
Collaborative SLAM using a swarm
intelligence-inspired exploration

method

Øystein Eiane
Jakob Einarssønn Lunde

Tor André Andersen Paulsen

Supervisor
Morten Rudolfsen, UIA

This Master’s Thesis is carried out as a part of the education at the University of Agder and is
therefore approved as a part of this education. However, this does not imply that the University

answers for the methods that are used or the conclusions that are drawn.

University of Agder, 8th June 2020
Faculty of Engineering and Science
Department of Engineering Science

Abstract

Efficient exploration in multi-robot SLAM is a challenging task. This thesis describes the design of
algorithms that would enable Loomo robots to collaboratively explore an unknown environment.
A pose graph-based SLAM algorithm using the on-board sensors of the Loomo was developed from
scratch. A YOLOv3-tiny neural network has been trained to recognize other Loomos, and an
exploration simulation has been developed to test exploration methods. The bots in the simulation
are controlled using swarm intelligence inspired rules. The system is not finished, and further work
is needed to combine the work done in the thesis into a collaborative SLAM system that runs on
the Loomo robots.

I

Contents

Abstract I

Contents II

List of Figures IX

List of Tables X

List of Acronyms XI

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 2

1.2.1 Original Thesis Goals . 2

1.2.2 Revised Thesis Goals . 2

1.3 Project Management . 3

2 System 5

2.1 Loomo Technical Specification . 6

2.2 Measurements . 6

2.2.1 Base Width . 7

2.2.2 Wheel Diameter . 8

2.3 Sensors . 10

2.3.1 Encoder . 10

2.3.2 Distance Sensors . 10

2.3.3 Intel RealSense Camera . 10

2.3.4 Depth Camera . 11

3 Theory 14

3.1 Simultaneous Localization And Mapping (SLAM) . 14

3.1.1 Overview of SLAM . 14

3.1.2 Graphs in Graph-Based SLAM . 16

II

3.1.3 Least Squares . 17

3.1.4 A Pose Graph Solution to the SLAM Problem 20

3.2 Computer Vision . 24

3.2.1 Key Concepts . 25

3.2.2 Convolution . 25

3.2.3 Keypoint Detection . 26

3.2.4 Feature Description . 30

3.2.5 ORB Feature Detector . 32

3.2.6 Feature Matching . 33

3.2.7 Camera Model . 34

3.3 Odometry and Motion Model of the Loomo . 37

3.3.1 Odometry of a Differential Drive Robot . 37

3.3.2 State Estimation Based on Wheel Encoder Odometry 39

3.4 Simulating Swarm Intelligence for Collaborative Exploration 41

3.4.1 Emergent Behaviour . 42

3.4.2 Occupancy Grid Map . 42

3.4.3 Configuration Space . 42

3.4.4 Potential Field . 43

3.4.5 Pathfinding . 43

3.4.6 Velocity Control . 44

3.5 Machine Learning . 47

3.5.1 Supervised Learning . 47

3.5.2 Deep Learning . 48

3.5.3 Neural Networks . 48

3.5.4 Convolutional Neural Networks (CNN) . 49

3.5.5 Maxpool . 50

3.5.6 Activations . 50

3.5.7 Object Detection . 51

3.5.8 You Only Look Once (YOLO) . 52

3.5.9 Training of Convolutional Neural Networks 54

4 Implementation 57

4.1 SLAM Implementation . 57

4.1.1 Data Recording . 57

4.1.2 Pose Graph Implementation . 59

4.1.3 Processing Encoder Input . 61

4.1.4 Adding Nodes to the Graph . 61

4.1.5 Camera Calibration . 63

4.1.6 Computer Vision . 64

4.1.7 Adding Virtual Edges to the Graph . 67

4.1.8 SLAM Back-End . 70

4.2 Machine learning . 73

4.2.1 Generating Training Data . 74

4.2.2 Designing the Neural Network . 78

4.2.3 Training . 79

4.2.4 Validation . 80

4.2.5 Inference . 81

4.3 Simulating Swarm Intelligence for Collaborative Exploration 83

4.3.1 Map . 83

4.3.2 Room Generator . 83

4.3.3 Sensors . 84

4.3.4 Walls and Obstacles . 85

4.3.5 Exploration . 86

4.3.6 Potential Field . 87

4.3.7 Pathfinding . 88

4.3.8 Swarm Intelligence Rules . 93

5 Results 100

5.1 Neural Network Performance . 100

5.1.1 Validation . 100

5.2 Exploration Simulation . 102

5.3 SLAM Results . 103

5.4 Computer Vision Performance . 106

6 Discussion 111

6.1 SLAM . 111

6.2 Machine Learning . 111

6.3 Exploration Simulation . 112

7 Further Work 113

8 Conclusion 114

Bibliography 119

Appendices A - 1

Appendix A Source Code A - 1

Appendix B Sensor Calibration B - 1

List of Figures

1.1 Gantt diagram for the original thesis goals . 4

1.2 Gantt diagram after the thesis goals were revised . 4

2.1 Loomo . 5

2.2 Base width measurement . 7

2.3 Wheel diameter measurement starting point . 8

2.4 Wheel diameter measurement end point . 9

2.5 IR and Ultrasonic FOV . 10

2.6 Intel RealSense . 11

2.7 Depth camera interference example: low depth variation 12

2.8 Comparing interference indoor vs outdoor . 12

2.9 Depth vs range [11, p. 16] . 12

2.10 Depth image example . 13

3.1 Interplay of SLAM front-end and back-end . 15

3.2 Graph-representation of the full SLAM problem . 16

3.3 Interplay between the front-end and back-end in graph-based SLAM 17

3.4 The structure of a pose graph . 21

3.5 Error function for a single edge in a pose graph. The dotted circle is the pose of node
j according to the edge constraint, while the other circles are the poses according
to the current configuration of the graph. The information matrix Ωij encodes the
certainty of the constraint, and is illustrated by the blue ellipse. Higher values in
Ωij corresponds to a smaller ellipse. 21

3.6 Structure of the H matrix for a simple 10-node graph. All white blocks are zero . . 23

3.7 Convolutional operation . 26

3.8 Three different keypoint candidates. The neighborhood of p1 does not change if it
is moved. The neighborhood of p2 only changes if it moves in the x-direction. The
neighborhood of p3 changes regardless of which direction it is moved. 27

3.9 Illustration of Harris criterion . 29

3.10 FAST corner detector. If n contiguous pixels are either darker or brighter than p by
a threshold, p is considered a corner. 30

3.11 SIFT feature descriptor. A histogram of gradients is computed for 16 4×4 sub-regions
around a point p. Each histogram is represented by 8 floating point numbers, which
are all concatenated into a single 128 element vector 31

VI

3.12 Illustration of different approaches for choosing pairs of pixels for comparison in the
BRIEF descriptor. Orange lines are drawn between point pairs. 33

3.13 Left: Length of an arc between two points approximated to the distance between the
points. Right: Robot displacement expressed as the average of the displacements of
the wheels . 38

3.14 Change in robot angle derived from trigonometric relations 39

3.15 Expressing ∆s as a vector to find the change in position 39

3.16 Simulated trajectories of several differential drive robots where each robot is given a
randomized deviation in wheel geometry. The ellipses are the calculated uncertainties
of the position using three standard deviations (3σ) 41

3.17 Potential field example . 43

3.18 A* cost factors . 44

3.19 Velocity vector . 46

3.20 Supervised learning (the correct output is known) . 47

3.21 A neural network . 49

3.22 CNN workflow . 49

3.23 Maxpooling . 50

3.24 Convolutional activation . 50

3.25 Maxpool activation . 51

3.26 Bounding box . 51

3.27 Resize image(1), Run CNN(2), Predict Bounding Boxes(3) 52

3.28 Anchor boxes . 53

3.29 IoU . 54

3.30 Precision against recall example plot . 55

3.31 Illustration of the effect of overfitting . 56

4.1 Structure of binary files of video recordings . 58

4.2 When the Loomo is driven manually, turning is done by tilting the upper body of
the Loomo . 59

4.3 An identifier is masked in the top 32 bits of the node index so that graphs can be
combined while the nodes remain unique . 61

4.4 Left: a rough sketch of the ground truth of the Loomo’s trajectory. Right: the
estimated trajectory based on odometry alone . 62

4.5 Initializing the pose of new nodes . 63

4.6 Pose graph using only odometry . 64

4.7 Examples of images used in the camera calibration 65

4.8 Distribution of checkerboards in the images that are used in the calibration 66

4.9 Variations in the number of detected features in an environment 67

4.10 Scaling factor for covariance of feature matching based on the number of matches . . 69

4.11 Highlighted nodes forms a single cluster if all of them can reach each other 70

4.12 Geometric relations for calculating the scale of the translation vectors 71

4.13 Error function in a 2D pose graph . 72

4.14 Fisheye Images . 74

4.15 Labeling images from a ”Loomo perspective“ . 74

4.16 Matlab orientation . 75

4.17 Darknet orientation . 75

4.18 Various augmentations that are applied to the top left image 76

4.19 Verifying Bounding Boxes . 78

4.20 YOLOv3-tiny-custom CNN architecture . 79

4.21 Loss Function (blue) and mAP (red) during training with YOLOv3-tiny 81

4.22 Inference . 82

4.23 Randomly generated map . 84

4.24 Randomly generated map with corridors . 84

4.25 Green lines: Depth camera rays. Blue lines: Infrared rays. Red line: Ultrasonic ray . 85

4.26 Visualization of wall edges. The left half visualize the edges with green lines and
edge ends with red dots. The right half shows the map. 86

4.27 Ray casting; Sensor rays interacting with the map 86

4.28 Illustration of exploration search pattern . 87

4.29 Visualization of the potential field . 88

4.30 Visualization of path planning in the potential field 88

4.31 Start- and goal position . 90

4.32 Evaluate neighbor cells . 90

4.33 Pink dots represent evaluated cells. Blue dots represent the calculated path 91

4.34 Example of pathfinding through undiscovered areas 92

4.35 Example of rerouting after more information is available 92

4.36 Visualization of the separation rule . 94

4.37 Visualization of a single ray in the depth camera rule 95

4.38 Visualization of the ultrasonic rule . 96

4.39 Visualization of a single ray in the infrared rule (right sensor) 97

4.40 Visualization of the target rule . 98

5.1 YOLOv3-tiny predictions . 101

5.2 YOLOv2-tiny predictions . 101

5.3 Simulation results. Graph of table 5.4 . 102

5.4 Baseline graph. No graph optimization has been done 103

5.5 Graph using odometry and Visual Odometry. There are no loop closures in the graph.104

5.6 Graph with only odometry based edges and a single loop closure 105

5.7 Computation time for detecting features and computing their descriptors vs. how
many features were detected. The left graph is for a feature poor environment, and
the right graph is for a feature rich environment. 106

5.8 Effect of lighting for feature detection . 107

5.9 Images of the same scene. The yellow rectangles are corresponding locations in both
images. None of the features in the yellow rectangle in the left image matches with
the correct features in the right image . 107

5.10 Different scenes that has a high amount of matches 108

5.11 Effect of Lowe’s ratio test when the images are of the same scene 108

5.12 Effect of Lowe’s ratio test when the images are of different scenes 108

List of Tables

2.1 Loomo technical specification, information taken from: [10] 6

2.2 Realsense FOV: [11, p. 14] . 11

4.1 Achievable frame rate when storing RealSense camera streams as raw bytes 58

4.2 Comparing real-time performance of object detection algorithms 74

4.3 Datasets . 75

4.4 Augment the datasets . 77

4.5 Augmentation control . 77

4.6 Training setting . 80

5.1 Validation comparison between YOLOv3-tiny and YOLOv2-tiny 100

5.2 Inference . 101

5.3 Performance score . 101

5.4 Simulation parameters . 102

5.5 Simulation results. Numbers in columns 2-7 are time in seconds 102

5.6 The number of matched features each query node has with every other node in the
graph . 109

5.7 Highlighting of nodes that passed the matching criteria of 50. The clusters have also
been highlighted in the region marked by the dotted rectangle. 110

X

List of Acronyms

API Application Programming Interface. 57

BRIEF Binary Robust Independent Elementary Features. 32, 33

CNN Convolutional Neural Network. 1, 2, 25, 49–52, 54, 74, 114
CSV Comma-Separated Values. 57, 58

DOF Degrees of Freedom. 14, 15
DoG Difference of Gaussians. 30

EKF Extended Kalman Filter. 15

FAST Features from accelerated segment test. 29, 30, 32
FoV Field of View. 63, 74, 111, 114
FPS Frames Per Second. 57, 58, 114

GPU Graphics Processing Unit. 112
GUI Graphical User Interface. 63

ICP Iterative Closest Point. 111
IMU Inertial Measurement Unit. 59
IoU Intersection of Union. 54

mAP Mean Average Precision. 53, 55, 78, 80

ORB Oriented FAST and rotated BRIEF. 24, 28, 30, 32–34, 64, 65, 106, 114

RANSAC Random Sample Consensus. 34, 66
ROI Region Of Interest. 86, 87
ROS Robot Operating System. 2, 3

SDK Software Development Kit. 57, 59, 61, 111
SIFT Scale-Invariant Feature Transform. 24, 30–33
SLAM Simultaneous Location And Mapping. 1–3, 14–17, 19, 20, 24, 34, 37, 57, 58, 64, 111, 114
STL Standard Template Library. 57
SURF Speeded Up Robust Features. 24

VO Visual Odometry. 67–70

YOLO You Only Look Once. 51–53, 78, 114

XI

Chapter 1

Introduction

1.1 Motivation

Simultaneous Location And Mapping (SLAM) is a growing and relevant field of research. Increas-
ingly, people are looking into collaborative SLAM, i.e. combining data from multiple agents to
perform SLAM. Many of the existing approaches mostly focuses on how to combine data from
multiple agents [1, 2, 3, 4, 5]. Less focus has been given to how the agents should collaborate. In
the context of robotics and autonomous vehicles, it is also useful for multiple agents to be able
to efficiently explore an unknown environment. Efficient collaborative exploration is a challenging
problem. Some research proposes methods for coordinating the behaviour of the involved agents
[6, 7].

The boids algorithm [8] showed that it was possible to mimic complex swarm behaviour with a
very simple rule-set. Instead of coordinating the behavior of the boids, i.e. the agents, the boids
are given a rule-set for how to act based on what they are able to observe. From this rule-set
emerges a collective behavior that resembles that of flocking birds. The elegant simplicity of the
boids algorithm became part of the motivation for this thesis.

The University of Agder recently acquired 12 Loomo robots by Segway Robotics. These robots
have a range of sensors including multiple cameras and a depth camera that makes them suitable
for multi-robot SLAM.

When multiple robots work together, it is useful for them to be able to see each other. This can be
achieved through machine learning. A Convolutional Neural Network (CNN) is suited for detecting
objects in images and can enable Loomo robots to see each other.

1

CHAPTER 1. INTRODUCTION

1.2 Thesis Statement

The original goal for this thesis was that several Loomo robots should perform SLAM together,
and through swarm intelligence be able to actively explore an unknown environment. In order to
achieve this, three main focus areas were identified.

• Building a SLAM algorithm based on the Loomo’s on-board sensors
• Training a Convolutional Neural Network (CNN) so the Loomos are able to identify each

other
• Developing swarm intelligence, i.e. a simple rule-set that enables collaborative exploration

The original goal went through a significant revision, but the three focus areas remained. The
original goal was oriented towards implementing these three focus areas on the Loomo robots.
Software development for the Loomo turned out to be a major challenge. Section 1.3 will describe
this challenge in more detail. The revised goals shifted the focus away from implementing software
on the Loomo and reduced the scope. Though the three focus areas remained, they became more
decoupled from each other.

1.2.1 Original Thesis Goals

• Enable communication between Loomos and a host computer using the ROS framework [9]
• Develop a graph-based SLAM algorithm. The SLAM front-end, which processes the sensor

data and does intermediate state estimation, and constructs the graph, is to run on the
Loomos. The SLAM back-end, which performs graph optimization, is to run on the host
computer, and it is also responsible for combining graphs from multiple Loomos.

• Develop a CNN that runs on the Loomos. Loomo detection should be incorporated with both
the SLAM algorithm and the swarm behaviour.

• Develop a rule-set for how the Loomos should act. The rule-set can utilize knowledge about
the map state provided by SLAM, and observations of other Loomos provided by the CNN.
The resulting behaviour should be so that an unknown environment is explored.

1.2.2 Revised Thesis Goals

• The SLAM algorithm should be able to perform SLAM on recorded Loomo data
• The CNN should still be able to run on a Loomo
• The collaborative exploration should be developed through modelling and simulation

2

CHAPTER 1. INTRODUCTION

1.3 Project Management

Figure 1.1 shows the Gantt diagram for the original thesis goals. The ”Startup“ task was about
getting familiarized with the Loomo’s potential. The thesis as it was proposed by the university
was open-ended, so the first two weeks were used by the group to settle for what they wanted to
achieve.

All the blue bars in the Gantt diagram were considered part of a learning phase. Because of
that, the specific tasks were not as strictly defined. Even though the main implementation phase
(red bars) did not start before late February, several functionalities were implemented during the
learning phase. For instance, the Loomo was made ROS compatible and was able to publish sensor
data and video-streams at a low frame rate to a ROS master. Also a simple utility for taking
pictures with the on-board RealSense camera was made, which was used to gather training data
for Loomo detection, and checkerboard images for camera calibration.

The tasks of the implementation phase reflects the three main focus areas described in the thesis
statement. This allowed the group members to work in parallel.

The testing phase (green bar in Gantt chart) is where the three focus areas were to be properly
combined.

Early in the implementation phase it became apparent that developing software for the Loomo was
becoming a problem. The implementation phase was supposed to be focused on the challenges of
SLAM, computer vision, machine learning and swarm behaviour. These were topics that were con-
sidered interesting and relevant for the thesis. However, much of our time and focus was dedicated
to challenges regarding software. The group had underestimated the difficulty of programming in
an Android environment. Thus the group decided to shift their focus away from the Loomo to
instead focus on the topics that were considered interesting for the thesis.

The revision of the thesis goals had most impact on the development of SLAM and collaborative
exploration. Developing methods for collaborative exploration is something that is well suited for
being solved through modelling and simulation. In hindsight, this is how the problem should have
been addressed in the original goals. It was somewhat ambitious to try to develop collaborative
exploration directly on a physical system.

The revised Gantt chart is shown in figure 1.2

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Gantt diagram for the original thesis
goals

Figure 1.2: Gantt diagram after the thesis goals
were revised

4

Chapter 2

System

This chapter describe information about the Loomo robot, the sensors used and some useful meas-
urements needed later in the thesis.

Figure 2.1: Loomo

5

CHAPTER 2. SYSTEM

2.1 Loomo Technical Specification

Parameter Description
Size 650mm height, 310mm length, 570mm width
Weight ∼19kg (∼42 lbs.)
Max Payload 220 lbs
LCD Screen 4.3 inch, 480 * 800 pixels
HD Camera 1080p 30Hz streaming with 104 degrees FOV
3D Camera Intel RealSense ZR300 Camera for depth-sensing &

motion tracking
Sensors Available Ultrasonic sensors, infrared distance sensors, touch

sensors, encoders, IMUs
Processor Intel Atom Z8750, 4 cores 2.56GHz, x86-64
Operating System Customized system based on Android 5.1
Memory 4GB
Storage 64GB
Speed Limit 8km/h (4.3mph) in robot mode, 18km/h (11mph) in

self-balancing vehicle mode
Typical Range ∼35km (22 miles) per charge
Traversable Terrain Paved road and sidewalks, packed dirt, slopes < 15°,

obstacles < 0.4 inch (1cm), gaps < 1.2 inch (3cm)
Mic Array 5 microphones enabling beamforming, voice localiza-

tion and voice command recognition
Battery Capacity 329Wh
Waterproof IPX4

Table 2.1: Loomo technical specification, information taken from: [10]

2.2 Measurements

In a differential drive system, it is important to have an accurate measurement of the base width
and the wheel diameter. To make the measurements as accurate as possible, multiple measurements
are performed and weighted based on the confidence in the measurements.

The sample standard deviation equation is used to calculate the weight factors

σ =
√

1
N − 1

∑
i

(Wi − Ŵ)2 (2.1)

Where
Symbol Description Unit
σ Standard deviation of measurements m
N Number of samples -
Wi Specific sample m
Ŵ Average of samples m

6

CHAPTER 2. SYSTEM

2.2.1 Base Width

Base width is measured by 3 separate measurements. A laser is used to measure the distance
between the inside of each wheel, and a digital caliper is used to measure the width of each
wheel. This method is more robust than using a folding rule to measure the distance between the
approximate center of each wheel directly. Measurements are performed multiple times to reduce
error.

Figure 2.2: Base width measurement

CL = 1− σL
σL + σR

(2.2)

CR = 1− σR
σL + σR

(2.3)

WB = WI + 2 ·
(
WL · CL

2 + WR · CR
2

)
(2.4)

The measurements and calculations are shown in appendix B. The base width is measured to be
488,87mm.

7

CHAPTER 2. SYSTEM

Where
Symbol Description Unit
σL St.dev left wheel width measurements m
σR St.dev right wheel width measurements m
CL Confidence left wheel width measurements -
CR Confidence right wheel width measurements -
WB Width of Loomo between center of wheels m
WI Length between the inside of the wheels m
WL Width of left wheel m
WR Width of left wheel m

2.2.2 Wheel Diameter

Wheel diameter changes with the tire pressure and load on the wheels. This test was performed
with the wheels compressed by the weight of the Loomo. Tire pressure was not verified before the
test. Loomo is moved the distance it takes for the wheels to complete 2 full rotations. There is a
marker fixed to the wheel to indicate the measurement position. The distance traveled is measured
by a distance laser mounted on a tripod, and a folding rule laying on the floor. See figure 2.3 and
2.4 for an illustration of the method. It is important that the laser beam is parallel with the floor,
this was calibrated prior to the measurements. The laser distance measurement will also be affected
by the pitch angle of the Loomo, but since it is in balance mode, the impact is not significant and
the measurements will be fairly accurate. Measurements are performed multiple times for each
wheel to reduce error.

Figure 2.3: Wheel diameter measurement starting point

8

CHAPTER 2. SYSTEM

Figure 2.4: Wheel diameter measurement end point

dl = de − ds (2.5)

Cl = 1− σl
σl + σfr

(2.6)

Cfr = 1− σfr
σl + σfr

(2.7)

Dwheel = dl · Cl + dfr · Cfr
nturn · π

(2.8)

Where
Symbol Description Unit
dl Distance measured by laser m
de Distance from laser to Loomo at end point m
ds Distance from laser to Loomo at start point m
dfr Distance measured by folding rule m
σl St.dev laser measurements m
σfr St.dev folding rule measurements m
Cl Confidence laser measurements -
Cfr Confidence folding rule measurements -
Dwheel Diameter of wheel m
nturn Number of wheel turns -

The measurements and calculations are shown in appendix B. The wheel diameter was measured
to be 270.35mm

9

CHAPTER 2. SYSTEM

2.3 Sensors

2.3.1 Encoder

The wheels on the Loomo uses hub motors with integrated hall sensor based encoders. The encoder
pulse count has been verified by manually turning the wheels 10 turns each direction. The results
are 90 pulses per rotation, which is in accordance with the value given in the Loomo API. The
measurements and calculations are shown in appendix B

2.3.2 Distance Sensors

There are 3 forward facing distance sensors (not counting the depth camera). One Ultrasonic
sensor, and two Infrared sensors. Figure 2.5 illustrate an approximation of the detector field of the
sensors. The center cone being the ultrasonic sensor, and the two cones on the left and the right
side is the Infrared sensors. The infrared sensors are also pointing downward to enable detection of
for example stairwells. The output from the Ultrasonic and infrared sensors are already converted
to mm in the Loomo API. These values have been verified with a laser.

Figure 2.5: IR and Ultrasonic FOV

2.3.3 Intel RealSense Camera

The Intel RealSense ZR300 camera implements a stereo vision depth imaging, color camera, and a
fisheye camera into a single module. [11, p. 8]

10

CHAPTER 2. SYSTEM

Figure 2.6: Intel RealSense

Component Diagonal Vertical Horizontal
IR Laser Projector FOP 80°± 5% 60°± 5% 60°± 5%
Infrared Camera FOV 70°± 5% 46°± 5% 59°± 5%
Color Camera FOV 75°± 4% 41.5°± 2% 68°± 2%
Fisheye Camera FOV 166.5°± 4% 100°± 3% 133°± 3%

Table 2.2: Realsense FOV: [11, p. 14]

2.3.4 Depth Camera

The depth camera is part of the Intel RealSense sensor unit. The IR projector illuminates the
environment in front of the Loomo, and the stereo IR cameras observe these projections to extract
depth information from the environment. The pixels in the resulting image holds information
about the distance to that position in the image from the plane parallel to the camera cover. The
depth data has been verified by reading the depth value of specific points in a depth image, and
then measuring the distance from the camera to that point in the environment with a laser. The
measurements is documented in appendix B.

Interference

This section show some examples of interference that has been observed in the depth camera images
during testing.

When there is low variation in the depth, for example when the camera is directly facing a flat
wall, there seems to be increased interference in the depth images. Figure 2.7 show an example of
this effect.

Sunlight will interfere with the function of the depth camera. See figure 2.8 for an indoor vs outdoor
comparison.

11

CHAPTER 2. SYSTEM

Figure 2.7: Depth camera interference example: low depth variation

Figure 2.8: Comparing interference indoor vs outdoor

Depth vs range data

The depth camera calculates the depth distance to objects, not range. See figure 2.9 for an illustra-
tion. Depth means the distance from an object to the parallel plane in front of the stereo cameras.
[11, p. 16]

Figure 2.9: Depth vs range [11, p. 16]

However, by inspecting figure 2.10, which is a depth camera image of stairwell, there is clearly some

12

CHAPTER 2. SYSTEM

error in depth data. Observe in the right image that the wall on the right side has a curvature,
which is not the case in the real stairwell. A hypothesis is that there is some numerical error in the
conversion from range to depth in the Intel RealSense ASIC, and the curvature which is observed
is an effect from that numeric error.

Figure 2.10: Depth image example

13

Chapter 3

Theory

3.1 Simultaneous Localization And Mapping (SLAM)

Simultaneous Location And Mapping (SLAM) is the problem of constructing a map of an unknown
environment while simultaneously locating the agent in that map. Probabilistic formulations of the
SLAM problem comes in two main forms: the full SLAM problem, and, the online SLAM problem.

3.1.1 Overview of SLAM

The full SLAM problem is concerned with estimating the probability distribution of the robot’s
trajectory and the map given a set of observations and inputs. The full SLAM problem is expressed
in equation 3.1.

p
(
x0:T , m | z1:T , u1:T

)
(3.1)

The trajectory, x0:T , is the concatenation of the robot’s states at time 0 through time T (see equation
3.2). The robot’s state is typically represented with 3DOF or 6DOF depending on whether the
robot is moving in 2D or 3D space. The inputs, u1:T , are often referred to as commands or controls.
In practice it is common to use odometry as input.

x>0:T =
[
x>0 , x>1 , · · · , x>T−1, x>T

]
(3.2)

x>n = [xn, yn, θn] or x>n = [xn, yn, zn, ρn, φn, θn] (3.3)

Based on its formulation, the full SLAM problem is not suited for online applications because each
new input or observation requires a recalculation of the entire trajectory and map. The online
SLAM problem seeks to recover only the most recent pose, and is expressed by equation 3.4.
Algorithms that solve the online SLAM problem are often called filters [12]. Online SLAM solves
the full SLAM problem incrementally. Full SLAM calculates a joint probability distribution of all

14

CHAPTER 3. THEORY

poses and the map. The probability distributions of individual variables can be determined from
the joint probability distribution. This is done by integrating over all the variables that are to
be marginalized out. Thus, the online SLAM problem is expressed with respect to the full SLAM
problem by integrating out all previous poses as shown in equation 3.5.

p
(
xt, m | z1:t, u1:t

)
(3.4)

p
(
xt, m | z1:t, u1:t

)
=
∫
x0

∫
x1

· · ·
∫

xt−1

p
(
x0:t, m | z1:t, u1:t

)
dxt−1 · · · dx1dx0 (3.5)

It is useful to distinguish between the SLAM front-end and the SLAM back-end. The front-
end processes sensor data and gives an intermediate representation of the state. It is thus very
dependent on the available sensors and the type of locomotion (a 3DOF differential drive robot like
the Loomo behaves differently from a 6DOF holonomic vehicle like a quad-copter). The front-end is
also responsible for detecting loop closures. Loop closures occur when the robot revisits a location.
The back-end performs the state estimation. It is the method used to solve the SLAM problem.
The back-end can thus be more general than the front-end.

Figure 3.1: Interplay of SLAM front-end and back-end

There are three main paradigms for solving the SLAM problem [12]. They are

• Extended Kalman Filter-based approaches
• Particle filter-based approaches
• Graph-based approaches

The EKF, and particle filter-based approaches, as their names suggests, solve the online SLAM
problem. Graph-based approaches fundamentally solves the full SLAM problem. However, this ap-
proach is highly flexible and there are methods for efficiently re-using previously computed solutions
[13, 14, 15].

An underlying assumption in most SLAM methods is the static world assumption. This means
that the environment is assumed to be the same each time it is observed. In the real world this
is very rarely the case. People and objects can move around. Outdoor environments are highly
dynamic because of weather, seasons, and time of day. The sensors that are used play a role. For
instance, LIDARs are less affected by changing lighting conditions than cameras. Dynamic effects
are sometimes treated as measurement outliers. There are SLAM and localization approaches
that specifically addresses dynamic environments [16, 17, 18, 19, 20, 21]. This thesis assumes a
static indoor environment where the only dynamic effect comes from the presence of other Loomo

15

CHAPTER 3. THEORY

robots. Given that the a Loomo can be detected, an observation can be filtered so the Loomo is
not interpreted as part of the environment.

3.1.2 Graphs in Graph-Based SLAM

Many problems can be represented by a graph. In a graph, the nodes represent the variables and the
edges represent the relationship between variables. For instance, the A* path planning algorithm
solves a graph problem where each node is a location and each edge is the cost (often the distance)
for moving between nodes.

Figure 3.2 shows the full SLAM problem (equation 3.1) represented by a graph. Graph-based
SLAM rarely uses this representation though. The unknowns are the robot poses x0:T and the
landmarks m, and they are usually represented with nodes. A pose-graph approach to SLAM
(which is used in this report) even marginalizes out the landmarks. The inputs and observations
(u1:T and z1:T) are used to find x0:T and m, so they are usually represented with edges.

Figure 3.2: Graph-representation of the full SLAM problem

Edges tell the relationship between nodes. This relationship is referred to as a constraint. The edges
in graph-based SLAM are soft constraints, meaning they are not required to be satisfied, but they
have some associated information about to what extent they should be satisfied (i.e. a weighing
factor). Graph optimization is the process of adjusting the nodes in a way that best satisfies the
edge constraints. Least squares is the most common method for solving the graph optimization in
graph-based SLAM. In the context of SLAM in this report, graph optimization and least squares
is used interchangeably.

Figure 3.3 shows the interplay of the front-end and back-end in the context of graph-based SLAM.
The front-end is still responsible for processing the raw data, but also adds nodes and edges to
the graph. The back-end is responsible for solving the SLAM problem, i.e. performing the least
squares optimization.

16

CHAPTER 3. THEORY

Figure 3.3: Interplay between the front-end and back-end in graph-based SLAM

3.1.3 Least Squares

Graph-based SLAM is often referred to as a least squares approach to SLAM. Least squares is
an error minimization method. It is an approach for computing a solution for over-determined
systems. In a graph representation, a system is over-determined if there is more than one edge
connected to a node. All measurements are subject to some uncertainty, so the constraints from
different edges tend to disagree about what the state of the node is. In other words, trying to solve
an over-determined system will lead to errors in some, or all, equations. Least squares minimizes
the sum of the squared errors.

The least squares problem can be formulated as follows: Given n noisy measurements z1:n about the
state x, estimate the state x which bests explains the measurements z1:n. For each measurement
zk there is a predicted measurement ẑk. The difference between these two will result in an error:

ek (x) = zk − ẑk (3.6)

Least squares assumes that the error has zero mean and is normally distributed. I.e. Gaussian
error with information matrix Ωk. The squared error of a measurement is a scalar.

ek(x) = ek(x)>Ωkek(x) (3.7)

The information matrix Ω is a weighing factor in the least squares optimization. It is the inverse
of the covariance matrix of the measurements. The lower the values in a covariance matrix is, the
more reliable that data is. Ω will in turn increase with lower covariance values. So higher values of
Ω means that that particular measurement matters more in the optimization.

The global error (equation 3.8) is the sum of all the errors.

F (x) =
∑
k

ek(x) =
∑
k

ek(x)>Ωkek(x) (3.8)

The goal of least squares is to find the state x∗ which minimizes the global error function.

x∗ = argmin
x

F (x) (3.9)

17

CHAPTER 3. THEORY

The minimization in equation 3.9 is a complex problem and usually requires numerical solvers.
With numerical solvers, finding the global minimum is not guaranteed, so a good initial guess
is required. The method that is used in this thesis is the Gauss-Newton solution. It solves the
problem with iterative local linearizations. The steps to this method are as follows:

• Linearize the error function around the current state (or initial guess if it is the first iteration):
e(x + ∆x)

• Use the linearization to form a new expression for the global error in the neighborhood of x:
F (x + ∆x)

• Compute the first derivative of F (x + ∆x)
• Set it to zero and solve the linear system for ∆x
• Use this solution to increment the state
• Iterate these steps until the system converges (i.e. the increments approaches 0)

Linearizing the error function around x is done by approximating it via Taylor expansion.

ek(x + ∆x) ≈ ek(x) + Jk(x)∆x (3.10)

Jk(x) is the Jacobian of ek with respect to the state.

x = x1:n Jk(x) =
[
∂ek(x)
∂x1

,
∂ek(x)
∂x2

, · · · , ∂ek(x)
∂xn

]
(3.11)

Expressing the squared error using the linear approximation in equation 3.10

ek(x + ∆x) ≈
(
ek(x) + Jk(x)∆x

)>Ωk

(
ek(x) + Jk(x)∆x

)
(3.12)

The notation is simplified from here on as follows

ek ≈ (ek + Jk∆x)>Ωk (ek + Jk∆x) (3.13)

Resolving the parentheses in 3.13 and simplifying it yields equation 3.16. (Jk∆x)> resolves to
∆x>J>k . Also, since each term is a scalar, the second and third term on the right hand side in
equation 3.14 are equal (if A · B is scalar, then (A · B)> = A · B = B> · A>). Equation 3.16 has
quadratic form.

ek = e>k Ωkek + e>k ΩkJk∆x + ∆x>J>k Ωkek + ∆x>J>k ΩkJk∆x (3.14)

ek = e>k Ωkek︸ ︷︷ ︸
ek

+2 e>k ΩJk︸ ︷︷ ︸
b>

k

∆x + ∆x> J>k ΩkJk︸ ︷︷ ︸
Hk

∆x (3.15)

ek = ek + 2b>k ∆x + ∆x>Hk∆x (3.16)

18

CHAPTER 3. THEORY

The new expression for the global error in the neighborhood of x is as follows:

F (x + ∆x) =
∑
k

ek(x + ∆x) (3.17)

F (x + ∆x) =
∑
k

(
ek + 2b>k ∆x + ∆x>Hk∆x

)
(3.18)

F (x + ∆x) =

∑
k

ek


︸ ︷︷ ︸

e

+2

∑
k

b>k


︸ ︷︷ ︸

b>

∆x + ∆x>
∑

k

Hk


︸ ︷︷ ︸

H

∆x (3.19)

F (x + ∆x) = e+ 2b>∆x + ∆x>H∆x (3.20)

b> =
∑
k

e>k ΩkJk (3.21)

H =
∑
k

J>k ΩkJk (3.22)

Computing the first derivative of equation 3.20. H is symmetrical, so H = H>.

∂F (x + ∆x)
∂∆x = 2b+

(
H +H>

)
∆x (3.23)

∂F (x + ∆x)
∂∆x = 2b+ 2H∆x (3.24)

(3.25)

Setting the derivative to 0 leads to the linear system in 3.27.

0 = A2b+ A2H∆x (3.26)

H∆x = −b (3.27)

The solution for the increment ∆x is

∆x = −H−1b (3.28)

The steps to the Gauss-Newton solution can now be simplified:

• Linearize the error function around x and compute for each measurement: ek(x + ∆x) ≈
ek(x) + Jk∆x

• Compute the terms b> and H (equations 3.21 and 3.22) for the linear system
• Solve the linear system ∆x = −H−1b

• Update the state x += ∆x
• Iterate until convergence

This is a general explanation of least squares using a Gauss-Newton solver. Section 3.1.4 will go
more in detail about what the error function looks like in the context of solving the SLAM problem

19

CHAPTER 3. THEORY

and how to build and solve the linear system H∆x = −b.

3.1.4 A Pose Graph Solution to the SLAM Problem

A pose graph is an approach to graph-based SLAM that does not use landmarks. The graph is
reduced to contain only the robot poses, and the landmarks are marginalized out. The graph
structure is thus easy to maintain.

A pose graph by itself only solves half the SLAM problem, namely estimating the robot trajectory.
However, pose graphs are commonly used as the underlying process in map construction. If the
poses are known, it is easier to interpret the observations of the environment.

Each node in a pose graph represents the robot’s pose in that instance. It consists of n nodes
x = x1:n, and node number i represents the state vector xi. The edge constraints are relative
transformation between nodes. An edge is constructed between two nodes if:

• a new node is constructed, i.e. the robot moves from node xi to xi+1. The edge is odometry-
based.

• the robot observes the same part of the environment from node xi and from xj . The edge is
referred to as a virtual edge.

All consecutive nodes have odometry-based edges connecting them. Virtual edges are how the pose
graph marginalizes out the landmarks. Instead of using observations to perform state estimations
of landmarks, the observations from two nodes are compared and their relative transformations are
computed directly (given that they are observing the same thing). The edges are called virtual
because node i is not directly observing node j.

Figure 3.4 illustrates the structure of a pose graph. When new nodes are added, they are given an
initial pose based on the dead reckoning since last node. Thus, if no graph optimization is done,
the graph trajectory will be the same as the odometry trajectory. Odometry provides an initial
guess for the graph optimization. Virtual connect to the newest of the two nodes that they are
connecting. I.e. to xj from xi as shown in figure 3.4.

Figure 3.5 illustrates how the error function in a pose graph is obtained. Let the edge from xi to xj
be described by the constraint zij and information matrix Ωij . The constraint zij is the pose of xj
relative to xi. The information matrix Ωij is the inverse of the covariance matrix of the constraint.
In the context of least squares, the constraint zij corresponds to a single measurement. The error
function for an edge in a pose graph is thus expressed in equation 3.29.

eij(x) = zij − ẑij (3.29)

ẑij is the pose of xj relative to the pose of xi according to the current configuration of the graph.
It is convenient to express zij and ẑij as homogeneous transformations. Here, capital letters are
used for homogeneous coordinates and lowercase is used for vector coordinates. The constraint zij

20

CHAPTER 3. THEORY

Figure 3.4: The structure of a pose graph

expressed as a homogeneous transformation is thus Zij . The homogeneous transformation from xi
to xj is X−1

i Xj . Equation 3.30 is the error function expressed with homogeneous transformations.
The least squares optimization still uses the minimal representation of the state, which is a vector.
Hence the homogeneous transformation is converted back to vector coordinates (t2v is a function
such that xi = t2v (Xi)). The error is zero if Zij = X−1

i Xj .

eij(x) = t2v
(
Z−1
ij

(
X−1
i Xj

))
(3.30)

Figure 3.5: Error function for a single edge in a pose graph. The dotted circle is the pose of node
j according to the edge constraint, while the other circles are the poses according to the current
configuration of the graph. The information matrix Ωij encodes the certainty of the constraint,
and is illustrated by the blue ellipse. Higher values in Ωij corresponds to a smaller ellipse.

An important property of pose graphs is that any single error term eij only depends on xi and xj :

eij(x) = eij(xi,xj) (3.31)

21

CHAPTER 3. THEORY

Linearizing the error function around x:

eij (x + ∆x) = eij(x) + Jij∆x (3.32)

Because the error only depends on xi and xj , the Jacobian will be non-zero only in the rows
corresponding to xi and xj .

Jij = ∂eij(x)
∂x (3.33)

Jij =
[
0 · · · ∂eij(x)

∂xi
· · · ∂eij(x)

∂xj
· · ·0

]
(3.34)

Jij =
[
0 · · ·Aij · · ·Bij · · ·0

]
(3.35)

with Aij = ∂eij(x)
∂xi

and Bij = ∂eij(x)
∂xj

(3.36)

The next step is to compute the terms b> and H for the linear system:

b> =
∑
ij

b>ij =
∑
ij

e>ijΩijJij (3.37)

H =
∑
ij

Hij =
∑
ij

J>ijΩijJij (3.38)

Since every node has at least one edge connecting it to another node, the vector b> will be fully
populated. However, the sparse structure of Jij will result in a sparse structure of H. H will be
non-zero along its diagonal. Otherwise, only the blocks corresponding to node pairs are populated.
The structure of H reflects the adjacency matrix of the graph. The elements of an adjacency matrix
indicate whether a pair of nodes are connected by an edge. The sparse property of the Jacobian is
shown for a single node pair in equations 3.41 and 3.44. The sparse structure of the resulting H
matrix is illustrated in figure 3.6.

H will be dense if the sensors can observe most of the environment from all the nodes. This can
possibly happen in a small open area.

b>ij = e>ijΩijJij (3.39)

= e>ijΩij
[
0 · · ·Aij · · ·Bij · · ·0

]
(3.40)

=
[
0 · · · e>ijΩijAij · · · e>ijΩijBij · · ·0

]
(3.41)

22

CHAPTER 3. THEORY

Hij = J>ijΩijJij (3.42)

=



...
A>ij
...

B>ij
...


Ωij

[
· · · Aij · · · Bij · · ·

]
(3.43)

=



. . .
A>ijΩijAij · · · A>ijΩijBij

...
B>ijΩijAij · · · B>ijΩijBij

. . .


(3.44)

Figure 3.6: Structure of the H matrix for a simple 10-node graph. All white blocks are zero

The linear system can now be built by summing up the contribution of each edge. Initialize b and
H with all zero elements.

b> =
[
b̄>1 b̄>2 · · · b̄>n

]
(3.45)

H =


H̄11 H̄12 · · · H̄1n

H̄21 H̄22 · · · H̄2n
...

...
H̄n1 H̄n2 · · · H̄nn


(3.46)

The bar-notation is used here because each element can potentially be the sum of several constraint.
This is to distinguish them from element ij. Many of the elements in H are still going to be 0.

For each constraint in the graph:

• Compute the error eij (equation 3.30)
• Compute the blocks of the Jacobian, Aij and Bij (equation 3.36)
• Update the appropriate blocks in b and H:

23

CHAPTER 3. THEORY

b̄>i += e>ijΩijAij b̄>j += e>ijΩijBij (3.47)

H̄ii += A>ijΩijAij H̄ij += A>ijΩijBij (3.48)

H̄ji += B>ijΩijAij H̄jj += B>ijΩijBij (3.49)

This will populate b and H, but the linear system is currently under determined. The graph
trajectory must be locked to a world coordinate frame. This can be done by constraining one of
the increments ∆xk to zero, which is done by adding the identity matrix I to the kth diagonal
block of H. It is typically the first node that defines the coordinate system. By doing H̄11 += I

the linear system can now be solved.

H is potentially a very big matrix. Matrix inversion is a computationally heavy operation and
rarely done in practice. More efficient numerical solutions to matrix inversion exist. H is a square,
symmetric and positive-definite matrix, so it is suitable to use Cholesky decomposition to solve
∆x = −H−1b.

3.2 Computer Vision

Computer vision is the discipline of enabling a computer to interpret digital images. There is some
overlap between computer vision and machine learning. The use of machine learning for detecting
Loomos in images is described in section 3.5. This section describes how computer vision is used
in the context of Simultaneous Location And Mapping (SLAM).

A camera is an exteroceptive sensor, meaning it can provide a robot with information about its
environment. For SLAM, there are two questions that this information should provide answers to:

• ”What is in my environment?“
• ”Where is it?“

A camera provides a series of images. The problem that computer vision is supposed to solve can
roughly be divided into two:

• Finding correspondences between images
• Finding the geometrical relationship between correspondences in images

There is also a real-time requirement. This can be satisfied by abstracting an image into a set of
image features. This report used the ORB feature descriptor [22] because of its proved effectiveness
in recent SLAM systems [23, 24, 25]. The SIFT feature descriptor was the industry standard for
feature detection and description. This section will draw some comparrisons to SIFT where they
are relevant.

Feature descriptors like ORB, SIFT [26], and SURF [27] does two things: detects keypoints and
computes their descriptors. Detecting keypoints means finding the location of image features that
are of interest. Computing descriptors means describing the features so that they can be identified

24

CHAPTER 3. THEORY

repeatedly.

3.2.1 Key Concepts

A digital image can be seen as a matrix containing light intensity values. Each matrix element
corresponds to a pixel. A color image has intensity values for each of the color channels red, green,
and blue. Thus, a pixel consists of three values. If color information is not needed, it is common
to convert the image to grey-scale.

A camera can be seen as a heading sensor. Light is reflected off an object into the camera sensor.
The 3D world is projected onto a 2D image, and each pixel tells the heading of the object that was
projected onto it.

An important measure in computer vision is the gradient in an image. The gradient is the directional
rate of change of pixel intensities. If g is an intensity value, the gradient is given by equation 3.50.
Object edges will usually have an abrupt transition in brightness, an thus a high gradient. This
makes edges an easy image feature to detect.

∇g =
[
∂g

∂x
,
∂g

∂y

]
(3.50)

3.2.2 Convolution

Convolution is a key concept in computer vision and Convolutional Neural Networks. Convolution
simplifies a filtering process by doing a repeated operation with a mask known as a filter or kernel.
The filter is a matrix which is usually n × n where n is odd so that the filter has a center pixel.
The filter is slid over each pixel in the input image and for each pixel calculates a value for the
corresponding output pixel. The output value is the sum of the products of corresponding pixels
in the filter and the image. Thus, each output pixel is the result of the neighborhood of the the
input pixel. This is illustrated in figure 3.7.

A very simple convolutional filter is one where all the values are equal and the sum of all the values
is one (for instance a 3 × 3 filter where all the values are 1/9). Applying this filter will cause each
output pixel value to be the average of the neighborhood of the input pixel. This will effectively
blur the images and is used to reduce noise. It is however more common to use a Gaussian filter
for noise reduction. A Gaussian filter is made by discretizing a Gaussian distribution so it fits the
filter. The output is then a weighted average, where pixels closer to the input pixel has bigger
influence.

Another important type of convolutional filter is the gradient filter. Two common types are the
Sobel, and Scharr operators. They use two filters. One that calculates the gradient in the x-
direction, and one for the y-direction. If the values on the left and right side of the input pixel are
similar, the output value Gx when using the Dx filter will be close to 0. If the values on the left

25

CHAPTER 3. THEORY

0

0

0

0

0

0

1

1

1

1

1

1 1 1 1

1

2 2

3

3 3

3
2

2

1

11

12

2

2

2

2

1 0

0

0

0 0

1

1

01
-1

-3

Image

Filter

Figure 3.7: Convolutional operation

side are different to the right side, the absolute value of Gx will be high. Let Gx and Gy be the
output when convolving with Dx and Dy respectively. The magnitude and direction of the gradient
in a pixel is thus found by the equations in 3.53.

The Scharr operator differs from the Sobel operator in that it has some higher accuracy when
calculating the gradient direction. These operations are, after all, approximations for calculating
the derivatives in an image.

Sobel : Dx =


1 0 −1
2 0 −2
1 0 −1

 Dy =


1 2 1
0 0 0
−1 −2 −1

 (3.51)

Scharr : Dx =


3 0 −3
10 0 −10
3 0 −3

 Dy =


3 10 3
0 0 0
−3 −10 −3

 (3.52)

Gradient magnitude =
√
G2
x +G2

y Gradient direction = atan2
(
Gy
Gx

)
(3.53)

3.2.3 Keypoint Detection

A keypoint is a locally distinct location in an image. One way to evaluate whether a point is
locally distinct is to see how the neighborhood of that point changes when the point is shifted.
If the gradients in that area are small, the neighborhood of the point will barely change if the

26

CHAPTER 3. THEORY

point is shifted. In figure 3.8, point p1 can be shifted in any direction, and those locations will be
indistinguishable from each other. Edges on the other hand have steep gradients and are easy to
locate. The problem is that only points along the gradient direction are distinct from each other,
so point p2 in figure 3.8 will still be indistinguishable from points along the edge direction. Corners
are often highly distinct points because they have gradients in two different directions. Point p3 is
thus the best candidate for being a keypoint.

Figure 3.8: Three different keypoint candidates. The neighborhood of p1 does not change if it is
moved. The neighborhood of p2 only changes if it moves in the x-direction. The neighborhood of
p3 changes regardless of which direction it is moved.

Corners are used in several keypoint detectors [28, 29, 30, 31, 32]. Corners are invariant to trans-
lation, rotation and illumination. This means that the keypoint is likely to be found in two images
of the same scene, even though the conditions have changed between the images.

A corner can be found by searching for intensity changes in the x and y directions. Let f(x, y) be
a function that computes the sum of squared differences of neighboring pixels around pixel (x, y).

f(x, y) =
∑

(u,v)∈Wxy

(
I(u, v)− I(u+ δu, v + δv)

)2 (3.54)

Wxy is a local patch around (x, y). I(u, v) is the intensity value of pixel (u, v) in the local patch
Wxy. I(u+ δu, v + δv) can be approximated through linearization using Taylor expansion:

I(u+ δu, v + δv) ≈ I(u, v) +
[
Jx Jy

] δu
δv

 (3.55)

27

CHAPTER 3. THEORY

Substituting the linearization into equation 3.54:

f(x, y) ≈
∑

(u,v)∈Wxy

[Jx Jy

] δu
δv




2

(3.56)

f(x, y) ≈
∑

(u,v)∈Wxy

δu
δv

>  J2
x JxJy

JxJy J2
y

δu
δv

 (3.57)

The summation can be moved inside the matrix. The sums are rewritten to ΣW for brevity.

f(x, y) ≈

δu
δv

>  ΣWJ
2
x ΣWJxJy

ΣWJxJy ΣWJ
2
y


︸ ︷︷ ︸

M

δu
δv

 (3.58)

M is called the structure matrix. It tells the magnitude and directions of the gradients in a local
region.

M =

 ΣWJ
2
x ΣWJxJy

ΣWJxJy ΣWJ
2
y

 (3.59)

The structure matrix M can tell if a point is a locally distinct point or not (i.e. if there is a
corner). If there is one large and one small eigenvalue, you have an edge-like structure (gradients
are pointing in the same direction). If you have two large (and of similar size) eigenvalues there is
probably a corner.

Jacobians are computed via convolution with a gradient filter. The filter can for instance be the
Sobel kernel.

J2
x = (Dx ∗ I)2 (3.60)

JxJy = (Dx ∗ I)(Dy ∗ I) (3.61)

J2
y = (Dy ∗ I)2 (3.62)

The structure matrix summarizes the dominant directions of the gradient around a point. A point
can be considered a corner if its structure matrix has two large eigenvalues.

The Förstner [28], Harris [30], and Shi-Tomasi [31] corner detection methods all use the structure
matrix. They have different criteria for deciding if a point is a corner or not.

Harris corner criterion (proposed in 1988) was initially the most popular. It was improved by Shi-
Tomasi in 1994, which has become the standard keypoint detector in OpenCV. However, Harris
corner criterion (also referred to as Harris corner measure, Harris corner score, corner response
etc.) is used in the ORB descriptor and will be explained here.

28

CHAPTER 3. THEORY

The Harris corner criterion is formulated as follows [30]:

R = det(M)− k
(

tr(M)
)2

(3.63)

k is a weighting factor. Typically k ∈ [0.04, 0.06]

The determinant of a matrix is the product of its eigenvalues. The trace of a matrix is the sum of
its eigenvalues. M has eigenvalues λ1, λ2. Thus, equation 3.63 can be rewritten as follows:

R = λ1 · λ2 − k
(
λ1 + λ2

)2
(3.64)

Using the above observations about the eigenvalues λ1 and λ2 of the structure matrix, the following
deduction about the Harris criterion can be made (this is also illustrated in figure 3.9).

|R| ≈ 0 ⇒ λ1 ≈λ2 ≈ 0 : flat region

R < 0 ⇒ λ1 � λ2 or λ2 � λ1 : edge

R� 0 ⇒ λ1 ≈λ2 � 0 : corner

Figure 3.9: Illustration of Harris criterion

The drawback to the Harris corner detection method is that the corner response (i.e. the Harris
criterion) must be computed for each pixel. FAST [32] is a corner detector which is highly efficient
. FAST is short for Features from accelerated segment test (FAST). The technique is fairly simple.
For an image point p, measure the intensity values along the periphery of a circle around p. If n
contiguous pixels are all either brighter than p by a certain threshold, or darker than p by a certain
threshold, p is considered a corner.

29

CHAPTER 3. THEORY

The circle is a Bresenham circle, meaning it has been discretized to pixel-space [33]. The circle
has a circumference of 16 pixels, which are numbered in the clockwise direction (see figure 3.10).
Rosten and Drummond [32] found that n = 9 provides optimal performance. In figure 3.10, 9
contiguous pixels from pixel number 9 through 1 (dotted line) are brighter than p by a threshold,
and the point is considered a corner.

Figure 3.10: FAST corner detector. If n contiguous pixels are either darker or brighter than p by
a threshold, p is considered a corner.

FAST does not compute a corner response function. The paper suggests a method for computing
the score of the detected points [32], but it is not relevant here as the ORB detector uses the Harris
corner criterion (equation 3.64) to score the detected corners.

There are of course many other methods for detecting keypoints in an image. For instance Difference
of Gaussians (DoG), which is used by SIFT [26]. DoG will also detect blobs in addition to lines
and edges. The methods presented here are those that are relevant for the computer vision task of
the Loomo robots.

3.2.4 Feature Description

Given that image features can be reliably detected, it is also necessary to describe them so that
they can be compared to keypoints from other images. A feature descriptor is a summary of the
local structure around a keypoint.

One common way to summarize the neighborhood of a point is to calculate a histogram of the
gradients in that region. This is what the SIFT descriptor does. It calculates the gradients in a
16×16 region around the the keypoint. Note that the 16×16 region does not necessarily correspond
to 16×16 pixels in the original image. Scale-Invariant Feature Transform (SIFT) also detects scale
and rotation of its keypoints, so this region is relative to that keypoint-information [26]. The
16×16 region is divided into 16 sub-regions, and the histogram is calculated for each of them. The
gradient directions are discretized into 8 segments. I.e, angles of 22.5° to 67.6° are evaluated as

30

CHAPTER 3. THEORY

45°, angles of 67.5° to 112.5° as 90°, etc. Each histogram then contains 8 floating point numbers
where each number represents the sum of the gradient magnitude for that angle. Each histogram
is then concatenated into a single vector with a total of 8 · 16 = 128 floating point numbers. [26]

Figure 3.11: SIFT feature descriptor. A histogram of gradients is computed for 16 4 × 4 sub-
regions around a point p. Each histogram is represented by 8 floating point numbers, which are all
concatenated into a single 128 element vector

Figure 3.11 illustrates how the SIFT descriptor works. A drawback to this method is its compu-
tational complexity. In addition to that, each keypoint descriptor is 512 bytes (eq. 3.65), which
further complicates the feature matching calculations. Detecting many keypoints can also cause
memory problems as more than 600 features will consume more memory than a 640 × 480 pixel
grey-scale image.

float = 32 bits 128 floats = 4096 bits = 512 Bytes (3.65)

640× 480 grey-scale image = 307200 Bytes

600 SIFT feature descriptors = 307200 Bytes

A compact and fast alternative to the SIFT method is a so-called binary descriptor. A binary
descriptor summarizes the neighborhood of a point with a single bit-string instead of a vector of
floating points. The working principal of binary descriptors are as follows:

• Select a neighborhood around a keypoint
• Select a set of pixel pairs in that neighborhood
• For each pair of pixels s1 and s2, compare the intensities
• Set the bit b high or low depending on the comparison:

b =


1 if I(s1) < I(s2)

0 otherwise
(3.66)

31

CHAPTER 3. THEORY

• Then concatenate all bits into a bit string

The choice of pairs, and the order in which they are compared must be consistent. Binary
descriptors are very compact. They are also fast to compute since it only compares intensity
values instead of calculating the gradient for each pixel. Since they are binary strings, it is also
trivial and fast to compare features. The similarity of two binary strings B1 and B2 is expressed
by their Hamming distance. For binary strings, the Hamming distance is the minimum number of
bits that has to be flipped for B1 and B2 to be equal. In other words, it is the sum of unique bits
in the strings and can be computed using exclusive or :

dHamming(B1, B2) =
∑

b1,b2∈B1,B2

(b1 xor b2) (3.67)

The first binary feature descriptor was proposed in 2010 and is called BRIEF[34]. BRIEF stands
for Binary Robust Independent Elementary Features. It is commonly a 256 bit descriptor, meaning
it samples a set of 256 pixel pairs to construct the bit-string. There are also 127, and 512 bit
variants, but the authors found that 256 samples performed near to optimal [34].

The authors propose five different approaches for choosing the sample pairs. These are illustrated
in figure 3.12. The four first ones apply random sampling in different ways, and they all achieve
higher recognition rates than the fifth which uses an ordered approach [34]. ORB uses BRIEF
descriptors where the point pairs are selected with the second method.

A downside to the BRIEF descriptor is that it does not have the same degree of rotation invariance
as SIFT does.

3.2.5 ORB Feature Detector

Oriented FAST and rotated BRIEF (ORB), as the name suggests, combines FAST and BRIEF.

ORB uses FAST together with an image pyramid for keypoint detection. An image pyramid is
made by reducing the size of the image by a constant factor several times. This gives the detected
features some degree of scale invariance (SIFT uses the same method to achieve scale invariance).
Harris corner criterion is then applied to the detected points in order to filter out bad ones.

ORB uses a centroid technique to compensate for rotation. The center of mass and orientation of
an image patch is calculated by

C =
(
m10
m00

,
m01
m00

)
(3.68)

θ = atan2(m01,m10) (3.69)

32

CHAPTER 3. THEORY

Figure 3.12: Illustration of different approaches for choosing pairs of pixels for comparison in the
BRIEF descriptor. Orange lines are drawn between point pairs.

Where mpq it the image moment about a given axis:

mpq =
∑
x,y

xpyqI(x, y) (3.70)

This is done for a 31× 31 patch around each detected keypoint. Given the center of mass, C, and
the orientation, θ, the coordinates of all point pairs used in the BRIEF descriptor can be rotated
around C by the amount θ.

3.2.6 Feature Matching

The brute force way of matching features is to compare each feature descriptor in the query im-
age to each descriptor in the second image. For an ORB descriptor, the similarity between two
descriptors is their hamming distance. A lower hamming distance means a closer match. Some
query descriptors might match with several descriptors in the second image. For instance, repetitive
structures will have similar descriptors and thus cause matching ambiguities.

In the SIFT paper [26], Lowe proposed a method for eliminating ambiguous matches referred to as
Lowe’s ratio test. For a given query descriptor, find the two closest matches in the second image.

33

CHAPTER 3. THEORY

The closest match is accepted if it is substantially better than the second best. Given the best
distance d1, and the second best d2, Lowe suggest that their ratio should be less than 0.7:

d1
d2

< 0.7 (3.71)

If this test is not passed, the query descriptor does not have any matches in the second image.
Since this algorithm operates with distances, it also works with ORB features.

There will probably still remain some wrong data associations. When the matched features are used
to camera’s transformation between images, the wrong data associations will not conform to the
transformation of the correct data associations. Thus they can be treated as outliers and removed
with RANSAC. Random Sample Consensus (RANSAC) is an algorithm for outlier rejection. Given
a set of observed data, select a random subset and compute a fitted model based on the subset.
Apply this model to the rest of the observed data. The observations that deviate from the fitted
model by more than a selected threshold are rejected as outliers. This process is repeated for new
random subsets, and the fitted model with the fewest outliers is the one that best describes the
dataset.

3.2.7 Camera Model

In order to use the camera for SLAM, its extrinsics and intrinsics must be known. Camera extrinsics
are parameters for where the camera is in the world. Camera intrinsics are the parameters that
dictate how the world is projected into the camera image.

The goal is to find how a point in the world Pw maps to a point p in pixel coordinates. Assuming
ideal projection, this transformation is expressed by equation 3.72.

s · p = KHPw (3.72)

s is an arbitrary scaling factor which is not part of the model. H transforms the world point to
the camera frame Pc:

Pc = HPw (3.73)

K transforms points in the camera frame to image coordinates. K is also known as the camera
matrix.

K =


fx 0 cx

0 fy cy

0 0 1

 (3.74)

34

CHAPTER 3. THEORY

Projection from the camera frame to 2D pixel coordinates is thus

s · p = KPc (3.75)

s ·


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



Xc

Yc

Zc

 (3.76)

The camera matrix is composed by the focal lengths fx and fy, and the principal point (cx, cy).
The focal lengths are equal if the pixels are perfectly square. The principal point is usually close to
the image center. Its offset is determined by a offset between the physical sensor and the camera
lens. In equation 3.78, the 3-by-4 projective transformation matrix maps 3D points into 2D pixel
coordinates representing normalized camera coordinates:

xd = Xc

Zc
yd = Yc

Zc
(3.77)

Zc =


xd

yd

1




1 0 0 0
0 1 0 0
0 0 1 0



Xc

Yc

Zc

1

 (3.78)

H in equation 3.72 is the extrinsic matrix and is a homogeneous transformation that transforms the
world point to the camera coordinate system. R is the extrinsic parameters, while the Pc represents
the points in the camera coordinate system:

H =


r1 r12 r13 tx

r2 r22 r23 ty

r3 r32 r33 tz

0 0 0 1

 =

R t

0 1

 (3.79)

Pc = HPw (3.80)

hence: 
Xc

Yc

Zc

1

 =


r1 r12 r13 tx

r2 r22 r23 ty

r3 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.81)

35

CHAPTER 3. THEORY

Combining projection and homogeneous transformation, the projective transformation is obtained
to map 3D points in world coordinates into 2D points in pixel coordinates:

Zc


xd

yd

1

 =H


Xw

Yw

Zw

1

 =


r1 r12 r13 tx

r2 r22 r23 ty

r3 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.82)

By interconnecting the equations for intrinsic and extrinsic parameters together the output of
sp = AHPw can be written as:

s


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



r1 r12 r13 tx

r2 r22 r23 ty

r3 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.83)

If Zc 6= 0 and using equation 3.81, one can convert equation 3.83 equivalent to:u
v

 =

fxXc
Zc

+ cx

fy
Yc
Zc

+ cy

 (3.84)

All lenses are subject to some distortion. Fisheye lenses are especially affected by this. For ultra
wide-angle lenses a different camera model should be used. The standard camera model works for
the fisheye camera on the Loomo. Lens distortion is a non-linear problem, but the standard model
compensates by doing a linear approximation. Thus the compensation for the fisheye camera will
be less accurate than for a regular camera.

The coefficients k and s are the radial and tangential distortion respectively. The parameters xd and
yd are distorted points, while xdd and ydd are tangential distorted points. Equation 3.85 manage
distortion of this pinhole camera model.

u
v

 =

fxxdd + cx

fyxdd + cy

 (3.85)

where: xd
yd

 =

Xc
Zc

Yc
Zc

 (3.86)

xdd
ydd

 =

xd(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xdyd + p2(r2 + 2x2

d) + s1r
2 + sr24

yd(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y2

d) + 2p2xdyd + s3r
2 + s4r

4

 (3.87)

36

CHAPTER 3. THEORY

r2 =
[
x2
d + y2

d

]
(3.88)

OpenCV and Matlab have tools for finding the camera intrinsics, including the radial and tangential
lens distortions. By taking pictures of a regular pattern, for instance a checker board where the
size and number of squares is known, these tools can perform a camera calibration. By detecting
keypoints in the images fitting them to the camera model, the camera intrinsics can be found.

3.3 Odometry and Motion Model of the Loomo

Odometry is the process of using sensor data to estimate movement over time. The odometry for
the Loomo also relies on differential drive kinematics.

All measurements are uncertain. A motion model that also encodes this uncertainty is needed when
solving the SLAM problem.

Odometry is closely related to, and sometimes used interchangeably with dead reckoning. Dead
reckoning is estimating motion relative to a previously known pose. Odometry does not explicitly
estimate motion relative to a previously known pose, though it is usually implied.

3.3.1 Odometry of a Differential Drive Robot

The Loomo is a differential drive robot. The odometry uses the left and right wheel encoders
together with the wheel geometry (diameter and base width) to estimate the Loomo’s movement.
The movement is estimated in 2D space, so the Loomo’s pose is described by a position x, y and
heading θ.

The odometry is solved incrementally by updating the pose from the previous sample based on an
input uk.

xk = f (xk−1, uk) (3.89)

The input uk is the linear displacement of the left and right wheel ∆sL and ∆sR. The linear
displacement of a wheel is calculated by counting the ticks, ntick, from its rotary encoder. The
number of ticks per revolution, nt is known, and the wheel diameter, D, is known.

∆sL = ntick,L
nt

· π ·D ∆sR = ntick,L
nt

· π ·D (3.90)

37

CHAPTER 3. THEORY

The function for incrementing the state, f(xk−1, uk), can be written on the following form:

xk = xk−1 + ∆x (3.91)
xk

yk

θk

 =


xk−1

yk−1

θk−1

+


∆x
∆y
∆θ

 (3.92)

The calculations for ∆x assume no slip between the wheels and ground, and that the increments
are small. Small increments allow for the following approximations:

• The robot moves along a circular path between samples, where a straight path is equivalent
to a circular path with radius approaching ∞ (illustrated in figure 3.13)

• The distance between two points on an arc is equal to the arc length between those points
(illustrated in figure 3.13)

• The sine of an angle is equal to the angle, sin(∆θ) = ∆θ

Using these approximations, the displacement of the robot between samples equals the average
linear displacement of the wheels (equation 3.93). By using the trigonometric relations illustrated
in figure 3.14, the change in angle between samples is expressed by equation 3.94.

∆s = ∆sL + ∆sR
2 (3.93)

∆θ = ∆sR −∆sL
b

(3.94)

Figure 3.13: Left: Length of an arc between two points approximated to the distance between the
points. Right: Robot displacement expressed as the average of the displacements of the wheels

The change in position ∆x and ∆y is dependent on the heading of the robot. The displacement
∆s can be expressed in vector form as illustrated in figure 3.15. ∆x and ∆y are the components
of this vector. The function for updating the robot pose is thus given by equation 3.95.

38

CHAPTER 3. THEORY

Figure 3.14: Change in robot angle derived from trigonometric relations

Figure 3.15: Expressing ∆s as a vector to find the change in position

xk = f (xk−1, uk)
xk

yk

θk

 =


xk−1

yk−1

θk−1

+


∆s · cos

(
θk−1 + ∆θ

2

)
∆s · sin

(
θk−1 + ∆θ

2

)
∆θ

 (3.95)

3.3.2 State Estimation Based on Wheel Encoder Odometry

A state estimation is expressed by the predicted state in equation 3.96, and the uncertainty of
that prediction in equation 3.97. The state estimation is a non-linear function, so it can not be
applied directly to the covariance Σk. The uncertainty is updated by computing the Jacobian of
f (xk−1, uk) with respect to the state and with respect to the input (equation 3.98).

39

CHAPTER 3. THEORY

xk = f (xk−1, uk) (3.96)

Σk = Fx · Σk−1 · F Tx + Fu ·Qk · F Tu (3.97)

Fx = ∂f(xk−1, uk)
∂xk−1

, Fu = ∂f(xk−1, uk)
∂uk

(3.98)

The Jacobians are as follows:

Fx =


1 0 − sin

(
θk−1 − ∆sL−∆sR

2·b

)
· ∆sL+∆sR

2

0 1 cos
(
θk−1 − ∆sL−∆sR

2·b

)
· ∆sL+∆sR

2

0 0 1

 (3.99)

The following substitution is done in Fu

Θ = θk−1 −
∆sL −∆sR

2 · b (3.100)

Fu =


1
2 cos (Θ) + ∆sL+∆sR

4·b · sin (Θ) 1
2 cos (Θ)− ∆sL+∆sR

4·b · sin (Θ)
1
2 sin (Θ)− ∆sL+∆sR

4·b · cos (Θ) 1
2 sin (Θ) + ∆sL+∆sR

4·b · cos (Θ)
−1
b

1
b

 (3.101)

Qk is the covariance of the process noise. It encodes the uncertainty of the input.

Qk =

kR · |∆sR| 0
0 kL · |∆sL|

 (3.102)

The rotary encoder ticks are counted fairly reliably. The uncertainty comes mostly from inaccuracies
when measuring the wheel diameter and base width. For instance, tire inflation is a source of error.
The tire deformation varies with load, for instance whether a person is riding the Loomo or not.

40

CHAPTER 3. THEORY

Figure 3.16 demonstrates both the accumu-
lated error in odometry, and the estimated
uncertainty of the position. The figure is
drawn by simulating a differential drive ro-
bot driving in a straight line, but for each
run it is given a randomized deviation to the
wheel geometry. The trajectories are thus
the ground truth of the motion, while the
predicted state moves along the x-axis.

The uncertainty of the predicted state is
drawn with ellipses (they only show the un-
certainty of the x and y position). The size is
based on three standard deviations (3σ) from
the predicted state. In a Gaussian distribu-
tion, 99.7% of the values lie within 3σ from
the mean. This is clearly not the case for the
trajectories (they are grouped in more of a
banana-shape than within the ellipses). This
is because of the approximation error in the
linearization used to calculate Σk. It can be
seen that the inaccuracy in the linearization
also accumulates.

Robot heading, θ, is the most significant of
the state parameters x, y and θ in terms of
its influence on accumulated dead-reckoning
errors. The estimated travelled distance is
more accurate than the overall state estima-
tion. The length of each trajectory has much
lower variance than the states of each traject-
ory.

Figure 3.16: Simulated trajectories of several differ-
ential drive robots where each robot is given a ran-
domized deviation in wheel geometry. The ellipses are
the calculated uncertainties of the position using three
standard deviations (3σ)

3.4 Simulating Swarm Intelligence for Collaborative Exploration

This section will go into detail on the theory and ideas that is used to design the simulation of
collaborative exploration. The simulation will consist of a randomly generated unknown building,
and a variable amount of bots exploring that building. The goal of the simulation is to determine
the effectiveness of different exploration methods, and to compare the efficiency of exploring the

41

CHAPTER 3. THEORY

building as the number of bots increase.

3.4.1 Emergent Behaviour

With the use of multiple robots, research within swarm robotics and flocking behavior is highly
relevant for this thesis. The paper ‘Flocks, Herds and Schools: A Distributed Behavioral Model’. [8]
describes an algorithmic approach to simulate the behaviour of flocking birds, herds of animals or
schools of fish, As an alternative to scripting the path of each object individually. In this algorithm
each BOID; Bird-oid, behave as independent actors and make decisions based on their perception
of the local environment. By following these rules, the whole flock seems to act as a single coherent
unit, and we observe what is called emergent behaviour.

The following rules are used in the paper to create flocking behaviour:

Separation: Avoid collision with nearby flock mates.

Cohesion: Stay close to nearby flock mates.

Alignment: Stay in formation with nearby flock mates.

This rule structure has inspired the strategies which is used to control the bots in the simulation,
and they will be explained in the implementation chapter.

3.4.2 Occupancy Grid Map

This is a way to represent the environment of a mobile robot. Data from distance sensors and the
pose of the robot is used to construct the map as the robot discovers its environment. The map is
usually discretized into cells and the state of the cell tells if the cell is free space or an obstacle.

3.4.3 Configuration Space

Configuration space, or C-space represents the set of all transformations that can be applied to
a robot given its kinematics. A robot is mapped to a single point, while the obstacle regions are
expanded by sliding the robot shape around the obstacles. C-space is useful for motion planning
in static environments. However, the environment is not static, both because it is unknown and
because there are other Loomo robots present. By using their distance sensors and the swarm rules,
the Loomo robots will actively avoid collision with obstacles and other robots as the environment
is explored, and thus functions as an approximation to a C-space.

42

CHAPTER 3. THEORY

3.4.4 Potential Field

Potential fields are a different method of motion planning. Figure 3.17 show an example of a
potential field. The goal position has an attractive component and obstacles have a repulsive
component. The steering vector of a robot navigating the work space can be set by By calculating
the gradient of the field.

∇U =
[
∂U

∂x
,
∂U

∂y

]
(3.103)

This is a basic overview of how the potential field can be used. However, a simplified, discretized
variant of the potential field method is used as an additional cost in the A* algorithm. This is
explained in the implementation chapter in section 4.3.6.

Figure 3.17: Potential field example

3.4.5 Pathfinding

Dijkstra’s algorithm is a pathfinding algorithm that will find the shortest path between two nodes
on a graph. A disadvantage with this algorithm is that it has to explore all of the nodes on the graph
to make sure the shortest path is found. This increases computational load. The A* algorithm is
an extension of Dijkstra, the addition being a heuristic, h(n). It represents the distance to the goal
node from the evaluated node. The heuristic makes it possible to prioritize which nodes to explore

43

CHAPTER 3. THEORY

first. By prioritizing, the amount of nodes that is explored before the goal is reached is reduced
significantly compared to Dijkstra.

Equation 3.104 show the cost function used in the the A* algorithm. Figure 3.18 illustrates how
the cost function is used. The bot is scanning its eastern neighbor, determining the cost of traveling
to that node, g(n), and calculating the cost of distance from the neighbor node to the goal node
h(n). The total cost f(n) is used to compare this node to other nodes, and prioritize if this node
is worth exploring.

f(n) = g(n) + h(n) (3.104)

Where
Symbol Description Unit
n Node -
f(n) Total cost of the node -
g(n) Cost of traveling from current note to neighbor node -
h(n) Heuristic: Cost of neighbor node to goal node -

Figure 3.18: A* cost factors

3.4.6 Velocity Control

Every rule controlling the Loomo will provide a resultant vector based on their different criteria,
all the rules are multiplied with their weight and the sum of all the resultant vectors are divided

44

CHAPTER 3. THEORY

by the total number of resultant vectors.

~Vc = 1
n

∑
i

(wi · ~Vri) (3.105)

v =
∣∣∣ ~Vc∣∣∣ · cos(θr − θL) (3.106)

ω =
∣∣∣ ~Vc∣∣∣ · sin(θr − θL) (3.107)

Where
Symbol Description Unit
~Vc Resultant vector of combined rules m/s
v Linear velocity setpoint m/s
ω Angular velocity setpoint m/s
n Total number of resultant vectors -
~Vri Resultant vector of individual rule m/s
wi Weight factor of individual rule -
θr Angle of resultant vector in global space rad
θL Angle of Loomo in global space rad

45

CHAPTER 3. THEORY

Figure 3.19: Velocity vector

46

CHAPTER 3. THEORY

3.5 Machine Learning

Machine learning is the concept of using algorithms that automatically improves through exper-
ience. ”Experience“ in the context of machine learning is usually referred to as sample data or
training data. The purpose of a machine learning algorithm is to build a model that can make
outcome predictions or decisions without explicitly being programmed to do so. Machine learning
is thus suited for applications where it is difficult for humans to build these models. For instance,
in computer vision it is difficult to ”tell“ a computer exactly what properties a set of pixels needs
in order to tell whether there is a person in the image or not.

3.5.1 Supervised Learning

A supervised machine learning model has knowledge of the input and output data, and uses that
data to estimate future outputs.

Input Layers

Hidden Layers

Output Layers

Inputs

Outputs

Figure 3.20: Supervised learning (the correct output is known)

All supervised learning algorithms can be categorized as a classification or regression problem.
A regression algorithm tries to predict continuous data or responses such as power consumption
or stock prices, while classification examples estimates direct response like speech recognition or
detecting objects in images.[35]

Savitha [36, p. 8] compares supervised learning with an environment controlled by a ”teacher“. The
teacher has knowledge of the environment and tries to adjust how the data is treated in order to
minimize output errors. Unsupervised learning on the other hand is when the output is unknown,
and the machine learning algorithm tries to find hidden patterns in the input data.[35]

47

CHAPTER 3. THEORY

3.5.2 Deep Learning

Deep learning is a branch of machine learning where the purpose is to enable computers to perform
tasks that come natural for humans. This can for instance be to understand natural language
(through text or audio), or to recognize objects in images.[37]

3.5.3 Neural Networks

A neural network in machine learning takes inspiration from how the brain works. A node, i.e. a
neuron, in the network simply receives inputs, and provides outputs. Neural networks in machine
learning usually have a more ordered structure than the neurons in a brain. There is an input
layer, an output layer, and some amount of hidden layers in between. The most common structure
is that the output of each node connects to the inputs of all the nodes in the next layer.

A neuron has a weighing factor, w, for each of its inputs, x. The weighted inputs are summed. A
very simple type of neuron, called a perceptron [38], outputs 1 if the sum is above a threshold, and
0 if the sum is below. This threshold is called a bias, b, and is also a parameter of a neuron. The
perceptron is a type of neuron where the activation function is a comparison with boolean output.
The activation function is often so that the output will be within a lower and upper boundary. For
instance, a Sigmoid function will bound all real values so they lie between 0 and 1. The output of
a single neuron is expressed in equation 3.108. The weights and biases of a neural network are the
parameters that are adjusted through the training process.

output = f

 n∑
i=1

(wixi) + b

 (3.108)

Figure 3.21 illustrates an example of a neural network. If the input is a 416× 416 pixel grey-scale
image, the input layer will have one node for each pixel. If it is a classification algorithm, the
outputs can for instance be the probability of there being a cat or a dog in the image.

48

CHAPTER 3. THEORY

. . .

Input Layer

Output Layer

Hidden Layers

Output 1

Output 2

416x416

Figure 3.21: A neural network

3.5.4 Convolutional Neural Networks (CNN)

As illustrated in figure 3.22, a CNN has additional convolution layers that perform mathematical
operations as the data flows through.[39, p. 101]

Input images

Hidden Layers

Convolutional LayerConvolutional Layer

Output

Figure 3.22: CNN workflow

CNNs use 2D convolutional layers, making this approach ideal for computing 2D data such as im-
ages. The network breaks the images down into features using several sets of layers. As the name
suggests, Deep Neural Networks can be very deep. ResNet for instance, a gigantic classification
network can contain 152 layers [40]. The neural network made in this thesis contains 15 layers. The
middle layers are often referred as hidden layers since the inputs and outputs of those are not visu-

49

CHAPTER 3. THEORY

alized [37]. However, to provide good output data, these hidden layers needs smart mathematical
operations inside. Examples of such mathematical operations are convolutional layers, maxpooling
and YOLO-output layers [41].

Convolutional operations are repeatedly used in CNNs thus making such operations important
when designing neural networks. How convolutional operations work are described in 3.2.2.

3.5.5 Maxpool

Maxpooling can be applied to the out-
put of a convolutional layer to reduce
the resolution, and thus the compu-
tational load, for following layers. It
can also help to avoid overfitting as de-
scribed in section 3.5.9. An image is
segmented into pools, and only the max-
imum value in each pool is carried over
to the output of the maxpool-operation.
Figure 3.23 has 12 2× 2 pools.

3

3

3

3

3

3

3

3

2

2

2

2

1

1

1

1

4

4

4

5

5

5

5

7

7

7

7

7

7

7

8

88

8

8

8

8

89

9 9

9

9

9

92

5

5

7

8

88

9 9

8 9

9 8 9

9

Figure 3.23: Maxpooling

3.5.6 Activations

Each layer inside the CNN is provided with information from the previous layer. A convolutional
operation inside the current layer manipulates its parameters and provides some new information to
the next layer. This new output information from the layer is called an Activation. The Activations
are determined by an Activation Function that holds the output number between some lower and
upper limit, for instance a Sigmoid function. The closer the upper limit for the output, the stronger
activation. Figure 3.24 shows the activation of a convolution operation from a specific filter that
highlights gradients in the image. In figure 3.24, the activation from a convolutional operation
is visualized. Figure 3.25 shows the activation when maxpooling is applied in addition to the
convolution.

Figure 3.24: Convolutional activation

50

CHAPTER 3. THEORY

Figure 3.25: Maxpool activation

3.5.7 Object Detection

As mentioned in 3.5.2, Deep Learning is a
machine learning strategy to find and clas-
sify objects in images. The main difference
between classification and object detection
algorithms is that bounding boxes are drawn
around the region of interest in detection al-
gorithms. A bounding box is represented by
five parameters: x, y, w, h and the associated
class [42, p. 2] (for instance ”Loomo“ or ”Per-
son“). x and y are coordinates representing
the origin point. The width w and height
h determines the size. Bounding boxes need
to be labeled manually to provide training
data, and the answer key is called the ground
truth. A sufficiently large set of labeled data
is required to train a CNN. During the train-
ing process, the output bounding box of the
CNN can be compared with the ground truth
to evaluate its performance.

X

X

X

Y

w

h

Figure 3.26: Bounding box

There are a plethora of object detection algorithms available. For instance, Regions with CNN
features (R-CNN) [43], Fast-RCNN [44], Faster-RCNN [45] and Single Shot MultiBox detector
(SSD) [46]. This report uses the You Only Look Once (YOLO) [42] algorithm.

51

CHAPTER 3. THEORY

3.5.8 You Only Look Once (YOLO)

You Only Look Once (YOLO) is an object detection algorithm that uses a CNN structure. It is
designed for real-time object detection and outperformes R-CNN and its successors. The system
contains a single convolutional network where the input image is being resized into a desired
form(448x448 in YOLO first version). The output returns bounding boxes like shown in Figure
3.27, if the confidence score is above a given threshold.

Figure 3.27: Resize image(1), Run CNN(2), Predict Bounding Boxes(3)

The YOLO algorithm is fairly new. The first version was published in 2016 [42], and since then,
there have been published several improved versions.

52

CHAPTER 3. THEORY

YOLOv2 is second generation YOLO, using same
workflow and principles. This version introduces
a new strategy for calculating bounding boxes
by using Anchor boxes [47]. Anchor boxes are
predefined bounding boxes that all have similar
width and height as the bounding boxes of the ob-
jects you want to detect. The neural network uses
the anchor boxes as mutable templates to help it
estimate bounding boxes. Including anchor boxes
to the neural network improves the ability to de-
tect multiple objects, overlapping objects, and ob-
jects of different sizes. The top image in figure
3.28 is covered with tiled anchor boxes. Anchors
with low confidence are neglected, while the ones
with high confidence are selected using Non Max-
imum Suppression. Non Maximum suppression is
a method for selecting the best candidate out of
a group of adjacent candidates. Adjacent candid-
ates in this case is overlapping bounding boxes.
Finally the objects are detected as shown in the
bottom image in figure 3.28. This example uses
only one anchor, while the final model in this
thesis uses six. Originally, YOLO predicted 98
bounding boxes per image, but when using anchor
boxes, more than 1000 boxes are predicted. This
led to growth in Mean Average Precision (mAP)
(explained in section 3.5.9) and allows more op-
portunities when resizing training images. This is
a significant improvement compared to the first
YOLO version.

Figure 3.28: Anchor boxes

A third YOLO generation was published in 2018 [41] where small adjustments were made to improve
performance. YOLOv3 gained some size in network structure, thereby performing at a significantly
higher accuracy, but runs slightly slower. A forth generation (YOLOv4) was recently published
[48], but it does not include a tiny version.

YOLO-tiny is a light-weight version of the YOLO framework. Even though all YOLO neural nets
are targeting real time processing, they do demand strong computational power. The best inference
performances are achieved by devices with an integrated GPU. A GPU significantly accelerates the
processing time, but YOLO-tiny neural nets are specialized for CPU processing. It does this by

53

CHAPTER 3. THEORY

minimizing the number of layers and decreasing filter size, and still provides decent precision.
YOLO has developed a tiny-neural net for every version except the fourth, which is probably still
under development.

3.5.9 Training of Convolutional Neural Networks

All CNNs needs training data. The data provides examples of inputs and their corresponding
outputs. This gives the fundamental base of what the neural network are able to learn. The
data is inserted into a specific network architecture with tunable parameters or weights and biases
that determines the output. The network calculates the loss from the correct output and tries to
minimize it by changing the weights during training. This is known as back-propagation. Neural
networks with the exact same architecture can be trained to map a set of inputs to any kind of
outputs. A fully trained neural net has specific weights and biases, that can classify or determine
confident predictions of new inputs.

When your model is fully trained, but you want to include more training data in your neural
network, transfer learning is an opportunity. Instead of starting an entire new training session, you
use the architecture and calculated weights from the pre-trained model as a fundamental before
continuing the training session by including more data. This process is called transfer learning.

Intersection of Union (IoU) is a measure of how accurate the predicted bounding box is overlapping
the ground truth bounding box. The term is explained and visualized in figure 3.29.

IoU =

Area of Intersection

Area of Union

Groundtruth

Prediction

Figure 3.29: IoU

A threshold value for IoU determines whether the prediction is a true positive or negative. A
common threshold is 0.5, which provides the following assumptions:

if IoU >0.5 true positive (TP)
if IoU <0.5 false positive (FP)

if IoU >0.5, but predicts wrong class true negative (TN)

54

CHAPTER 3. THEORY

Precision is a measure of the amount of positive predictions that are relevant.

Precision = TP

TP + FP
(3.109)

Recall is a measure of how many relevant objects that are positive.

Recall = TP

TP + FN
(3.110)

Recall and precision are always between
zero and one. Figure 3.30 shows an example
plot of precision against recall. The plot
gives an overview of the overall performance
of the entire training set. p(r).

Average Precision, (AP), is per definition
the area beneath the precision-recall chart:

AP =
∫
p(r) (3.111)

Mean Average Precision (mAP) is the most
reliable expression when validating neural
networks. It is the mean value of every
average precision, and gives an indication of
both accuracy and precision.

A Loss Function is the error between the net-
work prediction and the known output. The
calculated loss is used to determine how to
adjust weights and biases.

Figure 3.30: Precision against recall example plot

Overfitting can occur when the training process has been too long. The neural network learns
details and noise inside the training data, and finds it hard to detect new input-images outside the
training set. Figure 3.31 illustrates the effect of overfitting for an arbitrary data set, by making
rough changes to fit every node. Information from loss function and mAP can spot indications of
overfitting.

55

CHAPTER 3. THEORY

Figure 3.31: Illustration of the effect of overfitting

56

Chapter 4

Implementation

4.1 SLAM Implementation

The SLAM implementation was done in C++. Source code is available in appendix A. The OpenCV
library [49] is used for the computer vision tasks, and Eigen [50] is used for the linear algebra.

The C++ Standard Template Library (STL) has a variety of container templates. If the properties
of a container is not particularly relevant, it will simply be referred to as a list. Most of the times
the container type is a vector (std::vector<T>), but this can easily be confused with vectors in math.

4.1.1 Data Recording

The SLAM implementation is not developed on the Loomo itself. Therefor, it is necessary to do
recordings of relevant data for use in development. An app was made to record the Loomo’s sensors
and cameras. The source code for the app is available in appendix A.

Recording the sensors is fairly trivial. The sensors are accessed through the Loomo SDK. This data
can be written as-is to a CSV file. An external library [51] is used to parse and save the data in
CSV format. Each row contains an entry of all the sensors. The first column holds the timestamp
for each entry.

Recording the RealSense’s camera streams is more difficult. The Android API has utilities for
recording video, but the RealSense camera can not be accessed through the Android API (only
through the Loomo SDK).

The image frames from the RealSense are received in a byte buffer. A simple way to record video
is thus to write the sequence of bytes for each frame to a binary file. Without the use of a video
codec, this binary file will be uncompressed. Reading an writing from storage is a slow process, so
this method is not fast enough to write the frames at the camera’s frame rate of 30 FPS. However,
the SLAM implementation in this thesis does not do image processing on each camera frame.

57

CHAPTER 4. IMPLEMENTATION

The rate at which the Loomo is able to store uncompressed image frames is dependent on the size
of the image. Table 4.1 shows the achieved frame rate when recording video with this method. All
3 cameras where recorded simultaneously. It is the fisheye camera which is of interest in the SLAM
implementation. 15 to 16 Frames Per Second is more than good enough for our purpose.

Camera type Image size in bytes Achieved frame rate
Fisheye 640× 480× 1 = 307, 200 bytes 15-16 FPS
Color 640× 480× 4 = 1, 228, 800 bytes 6-7 FPS
Depth 320× 240× 2 = 153, 600 bytes 26-27 FPS

Table 4.1: Achievable frame rate when storing RealSense camera streams as raw bytes

The recorder app is made to store some extra information in the video files. A video file starts with
3 unsigned integers which tell the width and height of the video, and also the number of bytes per
pixel. Before each frame is written to the file, the timestamp for that frame is written. The same
timestamp is also included in the CSV file. It is from a different clock than the timestamp for the
sensor data, so it is more useful to think of it as a frame index. It is included in the CSV file to
enable synchronization of sensor data and video stream.

The sequence of bytes which constitutes an image frame are stored in column-major order. The
fisheye camera is grey-scale, so it only stores one byte per pixel. The color camera has four channels,
and the bytes are ordered red, green, blue and alpha. The two bytes of each depth camera pixel
have little endian order, meaning that the least significant byte is stored first. Figure 4.1 illustrates
the structure of the video files.

Figure 4.1: Structure of binary files of video recordings

There was a flaw in the data recording. When the Loomo is driven manually, it is steered by tilting

58

CHAPTER 4. IMPLEMENTATION

the upper body as shown in figure 4.2. None of the recorded sensors registers this motion. The IMU
is located in the base. The utility in the Loomo SDK that calculates the transformation between
the Loomo’s base and the cameras apparently assumes that the upper body is always upright.
Considering that the cameras are not supposed to be active when the Loomo is driven manually,
this is not an unreasonable assumption. The consequence of the flaw is that the feature matching
can not reliably be used to calculate poses between nodes because the camera transformation can
not be compensated for.

Figure 4.2: When the Loomo is driven manually, turning is done by tilting the upper body of the
Loomo

4.1.2 Pose Graph Implementation

The pose graph implementation has three main components

• a data structure representing an edge
• a data structure representing a node
• a class that maintains the graph and performs the graph optimization

An edge contains three things

• a constraint [x, y, θ]>

• the covariance matrix for that constraint
• the indices of the two nodes it is connecting

A node contains

59

CHAPTER 4. IMPLEMENTATION

• its index
• its current pose [x, y, θ]>

• a list of edges that connect to it
• the observation that was done of the environment when the node was created

Notice that all the edges are stored in nodes. A node only contains edges that connect to it, not
edges that go from it to another node. This is convenient when building the linear system because
it is easy to iterate through all the edges of all the nodes.

The observation that is stored in a node consists of the keypoints and descriptors that were calcu-
lated from the fisheye camera at that instance.

”PoseGraph“ is the name of the class that maintains and optimizes the graph. It has methods for
adding nodes and edges, and for performing the optimization.

The class also has a container with all the nodes in the graph. The container that is used is a map
(std::map<Key, T>). A map is a container of key-value pairs. The value is the node, and the key is
an unique identifier for an element of a map. When a new node is added to the container, the node
index is used as the key. Search, insertion and removal operations have logarithmic complexity [52].
Being able to search for nodes by their index is an advantage. It is possible to do this with other
container types as well, but not without implementing a search algorithm. Listing 4.1 shows a code
snippet for how to iterate through the graph and find all the pairs of nodes that are connected by
an edge. The code that is being exemplified is the method that is used to build the linear system
when performing graph optimization.

1 for (auto it = nodeMap_ .begin (); it != nodeMap_ .end (); it ++) {

2 // ’it’ is an iterator . Iterators point to an element in a container

3 Node node_j = it -> second ;

4 for (Edge edge : node_j .edges) {

5 Node node_i = nodeMap_ .find(edge.from)->second ; // finding the connected

node

6 // Compute the error and the blocks of the Jacobian

7 // Populate b and H

8 }

9 }

Listing 4.1: Method for iterating through the graph and finding all the connected node pairs

The node index is incremented for each new node that is added to the graph. When combining
multiple graphs, it is necessary that the nodes remain uniquely identifiable. The solution in this
implementation is to give the nodes a 64 bit index. Each PoseGraph object is given an identifier
which is stored in the top 32 bits of the node index (see figure 4.3). The bottom 32 bits are
initialized to zero, so the node index can be incremented approximately 4.29 · 109 times before
overflowing into the top 32 bits.

60

CHAPTER 4. IMPLEMENTATION

Figure 4.3: An identifier is masked in the top 32 bits of the node index so that graphs can be
combined while the nodes remain unique

4.1.3 Processing Encoder Input

The odometry is implemented in the class ”LoomoOdo“. The class processes the encoder inputs to
give an estimate of the current pose and its uncertainty based on the equations derived in section
3.3.

The rotary encoders of the left and right wheel are accessed through the Loomo SDK. The SDK
returns the net number of encoder ticks, so it is necessary to track the changes in these values.

The encoder ticks are passed to the ”LoomoOdo“-class, which then increments the pose estimate
and the covariance estimate. The class has getter-methods that returns these estimates. It also has
a getter that returns only the most recent pose increment. This is useful for logging the odometric
trajectory of the Loomo, and for measuring the travelled distance of the Loomo.

Figure 4.4 shows an estimated trajectory of a Loomo based only on the wheel encoders. The Loomo
was driven a route of approximately 42 meters, and started and stopped in the same spot. A rough
sketch of the ground truth overlaid on a map of the building is shown to the left. The bulk of
the error in the trajectory comes from turning. This is because the person driving the Loomo
has to shift his weight in order to turn. This causes the tires to deform differently during turns.
Otherwise, the odometry is subject to little drift.

The odometry starts in pose x = [0, 0, 0]>. The state and covariance estimate can be reset back
to 0. This is necessary for the graph because odometry based edges hold the relative pose and
uncertainty between two nodes.

4.1.4 Adding Nodes to the Graph

Nodes are added to the graph as the Loomo moves around. Each consecutive node is connected by
an odometry based edge. Creating a new node always goes in tandem with creating a new edge.

The odometry is reset after new nodes are added to the graph. This means that the current
odometry pose estimate is the constraint of the new edge, and the pose’s covariance is the new
edge’s covariance. Let ẑ be the odometry pose estimate, and Σ̂ the covariance. The steps for adding
a node to the graph are summarized in algorithm 1.

A node also stores an observation. Doing observations is explained in section 4.1.6.

61

CHAPTER 4. IMPLEMENTATION

Figure 4.4: Left: a rough sketch of the ground truth of the Loomo’s trajectory. Right: the estimated
trajectory based on odometry alone

Algorithm 1 Adding node to pose graph
newEdge ← ẑ, Σ̂
newNode ← newEdge
newNode ← initialPose
newNode ← observation
graph ← newNode
Reset ẑ, Σ̂

The new node is given an initial pose based on the dead reckoning since last node. The pose xi+1

is found by appending the constraint to the previous pose as shown in equation 4.2. (Note that
Ri is not a 2D homogeneous transformation or a 3D rotation matrix. It is a 2D rotation matrix
applied to [x̂, ŷ]> that conveniently resolves to that form.)

xi+1 = xi + Riẑ (4.1)

xi+1 =


xi

yi

θi

+


cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1



x̂

ŷ

θ̂

 (4.2)

If no graph optimization is done, the pose graph will resemble the odometric trajectory. Figure
4.6 shows the graph representation of the same dataset as in figure 4.4. The nodes are drawn as
triangles so that all three states can be visualized. A new node is added to the graph either every
1 meter travelled, or if the Loomo rotates by more than 45°.

62

CHAPTER 4. IMPLEMENTATION

Figure 4.5: Initializing the pose of new nodes

4.1.5 Camera Calibration

The camera calibration toolbox in Matlab was used to calibrate the RealSense fisheye camera. It
has a Graphical User Interface (GUI) that makes it easy to assess the quality of the images that
are used for calibration.

The fisheye camera is calibrated by first taking a series of images of a checker-board. The images
should be so that the checker-board has positions in most of the FoV of the camera, and has
varying angles. Figure 4.7 shows some examples. Many more pictures than were needed were
taken. 32 of these were chosen for calibration. Figure 4.8 shows the distribution of the checker-
board in those images relative to the camera. Since it is a wide Field of View camera, 3 radial
distortion coefficients, k1, k2, k3, are computed. Equation 4.3 shows the calculated camera matrix
and equation 4.4 shows the calculated radial and tangential distortion coefficients. The parameters
are presented in the form that OpenCV uses.

K =


fx 0 cx

0 fy cy

0 0 1



=


294.7754 0 329.4582

0 294.6943 249.6908
0 0 1

 (4.3)

D = [k1, k2, d1, d2, k3]>

= [−0.2641, 0.0731, 0.0010, −0.0003, −0.0094]> (4.4)

63

CHAPTER 4. IMPLEMENTATION

Figure 4.6: Pose graph using only odometry

4.1.6 Computer Vision

[53]

The RealSense’s fisheye camera is the exteroceptive sensor used in this SLAM implementation.
The computer vision task is twofold:

• Abstract raw images into a compact form, namely identifying keypoints and their descriptors
• Interpreting these observations in a way that is useful for SLAM

The OpenCV library [49] has implementations for most of the required utilities. Here is a brief
overview of what this implementation used OpenCV for:

• ORB feature detector and descriptor
• Brute force feature matching
• Undistorting images based on camera parameters
• Estimating essential matrix
• Recover relative camera pose based on essential matrix and point correspondences

The images do not get undistorted. Instead, the keypoints are detected in the raw images, and the

64

CHAPTER 4. IMPLEMENTATION

Figure 4.7: Examples of images used in the camera calibration

undistortion is applied to the keypoints only. This reduces computational cost.

ORB is used for keypoint detection and feature description. The default parameters are used with
OpenCV’s ORB detector except for the maximum number of features to retain. The features are
ranked by their Harris score and the poorer ones discarded if above this number. It is set to 3000
instead of the default value of 500. Section 5.4 found that the computation time with respect to
the number of features has linear complexity. It was also found that performing the detection has
an additional constant time penalty that outweighs the benefit of retaining few features.

The number of features that are detected depends on the environment. It also varies within the
same environment as shown in figure 4.9. The detected keypoints and descriptors are stored in
separate lists where corresponding keypoint-descriptor pairs share the same index.

When a new node is added to the graph, the current camera frame is processed and the keypoints
and descriptors are passed to the node. In order to add virtual edges to the graph, the keypoints
and descriptors from different nodes must be matched. The process for selecting candidate nodes
for matching is described in section 4.1.7. For now, assume a candidate exist. The data from the
current node is referred to as the query descriptors, and those from a previous observation, i.e. the
candidate, as the train descriptors.

ORB uses binary descriptors and their similarity is based on their hamming distance (lower distance
= closer match). OpenCV has built-in functions for matching features, but further filtering is
required to make good data associations. By finding the two best matches for each query descriptor,
Lowe’s ratio test can be used. The ratio test removes ambiguous matches, but there might still
be wrong data associations. Assuming that the point correspondences are predominantly correct,

65

CHAPTER 4. IMPLEMENTATION

Figure 4.8: Distribution of checkerboards in the images that are used in the calibration

RANSAC can be used to reject the wrong ones. The OpenCV function that estimates the essential
matrix applies RANSAC to the given points.

If enough matches remain, estimating the essential matrix can be attempted. The list of matches
that OpenCV returns is a list of index pairs of which descriptors correspond to each other. Only
the corresponding points are of interest, so these have to be extracted from the lists of detected
keypoints. Listing 4.2 shows the code-snippet for doing this. Before these points can be used
to estimate the essential matrix, they have to be undistorted. The function that estimates the
essential matrix also returns a mask that tells which of the corresponding points were considered
outliers.

1 for (size_t i = 0; i < matches .size (); ++i) {

2 queryPoints . push_back (currentNodeKeyPoints [matches [i]. queryIdx].pt);

3 trainPoints . push_back (candidateNodeKeyPoints [matches [i]. trainIdx].pt);

4 }

Listing 4.2: Extracting matched points

OpenCV can then recover the relative camera translation and rotation based on the estimated
essential matrix and point correspondences. The outliers are ignored based on the aforementioned
mask, so there is no need to manually extract the remaining inliers beforehand. The recovered pose
is returned in the form of a 3×3 rotation matrix R and a 3×1 translation vector t. The translation
vector is normalized to a unit vector because epipolar geometry can’t recover scale. Section 4.1.7
describes how this scale information is extrapolated from the graph.

The method for matching images that is described here can not reliably tell if the images are of the

66

CHAPTER 4. IMPLEMENTATION

Figure 4.9: Variations in the number of detected features in an environment

same scene. The matching might not succeed, but that alone is not enough information for whether
the images corresponded or not. Firstly, most buildings have some frequently appearing features,
like doors, light fixtures, etc. Thus, there is a reasonable chance of finding at least some matches
regardless of where in the building the query image is taken. Secondly, corresponding images are
not expected to overlap by 100%. Two images might have 1/4 overlap, and thus result in relatively
few matches (though they might be correct correspondences).

An experiment was conducted to asses whether it is possible to find images of corresponding scenes
based on the number of matched features alone. The result of this is presented in section 5.4. A
threshold of 50 matched features was able to find most image correspondences with few outliers.
The threshold is of course applied after Lowe’s ratio test. When searching for loop closures, this
threshold is not the only criteria that has to be met.

4.1.7 Adding Virtual Edges to the Graph

Virtual edges are often associated with loop closures, but they do not have to be. The implement-
ation in this report generates virtual edges under two conditions. One is when the Loomo revisits
a location, i.e. a loop closure is detected. The other condition is if a new node successfully matches
with the previous node. When a new node is added to the graph, a good candidate for matching is
the most recent one. It is expected that both nodes are observing the same scene, so the matching
criteria can be relaxed. Matching consecutive nodes in this manner can be considered a type of
Visual Odometry (VO).

Let’s first consider the Visual-Odometry-type of virtual edge. The constraint is expected to be

67

CHAPTER 4. IMPLEMENTATION

similar to the constraint of the odometry-based edge that is connecting the same two nodes. The
odometry-based edge is used to calculate the scale of the translation. The scale is the length of the
translation of the constraint. The translation t of the VO constraint is thus given by equation 4.6.

scale =
√
x̂2 + ŷ2 (4.5)

t *= scale (4.6)

The scale information is only expected to be close, but not exact. Thus the uncertainty of the
translation of the Visual Odometry (VO) is higher than that of the wheel-encoder odometry. This
implementation used the covariance of the odometry-based edge as a basis for the covariance of
the VO-virtual edge. The covariance of the VO translation uses the 2 × 2 block of the odometry
covariance related to translation, and scales it by a factor > 1. The uncertainty of the angle is
assumed to be decoupled from the translation. The covariance of the VO-based virual edge, ΣV O,
has the form shown in equation 4.7.

ΣV O = k ·

1.5

 σ2
x σxσy

σyσx σ2
y

 0

0> σ2
θ

 (4.7)

Since it is expected that two consecutive nodes will match, the only matching criteria is that there
are enough point correspondences to estimate the essential matrix and recover the camera pose.
There can be as few as 6 matched keypoints. Assuming that the quality of the estimated essential
matrix is related to the number of point correspondences, k is a scaling factor for the covariance
matrix that compensates for this. k is expressed by equation 4.8 and illustrated in figure 4.10.
It has a form that rewards higher match counts, but with diminishing returns, and penalizes few
matches.

k = 4.8 · exp
(
−0.04 · (nmatch − 6)

)
+ 0.2 (4.8)

Now for the loop closure-type of virtual edge. Feature matching alone does not reliably detect loop
closures, but it is part of the process of selecting loop closure candidates. First, the search-space
should be reduced. This implementation only deals with small graphs, but in large graphs it is
necessary. Reducing the search-space also reduced the chance for wrong data associations since po-
tential matches that are far away are not evaluated. Only nodes which are closer than a threshold
are considered. The threshold is often three standard deviations (3σ) from the current state es-
timate. However, as shown in section 3.3, the estimated uncertainty is subject to linearization
inaccuracies that accumulate. So instead of using the ellipse as the threshold, a circle with radius
r such that the ellipse fits inside it is used:

r = 3
√

max(σ2
x, σ

2
y) (4.9)

68

CHAPTER 4. IMPLEMENTATION

Figure 4.10: Scaling factor for covariance of feature matching based on the number of matches

As described in section 4.1.4, the state estimation is reset for each new node that is added. Thus
a second state estimation is done in parallel, which is reset each time the graph is optimized.

If two images have more than 50 matched features it is likely that they are of the same scene. The
same scene is often visible from consecutive nodes, which is the premise for the VO-type of virtual
edge. Thus, when matching with nodes in the search space, it is expected to get more than 50
matched features with more than one node.

A loop closure is detected if

• the node gets more than 50 matched features with a cluster of at least two connected nodes
• there is only one cluster of connected nodes

A cluster of connected nodes means that all the nodes in the cluster can be reached through the
edges provided by the cluster as illustrated in figure 4.11.

Consider a case where a new node xj successfully matches with the cluster consisting of xi and xi+1.
The translation vectors calculated from the estimated essential matrices are unit vectors. Since xj
is matched with several nodes, the individual edge constraints can be found by triangulation. The
unit vectors tell the heading of xj ’s location.

Figure 4.12 shows the theoretical position of xj according to the observations. For these calcula-
tions, all the translation vectors t, tji and tji+1 must be in the graph coordinate frame. t is the
difference in the positions of xi and xi+1 according the the current graph configuration. tji and
tji+1 are unit vectors (i.e. the heading of node xj).

The angles between vectors are found from their dot-product. Once the relevant angles are calcu-

69

CHAPTER 4. IMPLEMENTATION

Figure 4.11: Highlighted nodes forms a single cluster if all of them can reach each other

lated (illustrated in figure 4.12), the law of sines is used to solve for the scaling factors ki and ki+1

in equation 4.13. (The scaling factors are the lengths of the green vectors in figure 4.12.)

tji · tji+1 = |tji| · |tji+1| · cos(αj) ⇒ αj = arccos(tji · tji+1) (4.10)

tji · t = |tji| · |t| · cos(αi) ⇒ αi = arccos
(

tji · t
|t|

)
(4.11)

−tji+1 · t = |tji+1| · |t| · cos(αi+1) ⇒ αi+1 = arccos
(
−tji+1 · t
|t|

)
(4.12)

|t|
sin(αj)

= ki+1
sin(αi)

|t|
sin(αj)

= ki
sin(αi+1) (4.13)

The uncertainties of the new edges are found in a similar matter as with the VO-type of virtual
edge. Note that the scale information is extrapolated from the graph configuration, and not the
constraint of the odometry-based edge between xi.

Non of the gathered datasets contain detectable loop closures, so this method has not been properly
tested.

4.1.8 SLAM Back-End

The first step in solving the least squares problem is to linearize the error function around x and
compute it for each edge. Equation 4.14 is a general formulation of the error function in a pose
graph. It expresses relative poses using homogeneous transformations.

eij(x) = t2v
(
Z−1
ij

(
X−1
i Xj

))
(4.14)

70

CHAPTER 4. IMPLEMENTATION

Figure 4.12: Geometric relations for calculating the scale of the translation vectors

For the 2D case, a state vector can be expressed by a translation and an angle

x =

t
θ

 t =

x
y

 (4.15)

Let R be a 2D rotation matrix. 2D rotation matrices has the convenient property that their inverse
is equal their transposed.

R =

cos(θ) − sin(θ)
sin(θ) cos(θ)

 (4.16)

R−1 = R> (4.17)

tj and ti positions of node xj and xi in the graph. The translation of xj relative to xi is found by
rotating the vector

(
tj − ti

)
to account for the angle of xi. The angle of xj relative to xi is simply

θj − θi. The error is the pose of xj relative to the virtual observation of xj , i.e. relative to zij .
Applying the same method to find the error yields equation 4.18.

71

CHAPTER 4. IMPLEMENTATION

Figure 4.13: Error function in a 2D pose graph

eij(x) =

R>ij
(
R>i

(
tj − ti

)
− tij

)
θj − θi − θij

 (4.18)

Further, the blocks of the jacobian, Aij and Bij , can be calculated.

Aij = ∂eij(x)
∂xi

=

−R>ijR>i R>ij
∂R>i
∂θi

(
tj − ti

)
0> −1

 (4.19)

Bij = ∂eij(x)
∂xj

=

−R>ijR>i 0
0> 1

 (4.20)

In the C++ implementation, the error function is resolved for all the state variables as done in
equation 4.21. This is also done for the functions that calculate the blocks of the Jacobian.

eij (x) =
− cos

(
θij
) (

cos (θi)
(
xi − xj

)
+ sin (θi)

(
yi − yj

))
− sin

(
θij
) (

cos (θi)
(
yi − yj

)
− sin (θi)

(
xi − xj

))
− xij

sin
(
θij
) (

cos (θi)
(
xi − xj

)
+ sin (θi)

(
yi − yj

))
− cos

(
θij
) (

cos (θi)
(
yi − yj

)
− sin (θi)

(
xi − xj

))
− yij

θj − θi − θij


(4.21)

Now the linearized error function can be computed for each edge in the graph. Building the linear
system means populating b and H. If there are n nodes in the graph, then the size of b is 3n× 1.
b is initialized as a 3n× 1 vector of zeros.

72

CHAPTER 4. IMPLEMENTATION

H is 3n× 3n, but it is sparse and thus not initialized in the same way. The Eigen library [50] has a
sparse matrix format. It only holds the non-zero elements in memory, along with information that
allows further matrix manipulations (for instance row and column indices of non-zero elements).
Eigen has several methods for populating sparse matrices. The recommended method, performance
wise, is to first build a list of triplets, and then convert it to a sparse matrix. A triplet is a data
type that holds three values. The values in the triplets must be the row index, the column index
and the value of the element. If several triplets refer to the same matrix element, their values are
summed up when the triplets are converted to a sparse matrix.

Algorithm 2 shows the steps for building the linear system.

Algorithm 2 Build linear system
n = number of nodes
b = 3n× 1 vector of zeros
H_coeffs = empty list of triplets
for each edge ∈ graph do

eij = computeError(
Aij ,Bij

)
= computeBlocksOfJacobian

b(i) += A>ijΩijeij
b(j) += B>ijΩijeij
H_coeffs.push_back

(
i, i, A>ijΩijAij

)
H_coeffs.push_back

(
i, j, A>ijΩijBij

)
H_coeffs.push_back

(
j, i, B>ijΩijAij

)
H_coeffs.push_back

(
j, j, B>ijΩijBij

)
end for
H_coeffs.push_back(0, 0, I) // I = Identity matrix. This fixes the first node
H = buildSparseFromTriplets(H_coeffs)
return (b,H)

The Eigen library has a sparse solver that uses Clolesky decomposition. Thus the linear system
can be solved for the increment ∆x, and the nodes adjusted accordingly.

4.2 Machine learning

The purpose of the machine learning is to enable the Loomos to detect each other through their
on-board fisheye cameras. This section describes the process of collecting training data and training
the CNN to achieve this.

The ability to achieve quick inference time is extra important when dealing with real-time collabor-
ate robots. That was taken into consideration when selecting CNN-algorithm. Table 4.2[54] verifies
the choice of selecting YOLO.

In this comparison, YOLO has an outstanding inference time of 22ms, corresponding to a frame
rate of 45 FPS. However, such results are computed with powerful GPUs which are not included
in the Loomo’s hardware.

73

CHAPTER 4. IMPLEMENTATION

Table 4.2: Comparing real-time performance of object detection algorithms

4.2.1 Generating Training Data

A robust CNN have been using lots of im-
ages while training, leading us to the crucial
task of creating a good custom dataset. The
Loomo robots contains among other sensors,
a fisheye camera. The prominent advantage
of a fisheye camera compared to a regular
camera is its wide FoV (Spesifications in Ch.
2.2). A fisheye camera utilizes more nearby
information, making it easier to spot nearby
Loomos. The normal camera would perform
better for ”long distance“ detection, but
considering a collaborate swarm behaviour,
it would be more valuable with wide view
rather than long view. Finally the neural
network will be implemented on the Loomo
itself, and only the Loomo. All detections
will appear from a ”Loomo-perspective“,
making us shrink the dataset into images
that is easy for the Loomo to read. A
fisheye camera-app was made to satisfy that
need(See code in appendix A), such that all
images in the dataset will be gathered from
that ”Loomo-perspective“.

The labeling strategy was to be precise, al-
ways. No image should miss a bounding box,
and the deviations between bounding box
edges and the Loomo should be pixel-small.
An app inside Matlab called ”Image Labeler“
was used to label all the images, and figure
4.15 shows an example. Seven datasets was
created, in total 1225 images. Table 4.3 gives
a brief overview.

Figure 4.14: Fisheye Images

Figure 4.15: Labeling images from a ”Loomo per-
spective“

74

CHAPTER 4. IMPLEMENTATION

Table 4.3: Datasets

The entire labling process was done with the Matlab labeler app, but since Matlab-support for
YOLOv3 is still in progress, further training was done with darknet. Matlab and darknet paramet-
erize bounding boxes in different ways, hence every label needed to be converted to the darknet-
orientation 4.17. (The script is available in appendix A)

X

X

X

Y

w

h

Figure 4.16: Matlab orientation

X

X

X

Y

w

h

Figure 4.17: Darknet orientation

Usually, an amount of minimum 1000 images is enough to train a neural network from scratch [55].
A dataset of 1225 images is in theory sufficient, but it is a good idea to expand it. Presence of
more data results in a more robust, accurate model and helps in handling edge-cases. One effective
method to expand the datasets is by augmentations. Augmentation is the process of forcing small
changes to an image, for instance blur, scaling, mirroring, adding noise, etc. Figure 4.18 shows an
example of augmented images from the original images in the top left corner.

75

CHAPTER 4. IMPLEMENTATION

Figure 4.18: Various augmentations that are applied to the top left image

A python script was made to augment the data and also to maintain control of the quantity and
amount of the augmentation.(Script available at appendix A). For each original image, 19 new
augmented images were created. The original dataset increased in size by a factor of 20. Every
image generated is determined by the probability for a specific augmentation to happen. The
probability table 4.5 shows the specific augmentation for each dataset.

76

CHAPTER 4. IMPLEMENTATION

Table 4.4: Augment the datasets

A rule of thumb when applying augmentation, is to not augment an image so much that the object
of interest is unrecognizable for humans. The neural net needs inputs of clear, specific objects
to not apply any confusion. Heavier augmentation appear when the object is nearby and easy to
recognize. Table 4.5 shows the chosen parameters inside the augmentation. The augmentation
parameters that are used were chosen from an augmentation library [56].

Table 4.5: Augmentation control

77

CHAPTER 4. IMPLEMENTATION

Early attempts at training found
that some parts of the data-
set noticeably reduced the mAP.
To identify and filter out erro-
neous training data, a Matlab
script was made to verify bound-
ing boxes after being augmen-
ted.(Script available at appendix
A). The script copies the augmen-
ted images with the correspond-
ing bounding box, and writes new
images with overlapping bounding
boxes. The script made it easy to
detect if any error occurred. Figure 4.19: Verifying Bounding Boxes

4.2.2 Designing the Neural Network

Getting acquainted with YOLO-architecture, we found thatYOLO-tiny algorithms are specialized
for real-time performance for devices without GPUs. Low inference time is crucial when designing
a neural network to perform in real-time, and since the Loomo does not have a GPU, the tiny-
architecture was reasonable to choose. All versions of the YOLO algorithms are open source, and
can be customized to fit for our application. These algorithms have been optimized for accuracy
and speed, so any change should preserve this. What we did change was the number of classes into
one ”Loomo“ class, and also filters in the pre-outputlayers. The pre-outputlayer is a convolutional
layer that takes a filter parameter f which is dependent of the number of classes and anchors. The
filter parameter in all pre-outputlayers was changed to 18, according to equation 4.22. N is the
number of anchors and C is the number of classes the neural network is trying to detect.

f = N · (C + 5) (4.22)

The final neural network design of YOLOv3-tiny is visualized in figure 4.20.

78

CHAPTER 4. IMPLEMENTATION

Figure 4.20: YOLOv3-tiny-custom CNN architecture

4.2.3 Training

Several training option parameters affect the training performance, which also affects the final
result. A training session in Matlab requires a dataset, training algorithm and training settings.
If these conditions are met and one start the training, Matlab performs the training by itself.
Time was spent by changing parameters and analyze results. It turned out that crucial parameters
are the initial learning rate, dropfactor and batch size. Every parameter change gives different
outputs and it is really a neverending story to learn by ”trial and error“ when operating with
neural networks. One have to accept that neural networks are complicated, not least hard to track
potential improvements.

The group decided to change from the Matlab environment, mainly to apply YOLOv3 and to
test tiny-versions. Equal training-settings were transferred from Matlab into darknet, to hopefully
achieve good results. Table 4.6 declares the final training settings used for YOLOv2-tiny and
YOLOv3-tiny.

79

CHAPTER 4. IMPLEMENTATION

Table 4.6: Training setting

Training in the darknet environment has three requirements:

• The cfg file (Available in appendix A) determines training settings and the entire network
architecture.

• Localize training and validation sets. The script "generate_train.py" (available at appendix
A) generates a file that writes the path to every labeled image you want to include in the
datasets.

• Pretrained weights file to initialize the network architecture. It works as the neural network
template and is obtained from darknet-YOLO official site. The weights-file choice may affect
the training, and for YOLOv3-tiny we used the weights file named ”yolov3-tiny.conv.11“
(Available in appendix A).

The training process produces new weights files, specifically one per 1000 iteration. Each weights
file represent a trained neural network that can either be used for transfer training or declared as
fully trained and applied for its purpose.

4.2.4 Validation

When selecting validation data, we ensured that the content is good, because all further estimations
of the network performance use the validation images as basis. It is important that the trained
neural network has not seen any images inside the validation set. Producing a proper validation
set strengthens the reliability of the validation, hence images with great variations was selected.
At last, the validation set was augmented to expand its capacity.

Darknet generates a loss graph during training, seen in figure 4.21. The graph represents the loss
function and mAP for our best YOLOv3-tiny model. The loss function should decrease asymptot-
ically to verify a decent training session while high valued mAP verifies decent precision. As the
mAP stops to increase, a safe move is to stop training (for instance at 5000 iterations) to prevent

80

https://pjreddie.com/darknet/yolo/

CHAPTER 4. IMPLEMENTATION

any tendency of overfitting.

Figure 4.21: Loss Function (blue) and mAP (red) during training with YOLOv3-tiny

4.2.5 Inference

At this point, an approved trained network was ready to be implemented on the Loomo device.
The network should cooperate with all other aspects of the app, hence inside an AndroidStudio
environment. The valuable training-files to consider are the cfg- and weights file. The weigths
file contains all information of the neural network, hence is big and demands much processing
consumption. Instead of putting the weights file directly inside the app, they are manually added
to the Loomo external memory. Therefore, an important action to remember is to allow permission
for both reading and writing from the external memory. These files will be easy to reach, and the
startup time is reduced whenever the app is launched. However, one need to implement the files
on each specific device to accomplish functional inference.

81

CHAPTER 4. IMPLEMENTATION

Inside the app, an inference class(view
the code here: Appendix A) was made
to actually detect Loomo robots in real-
time. Figure 4.22 shows a brief flow-
chart of the inference class. At first
one need to activate the inference class
by pressing a button. A fisheye cam-
era frame is generated, displayed on the
device screen. and pushed through the
neural network. When the frame has
passed all layers, the YOLO-output lay-
ers have estimated Loomo positions and
confidences. This information is pro-
cessed and drawn to the device screen,
overlapping the camera frame. The pro-
cess runs inside an infinite loop, where
new camera frames are constantly gen-
erated.

Figure 4.22: Inference

82

CHAPTER 4. IMPLEMENTATION

4.3 Simulating Swarm Intelligence for Collaborative Exploration

This chapter explains some concepts that are used in the implementation of the exploration simu-
lation. It is coded in Processing. The source code for the simulation is linked in appendix A

The simulation assumes a functioning SLAM algorithm that is able to maintain an occupancy grid
map. It also assumes ideal pose estimation. And that the pose of other bots are shared through
the ROS-master.

4.3.1 Map

At the beginning of the simulation, a map data structure is initialized. The map consists of cells.
Each cell holds information about their state. The cell data is structured like shown in listing 4.3

1 class Cell {

2 float pField =1.0; // Value of the potential field

3 float probability =0.5; // Value for the occupancy grid map

4 float mapValue =1.0; // Real value the cell , wall or free space

5 int [] edge_id =new int [4]; // Holds information about edges for ray casting

6 bool [] edge_exist =new bool [4]; // Holds information about edges for ray casting

7 bool pFieldRendered =false; // cSpace is discovered once , true if rendered

8 }

Listing 4.3: Content of a cell in the map

4.3.2 Room Generator

To give the bots an environment to explore, an unknown building is generated on the map at the
initialization of the simulation. The building consists of an array of many rooms with doorways and
corridors. The room generator is parameterized which means that the width of the walls and room
dimensions can be adjusted. There is also a chance of generating corridors, and the probability
can be adjusted. There is a random chance for doors on either wall of the rooms. Figures 4.23 and
4.24 shows some generated buildings.

83

CHAPTER 4. IMPLEMENTATION

Figure 4.23: Randomly generated map

Figure 4.24: Randomly generated map with corridors

4.3.3 Sensors

The distance sensors are simulated by casting rays from the bot in a fan pattern to represent the
sensor cone of the real sensors. The rays are used to calculate the distance to objects they interact
with. The sensor cones of the real sensors are represented as a discretized number of these rays.
For example the depth camera cone is only casting 10 rays in the entire FOV. This is to reduce
computational load on the simulation. The ultrasonic sensor is represented by a single ray, and the
infrared sensors are represented by 3 rays each. See figure 4.25 for the sensor ray pattern.

84

CHAPTER 4. IMPLEMENTATION

Figure 4.25: Green lines: Depth camera rays. Blue lines: Infrared rays. Red line: Ultrasonic ray

4.3.4 Walls and Obstacles

To properly simulate real life behaviour of the distance sensors, the rays from the bot sensors needs
to intersect with objects. This is achieved by generating line vectors on the outer edge of the black
cells (walls). After the map generation, an edge detection algorithm iterates through all of the cells
in the map, and creates starting- and end point vectors for the edges. The red dots in figure 4.26
represent these points. Walls are generated by calculating the vector between the starting- and
end points, and then drawing the vector as a green line. These are the vectors the sensor rays can
interact with.

85

CHAPTER 4. IMPLEMENTATION

Figure 4.26: Visualization of wall edges. The left half visualize the edges with green lines and edge
ends with red dots. The right half shows the map.

Figure 4.27 shows an example where the sensor rays collide and stop when the rays interacts with
walls. This is only possible because of the vector lines representing the walls. 4.26

Figure 4.27: Ray casting; Sensor rays interacting with the map

4.3.5 Exploration

A bot will request a new target when it reaches it’s current target. Upon request, the exploration
algorithm will scan the area around the bot to find the target position which has the closest most
undiscovered area. It does so by placing multiple ROIs in a circular pattern, and counting the

86

CHAPTER 4. IMPLEMENTATION

amount of undiscovered cells within that ROI. see figure 4.28 for an illustration of the pattern. If
the cells in the ROI is undiscovered the roiSum is increased by 1.

roiSum+=


1 if 0.9 > cell.probability > 0.1

0 otherwise
(4.23)

The center coordinate of the ROI with the highest amount of undiscovered cells will become the
new target position. For the ROI to be a valid target, the roiSum need to be above an adjustable
amount of undiscovered cells. If there are no valid ROIs after the pattern has completed one
rotation around the bot, the radius of the circular pattern is increased, and the scan repeats. The
search runs until a valid ROI has been selected.

Figure 4.28: Illustration of exploration search pattern

4.3.6 Potential Field

As mentioned in the theory chapter, the potential field is used as an additional cost in the imple-
mentation of A*. When a wall is observed by a bot, the potential field is generated. The field is
extended out from the wall, and decrease in intensity as the distance from the wall increases. The
intensity of white means a higher cost for the path planner. Black cells give no extra cost. Figure
4.29 shows a fully generated potential field. By using this additional cost, the pathfinder can create

87

CHAPTER 4. IMPLEMENTATION

a path which ensures a safe passage through doors, and help the robots keep sufficient distance to
walls. Figure 3.17 show the potential field and some planned paths visualized by blue dots.

When a wall is observed, its potential field becomes active

Figure 4.29: Visualization of the potential field

Figure 4.30: Visualization of path planning in the potential field

4.3.7 Pathfinding

This section explains the implementation of the A* pathfinding algorithm. The pathfinder is used
when a bot receives a new target from the exploration algorithm, or when a bot is stuck. To keep
track of which nodes to check, a stack called nodesToCheck is initialized. This stack enables the
prioritizing of the best candidate node to explore.

88

CHAPTER 4. IMPLEMENTATION

Translating the cost equation shown in section 3.4.5 to variables used in the implementation:

f(n) = g(n) + h(n) (4.24)

f(n) = globalValue (4.25)

h(n) =
∣∣∣ ~Vn − ~Vg

∣∣∣ (4.26)

Where
Symbol Description Unit
~Vn Neighbor node position m
~Vg Goal position m

The value of g(n) is based on the current probability state, and the potential field value of the
target node.

Step 1, Initialize:

Each cell in the map is initialized with a node, it holds information needed to perform the pathfind-
ing. The node data is structured like shown in listing 4.4

1 class Node {

2 int id; // Index of the node

3 int parent ; // Index of the parent node

4 PVector pos; // Position of the node

5 boolean visited ; // Has the node been visited ?

6 float globalValue ;//f(n) in the A* cost function

7 float localValue ; //g(n) cost of traveling to the node

8 }

Listing 4.4: Content of a node in the map

The globalValue and localValue of all nodes except the start node are initialized to ∞. The start
node is initialized with a localValue of 0, and a globalValue of the distance from the node to the
goal position.

The start and goal positions are initialized by getting the position of the bot, and the target from
the exploration algorithm. This is shown in figure 4.31

89

CHAPTER 4. IMPLEMENTATION

Figure 4.31: Start- and goal position

Step 2, Select current node:

Select the current node from the nodesToCheck stack. On the first loop, the start position node
is selected (it is the only node in the list). On all consecutive loops, the node with the lowest
globalValue is selected.

Step 3, Check neighbors:

The northern, southern, eastern and western neighbors of the current node is checked. See figure
4.32 for an illustration.

Figure 4.32: Evaluate neighbor cells

90

CHAPTER 4. IMPLEMENTATION

If the neighbor node is the goal position, Stop checking neighbors, and go to step 4.

If not, Evaluate the current node’s localValue + cost of traveling to neighbor node, g(n). If that
value is lower than the current localValue of the neighbor node, Set current node as neighbor node’s
parent, and update the global- and localValue. Remove the current node from the nodesToCheck
stack, and mark it as visited. If the neighbor node has not been visited, add it to the nodesToCheck
stack.

Repeat step 2-3 until the goal position in reached.

Step 4, Create the path:

Follow the parent nodes backwards from the goal position until the start position is reached. The
nodes visited is the path the bot has to follow to reach the goal.

Figure 4.33 show the results of one run of the pathfinder. The pink circles are the nodes that were
checked, and the blue dots are the final path.

Figure 4.33: Pink dots represent evaluated cells. Blue dots represent the calculated path

The pathfinding algorithm will take the most direct route when there are undiscovered areas
between the bot and the target position.

91

CHAPTER 4. IMPLEMENTATION

Figure 4.34: Example of pathfinding through undiscovered areas

This direct route approach will often result in the bot getting stuck. When that happens, the
bot will request a new path. Normally more information has become available between each time
the bot gets stuck. The pathfinding algorithm will use the new information to calculate a more
accurate path. Figure 4.35 illustrate an example of this. This will result in a natural exploration
behavior, and the bots will reach their targets eventually.

Figure 4.35: Example of rerouting after more information is available

92

CHAPTER 4. IMPLEMENTATION

4.3.8 Swarm Intelligence Rules

This is the implementation of the rule principles discussed in section 3.4.1. This simulation does not
use the cohesion or alignment rule, but separation is very useful. All of the distance sensors have
their own rule and there is a rule for following a target, this is used to follow the path generated
by the exploration algorithm.

Separation

This rule results in a steering vector which will direct the bots away from each other if they are
too close to each other.

~Vd = ~Vb − ~Vt (4.27)

V̂d =
~Vd∣∣∣ ~Vd∣∣∣ (4.28)

~Vri =


V̂d · ka · w · tanh

((
Rs −

∣∣∣ ~Vd∣∣∣) · kb
)

if
∣∣∣ ~Vd∣∣∣ < Rs

~0 otherwise
(4.29)

Where
Symbol Description Unit
~Vd Vector between bot and target bot m
V̂d Unit Vector between bot and target bot m
~Vb Bot position m
~Vt Target bot position m
~Vri Rule resultant vector m
Rs Radius of safe zone m
w Rule weight -
ka Scaling factor -
kb Scaling factor -

93

CHAPTER 4. IMPLEMENTATION

Figure 4.36: Visualization of the separation rule

Depth Camera

This rule creates a steering vector which will increase the turn rate of the bot such that it will steer
away from obstacles. The simulated depth camera projects nr rays in a fan pattern. A for-loop
iterates through each ray and performs these calculations.

θri = θb −
FOV

2 +
(
i ∗ FOV

nr − 1

)
(4.30)

Lri =
∣∣∣ ~Rei − ~Rsi

∣∣∣ (4.31)

lr = (Lri − ls) ∗ w (4.32)

αr = θb + π

2 ∗ sign(θb − θri) (4.33)

~Vri =



lr · cos (αr)

lr · sin (αr)

 if Lri < ls

~0 otherwise

(4.34)

94

CHAPTER 4. IMPLEMENTATION

Where
Symbol Description Unit
θri Angle of ray rad
θb Angle of bot rad
FOV Field of view of depth camera rad
i Iterator -
nr Number of rays projected from the camera -
Lri Length of ray m
~Rei End position of of ray m
~Rsi Start position of ray m
lr Resultant vector length m
ls Span: length of ray if there are no interactions m
w Rule weight -
αr Resultant vector direction rad
~Vri Rule resultant vector m

Figure 4.37: Visualization of a single ray in the depth camera rule

Ultrasonic

The ultrasonic sensor is represented by a single ray pointing forward. The steering vector will
always point backward and this will make sure the bot stop its forward velocity if it is close to

95

CHAPTER 4. IMPLEMENTATION

obstacles.

θri = θb (4.35)

Lri =
∣∣∣ ~Rei − ~Rsi

∣∣∣ (4.36)

lr = (Lri − ls) ∗ w (4.37)

αr = −θb (4.38)

~Vri =



lr · cos (αr)

lr · sin (αr)

 if Lri < ls

~0 otherwise

(4.39)

Where
Symbol Description Unit
θri Angle of ray rad
θb Angle of bot rad
Lri Length of ray m
~Rei End position of ray m
~Rsi Start position of ray m
lr Resultant vector length m
ls Length of ray if there are no interactions m
w Rule Weight -
αr Resultant vector direction rad
~Vri Rule resultant vector m

Figure 4.38: Visualization of the ultrasonic rule

Infrared

This rule creates a steering vector which will increase the turn rate of the bot such that it will steer
away from objects. This rule is very similar to the depth camera rule, except for determining the
angle of the resultant vector. This rule simply adds the vector on the opposite side of the triggered

96

CHAPTER 4. IMPLEMENTATION

sensor. i.e. Left sensor triggers, steer right.

Lri =
∣∣∣ ~Rei − ~Rsi

∣∣∣ (4.40)

lr = (Lri − ls) ∗ w (4.41)

αr =


θb − π

2 if left sensor

θb + π
2 if right sensor

(4.42)

~Vri =



lr · cos (αr)

lr · sin (αr)

 if Lri < ls

~0 otherwise

(4.43)

Where
Symbol Description Unit
θb Angle of bot rad
i Iterator -
Lri Length of ray m
~Rei End position of of ray m
~Rsi Start position of ray m
lr Resultant vector length m
ls Span: length of ray if there are no interactions m
w Rule weight -
αr Resultant vector direction rad
~Vri Rule resultant vector m

Figure 4.39: Visualization of a single ray in the infrared rule (right sensor)

97

CHAPTER 4. IMPLEMENTATION

Target

This rule make the bots drive towards a target position. It is used to make the bots follow the path
set by the pathfinder algorithm. The path is stored as an array of waypoints. When the bot gets
within a certain distance to a waypoint, the current waypoint is deleted, and the next waypoint in
the path becomes the new target. This process continues until the bot reaches the end of the path,
which is the goal position.

~Vd = ~Vb − ~Vw (4.44)

V̂d =
~Vd∣∣∣ ~Vd∣∣∣ (4.45)

~Vri = V̂d · w (4.46)

Where
Symbol Description Unit
~Vd Vector between bot and current waypoint m
V̂d Unit Vector between bot and current waypoint m
~Vb Bot position m
~Vw Current Waypoint position m
~Vri Rule resultant vector m
Rw Radius of waypoint zone m
w Rule weight -

Figure 4.40: Visualization of the target rule

Combining the resultant vectors

As mentioned in the theory section 3.4.6. The main resultant vector is simply the average of all
the rule resultant vectors. Zero vectors do not contribute to the average vector. n is increased by
1 for each valid rule. The linear- and angular velocity, v and ω, is the decomposition of ~Vc

98

CHAPTER 4. IMPLEMENTATION

~Vc = 1
n

∑
i

~Vri (4.47)

v =
∣∣∣ ~Vc∣∣∣ · cos(θr − θL) (4.48)

ω =
∣∣∣ ~Vc∣∣∣ · sin(θr − θL) (4.49)

Where
Symbol Description Unit
~Vc Resultant vector of combined rules m/s
v Linear velocity setpoint m/s
ω Angular velocity setpoint m/s
n Total number of resultant vectors -
~Vri Resultant vector of individual rule m/s
θr Angle of resultant vector in global space rad
θL Angle of Loomo in global space rad

99

Chapter 5

Results

5.1 Neural Network Performance

A neural network has been created to identify and detect Loomo robots through their fisheye
camera. The neural network is implemented inside the Loomo app, and this section will validate
the performance.

5.1.1 Validation

YOLOv2-tiny and YOLOv3-tiny are both strong candidates to be chosen. A performance compar-
ison was made from the validation-dataset, and table 5.1 shows that YOLOv3-tiny has significant
better precision. The validation is obtained from the validation set, containing 3800 images. If the
image contains equal or more than one loomo, the total IoU score must be above 0.5 to count as a
true positive.

YOLOv3-tiny YOLOv2-tiny
True Positives 2861 2073
False Positives 198 1377
False Negatives 979 1767

Recall 0.75 0.54
mAP(%) 82.81 51.44
IoU(%) 73.54 44.28

Table 5.1: Validation comparison between YOLOv3-tiny and YOLOv2-tiny

100

CHAPTER 5. RESULTS

Figure 5.1: YOLOv3-tiny predictions Figure 5.2: YOLOv2-tiny predictions

Inference

Table 5.2 shows that the the time for the Loomo to detect next image is barely beneath one second.
YOLOv2-tiny are not much, but significantly faster

YOLOv3-tiny YOLOv2-tiny
Inference 0.92s 0.80s

Table 5.2: Inference

Score analysis

The two current neural networks beats each other in the characteristics we value the most. A
simple score analysis was made, shown in table 5.3. Max individual score is 10, the lowest is 0.
YOLOv3-tiny has the best score and will be the selected default neural network on the Loomo-app.

Inference score Precision score Total score
YOLOv3-tiny 2 8 10
YOLOv2-tiny 3 5 8

Table 5.3: Performance score

101

CHAPTER 5. RESULTS

5.2 Exploration Simulation

These are the results of simulating different number of bots in 5 different random buildings. The
goal is to determine effectiveness of exploration vs number of bots used. A cell is considered
discovered when the probability value of that cell is >0.8 or <0.2. The simulation finishes when
90% of the cells in the building are discovered

Parameter Value
Building size 50m× 30m
Room size 4m× 5m
Door width 80cm
Cell Size 10cm× 10cm
bot Size 57cm
bot max linear speed 0.8 m/s
bot max angular speed 0.5 rad/s

Table 5.4: Simulation parameters

Number
of bots

Building 1 Building 2 Building 3 Building 4 Building 5 Average

1 2675 2128 2160 2013 2782 2352
2 1221 1099 1025 1108 1653 1221
3 863 759 959 721 1131 887
4 600 558 903 539 786 677
5 544 509 676 513 659 582
7 445 419 746 380 526 503
9 - 355 608 395 426 446
11 - 378 614 329 434 438

Table 5.5: Simulation results. Numbers in columns 2-7 are time in seconds

Figure 5.3: Simulation results. Graph of table 5.4

102

CHAPTER 5. RESULTS

There is a clear trend for diminishing returns on time efficiency with increasing amount of bots.
4-5 bots seems to be the optimal amount for this configuration.

Equation 5.1 is the curve fitting of the average series from table 5.4. The function can be used to
estimate the time needed to explore a building with this configuration of the simulation.

T (nbot) = 2035 · nbot−1.065 + 285.4 (5.1)

5.3 SLAM Results

Figure 5.4 shows a baseline graph. It is based only on odometry. In it, the Loomo started and
stopped in the same position, but faces opposite directions in the start and end. The Loomo drives
in a hallway, turns 90° to the right, drives to the end of the hallway, turns 180° and follows the
same path back to start. The odometry trajectory misses by 6.8m. This number by itself does
not give a good indication of the overall performance of the state estimation, but it illustrates how
errors in the heading accumulate and is detrimental to the lateral position estimation. The total
length of the trajectory according the odometry is 42.2m.

Figure 5.4: Baseline graph. No graph optimization has been done

Figure 5.5 shows a graph that uses visual-odometry-type of virtual edges as described in section

103

CHAPTER 5. RESULTS

4.1.7. The graph misses by 0.45m. That is considerably better than mere odometry. The graph did
not estimate 90° turns though. The graph is however locally consistent. The parts of the trajectory
that are supposed to be parallel and overlayed on each other are exactly that.

Figure 5.5: Graph using odometry and Visual Odometry. There are no loop closures in the graph.

104

CHAPTER 5. RESULTS

There are no detectable loop clos-
ures in the dataset that has been
displayed here. However, since the
start and end pose is known, a
single loop closure can be artifi-
cially added to the graph. Fig-
ure 5.6 shows the graph using only
the odometry based edges, and
an single virtual edge between the
first and last node.

Figure 5.6: Graph with only odometry based edges and a
single loop closure

105

CHAPTER 5. RESULTS

5.4 Computer Vision Performance

A simple benchmarking test was done to asses how the number of images features affects computa-
tion time. The ORB detector in OpenCV has a parameter for how many features it should retain,
so it was useful to evaluate whether there was a benefit to adjusting this value. The test was done
by timing how long it took to detect features and compute their descriptors. This was done for
each frame in two Loomo video recordings. One of the recordings was in an environment with few
features, and the other was in a feature dense environment. The results are shown in figure 5.7,
and they show that there is a constant time penalty for performing the detection, plus a linear
increase in time for detecting more features.

Figure 5.7: Computation time for detecting features and computing their descriptors vs. how many
features were detected. The left graph is for a feature poor environment, and the right graph is for
a feature rich environment.

Figure 5.8 demonstrates the effect that different lighting conditions has on feature detection. Out-
doors is a particularly challenging environment. The two images to the left are of the same scene,
but the top one is during a sunny afternoon and the bottom is during twilight. The shadow of the
person driving the Loomo is being detected in the top left image. Barely any features that lie in
shadow are detected in the top right and bottom left image. Notice also that in the indoor image
(bottom right) some light reflections are being detected on the doors.

Figures 5.9 and 5.10 shows matching results when no additional filtering is applied. In figure 5.9
the images are of the same scene, but there are many wrong data associations that are made. In
figure 5.10 the images are of different scenes, but there is still a high number of matches.

Figure 5.11 and 5.12 shows the effect of applying Lowe’s ratio test. In figure 5.11 the images are
of the same scene, and there are much fewer data associations that are wrong. In figure 5.12 the
images are of different scenes, and the number of matches is substantially lower.

106

CHAPTER 5. RESULTS

Figure 5.8: Effect of lighting for feature detection

Figure 5.9: Images of the same scene. The yellow rectangles are corresponding locations in both
images. None of the features in the yellow rectangle in the left image matches with the correct
features in the right image

107

CHAPTER 5. RESULTS

Figure 5.10: Different scenes that has a high amount of matches

Figure 5.11: Effect of Lowe’s ratio test when the images are of the same scene

Figure 5.12: Effect of Lowe’s ratio test when the images are of different scenes

Lowe’s ratio test can’t eliminate all wrong data associations. The number of matched features is
higher when the images are of the same scene. It was necessary to find a threshold for how many
matches were required for two images to be considered to be of the same scene. A method for
finding this threshold is to attempt to match a query node with every node in the graph and count

108

CHAPTER 5. RESULTS

the number of matches it has with each node. This is similar to searching for loop closures, except
here the query node is attempted matched with the entire graph, including itself. Some ground
truth is needed about the graph, namely which nodes are observing the same scene. Doing this
for every node in the graph yields table 5.6. A row corresponds to a query node, and each value
in that row is the number of matched features that query node had with the node given by the
column index. As expected, a query node will have a high match count with itself, and thus there
are high values along the diagonal of the table. A query node will have a high match count with
a cluster of nodes if those nodes are observing the same scene. Table 5.6 does not use a dataset
where there are detectable loop closures, and thus most of the high values are grouped close to the
diagonal.

Table 5.6: The number of matched features each query node has with every other node in the graph

The highlighted values in table 5.6 are those that are ≥ 50, which was found to be a reasonable
threshold. Table 5.7 shows the same procedure done to a bigger graph. The table only includes the
highlighting because the numbers would not be readable. If a query node passes the threshold with
several consecutive nodes it has matched with a cluster of nodes (if there are previously detected
loop closures, a cluster can also contain non-consecutive nodes as described in section 4.1.7). The
clusters have been highlighted in a region of the table. Note that the top right and bottom left
corners are highlighted. This is because in this dataset the Loomo starts and stops in approximately
the same pose.

109

CHAPTER 5. RESULTS

Table 5.7: Highlighting of nodes that passed the matching criteria of 50. The clusters have also
been highlighted in the region marked by the dotted rectangle.

110

Chapter 6

Discussion

6.1 SLAM

A pose-graph solution to SLAM was developed from scratch. The back-end works successfully, but
there are some remarks to be made about the front-end, with some points for improvements.

When matched features are used to extrapolate the relative poses between nodes, the translation
and rotation are projected to the 2D odometry frame in an inaccurate manner. The front-end
should be able to take into consideration the transformation between the odometry frame and
camera frame. This information is available through the Loomo SDK. An improvement is then to
make the Loomo turn its head back and forth during operation in a scanning motion to increase
the FoV of the sensors.

Another improvement is to incorporate more sensors into the SLAM algorithm. One of the natural
choices would be to incorporate the depth camera. One way to build an occupancy grid map from
a pose graph is to build a local grid map for each node, and have these local maps move with
the nodes as the graph is optimized. The local maps can be built using the depth camera. The
local maps will probably overlap, so the state estimation can be further improved by optimizing
the overlap. The depth camera returns a 3D point cloud, so the Iterative Closest Point (ICP) can
be applied to this data.

6.2 Machine Learning

The neural network is successfully designed and implemented on the Loomo device. Deliberate
evaluations have lead to good machine learning results, with some discussable remarks:

The neural network validation was conducted by images looking similar to the ones used in the
training sets, making it hard to assure the reliability of the validation. However, the real-time
performance handles realistic situations with good precision. Remaining arenas could test different

111

CHAPTER 6. DISCUSSION

lightning conditions or higher velocities. Quick inference time would probably taken care of velocity
issues, but such task is hard to achieve without a GPU. According to the Loomo processor (See
specifications at 2.1), the final inference time of 0.92 seconds is acceptable. The outputs of this
neural network are reliable.

6.3 Exploration Simulation

The simulation was build as a platform for testing different strategies for bots to collaboratively
explore an unknown environment. This potential has not been explored fully in this thesis. The
most interesting methods to pursue is Dynamic path planning, like D* Lite. Or multi-robot path
planning.

In the presented results, there is a clear trend for diminishing returns on the time efficiency vs the
amount of bots used. This is because the bots often mass up in rooms, and gets in each other’s
way as number of bots increase. It would be highly interesting to compare these results if methods
for multi-robot path planning were used.

112

Chapter 7

Further Work

Thoughts and recommendations for further development related to this thesis.

These are the tasks that needs to be performed for the system to function as stated in the original
thesis goals. The SLAM, exploration and pathfinding algorithms needs to be implemented on the
Loomo robots. The ROS-master needs to be developed. It is responsible for the SLAM back-end,
and combining the graphs from the Loomos and redistributing the optimized graph. The university
provided a Jetson Xavier for this purpose, but we never got to a state where development of the
ROS-master began. The robots also need to communicate with the ROS-master. This was partially
completed in the early phase of the thesis, but the communication needs to be expanded further
to handle all of the information required for the systems and Loomos to work together.

Further work is also needed to utilize the Loomo recognition system. It can be used as an observa-
tion to improve state estimation. Also, detecting other Loomos helps filtering out the parts of the
observations that are not part of the static environment.

113

Chapter 8

Conclusion

This thesis covered the process of developing a SLAM algorithm using a pose graph approach, and
the training of a Convolutional Neural Network (CNN) for detecting Loomo robots. Further, a
simulation environment was developed for experimenting with collaborative exploration.

The SLAM algorithm was developed offline using recorded datasets from a Loomo. The SLAM
algorithm is an implementation of a pose graph. Each node in the graph represents a pose estim-
ation, and the edges are the constraints for the nodes. A least squares solver was implemented to
optimize the graph based on the observations and inputs. The least squares solver constitutes the
SLAM back-end. The front end processes the inputs and observations and constructs the graph.
The Loomo’s wheel encoders provides the input, and the fisheye camera provides the observations.
The ORB feature detector is used to extract image features. Matched features between nodes is
used to extrapolate relative transformations between nodes. The front-end has room for improve-
ments, either by incorporating additional sensors that are available on the Loomo, or by improving
how the matched image features are used.

The CNN is designed and trained using the YOLO framework, specifically YOLOv3-tiny. A fully
trained CNN is implemented on the Loomo, interconnected with OpenCV. The CNN was able to
run on the Loomo, and reliably detect other Loomos in its Field of View. Validations refers to
mAP of 82% along with an inference time of 0.92 Frames Per Second.

The simulation is built as a platform to benchmark different exploration strategies and pathfinding
algorithms. To give the bots an environment to explore, a map of a random unknown building is
generated. The building consists of rooms and corridors. The layout of the building can be adjusted
by changing the size of the rooms and doors, and the probability of spawning doors and corridors.
It is also possible to edit the map manually. The bots use ray casting to simulate the real-life
behavior of distance sensors. The swarm intelligence rules used to control the bots is inspired
by the BOID algorithm presented in the ‘Flocks, Herds and Schools: A Distributed Behavioral
Model’ [8] paper. A* is used for pathfinding for bots to reach the target position given by the
exploration algoritm. The results of multiple simulations show that with the current exploration
and pathfinding algorithm there is a diminishing return on time efficiency of using more bots. The

114

CHAPTER 8. CONCLUSION

optimal amount seems to be 4-5 bots.

115

Bibliography

[1] D. Zou and P. Tan. ‘CoSLAM: Collaborative Visual SLAM in Dynamic Environments’. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 35.2 (2013), pp. 354–366.

[2] Lingkang Zhang. ‘Orbiting a Moving Target with Multi-Robot Collaborative Visual SLAM’.
In: July 2015.

[3] L. Riazuelo, Javier Civera and J.M.M. Montiel. ‘C2TAM: A Cloud framework for cooperative
tracking and mapping’. In: Robotics and Autonomous Systems 62.4 (2014), pp. 401–413.
issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2013.11.007. url: http:

//www.sciencedirect.com/science/article/pii/S0921889013002248.

[4] Patrik Schmuck and Margarita Chli. ‘CCM-SLAM: Robust and efficient centralized collab-
orative monocular simultaneous localization and mapping for robotic teams’. In: Journal of
Field Robotics 36 (Dec. 2018). doi: 10.1002/rob.21854.

[5] C. Forster et al. ‘Collaborative monocular SLAM with multiple Micro Aerial Vehicles’. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013, pp. 3962–
3970.

[6] T. Luo et al. ‘Multi-Agent Collaborative Exploration through Graph-based Deep Reinforce-
ment Learning’. In: 2019 IEEE International Conference on Agents (ICA). 2019, pp. 2–7.

[7] M. Ossenkopf et al. ‘Long-Horizon Active SLAM system for multi-agent coordinated explor-
ation’. In: 2019 European Conference on Mobile Robots (ECMR). 2019, pp. 1–6.

[8] Craig W. Reynolds. ‘Flocks, Herds and Schools: A Distributed Behavioral Model’. In: SIG-
GRAPH Comput. Graph. 21.4 (Aug. 1987), pp. 25–34. issn: 0097-8930. doi: 10.1145/37402.

37406. url: https://doi.org/10.1145/37402.37406.

[9] About ROS. [Online; accessed 08-Jun-2020]. Open Robotics. url: https://www.ros.org/

about-ros/.

[10] Loomo user manual. Rev. 1.0. Online; downloaded 13-January-2020. Segway. url: https:

//store.segway.com/pub/media/wysiwyg/warranty/LOOMO-user-manual.pdf.

[11] Datasheet for the Intel RealSense Camera ZR300. CDI/IBP: 565287. Rev. 1.0. Online; down-
loaded 13-January-2020. Intel. Jan. 2017. url: https://www.intel.com/content/dam/

support/us/en/documents/emerging- technologies/intel- realsense- technology/

ZR300-Product-Datasheet-Public.pdf.

116

https://doi.org/https://doi.org/10.1016/j.robot.2013.11.007
http://www.sciencedirect.com/science/article/pii/S0921889013002248
http://www.sciencedirect.com/science/article/pii/S0921889013002248
https://doi.org/10.1002/rob.21854
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://www.ros.org/about-ros/
https://www.ros.org/about-ros/
https://store.segway.com/pub/media/wysiwyg/warranty/LOOMO-user-manual.pdf
https://store.segway.com/pub/media/wysiwyg/warranty/LOOMO-user-manual.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/ZR300-Product-Datasheet-Public.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/ZR300-Product-Datasheet-Public.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/ZR300-Product-Datasheet-Public.pdf

BIBLIOGRAPHY

[12] Cyrill Stachniss, John J. Leonard and Sebastian Thrun. ‘Simultaneous Localization and
Mapping’. In: Springer Handbook of Robotics. Ed. by Bruno Siciliano and Oussama Khatib.
Cham: Springer International Publishing, 2016, pp. 1153–1176. isbn: 978-3-319-32552-1. doi:
10.1007/978-3-319-32552-1_46. url: https://doi.org/10.1007/978-3-319-32552-

1_46.

[13] G. Grisetti et al. ‘Hierarchical optimization on manifolds for online 2D and 3D mapping’. In:
2010 IEEE International Conference on Robotics and Automation. 2010, pp. 273–278.

[14] M. Kaess, A. Ranganathan and F. Dellaert. ‘iSAM: Incremental Smoothing and Mapping’.
In: IEEE Transactions on Robotics 24.6 (2008), pp. 1365–1378.

[15] Michael Kaess et al. ‘iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree’.
In: International Journal of Robotic Research - IJRR 31 (May 2012), pp. 216–235. doi:
10.1177/0278364911430419.

[16] D. Meyer-Delius et al. ‘Temporary maps for robust localization in semi-static environments’.
In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010, pp. 5750–
5755.

[17] Dirk Hähnel, Dirk Schulz and Wolfram Burgard. ‘Mobile robot mapping in populated environ-
ments’. In:Advanced Robotics 17 (Jan. 2003), pp. 579–597. doi: 10.1163/156855303769156965.

[18] Chieh-Chih Wang, C. Thorpe and S. Thrun. ‘Online simultaneous localization and mapping
with detection and tracking of moving objects: Theory and results from a ground vehicle
in crowded urhan areas’. In: vol. 1. Oct. 2003, 842–849 vol.1. isbn: 0-7803-7736-2. doi: 10.

1109/ROBOT.2003.1241698.

[19] Tom Duckett. ‘Dynamic maps for long-term operation of mobile service robots’. In: (Jan.
2005).

[20] Cyrill Stachniss and Wolfram Burgard. ‘Mobile Robot Mapping and Localization in Non-
Static Environments.’ In: Jan. 2005, pp. 1324–1329.

[21] Dirk Hhnel et al. ‘Map Building with Mobile Robots in Dynamic Environments’. In: Pro-
ceedings - IEEE International Conference on Robotics and Automation (Nov. 2002). doi:
10.1109/ROBOT.2003.1241816.

[22] E. Rublee et al. ‘ORB: An efficient alternative to SIFT or SURF’. In: 2011 International
Conference on Computer Vision. 2011, pp. 2564–2571.

[23] Shinya Sumikura, Mikiya Shibuya and Ken Sakurada. ‘OpenVSLAM: A Versatile Visual
SLAM Framework’. In: Proceedings of the 27th ACM International Conference on Multimedia.
MM ’19. Nice, France: ACM, 2019, pp. 2292–2295. isbn: 978-1-4503-6889-6. doi: 10.1145/

3343031.3350539. url: http://doi.acm.org/10.1145/3343031.3350539.

[24] Raúl Mur-Artal and Juan D. Tardós. ‘ORB-SLAM: A Versatile and Accurate Monocular
SLAM System’. In: IEEE Transactions on Robotics 31.5 (2015), pp. 1147–1163. doi: 10.

1109/TRO.2015.2463671.

117

https://doi.org/10.1007/978-3-319-32552-1_46
https://doi.org/10.1007/978-3-319-32552-1_46
https://doi.org/10.1007/978-3-319-32552-1_46
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1163/156855303769156965
https://doi.org/10.1109/ROBOT.2003.1241698
https://doi.org/10.1109/ROBOT.2003.1241698
https://doi.org/10.1109/ROBOT.2003.1241816
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1145/3343031.3350539
http://doi.acm.org/10.1145/3343031.3350539
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671

BIBLIOGRAPHY

[25] Raúl Mur-Artal and Juan D. Tardós. ‘ORB-SLAM2: an Open-Source SLAM System for
Monocular, Stereo and RGB-D Cameras’. In: IEEE Transactions on Robotics 33.5 (2017),
pp. 1255–1262. doi: 10.1109/TRO.2017.2705103.

[26] D. G. Lowe. ‘Object recognition from local scale-invariant features’. In: Proceedings of the
Seventh IEEE International Conference on Computer Vision. Vol. 2. 1999, 1150–1157 vol.2.

[27] Herbert Bay et al. ‘Speeded-Up Robust Features (SURF)’. In: Computer Vision and Im-
age Understanding 110.3 (2008). Similarity Matching in Computer Vision and Multimedia,
pp. 346–359. issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.2007.09.014. url:
http://www.sciencedirect.com/science/article/pii/S1077314207001555.

[28] W. Förstner and E. Gülch. ‘A Fast Operator for Detection and Precise Location of Distinct
Points, Corners and Centres of Circular Features’. In: ISPRS Intercommission Workshop.
Jan. 1987.

[29] Hans Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Tech. rep. CMU-RI-TR-80-03. Pittsburgh, PA: Carnegie Mellon University, Sept. 1980.

[30] C. Harris and M. Stephens. ‘A combined corner and edge detector’. In: Alvey Vision Confer-
ence (1998), pp. 147–151.

[31] Jianbo Shi and Tomasi. ‘Good features to track’. In: 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. 1994, pp. 593–600.

[32] Edward Rosten and Tom Drummond. ‘Machine Learning for High-Speed Corner Detection’.
In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis, Horst Bischof and Axel Pinz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443. isbn: 978-3-540-33833-8.

[33] Wikipedia contributors. Midpoint circle algorithm — Wikipedia, The Free Encyclopedia. [On-
line; accessed 2-May-2020]. 2020. url: https://en.wikipedia.org/w/index.php?title=

Midpoint_circle_algorithm&oldid=952371625.

[34] Michael Calonder et al. ‘BRIEF: Binary Robust Independent Elementary Features’. In: Com-
puter Vision – ECCV 2010. Ed. by Kostas Daniilidis, Petros Maragos and Nikos Paragios.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 778–792. isbn: 978-3-642-15561-1.

[35] Mathworks. Introduction to Machine Learning. https://www.mathworks.com/content/dam/

mathworks/ebook/gated/machine-Learning-ebook.pdf. Online; accessed 05-May-2020.
2020.

[36] Sergios Sundaram SureshNarasimhan SundararajanRamasamy Savitha. Supervised Learning
with Complex-valued Neural Networks. Springer, Berlin, Heidelberg, 2013.

[37] Mathworks. What is Deep Learning. https : / / se . mathworks . com / discovery / deep -

learning.html?s_tid=srchtitle. Online; accessed 06-May-2020. 2020.

[38] Neural Networks and Deep Learning. Determination Press, 2015.

[39] Taweh Beysolow II. Introduction to Deep Learning Using R. A Step-by-Step Guide to Learning
and Implementing Deep Learning Models Using Re. Apress, Berkeley, CA, 2017.

118

https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014
http://www.sciencedirect.com/science/article/pii/S1077314207001555
https://en.wikipedia.org/w/index.php?title=Midpoint_circle_algorithm&oldid=952371625
https://en.wikipedia.org/w/index.php?title=Midpoint_circle_algorithm&oldid=952371625
https://www.mathworks.com/content/dam/mathworks/ebook/gated/machine-Learning-ebook.pdf
https://www.mathworks.com/content/dam/mathworks/ebook/gated/machine-Learning-ebook.pdf
https://se.mathworks.com/discovery/deep-learning.html?s_tid=srchtitle
https://se.mathworks.com/discovery/deep-learning.html?s_tid=srchtitle

BIBLIOGRAPHY

[40] Sik-Ho Tsang. Review: ResNet — Winner of ILSVRC 2015 (Image Classification, Localiza-
tion, Detection). Online; accessed 15-May-2020. 2018. url: https://towardsdatascience.

com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-

detection-e39402bfa5d8.

[41] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018. arXiv: 1804.

02767 [cs.CV].

[42] Ross Girshick Joseph Redmon Santosh Divvala and Ali Farhadi. You Only Look Once: Unified,
Real-Time Object Detection. 2016. arXiv: 1506.02640 [cs.CV].

[43] Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic seg-
mentation. 2013. arXiv: 1311.2524 [cs.CV].

[44] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[45] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. 2015. arXiv: 1506.01497 [cs.CV].

[46] Wei Liu et al. ‘SSD: Single Shot MultiBox Detector’. In: Lecture Notes in Computer Science
(2016), pp. 21–37. issn: 1611-3349. doi: 10.1007/978- 3- 319- 46448- 0_2. url: http:

//dx.doi.org/10.1007/978-3-319-46448-0_2.

[47] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv: 1612.

08242 [cs.CV].

[48] Alexey Bochkovskiy, Chien-Yao Wang and Hong-Yuan Mark Liao. YOLOv4: Optimal Speed
and Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[49] G. Bradski. ‘The OpenCV Library’. In: Dr. Dobb’s Journal of Software Tools (2000).

[50] Gaël Guennebaud, Benoît Jacob et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[51] Opencsv - A simple library for reading and writing CSV in Java. http://opencsv.sf.net/.
[Online; accessed 25-May-2020]. 2020.

[52] ISO/IEC. International Standard ISO/IEC 14882:2017(E) – Programming Language C++.
Geneva, Switzerland, 2017.

[53] Zhengyou Zhang. ‘Camera Calibration’. In: Computer Vision: A Reference Guide. Ed. by
Katsushi Ikeuchi. Boston, MA: Springer US, 2014, pp. 76–77. isbn: 978-0-387-31439-6. doi:
10.1007/978-0-387-31439-6_164. url: https://doi.org/10.1007/978-0-387-31439-

6_164.

[54] Rohith Gandhi. R-CNN, Fast R-CNN, Faster R-CNN, YOLO— Object Detection Algorithms.
Online; accessed 27-Feb-2020. 2018. url: https://towardsdatascience.com/r-cnn-fast-

r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e.

[55] Pete Warden. How many images do you need to train a neural network?) Online; accessed
04-Jun-2020. 2017. url: https://petewarden.com/2017/12/14/how-many-images-do-

you-need-to-train-a-neural-network/.

[56] Alexander Jung Revision. Overview of Augmenters. Online; accessed 22-Apr-2020. 2020. url:
https://imgaug.readthedocs.io/en/latest/source/overview_of_augmenters.html.

119

https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/2004.10934
https://doi.org/10.1007/978-0-387-31439-6_164
https://doi.org/10.1007/978-0-387-31439-6_164
https://doi.org/10.1007/978-0-387-31439-6_164
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://imgaug.readthedocs.io/en/latest/source/overview_of_augmenters.html

Appendix A

Source Code

Exploration Simulation

Repository available at: https://github.com/Stedd/swarmSimulation

Branch: master
Commit: 4ccf697157ed12720c741b72354ada6f7ed44809

Machine learning

Repository at: https://github.com/wiggleif/MAS500

Branch: master
Commit: fe1adeb675cbb9c64728ebb913a310cf85a18f30

Augmentation

Script: ”AugmentedSet1.py“
https://github.com/wiggleif/MAS500/blob/master/AugmentedSet1.py

Matlab to Darknet Conversion

Script: mat2darkOri.m
https://github.com/wiggleif/MAS500/blob/master/mat2darkOri.m

Verify Bounding Boxes

Script: ”verifybboxes.m“
https://github.com/wiggleif/MAS500/blob/master/verifybboxes.m

A - 1

https://github.com/Stedd/swarmSimulation
https://github.com/wiggleif/MAS500
https://github.com/wiggleif/MAS500/blob/master/AugmentedSet1.py
https://github.com/wiggleif/MAS500/blob/master/mat2darkOri.m
https://github.com/wiggleif/MAS500/blob/master/verifybboxes.m

APPENDIX A. SOURCE CODE

Cfg-File

Script: ”yolov3-tiny-custom.cfg“
https://github.com/wiggleif/MAS500/blob/master/yolov3-tiny-custom.cfg

Generate Training Data

Script: ”generate_train.py“
https://github.com/wiggleif/MAS500/blob/master/generate_train.py

Pretrained Weights File

Script: ”yolov3-tiny.conv.11”
https://github.com/wiggleif/MAS500/blob/master/yolov3-tiny.conv.11

Inference

Repository available at: https://github.com/Stedd/LoomoApp/tree/YOLO

Branch: YOLO
Commit: 738b7f7a9dfebadf1b9818b32061d86349dee62a

SLAM

Loomo Recorder

Repository available at: https://github.com/Jakob1-5/Loomo_Recorder

Branch: Save_raw_vid
Commit: c8854044b9408ec59cb4b8dfed3cc7a45ec2c248

SLAM implementation

Repository available at: https://github.com/Jakob1-5/LoomoSLAM

Branch: master
Commit: e907a11b1c01f426ccbc3884ed6175ec1d113760

A - 2

https://github.com/wiggleif/MAS500/blob/master/yolov3-tiny-custom.cfg
https://github.com/wiggleif/MAS500/blob/master/generate_train.py
https://github.com/wiggleif/MAS500/blob/master/yolov3-tiny.conv.11
https://github.com/Stedd/LoomoApp/tree/YOLO
https://github.com/Jakob1-5/Loomo_Recorder
https://github.com/Jakob1-5/LoomoSLAM

APPENDIX A. SOURCE CODE

RealSense Camera App

Repository available at: https://github.com/Jakob1-5/RealSensecamera

Branch: master
Commit: a51dceb772a23d20ef6b957222803aeea424ca17

A - 3

https://github.com/Jakob1-5/RealSensecamera

Appendix B

Sensor Calibration

B - 1

APPENDIX B. SENSOR CALIBRATION

Base width calculations

B - 2

APPENDIX B. SENSOR CALIBRATION

Wheel diameter calculations

B - 3

APPENDIX B. SENSOR CALIBRATION

Wheel encoder calculations

B - 4

APPENDIX B. SENSOR CALIBRATION

Depth camera calculations

B - 5

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Thesis Statement
	Original Thesis Goals
	Revised Thesis Goals

	Project Management

	System
	Loomo Technical Specification
	Measurements
	Base Width
	Wheel Diameter

	Sensors
	Encoder
	Distance Sensors
	Intel RealSense Camera
	Depth Camera

	Theory
	Simultaneous Localization And Mapping (SLAM)
	Overview of SLAM
	Graphs in Graph-Based SLAM
	Least Squares
	A Pose Graph Solution to the SLAM Problem

	Computer Vision
	Key Concepts
	Convolution
	Keypoint Detection
	Feature Description
	ORB Feature Detector
	Feature Matching
	Camera Model

	Odometry and Motion Model of the Loomo
	Odometry of a Differential Drive Robot
	State Estimation Based on Wheel Encoder Odometry

	Simulating Swarm Intelligence for Collaborative Exploration
	Emergent Behaviour
	Occupancy Grid Map
	Configuration Space
	Potential Field
	Pathfinding
	Velocity Control

	Machine Learning
	Supervised Learning
	Deep Learning
	Neural Networks
	Convolutional Neural Networks (CNN)
	Maxpool
	Activations
	Object Detection
	You Only Look Once (YOLO)
	Training of Convolutional Neural Networks

	Implementation
	SLAM Implementation
	Data Recording
	Pose Graph Implementation
	Processing Encoder Input
	Adding Nodes to the Graph
	Camera Calibration
	Computer Vision
	Adding Virtual Edges to the Graph
	SLAM Back-End

	Machine learning
	Generating Training Data
	Designing the Neural Network
	Training
	Validation
	Inference

	Simulating Swarm Intelligence for Collaborative Exploration
	Map
	Room Generator
	Sensors
	Walls and Obstacles
	Exploration
	Potential Field
	Pathfinding
	Swarm Intelligence Rules

	Results
	Neural Network Performance
	Validation

	Exploration Simulation
	SLAM Results
	Computer Vision Performance

	Discussion
	SLAM
	Machine Learning
	Exploration Simulation

	Further Work
	Conclusion
	Bibliography
	Appendices
	Appendix Source Code
	Appendix Sensor Calibration

