expert in ultrasonography  

 

UU, Uppsala University; UiA, University of Agder; NIH, Norwegian School of Sport Sciences; OLT 

Olympiatoppen 
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for styrke- eller power trening i den perioden som prosjektet foregår. Totalt skal det inkluderes 
65 eldre menn over 60 år. Etter tilvenning og gjennomgang av alle førtester randomiseres 
(tilfeldig loddtrekning) alle deltakerne i en av tre grupper, som også tidligere beskrevet i dette 
informasjonsskrivet; 1) kontrollgruppe som får tilrettelagt yoga (antall deltakere: 15), 2) 
individuell tilpasset powertreningsgruppe (antall deltakere: 25) og tradisjonell 
powertreningsgruppe (antall deltakere: 25). 

Alle potensielle deltakere vil motta informasjonsskriv (dette du nå leser), i tillegg til å bli 
invitert på informasjonsmøte. Det gis også ut en samtykkeerklæring som signeres av den 
enkelte deltaker (se dette skjemaet på slutten av infoskrivet).  

Hva innebærer det for deg å delta? 
 

Hvis du velger å delta i prosjektet, innebærer det at du fyller ut et spørreskjema. Det vil ta 
deg ca. 45 minutter. Spørreskjemaet inneholder spørsmål om livskvalitet knyttet til sosial, 
fysisk og mental funksjon.  
 
Det innebærer også at du går igjennom et testbatteri bestående av fysisk testing. Det samme 
testbatteriet gjennomføres før (pre) og etter (post) selve treningsperioden, og vil deles opp i 
to testdager under både pre- og posttesting. Totalt vil testingen vare 5 timer (begge dager 
inkludert). 
 
Oversikt over tester Test Dag 1: 
- Ultralyd (muskeltverrsnitt, tykkelse, pennasjonsvinkel, fasikkellengde, muskelkvalitet) 
- Gripe styrke  
- Kraft- hastighetsprofil, Legg press (Keiser) + 1RM (max styrke) 
- Kraft- hastighetsprofil, “Sit-to stand power test” (opp og ned fra stol)  
- Kraft- hastighetsprofil, Benkpress + 1RM (1080 Quantum) 
- Trappe test  
 
Oversikt over tester Test Dag 2: 
- Dexa (benhelse) 
- Balanse test 
- “The Timed "Up & Go" test” (på start signal; fra sittende posisjon gå 2.45 m så fort 

som mulig, forsere en kjegle, gå så tilbake så fort som mulig til utgangsposisjon) 
- Box lift test (løfte en kasse med belastning) 
- Skulder press 
- Kraft- hastighetsprofil, Legg ekstensjon 
- EMG (elektromyografi); muskelaktivering, Legg ekstensjon 
 
 Dine svar fra spørreskjema og resultater fra fysisk testing blir registrert elektronisk. 
 
Alt datamateriale som registreres anonymiseres.  
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Det er frivillig å delta 
Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke 
samtykke tilbake uten å oppgi noen grunn. Alle opplysninger om deg vil da bli anonymisert. 
Det vil ikke ha noen negative konsekvenser for deg hvis du ikke vil delta eller senere velger å 
trekke deg.  
 
 

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger  

Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi 
behandler opplysningene konfidensielt og i samsvar med personvernregelverket. 

• Det er kun PhD kandidat, master studenter og veiledere ved behandlingsansvarlig 
institusjon (UiA) som vil ha tilgang til opplysningene om deg. 

• Navnet og kontaktopplysningene dine vil jeg erstatte med en kode som lagres på 
egen navneliste adskilt fra øvrige data. Alt datamateriale vil bli lagret på en egen 
forskningsserver.  

 
Du vil ikke bli gjenkjent i noen form for publikasjon, så fremt ikke du har gitt ditt samtykke til 
at vi kan benytte bilde av deg som er tatt i forbindelse med trening eller testing. 
 
Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet? 
 
Prosjektet skal etter planen avsluttes innen utgangen av juli 2020. Ved prosjektslutt skal alt 
datamaterialet anonymiseres (innen utgangen av juli 2020).  
 
Dine rettigheter 
Så lenge du kan identifiseres i datamaterialet, har du rett til: 

- innsyn i hvilke personopplysninger som er registrert om deg, 
- å få rettet personopplysninger om deg,  
- få slettet personopplysninger om deg, 
- få utlevert en kopi av dine personopplysninger (dataportabilitet), og 
- å sende klage til personvernombudet eller Datatilsynet om behandlingen av dine 

personopplysninger. 
 
Hva gir oss rett til å behandle personopplysninger om deg? 
Vi behandler opplysninger om deg basert på ditt samtykke. 
 
På oppdrag fra Universitetet i Agder har NSD – Norsk senter for forskningsdata AS vurdert at 
behandlingen av personopplysninger i dette prosjektet er i samsvar med 
personvernregelverket.  
 
Hvor kan jeg finne ut mer? 
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt 
med: 

• Prosjektleder; Professor Sveinung Berntsen Stølevik, sveinung.berntsen@uia.no, 
telefon +47 38 14 10 45 eller Førsteamanuensis Hilde Lohne-Seiler, 
hilde.l.seiler@uia.no, telefon +47 38 14 12 89   

mailto:sveinung.berntsen@uia.no
mailto:hilde.l.seiler@uia.no
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• Vårt personvernombud: Ina Danielsen, Universitetet i Agder, ina.danielsen@uia.no, 
telefon +47 452 54 401 

• NSD – Norsk senter for forskningsdata AS, på epost (personverntjenester@nsd.no) 
eller telefon: 55 58 21 17. 

 
 
Med vennlig hilsen 
 
 
 
Prosjektansvarlig 
   
(Forsker/veileder) 
 
 
------------------------------------------------------------------------------------------------------------------------- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:ina.danielsen@uia.no
mailto:personverntjenester@nsd.no


86 
 

Attachment 4: Subject consent form 
 

Samtykkeerklæring  
 
 
Jeg har mottatt og forstått informasjon om prosjektet; ”Kraft- hastighetsprosjektet og 
eldre», og har fått anledning til å stille spørsmål. Jeg samtykker til: 
 

 å delta i registrering av helserelatert livskvalitet og fysisk testing 
 

 
 
Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet, innen 
utgangen av juli 2020. 
 
 
 
 

---------------------------------------------------------------------------------------------------------------- 
(Signert av prosjektdeltaker, dato) 
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Attachment 5: Approval from the Norwegian Centre for Research Data 
 

 
NSD Personvern 
30.08.2019 09:08 
  
Det innsendte meldeskjemaet med referansekode 923574 er nå vurdert av NSD. 
  
Følgende vurdering er gitt: 
  
Det er vår vurdering at behandlingen av personopplysninger i prosjektet vil være i samsvar med 
personvernlovgivningen så fremt den gjennomføres i tråd med det som er dokumentert i 
meldeskjemaet den med vedlegg, samt i meldingsdialogen mellom innmelder og NSD. Behandlingen 
kan starte. 
  
MELD VESENTLIGE ENDRINGER 
Dersom det skjer vesentlige endringer i behandlingen av personopplysninger, kan det være 
nødvendig å melde dette til NSD ved å oppdatere meldeskjemaet. Før du melder inn en endring, 
oppfordrer vi deg til å lese om hvilke type endringer det er nødvendig å 
melde: nsd.no/personvernombud/meld_prosjekt/meld_endringer.html 
Du må vente på svar fra NSD før endringen gjennomføres. 
  
TYPE OPPLYSNINGER OG VARIGHET 
Prosjektet vil behandle særlige kategorier av personopplysninger om helseforhold samt alminnelige 
kategorier av personopplysninger frem til 31.07.20. 
  
LOVLIG GRUNNLAG 
Prosjektet vil innhente samtykke fra de registrerte til behandlingen av personopplysninger. Vår 
vurdering er at prosjektet legger opp til et samtykke i samsvar med kravene i art. 4 nr. 11 og art. 7, 
ved at det er en frivillig, spesifikk, informert og utvetydig bekreftelse, som kan dokumenteres, og 
som den registrerte kan trekke tilbake. 
  
Lovlig grunnlag for behandlingen vil dermed være den registrertes uttrykkelige samtykke, jf. 
personvernforordningen art. 6 nr. 1 bokstav a, jf. art. 9 nr. 2 bokstav a, jf. personopplysningsloven § 
10, jf. § 9 (2). 
  
PERSONVERNPRINSIPPER 
NSD vurderer at den planlagte behandlingen av personopplysninger vil følge prinsippene i 
personvernforordningen om: 
  
-              lovlighet, rettferdighet og åpenhet (art. 5.1 a), ved at de registrerte får tilfredsstillende 
informasjon om og samtykker til behandlingen 
-              formålsbegrensning (art. 5.1 b), ved at personopplysninger samles inn for spesifikke, 
uttrykkelig angitte og berettigede formål, og ikke viderebehandles til nye uforenlige formål 
-              dataminimering (art. 5.1 c), ved at det kun behandles opplysninger som er adekvate, 
relevante og nødvendige for formålet med prosjektet 
-              lagringsbegrensning (art. 5.1 e), ved at personopplysningene ikke lagres lengre enn 
nødvendig for å oppfylle formålet 
 
 
  

http://nsd.no/personvernombud/meld_prosjekt/meld_endringer.html
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DE REGISTRERTES RETTIGHETER 
Så lenge de registrerte kan identifiseres i datamaterialet vil de ha følgende rettigheter: åpenhet (art. 
12), informasjon (art. 13), innsyn (art. 15), retting (art. 16), sletting (art. 17), begrensning (art. 18), 
underretning (art. 19), dataportabilitet (art. 20). 
  
NSD vurderer at informasjonen som de registrerte vil motta oppfyller lovens krav til form og innhold, 
jf. art. 12.1 og art. 13. 
  
Vi minner om at hvis en registrert tar kontakt om sine rettigheter, har behandlingsansvarlig 
institusjon plikt til å svare innen en måned. 
  
FØLG DIN INSTITUSJONS RETNINGSLINJER 
NSD legger til grunn at behandlingen oppfyller kravene i personvernforordningen om riktighet (art. 
5.1 d), integritet og konfidensialitet (art. 5.1. f) og sikkerhet (art. 32). 
  
For å forsikre dere om at kravene oppfylles, må dere følge interne retningslinjer og eventuelt rådføre 
dere med behandlingsansvarlig institusjon. 
  
OPPFØLGING AV PROSJEKTET 
NSD vil følge opp ved planlagt avslutning for å avklare om behandlingen av personopplysningene er 
avsluttet. 
  
Lykke til med prosjektet! 
  
Kontaktperson hos NSD: Silje Fjelberg Opsvik 
Tlf. Personverntjenester: 55 58 21 17 (tast 1) 
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Attachment 6: Approval from the Local Ethics Committee at the University of 

Agder 
 

 
Hei 
Her er utdrag fra protokoll fra møte i Forskningsetisk komité i Fakultet for helse- og idrettsvitenskap, 
fra 19.08.2019, og det bekreftes med dette at følgende søknader er behandlet og godkjent: 

 
 
Effekten av et individualisert power treningsprogram på maksimal power, 
hastighet på kraftutvikling, muskelaktivering, og hastigheten på 
muskelaktivering hos eldre menn - master - Erlend Eugenio Sibayan 

Søknad godkjennes 

 
 
Vennlig hilsen 
  
Eli Andås 
Ph.d.- og FoU-rådgiver/PhD and Research Adviser 
Fakultet for helse- og idrettsvitenskap/Faculty of Health and Sport Sciences 
UiA / University of Agder 
  
eli.andas@uia.no 
Tlf: 38 14 18 66 / 928 27 770 
  

 
https://www.facebook.com/Helseidrett/?fref=ts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:eli.andas@uia.no
https://www.facebook.com/Helseidrett/?fref=ts
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Attachment 7: Health declaration form 
 

Til fastlegen  
  
  

Gjelder deltakelse i «Kraft- hastighetsprosjektet og eldre» i regi av Institutt for 
idrettsvitenskap og kroppsøving» ved Universitetet i Agder.  

  
  
Jeg bekrefter herved at jeg har lest informasjonsskrivet om «Kraft- hastighetsprosjektet og 
eldre». På bakgrunn av disse opplysningene, finner jeg 
_________________________________ (navn på din pasient) helsemessig klarert for 
prosjektet og anbefaler derfor hans deltakelse.  
  
Sted:  
  
___________________________  
  
  
Dato:  
  
__________________________  
  
  
Navn på fastlege (bruk blokkbokstaver) / signatur:  
  
  

 
  
Førsteamanuensis Hilde Lohne-Seiler ved Institutt for idrettsvitenskap og kroppsøving ved 
UiA kan kontaktes dersom det er behov for ytterligere opplysninger: hilde.l.seiler@uia.no / 
381 41 289  
 


