
Modeling, Simulation and Control for Marine
Crane Operations

Ilja Boginskis and Hmdoun Abker Ibrahim Hmdoun

Supervisor
Professor Jing Zhou

This Master’s Thesis is carried out as a part of the education at the University of Agder and is
therefore approved as a part of this education. However, this does not imply that the University

answers for the methods that are used or the conclusions that are drawn.

University of Agder, 2020
Faculty of Engineering and Science
Department of Engineering Sciences

Acknowledgements

We would like to express our special thanks of gratitude to our teacher professor Jing Zhou at the
University of Agder who gave us the golden opportunity to do this wonderful project on the topic
(Modeling and Control of Dynamics Between Crane and Vessel), which also helped us in doing a lot
of Research and i came to know about so many new things I am really thankful to them. Secondly
we would also like to thank our families and friends who helped us a lot in finalizing this project
within the limited time frame.

i

Abstract

Marine cranes play an important part in offshore operations. They are expected to perform a
wide range of different tasks, such as handling the load safely offshore. Nowadays, the offshore
oil fields and wind farms are detected and developed, thus more and more offshore platforms are
built. The scale and capacity of crane vessels are developing rapidly to fulfill the construction need
of offshore platforms and offshore wind farms. Heavy crane, placed on-board vessel, is affected by
vessel motions induced by environmental forces such as wind, waves and current, and vice versa.
Therefore, the investigation of coupled dynamics between heavy crane and vessel, position control
of vessel, and heave compensation is important and needs to be analyzed thoroughly. This master
project focus on Modeling, Simulation and Control for Marine Crane Operations. The model was
developed in Matlab, Simulink and Simscape Multi-body.

It is several ways to developed Control designs for an offshore crane, but in this thesis the control
task only concerns position control of the crane. The main goal is to determine the most suitable
controller design for this tasks.

A trajectory planning scheme is developed that can damp out unexpected payload swing. Crane
end-effector is controlled to follow a trajectory planning scheme in x-direction with as small er-
ror between desired and measured position as possible. The desired position is a movement from
23.15m which is the x-coordinate when the crane arm is fully extended, to 15m.

It was created two crane models, first model in the Simulink based on crane dynamic and other
model was designed by using the Simscape. Various control designs were developed with the task of
controlling the end-effector position in horizontal direction, using both crane models as the plant.
PID-, PI and PD-controller design were developed to perform control of end-effector in desired
position.

In this project a Simscape model for the crane was devolped using tow ways one of them is using
On-Shape web-side, and another is used the Simscape library. Through the project, two Simscape
crane models were designed:

• A Simscape model for the crane to test and control the crane joints.

• A Simscape model for the crane with fixed cable and payload.

The Simscpae models for the crane were combined with the controllers and the trajectory planning
scheme to control end-effector in x-direction.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Project Description . 1
1.2 Assignment Requirements . 2
1.3 System Description . 2
1.4 Technical Approach . 3
1.5 Outline of Report . 3
1.6 Software Used During The Project . 4

1.6.1 SolidWorks . 4
1.6.2 Matlab . 4
1.6.3 Simulink . 4
1.6.4 Simscape SimMechanics . 4

2 Literature Review 5
2.1 Trajectory Planning Method for Overhead Cranes 5
2.2 Control of Ship Mounted Cranes . 6
2.3 Modeling and Control for Rotary Crane Using Matlab/Simulink 7

3 Preliminary theory of crane modeling and control 8
3.1 Kinematics . 8

3.1.1 Forward and Inverse kinematics . 8
3.1.2 The Denavit-Hartenberg Convention . 9
3.1.3 Velocity - The Jacobian . 10

3.2 Dynamics . 11
3.2.1 Lagrange’s Approach . 11
3.2.2 Kinetic Energy . 12
3.2.3 Potential Energy . 12
3.2.4 Equations of Motion . 12

3.3 Control Theory . 14
3.3.1 PID-controller . 14
3.3.2 P-controller . 15
3.3.3 PI-controller . 16
3.3.4 PD-controller . 17
3.3.5 Ziegler-Nichols Tuning . 18

iii

4 Modeling of the crane 19
4.1 Description of the Crane . 19
4.2 Crane Kinematics . 20

4.2.1 Crane Geometry Simplification . 20
4.2.2 Forward Kinematics: Denavit-Hartenberg . 21
4.2.3 Inverse Kinematics . 23
4.2.4 Validation of Forward Kinematics . 23
4.2.5 Geometric Jacobian between Frame 3 and Joints 24

4.3 Crane Dynamics . 26
4.3.1 Kinetic Energy . 26
4.3.2 Potential Energy . 27

4.4 Dynamic Crane Model in Simulink . 28
4.5 Crane Model in Simscape . 29

4.5.1 Browser Based CAD Modelling Tool Onshape 29
4.5.2 Simscape Multibody (SimMechanics) . 31

5 Control of the crane 32
5.1 Trajectory Planning . 32
5.2 Control of End-effector for crane model in Simulink 37

5.2.1 Zigler Nichols Closed Loop Tuning . 37
5.2.2 PID Controller . 39
5.2.3 PD controller . 39
5.2.4 PI Controller . 40

5.3 Control of Joints for crane model in Simscape . 40
5.4 Control of End-effector for crane model in Simscape 41

6 Simulation results 42
6.1 Control of End-effector for crane model in Simulink 42

6.1.1 PID Controller . 43
6.1.2 PD Controller . 44
6.1.3 PI Controller . 45

6.2 Discussion of control results for crane model in Simulink 46
6.3 Control of Joints for crane model in Simscape . 46
6.4 Control of End-effector for crane model in Simscape 47
6.5 Discussion of control results for crane model in Simscape 48

7 Conclusions and Future Work 49
7.1 Conclusions . 49
7.2 Further Work . 50

8 Appendix 51
8.1 Matlab script for Forward Kinematics . 51
8.2 Matlab script for Inverse Kinematics . 51
8.3 Matlab script for Inertia matrix . 52
8.4 Matlab script for Coriolis and centripetal matrix . 53
8.5 Matlab script for Gravity vector . 54

Bibliography 55

iv

List of Figures

1.1 Crane on Vessel . 1
1.2 Drawing of the knuckle jib crane . 2
1.3 Illustration of workflow . 3
1.4 SolidWorks Logo . 4
1.5 Matlab Logo . 4
1.6 Simulink Logo . 4

2.1 Block diagram of the overall trajectory planning process 5
2.2 Simscape Model of The Jib-load System . 7

3.1 Forward and inverse kinematics . 8
3.2 System illustration for DH table. 9
3.3 The Concept of the Feedback Controller . 14
3.4 The PID Controller . 14
3.5 The P Controller . 15
3.6 The PI Controller . 16
3.7 The PD Controller . 17

4.1 Assembly of the crane . 19
4.2 A simplification of the crane . 20
4.3 Validation of Forward Kinematics Simulink model 23
4.4 Joint angles comparison . 24
4.5 Block diagram of the dynamic crane model . 28
4.6 Dynamic crane model in Simulink . 28
4.7 3D Model of the crane . 29
4.8 3D Model in Onshape . 29
4.9 Importing Onshape Mdel to MATLAB . 30
4.10 Translate .xml file to Simscape Object . 30
4.11 Simscape Model Imported from Onshape . 30
4.12 Simscape Model Imported from Onshape in The Mechanics Explorer 30
4.13 Crane Model Using Simscape Library . 31
4.14 Crane from the Mechanics Explorer . 31

5.1 Schematic illustration of a planar 2-D overhead crane. 32
5.2 kinematic model in simulink . 33
5.3 Simulink model of reference trajectory . 34
5.4 Iterative learning strategy . 35
5.5 Simulink model of planned trajectory . 35
5.6 Comparison of trolley trajectory. Blue curve is the reference trajectory and the red

curve is the planned trajectory. 36
5.7 Comparison of payload swing angel trolley from trajectory. Blue curve is the swing

angle from reference trajectory and the red curve is the swing angle from planned
trajectory. 36

5.8 Desired position in x-direction . 37
5.9 Procedure to find the ultimate gain Ku . 38

v

5.10 Using peak finder to determine the ultimate period Pu 38
5.11 Control of the crane end-effector position using PID-controller with gravity compen-

sation . 39
5.12 Control of the crane end-effector position using PD-controller with gravity compen-

sation . 39
5.13 Control of the crane end-effector position using PI-controller with gravity compensation 40
5.14 Control of the crane joints angle using PID-controller with gravity compensation . . 40
5.15 Control of the crane end-effector using PID-controller with gravity compensation . . 41

6.1 Comparison of desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PID-control. The blue curve is the desired and the red curve
is the measured end-effector position in x-direction. 43

6.2 Error between desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PID-control. 43

6.3 Comparison of desired and measured end-effector position in x-direction using in-
creased gains for PID-control. 43

6.4 Error between desired and measured end-effector position in x-direction using in-
creased gains for PID-control. 43

6.5 Comparison of desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PD-control. The blue curve is the desired and the red curve
is the measured end-effector position in x-direction. 44

6.6 Error between desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PD-control. 44

6.7 Comparison of desired and measured end-effector position in x-direction using in-
creased gains for PD-control. 44

6.8 Error between desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PD-control. 44

6.9 Comparison of desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PI-control. The blue curve is the desired and the red curve
is the measured end-effector position in x-direction. 45

6.10 Error between desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PI-control. 45

6.11 Comparison of desired and measured end-effector position in x-direction using in-
creased gains for PI-control. 45

6.12 Error between desired and measured end-effector position in x-direction using Ziegler-
Nichols parameters for PI-control. 45

6.13 Measured joint angles versus desired joint angles using PID-controller with gravity
compensation . 46

6.14 Error between desired and measured joint angles using PID-controller with gravity
compensation . 47

6.15 Measured versus desired end-effector position using PID-controller with gravity com-
pensation . 47

6.16 Error between desired and measured end-effector position using PID-controller with
gravity compensation . 48

vi

List of Tables

3.1 DH-table . 9
3.2 Effects of Controller Parameters . 15
3.3 Ziegler Nichols Method Open loop . 18
3.4 Ziegler Nichols Method Closed loop . 18

4.1 Parameters of the crane . 20
4.2 DH parameters of a 3-DOF robot . 21

5.1 Ziegler-Nichols closed-loop controller parameters . 38

vii

Chapter 1

Introduction

1.1 Project Description

This project is carried out as part of the course MAS500: Master Project and is concerned with
Modeling, simulation and Control for marine crane operations. As assistance, support material has
been provided by the supervisor for the execution of the project, including; Literature studies of
control and modeling of crane and vessel, useful kinematics and previous master thesis in [1, 2].

Figure 1.1: Crane on Vessel

1

1.2 Assignment Requirements
The tasks of this project are listed below

• Literature studies of control and modeling of crane and vessel.

• Dynamics modeling of coupled dynamics between heavy crane, cable and payload.

• Develop the Simscape model for crane.

• Develop a trajectory planning scheme is developed to put forward to generate a desired
trajectory for the payload transportation process.

• Combine the trajectory planning scheme and PID algorithm to control the crane.

1.3 System Description
The hydraulic crane consists of three revolute joints and one extension joint. The first revolute joint
is used to rotate the base and is driven by a slew mechanism. The second and third revolute joints
are the main joint and jib joint respectively, which allow planar movement of the end payload when
input signal is applied to the crane. The last joint is the extension joint which is used to extend
the reach of the end payload. To accomplish the requirements in the assignment, it is necessary
to have a controlled movement of the crane. In order to control and steer the hydraulic crane,
the governing kinematics must be obtained and design a control system. Fig. 1.2 shows the crane
bodies.

Figure 1.2: Drawing of the knuckle jib crane

2

1.4 Technical Approach

In Fig. 1.3, the strategy of approaching this project is illustrated as a flowchart. The first step
will be to generate a model of the system and then a controller is modeled in Simulink. The
second step is to tune the simulation model. When simulation performance and parameter tuning
is satisfactory, the control structure is used in virtual reality model (VRML) of the crane. This is
a replica of the actual crane. This process is iterated for the duration of the project.

Figure 1.3: Illustration of workflow

1.5 Outline of Report

Chapter 1 - Introduction:
This chapter includes project description, assignment requirements, system description, technical
approach, outline of the report and software that used in this project.

Chapter 2 - Literature review:
In this chapter all literature in this thesis are summarized.

Chapter 3 - Preliminary theory of crane modeling and control:
This chapter includes the theory used when developing the crane model is covered.

Chapter 4 - Modeling of the crane:
This chapter covers the development of crane model.

Chapter 5 - Control of the crane:
This chapter includes different system controllers which were used in this project.

Chapter 6 - Simulation results:
This chapter covers the results from the crane model simulation both Simulink model and Simscape
model.

Chapter 7 - Conclusion:
This chapter includes conclution of the project.

3

1.6 Software Used During The Project
There are several software used to carry out this project, these software are Solidworks, Matlab,
Simulink and Simscape SimMechanics. This section includes briefs about each software as follow:

1.6.1 SolidWorks

SolidWorks is computer-aided design (CAD) software owned by Dassault Systemes. It uses the
principle of parametric design and generates three kinds of interconnected files: the part, the
assembly, and the drawing. Solidworks helps you perform 2D and 3D modelling.

Figure 1.4: SolidWorks Logo

1.6.2 Matlab

Matlab is a high-performance language for technical computing. It integrates computation, vi-
sualization, and programming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation. Typical uses include: ... Data analysis, exploration,
and visualization.

Figure 1.5: Matlab Logo

1.6.3 Simulink

Simulink, an add-on product to MATLAB, provides an interactive, graphical environment for
modeling, simulating, and analyzing of dynamic systems. It enables rapid construction of virtual
prototypes to explore design concepts at any level of detail with minimal effort.

Figure 1.6: Simulink Logo

1.6.4 Simscape SimMechanics

Simscape Multibody (formerly SimMechanics) provides a multibody simulation environment for 3D
mechanical systems, such as robots, vehicle suspensions, construction equipment, and aircraft land-
ing gear. You can model multibody systems using blocks representing bodies, joints, constraints,
force elements, and sensors.

4

Chapter 2

Literature Review

Different literature have been used in this project, this chapter includes a review of these literature
which are related to the plan trajectory, modelling, simulation and control of the offshore cranes.
In this these papers there is an explanation of methods of the path trajectory, the offshore cranes
kinematics and dynamics, as well as the control system for offshore cranes.

2.1 Trajectory Planning Method for Overhead Cranes

The paper [5] is written by Ning Sun, Yongchun Fang, Yudong Zhang and Bojun Ma, and the
tittle of this paper is a novel kinematic coupling based trajectory planning method for overhead
cranes. The writers have tried to achieve a smooth trolley motion and payload swing, a kinematic
coupling-based offline trajectory planning method is proposed for 2-D overhead cranes. Specifically,
to prevent unexpected payload swing. As shown in figure2.1 an antiswing mechanism is first
introduced into an S-shape reference trajectory based on accurate analysis for the coupling behavior
between the payload and the trolley. After that, the combined trajectory is further tuned through
a novel iterative learning strategy , which guarantees accurate trolley position. The performance of
the proposed trajectory is proven by Lyapunov techniques and Barbalat’s Lemmas. In this project
the same method is used for the offshore cranes.

Figure 2.1: Block diagram of the overall trajectory planning process

5

2.2 Control of Ship Mounted Cranes
Paper [4] shows that the past several decades of the control problem for land-fixed cranes has been
deeply studied, and a lot of solutions for both linear and nonlinear control methods have been
reported and many control strategies for land-fixed cranes have already been developed. As op-
posed to the land-fixed cranes, which are fixed and operated in the inertia, the ship mounted cranes
present much more complicated nonlinear dynamical characteristics and they are persistently influ-
enced by different mismatched disturbances due to harsh sea environments, e.g, sea waves, ocean
current, sea winds and so forth; these unfavorable factors bring about many challenges for the
development of effective control schemes. Due to those rough working conditions and the influence
by various external disturbance the control problem for offshore cranes is highly demanding when
the intention of the control is to place a payload precisely and smoothly to a desired location as fast
as possible, without making the payload swing during the operation and avoid residual swing at
the end. Writers looked at other literature of work denoted to the control of ship mounted cranes
and found some control strategies that were already developed.

In the literature, there are some innovative works devoted to the control of ship-mounted cranes. In
particular, for ship mounted cranes with the well known (Maryland rigging) a feedforward control
strategy is designed with gain scheduling to suppress the cargo swing caused by ship roll move-
ments. Later on, Al-Sweiti and Söffker derived the mathematical model of an elastic Maryland
rigged ship mounted crane and then develop a novel control scheme consisting of a variable-gain
observer and a variable-gain controller, which is demonstrated to be effective. In addition, there are
also some other meaningful works on both dynamics analysis and advanced controller design, in-
cluding predictionbased control, preview tracking control, nonlinear feedback control, sliding mode
control (SMC), composite control, linear matrix inequality-based control, delayed feedback control,
active rate-based control, combination-based control, external modelbased control, and so on.

They found some advantages of using these control strategies, for instance that the control scheme
with variable-gain observer and variable-gain controller is proved to be effective and that two
nonlinear sliding mod controllers are developed and are proved to be and robust. Despite these
advantages, most of these control strategies are based on simplified or reduced crane dynamics,
which may cause system instability because it is difficult to avoid a swinging payload, due to the
complicated working scenario of an offshore crane.

The paper presents a control design for offshore cranes based on the original nonlinear dynamics
of the crane without any simplifications or approximations. It presents how the dynamics is trans-
formed into a form that is more practical for such an approach, where the new control variables are
defined. The Lyapunov control law and a closed loop stability analysis are provided, and as far as
they know this paper produces the first closed loop control method which attain asymptotic results
for an offshore crane, affected by ship roll and heave movement, without needing linearization and
approximation of the original nonlinear dynamics. Tis method is compared to the existing method
using Matlab/Simulink RTWT to verify that the performance of such a control method is better
and more robust against external disturbances than the other control methods.

6

2.3 Modeling and Control for Rotary Crane Using Matlab/Simulink
In this literature rotary crane has been studied, rotary crane carry a payload from one position
to another position. The cart and jib of the crane start to accelerate in linear and rotational mo-
tions respectively when input signal to the crane system is applied. This will cause swinging or
swaying of the payload. Therefore an antiswing for the crane is proposed in paper [6]. This paper
presents the modeling and intelligent control system design for a rotary crane. The modeling and
simulation was done using Matlab Simsacpe toolbox which is physical approach of modeling. The
mathematical model of the crane was also derived for comparison. The intelligent control system
is implemented as Fuzzy-PID controller. The physical modeling approach using Matlab Simsacpe
toolbox can ease modeling process since mathematical modeling results in unknown parameters.
Jib load system has been discussed in this paper.

Figure 2.2: Simscape Model of The Jib-load System

7

Chapter 3

Preliminary theory of crane modeling
and control

The purpose of this chapter is to present and define the theoretical expressions that are central to
crane modeling and control. In this chapter, the theory of crane modeling is used to help develop
kinematics and dynamics equations. Part of the task is to advance the theory behind different
control methods such as PID, PI and PD controls for crane.

3.1 Kinematics

3.1.1 Forward and Inverse kinematics

Forward kinematics is the method of calculating the motion of an end-effector from dimensions and
states of the system on which it is mounted.

Inverse kinematics is the opposite of forward kinematics. It uses the kinematic equations to calculate
the motion of the joints from the motion of the end-effector.

Figure 3.1: Forward and inverse kinematics

From Figure 3.1, we can distinguish between forward kinematics and inverse kinematics.

8

3.1.2 The Denavit-Hartenberg Convention

The theory presented in this chapter is based on [2].

Jacques Denavit and Richard Hartenberg created a standardized form for finding the forward kine-
matics of a robot system of succeeding joints and links. This method uses the length of the links,
and the angles of the joints to find the position of the end-effector on the end of the last link. The
method uses the local coordinate frames of each joint to "travel" through the links towards the tip.

The method is performed by first setting up a DH-table, for then to use this to find the transfor-
mation matrix needed to identify the coordinates of the tip. The DH-table is made as shown in
table 3.1.

Joint Rot Z Trans Z Rot X Trans X
1 θZ1 LZ1 θX1 LX1
2 θZ2 LZ2 θX2 LX2
3 θZ3 LZ3 θX3 LX3

Table 3.1: DH-table

In the DH-table, every joint get its own row. In the second column, the rotation of the joint about
the z-axis is input. In the third column, the length of the following link in z direction is input (for
when the rotation is 0◦). In the fourth column, the length of the following link in x direction is
given (when the rotation is 0◦). In the fth column, the rotation of the joint about the x-axis is
input. An illustration corresponding to the DH-table is shown in figure 3.2.

Figure 3.2: System illustration for DH table.

When the DH-table is completed, the values are set into rotation matrices and translation matrices,
for then to be combined into a transformation matrix. There is made one transformation matrix
for each of the joints, which is found equally for all joints using equation 3.1.

An−1
n = RotZ(θZn) · TransZ(LZn) ·RotX(θXn) · TransX(LXn) (3.1)

where Rotm(θ) is a rotational matrix using θ as the angle, and Transm(L) is a translational matrix
using L as the input.

9

The rotational matrices for rotation about the X, Y, and Z-axes are shown in equations 3.2, 3.3,
and 3.4 respectively.

RotX(θX) =


1 0 0 0
0 cos(θX) − sin(θX) 0
0 sin(θX) cos(θX) 0
0 0 0 1

 (3.2)

RotY (θY) =


cos(θY) 0 sin(θY) 0

0 1 0 0
− sin(θY) 0 cos(θY) 0

0 0 0 1

 (3.3)

RotZ(θ) =


cos(θZ) − sin(θZ) 0 0
sin(θZ) cos(θZ) 0 0

0 0 1 0
0 0 0 1

 (3.4)

where θ is the angle of the rotation.

The translational matrix is shown in equation 3.5.

Transm(Lm) =


1 0 0 LX
0 1 0 LY
0 0 1 LZ
0 0 0 1

 (3.5)

where Lm is the translation for the m-axis.

The transformation matrix between the origin of the system and the tip of the outer link is found
by:

H0
3 = A0

1A
1
2A

2
3 (3.6)

3.1.3 Velocity - The Jacobian

A moving reference frame have both linear and angular velocity components. The manipulator
Jacobian relates the link angular and linear velocity with the joint velocities. It can be split into
one that relates the joint velocity of link i with the linear velocity vi, and the other relates the
joints angles to the angular velocity wi
The global velocity for link i may be written

vi = jv1q̇1 + ...+ jviq̇i = Jv q̇ (3.7)
wi = jw1q̇1 + ...+ jwiq̇i = Jwq̇ (3.8)

Where Jv is the linear Jacobian and Jw is the angular Jacobian. The 6 × n Jacobian to consider
are then

Jv =
[
jv1 ... jvi 0 ... 0

]
(3.9)

Jw =
[
jw1 ... jwi 0 ... 0

]
(3.10)

10

The total Jacobian for a n-link manipulator can then be written as

Ji =
[
Jvi
Jwi

]
=



[
zi−1 × (rn − ri−1)

zi−1

]
revolute joint[

zi−1

0

]
prismatic joint

(3.11)

Here, the 3 × 1 vector zi−1 is given by the the first three elements in the third column of H0
i−1,

while ri−1 is given by the first three elements of the fourth column of H0
i−1.

3.2 Dynamics
Kinematics describes just the motion of a robot manipulator without considering the torque applied
and dynamics describes the relationship between torque and motion.

Information and equations regarding the dynamics of a robot manipulator is collected from [1]

3.2.1 Lagrange’s Approach

Lagrange’s Approach offers a systematic way to formulate the equations of the motion of a mechan-
ical system or a (flexible) structural system with multiple degrees of freedom. A scalar approach is
obtained by expressing the scalar quantities of kinetic and potential energy in terms of generalized
coordinates. The Lagrangian L of a mechanical system is described as the difference between the
kinetic and the potential energy of the system, it can be calculated from following equation:

L = K − P (3.12)

Where:
K and P are the total kinetic and potential energy.
The use of the Lagrange’s equations for any type of mechanical system leads to a system of (n)
coupled, second nonlinear ordinary differential equations given by:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi i = 1, . . . , i (3.13)

Where:
τi = is the force associated with link i.

In the equation above we see the relation between the force applied to each joint and joint positions,
velocities and accelerations, so it can be possible to drive the dynamic model using kinetic and
potential energy of the system.

11

3.2.2 Kinetic Energy

The total kinetic energy of a n-link manipulator is given by the sum of contribution of kinetic
energy relative to the motion of each link and can be written as

K =
n∑
i=1
Ki =

n∑
i=1

(1
2miv

T
i vi + 1

2w
T
i Iiwi) (3.14)

Where
mi: is the total mass of each object.

Ii: is the Inertia tensor given by a 3 × 3 matrix. It is important to express the inertia tensor in
the inertial frame to make it possible to compute the triple product wTi Iiwi. This is done in terms
of the orientation transformation between the body attached frame and the inertial frame. The
Inertia tensor can be written as RiIiRTi .

vi and wi: is the linear and angular velocity vector which can be expressed by utilization of
the Jacobian matrix and the derivative of the joint angles, and since the joint variables are the
generalized coordinates, the linear and angular velocity can be written as Jvi(q)q̇ and Jwi(q)q̇
.
By inserting Equation for Ki Ii, vi and wi in Equation 3.16, the total kinetic energy for a n-link
robot manipulator can be written as

K = 1
2 q̇

T
n∑
i=1

[miJvi(q)TJvi(q) + Jwi(q)TRi(q)IiRi(q)TJwi(q)]q̇ = 1
2 q̇

TM(q)q̇ (3.15)

where M(q) is the inertia matrix, and is given by

M = miJvi(q)TJvi(q) + Jwi(q)TRi(q)IiRi(q)TJwi(q) (3.16)

3.2.3 Potential Energy

The total potential energy of a n-link manipulator is given by the sum of contribution of kinetic
energy relative to the motion of each link and can be written as

P =
n∑
i=1
Pi =

n∑
i=1

gT rcimi (3.17)

where:

g: is a 3× 1 gravity acceleration vector in the inertial frame. If the z-axis is defined as the vertical
axis the gravity acceleration vector can be written as g = [0 0 − 9.81m/s2]T

rci: is the vector of the center of mass of link i.

3.2.4 Equations of Motion

It is necessary to specialized the Lagrange’s equation ?? before driving the equations of motion.
The kinetic energy can be written as a quadratic function of q̇ in the form:

K = 1
2

n∑
i,j

Mi,j (q)q̇iq̇j = 1
2 q̇

TM(q)q̇ (3.18)

12

Since the potential energy is independent of q̇, so it can be written as:

P = P(q) (3.19)

When substituting equation 3.18 and equation 3.19 into equation 3.12 we obtain:

L = K − P = 1
2

n∑
i,j

Mi,j (q)q̇iq̇j − P(q) = 1
2 q̇

TM(q)q̇ − P(q) (3.20)

When solving equation 3.12 with respect to equation 3.20 the Lagrange’s equations can be written
as:

∑
j

Mkj q̈ +
∑
i,j

(∂Mkj

∂qi
− 1

2
∂Mij

∂qk
)q̇iq̇j −

∂P
∂qk

= τk (3.21)

Further, by interchanging the order of the summation and use symmetry we can get the following
Lagrange’s equations:∑

j

Mkj q̈ +
∑
i,j

Cijk(q)q̇iq̇j + gk(q) = τk k = 1, . . . , n (3.22)

Where:
Cijk is the Christoffel symbols and can be calculated from the following equation:

Cijk = 1
2(∂Mkj

∂q̇i
+ ∂Mkj

∂q̇j
− ∂Mkj

∂q̇k
) (3.23)

and

gk = ∂P
∂q̇k

(3.24)

Rewrite the equations of motion in the matrix form as follow:

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ
∂P
∂q̇k

(3.25)

Where: C(q̇, q) is the Coriolis and Centripetal matrix. The j,k-th matrix is defined as:

Ckj =
n∑
i=1

Cijk(q)qi (3.26)

and M(q) is the inertia matrix given by equation 3.16, and gq is the gravity vector and given by
the equation 3.24

13

3.3 Control Theory
A controller is designed to control the behavior of dynamical systems. This section is about control
theory and presents a description of different control methods. In this project a feedback controllers
as PID, PI, PD and P are used, explanation and structure of the control methods are shown in the
block diagram and equations. In figure3.3 you can see the concept of the feedback controller. These

Figure 3.3: The Concept of the Feedback Controller

equations descries the PID,PI, PD and P controllers, and all controllers parameters are described
in this section.

3.3.1 PID-controller

The PID controller3.4 is probably the most used feedback control design. PID ia an initialism for
Proportional, Integral and Derivative, referring to the three terms operating on the error signal
to produce a control signal. If u(t) is the control signal sent to the system, y(t) is the measured
output and r(t) is the desired output, and tracking error e(t) = r(t) − y(t), a PID controller has
the general form:

u(t) = Kpe(t) +KI

∫
e(t)dt+KD

d

dt
e(t) (3.27)

Figure 3.4: The PID Controller

14

The desired closed loop dynamics is obtained by adjusting the three parameters KP , KI and
KD, often iteratively by ”tuning” and without specific knowledge of a plant model. Stability can
often be ensured using only the proportional term. The integral term permits the rejection of a
step disturbance (often a striking specification in process control). The derivative term is used to
provide damping or shaping of the response, there are other effects of each controller parameters
for a close loop system it shows in table3.2. PID controllers are the most well established class
of control systems: however, they cannot be used in several more complicated cases, especially if
MIMO systems are considered.

CL Response Rise Time Overshoot Settling Time S-S Error
Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Decrease
Kd Small Change Decrease Decrease No Change

Table 3.2: Effects of Controller Parameters

Applying Laplace transformation results in the transformed PID controller equation:

u(s) = Kpe(s) +KI
1
s
e(s) +KDse(s) (3.28)

u(s) = (Kp +KI
1
s

+KDs)e(s) (3.29)

With the PID controller transfer function:

C(s) = (Kp +KI
1
s

+KDs) (3.30)

The PID controller transfer function in series form:

C(s) = K(1 + 1
sTi

)(1 + sTd) (3.31)

3.3.2 P-controller

A variation of Proportional Integral Derivative (PID) control is to use only the proportional term
as a P-only control. Figure3.5 shows the proportional controller. The output of the controller can
be found from the equation:

u(t) = Kpe(t) (3.32)

Figure 3.5: The P Controller

15

A very important application of proportional controller with fixed bias or offset id the zero load
process. It means the dynamic characteristics of process will not get any disturbance even if there
is no flow through the controller for small duration. Advantages are: easy to implement, low coast
and easy to tune the proportional constant. Disadvantages are: responds only change in error,
error can be reduced to zero(i.e controlled value cannot reach set point) and fine controlling is not
possible.

3.3.3 PI-controller

A Proportional-Integral controller (PI controller) includes a proportional gain and integral gain see
figure3.6

Figure 3.6: The PI Controller

The PI controller has a general form as:

u(t) = Kpe(t) +KI

∫
e(t)dt (3.33)

Applying Laplace transformation results in the transformed PI controller equation:

u(s) = Kpe(s) +KI
1
s
e(s) (3.34)

u(s) = (Kp +KI
1
s

) (3.35)

With the PI controller transfer function:

C(s) = Kps+Ki

s
(3.36)

The PID controller transfer function in series form:

C(s) = K(1 + 1
Tis

) (3.37)

Advantage of the PI controller is to eliminate the steady state error from the proportional controller,
disadvantage of this type of controller is the integral part has a negative effect on the speed of the
response and stability of the system, for this reason this controller use when the speed of system
response is not a problem.

16

3.3.4 PD-controller

A PD controller is a controller consist of proportional gain and derivative gain as shown in figure3.7

Figure 3.7: The PD Controller

A PD controller has the general form:

u(t) = Kpe(t) +KD
d

dt
e(t) (3.38)

Applying Laplace transformation results in the transformed PD controller equation:

u(s) = Kpe(s) +KDse(s) (3.39)

u(s) = (Kp +KI
1
s

+KDs)e(s) (3.40)

With the PD controller transfer function:

C(s) = Kp +KDs = KDs
2 +Kps

s
(3.41)

The PD controller transfer function in series form:

C(s) = K(1 + sTd) (3.42)

The PD controller uses to increase the stability of the system since the derivative part of the
controller has ability to predict the future errors of the system response, but the derivative pert
can amplify the system noise.

17

3.3.5 Ziegler-Nichols Tuning

There are different methods to find parameters for the PID, PD and PI controllers. The Ziegler-
Nichols method is one of these tuning methods, which is used in this project. The Ziegler Nichols
tuning method is a heuristic method of tuning a PID controller. It was developed by John G.
Ziegler and Nathaniel B. Nichols, they developed tow techniques to control tuning one of them is
Ziegler Nichols open loop tuning and second is Ziegler Nichols closed loop tuning.

The open-loop method is depends on the open-loop step response of the dynamic system, the open-
loop method is performed by applying an input step signal to get this step response. By using
Ziegler-Nichols open-loop tuning with dead time L, reaction rate R and amplitude U of step input,
the parameters of the controller P , PI and PID can be found from the table 3.3.

Type Kp Ti = Kp

Ki
Td = Kd

Ki

P 1
LR/U ∞ 0

PI 0.9
LR/U 3.3L 0

PID 1.2
LR/U 2L 0.5L

Table 3.3: Ziegler Nichols Method Open loop

The closed-loop method is performed by setting the I (integral) and D (derivative) gains to zero. The
”P” (proportional) gain, Kp is then increased (from zero) until it reaches the ultimate gainKu which
is the largest gain at which the output of the control loop has stable and consistent oscillations;
higher gains than the ultimate gainKu have diverging oscillation. Ku and the oscillation period Pu
are then used to set the P, I, and D gains depending on the type of controller used and behaviour
desired, see Ziegler Nichols method tables bellow for both open loop 3.3 and closed loop 3.4:

Type Kp Ti = Kp

Ki
Td = Kd

Ki

P 0.5Ku ∞ 0
PI 0.45Ku

Pu
1.2 0

PD 0.8Ku ∞ Pu
8

PID 0.6Ku
Pu
2

Pu
8

Table 3.4: Ziegler Nichols Method Closed loop

18

Chapter 4

Modeling of the crane

In this chapter it is designed a mathematical model of crane. The crane model is created based on
the crane dynamics equation developed by the crane kinematics. Finally the dynamic crane model
is made in Simulink In addition, a crane model is also created in simscape using the multi-body
program.

4.1 Description of the Crane
The figures 4.1 shows assembly of the crane with was create in Solidworks. All crane measurements
are chosen to be similar to real MacGregor cran. Actually the MacGregor crane consists of hundreds
of parts, but it was simplified to be assembled of four bodies.

Figure 4.1: Assembly of the crane

Body 0: Foundation
Body 1: King assembly
Body 2: Main Jib
Body 4: Knuckle Jib

The inertia tensors, mass and center of mass of each of the four bodies are calculated from Simscape
crane model which is made in chapter 4.5. The calculation results are presented in Table 4.1

19

Body Mass [t] Center of mass [m] Ixx [kg/m2] Iyy [kg/m2] Izz [kg/m2]

Foundation 229875
[-4.04418e-05,

1.54655,-
0.0759071]

348523 347834 351494

King assembly 267880
[-0.671535,
-1.08361,
2.08881]

534248 1.01755e+06 707533

Main Jib 134427
[-8.48317,
8.02294,
1.58674]

65191.9 1.83276e+06 1.85226e+06

Knuckle Jib 25380.7
[7.34661,
2.06517,
-0.36866]

20975.5 171449 170786

Table 4.1: Parameters of the crane

All the crane parameters are used further to create the dynamic crane model in Simulink.

4.2 Crane Kinematics

4.2.1 Crane Geometry Simplification

The crane was simplified as shown in Fig. 4.2. Adding a local coordinate system, as defined in
the Eqs. 4.1 and 4.2, makes it slightly easier to find the joint angles through inverse kinematics in
chapter 4.2.3.

Figure 4.2: A simplification of the crane

20

Local coordinate system can be defined as:

Xp =
√
X2 + Y 2 (4.1)

Zp = Z − L1 (4.2)

4.2.2 Forward Kinematics: Denavit-Hartenberg

To model the forward kinematics, the Denavit-Hartenberg convention was used. The method was
applied to the simplified model explained in chapter 4.2.1.

Table 5.1 shows Denavit-Hartenberg parameter convention for three joints.

Joint Rot Z Trans Z Rot X Trans X
1 φ0 L1

π
2 0

2 φ1 0 0 L2
3 φ2 0 0 L3

Table 4.2: DH parameters of a 3-DOF robot

Equation 4.3 represent rotational matrix of the first joint.

RotZ(φ0) =


cos(φ0) − sin(φ0) 0 0
sin(φ0) cos(φ0) 0 0

0 0 1 0
0 0 0 1

 (4.3)

Equation 4.4 represent translational matrix from the first joint to the second joint.

TransZ(L1) =


1 0 0 0
0 1 0 0
0 0 1 L1
0 0 0 1

 (4.4)

The second joint is oriented different with respect to the first joint. Thus the z axis must be rotated
by rotational matrix from equation 4.5 so that it aligns with the rotational axis of the second joint.

RotX(π2) =


1 0 0 0
0 cos(π2) − sin(π2) 0
0 sin(π2) cos(π2) 0
0 0 0 1

 (4.5)

Equation 4.6 represent rotational matrix of the second joint.

RotZ(φ1) =


cos(φ1) − sin(φ1) 0 0
sin(φ1) cos(φ1) 0 0

0 0 1 0
0 0 0 1

 (4.6)

Equation 4.7 represent translational matrix from the second joint to the third joint.

TransX(L2) =


1 0 0 L2
0 1 0 0
0 0 1 0
0 0 0 1

 (4.7)

Equation 4.8 represent rotational matrix of the third joint.

RotZ(φ2) =


cos(φ2) − sin(φ2) 0 0
sin(φ2) cos(φ2) 0 0

0 0 1 0
0 0 0 1

 (4.8)

21

Equation 4.9 represent translational matrix from the third joint to the end-effector.

TransX(L3) =


1 0 0 L3
0 1 0 0
0 0 1 0
0 0 0 1

 (4.9)

The DH procedure determines the transformation of the model from Frame 0 to Frame 3 with
four elementary homogeneous transformations, where the resulting transformation matrices are
computed as:

A0
1 = RotZ(φ0) · TransZ(L1) ·RotX(π2) =


cos(φ0) 0 sin(φ0) 0
sin(φ0) 0 − cos(φ0) 0

0 1 0 L1
0 0 0 1

 (4.10)

A1
2 = RotZ(φ1) · TransX(L2) =


cos(φ1) − sin(φ1) 0 L2 cos(φ1)
sin(φ1) cos(φ1) 0 L2 sin(φ1)

0 0 1 0
0 0 0 1

 (4.11)

A2
3 = RotZ(φ2) · TransX(L3) =


cos(φ2) sin(φ2) 0 L3 cos(φ2)
sin(φ2) cos(φ2) 0 L3 sin(φ2)

0 0 1 0
0 0 0 1

 (4.12)

Then the total transformation from Frame 0 to Frame 3 can be computed as:

H0
3 = A0

1A
1
2A

2
3 =


c0c12 −c0s12 s0 c0(L2c1 + L3c12)
s0c12 −s0s12 −c0 s0(L2c1 + L3c12)
s12 c12 0 L1 + L2s1 + L3s12
0 0 0 1

 (4.13)

where:

c0 = cos(φ0) (4.14)
c1 = cos(φ1) (4.15)
s0 = sin(φ0) (4.16)
s1 = sin(φ1) (4.17)
c12 = cos(φ1 + φ2) (4.18)
s12 = sin(φ1 + φ2) (4.19)

The position of the end-effector can be found from the fourth column and three first rows of the
total transformation H0

3 . The position of the end-effector has represented by X,Y and Z

X = c0(L2c1 + L3c12) (4.20)
Y = s0(L2c1 + L3c12) (4.21)

Z = L1 + L2s1 + L3s12 (4.22)

22

4.2.3 Inverse Kinematics

Inverse kinematics were applied to the end-effector position in order to acquire the joint angles.
The inverse kinematics are found by using geometry and provided supporting material from the
lecturer Michael Ruderman. [3]

Joint angle φ2 can be described by the following equation:

φ2 = atan2(sin(φ2), cos(φ2)) (4.23)

Where cos(φ2) and sin(φ2) can be computed as:

cos(φ2) =
X2
p + Z2

p − L22 − L32

2 · L2 · L3 (4.24)

sin(φ2) = −
√

1− cos(φ2)2 (4.25)

Joint angle φ1 can be described by the following equation:

φ1 = atan2(Zp, Xp)− atan2(L3 · sin(φ2), L2 + L3 · cos(φ2)) (4.26)

Joint angle φ0 can be described by the following equation:

φ0 = atan2(Y,X) (4.27)

4.2.4 Validation of Forward Kinematics

It is important that Forward kinematics is correct because it is used further to find Jacobian. The
way to check if kinematics is correct is to compare the joint angles which is used in Forward kine-
matics with the joint angles which is found from inverse kinematics.

To make it easier, the sine wave trajectory is used in kinematics. The figures 4.3 shows that the joint
angles are converted into end-effector position by using Forward kinematics. Then the end-effector
position is converted back into the joint angles by using Inverse kinematics.

Figure 4.3: Validation of Forward Kinematics Simulink model

23

The figure 4.4 shows the joint angels of trajectory is identical with the joint angles that are found
from the forward kinematics. This means that Forward kinematics is correct

Figure 4.4: Joint angles comparison

The MATLAB script for Inverse and Forward kinematics is attached in appendices 8.1

4.2.5 Geometric Jacobian between Frame 3 and Joints

The first step to find the geometric Jacobian is to find the transformation from Frame 0 to Frame 3.
The homogeneous transformation matrices H0

i are needed to obtain the geometric Jacobian from
Frame 0 to 1, Frame 0 to 2 and Frame 0 to 3.

From Frame 0 to Frame 1:

H0
1 = A0

1 =


c0 0 s0 0
s0 0 −c0 0
0 1 0 L1
0 0 0 1

 (4.28)

From Frame 0 to Frame 2:

H0
2 = A0

1A
1
2 =


c0c1 −c0s1 s0 L2c0c1
s0c1 −s0s1 −c0 L2s0c1
s1 c1 0 L1 + L2s1
0 0 0 1

 (4.29)

From Frame 0 to Frame 3:

H0
3 = A0

1A
1
2A

2
3 =


c0c12 −c0s12 s0 c0(L2c1 + L3c12)
s0c12 −s0s12 −c0 s0(L2c1 + L3c12)
s12 c12 0 L1 + L2s1 + L3s12
0 0 0 1

 (4.30)

From the transformation matrices can be found the vectors ri−1 and zi−1
The vectors ri−1 are found from the fourth column and three first rows of H0

i−1, yielding

r0 =

0
0
0

 r1 =

 0
0
L1

 r2 =

 L2c0c1
L2s0c1

L1 + L2s1

 r3 =

 c0(L2c1 + L3c12)
s0(L2c1 + L3c12)
L1 + L2s1 + L3s12

 (4.31)

24

For the zi−1 vectors, we use the third column and first three rows of H0
i−1, yielding

z0 =

0
0
1

 z1 =

 s0
−c0

1

 z2 =

 s0
−c0

1

 (4.32)

There are only revolute joints, so that geometric Jacobian can be written as

Ji =
[
Jvi
Jwi

]
=

[
zi−1 × (r3 − ri−1)

zi−1

]
(4.33)

Then the geometric Jacobian for the joints can be computed as follows
Joint variable 1:

J1 =
[
z0 × (r3 − r0)

z0

]
=



−s0(L2c1 + L3c12)
c0(L2c1 + L3c12)

0
0
0
1


(4.34)

Joint variable 2:

J1 =
[
z1 × (r3 − r1)

z1

]
=



−c0(L2s1 + L3s12)
−s0(L2s1 + L3s12)
L2c1 + L3c12

s0
−c0

0


(4.35)

Joint variable 3:

J1 =
[
z2 × (r3 − r2)

z2

]
=



−L3c0c12
−L3s0s12
L3c12
s0
−c0

0


(4.36)

Finally, the total geometric Jacobian can be written as

J =
[
Jv
Jw

]
=

[
J1 J2 J3

]
=



−s0(L2c1 + L3c12) −c0(L2s1 + L3s12) −L3c0c12
c0(L2c1 + L3c12) −s0(L2s1 + L3s12) −L3s0s12

0 L2c1 + L3c12 L3c12
0 s0 s0
0 −c0 −c0
1 0 0


(4.37)

25

4.3 Crane Dynamics

The crane dynamics can be described by the dynamic equations based on the kinetic and potential
energy of the crane. Dynamic equations are calculated from the capital chapter 3.2

The manipulator equation, can be written matrix form as

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ (4.38)

Where

M(q)q̈: the Inertia matrix
C(q̇, q): the Coriolis and centripetal matrix
g(q): the potential energy consisting of the gravity vector
τ : the joint torque vector, which is the input to the dynamic crane model

4.3.1 Kinetic Energy

The Inertia matrix for this crane is found from equation 3.16 and can be written as

M(q) =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 (4.39)

where

M11 = I1y + I2xs
2
1 + I2yc

2
1 + I3xs

2
12 + I3yc

2
12 +m2(1

2L2)2c2
1 +m3(1

2c12 + L2c1)2 (4.40)

M12 = M21 = 0 (4.41)
M13 = M31 = 0 (4.42)

M22 = I2z + I3z +m2(1
2L2)2 +m3((1

2L2)2 + L2
2 + L2L3c2) (4.43)

M23 = M32 = I3z +m3((1
2L2)2 + 1

2L2L3c2) (4.44)

M33 = I3z +m3(1
2L3)2 (4.45)

Further, the Inertia matrix can be used to derive the Coriolis and centripetal matrix. The Coriolis
and centripetal matrix for this crane is found from equation 3.26 and can be written as

C(q, q̇) =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (4.46)

26

where

C11 = 1
2(∂M11

∂q1
q̇1 + ∂M11

∂q2
q̇2) (4.47)

= (c1s1(I2x − I2y) + c12s12(I3x − I3y)−m2L
2
2c1s1 (4.48)

− m3(L3cc12 + L2c1)(L3cs12 + L2s1))q̇1 (4.49)
+ (c12s12(I3x − I3y)−m3L3cs12(L3cc12 + L2c1))q̇2 (4.50)

C12 = 1
2
∂M11
∂q1

q̇0 (4.51)

= (c1s1(I2x − I2y) + c12s12(I3x − I3y)−m2L
2
2c1s1 (4.52)

− m3(L3cc12 + L2c1)(L3cs12 + L2s1))q̇0 (4.53)

C13 = 1
2
∂M11
∂q2

q̇0 = (c12s12(I3x − I3y)−m3L3cs12(L3cc12 + L2c1))q̇0 (4.54)

C21 = −1
2
∂M11
∂q1

q̇1 = −C12 (4.55)

C22 = 1
2
∂M22
∂q2

q̇2 = −1
2m3L2L3s2q̇2 (4.56)

C22 = 1
2(1

2
∂M22
∂q2

q̇1 + 21
2
∂M23
∂q2

q̇1) = −1
2m3L2L3s2q̇1 −m3L2L3s2q̇2 (4.57)

C31 = −1
2
∂M11
∂q2

q̇0 = −C13 (4.58)

C32 = −1
2
∂M22
∂q2

q̇1 = 1
2m3L2L3s2q̇1 (4.59)

C33 = 0 (4.60)

In the Coriolis and centripetal matrix, Lci represents Li
2 .

4.3.2 Potential Energy

The potential energy equation 3.17 is a function of the gravity and can be written as

P = m1
L1
2 +m2g(L2

2 + L1) +m3g(L3
2 s12 + L2s1 + L1) (4.61)

The gravity vector for this crane is found from equation 3.24 and can be written as

g(q) =

 0
m2gL2cc1 +m3gL3cc12 + L2c1

m3gL3cc12

 (4.62)

In in the gravity vector, Lci represents Li
2 .

27

4.4 Dynamic Crane Model in Simulink
By utilizing equation ?? Equation of motion can also be written as

q̈ = M−1(τ − C(q̇, q)q̇ − g(q)) (4.63)

The figures 4.5 shows the dynamic crane model in the form of a block diagram based on equation
4.63

Figure 4.5: Block diagram of the dynamic crane model

The dynamic crane model is create in simulink which is shown in Figure 4.6 This model consists of
Matlab function blocks of the Inertia matrix, Coriolis and centripetal matrix and Gravity vector.

Figure 4.6: Dynamic crane model in Simulink

The MATLAB script for the Inertia matrix, Coriolis and centripetal matrix and Gravity vector can
be found in Appendix 8.3

28

4.5 Crane Model in Simscape
Tow ways were applied to create the crane Simscape model first using the browser based CAD
modelling tool Onshape, and second using Simscape Multibody (SimMechanics).

4.5.1 Browser Based CAD Modelling Tool Onshape

A 3D CAD model for the crane is created in SolidWorks as shown in figure 4.7. Matlab includes
functions to import 3D models from the browser based CADmodelling tool Onshape. This function-
ality helps importing mechanical 3D objects for further analysis in Matlab/Simscape environment.
This section presents an overview on how to import objects from Onshape to Matlab. The model
consist of multiple different parts, figure 4.8 shows the 3D model in the Onshape.

Figure 4.7: 3D Model of the crane

Figure 4.8: 3D Model in Onshape

The model consists of multiple different joints. We will see how the in-built OnShape functions
will automatically register and convert the joints in to the Simscape environment.

A link has been created by copy the model link from adress bar to import it into Simscape, then
command (smexportonshape("link")) was ran from MATLAB terminal to import Onshape model
to MATLAB as shown in figure 4.9.
The next step was to run the following command (smimport(".xml")) to translate the .xml file to a
Simscape object, as show in figure 4.10. The command automatically open a new Simulink window
with the blocks from Onshape translated to Simscape. Figure 4.11 shows the crane Simscape model
imoported from Onshape, and in figure 4.14 you can see the crane in 3D in the mechanics explorer.

29

Figure 4.9: Importing Onshape Mdel to MATLAB

Figure 4.10: Translate .xml file to Simscape Object

Figure 4.11: Simscape Model Imported from Onshape

Figure 4.12: Simscape Model Imported from Onshape in The Mechanics Explorer

30

4.5.2 Simscape Multibody (SimMechanics)

The crane model was designed by using the Simscape library, different blocks from the library were
used to make the crane model by using CAD model, as you can see in figure 4.13. Blocks from
belts and cables library are used to model the pulleys that control lifting the payload.

Figure 4.13: Crane Model Using Simscape Library

Figure 4.14 shows the simulation of the crane in the mechanics explorer with the payload.

Figure 4.14: Crane from the Mechanics Explorer

31

Chapter 5

Control of the crane

This chapter describes how to control the end-effector in desired planned trajectory with small
payload swing. Controllers are designed for both the crane model in simulink described in chapter
4.4 and the crane model in simscape described in chapter 4.5. The controller designs that will be
presented in this chapter are:

PID-controller
PD-controller
PI-controller

5.1 Trajectory Planning
The control task regarding control of crane end effector is to get the crane end effector to follow
a desired trajectory movement in horizontal direction with small payload swing. To solve that
problems there was used trajectory planning method for 2-D overhead cranes from paper [5]. It
will be create to simulink model of Trajectory. One of the model will be reference trajectory xr(t)
and the other simulink model will be planned trajectory xd(t) with anti-swing mechanism. After
that simulation results of this two models will be compared.

The paper [5] is focused on the trajectory planning problem for overhead cranes during the trans-
portation process. The planar model of a 2-D overhead crane (with a payload suspended) is shown
in Figure 5.1 where l represents the rope length, x and θ are the trolley displacement and the pay-
load swing with respect to the vertical, respectively, which are regarded as the states of the system,
F , Fr , and mg denote the control force, the rail friction, and the payload gravity, respectively

Figure 5.1: Schematic illustration of a planar 2-D overhead crane.

32

With air resistance being ignored, the crane dynamics with constant rope length can be depicted
as follows:

(M +m)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = F − Fr (5.1)
ml2θ̈ +mlẍ cos θ +mgl sin θ = 0 (5.2)

where
M : is the mass of trolley
m: is the mass of payload

Assumption 1: The rope is massless and inflexible. Moreover, the rope length is kept constant
during a specific transportation process.
Assumption 2: During the overall transferring process, the payload is always beneath the trolley,
namely

θ(t) ∈ (−π2 ,
π

2) (5.3)

The dynamic model includes the actuated part (the first equation) and the underactuated part
(the second equation), where the latter one is the kinematic equation of the overhead crane system
which describes the coupling behavior between the trolley acceleration ẍ(t) and the payload swing
θ(t). Dividing both sides of the kinematic equation by ml, we obtain

lθ̈ + ẍ cos θ + g sin θ = 0 (5.4)

This relationship captures the kinematic features of all 2-D overhead cranes and it is the basis of
the subsequent trajectory development.

Kinematic equation 5.5 can also be written as

θ̈ = −ẍ cos θ − g sin θ
l

(5.5)

Figure 5.2 shows simulink model of kinematic equation 5.5

Figure 5.2: kinematic model in simulink

The trolley reference trajectory xr(t) is given by equation 5.6

xr(t) = pr
2 + 1

2k2
ln[cosh k1t− ε

cosh k1t− ε− k2pr
] (5.6)

where ε ∈ R+ is a coefficient introduced to adjust the initial acceleration while k1, k2 are two
auxiliary parameters and pr are trolley trajectory distance.

33

Equation 5.7 shows trolley acceleration reference trajectory ẍr(t) which was found by double deriva-
tives of trolley position trajectory equation 5.6. This acceleration is used in simulink model of
kinematic 5.2 to find payload swing angle.

ẍr(t) = k2
1((tanh(k2pr − k1t+ ε))2 − (tanh(k1t− ε))2)

2k2
(5.7)

Figure 5.3 shows simulink model of trolley reference trajectory xr(t). This model consists of Mat-
lab function block of the trolley acceleration trajectory from equation 5.7 and block diagram of
kinematic equation 5.5. To go from acceleration trajectory to position trajectory it is used two
integrator blocks. The simulation results of reference trajectory and swing angle of payload in
degrees is shown in 5.1.

Figure 5.3: Simulink model of reference trajectory

In next step it will be create simulink model of trolley planned trajectory ẍd(t) which can be found
by euation 5.8

ẍd(t) = ẍr(t) + Γẍa(t) (5.8)

where Γ ∈ [1/(β+αl), 1] is a coefficient introduced to adjust the weighings of the reference trajectory
and the anti-swing mechanism. ẍr(t) is reference trajectory from equation 5.6 and ẍa(t) can be
computed by using anti-swing mechanism equation 5.9.

ẍa = −g sin θ + αlθ̇ + β(θ̇ + αθ)
cos θ (5.9)

where β � g is an adjusting parameter and α ∈ R+ is a positive gain satisfying α� g.

When the anti-swing mechanism is brought into the reference trajectory, it leads to positioning
error for the trolley. To solve this problem, an iterative learning strategy is then put forward to
further revise the planned trajectory.

34

Figure 5.4 shows iterative learning strategy create in simulink.

Figure 5.4: Iterative learning strategy

Where pd is trolley trajectory distance and pe are computed in Matlab function block by equation
5.10

pe = pr + Γαβ
g + Γαβpr (5.10)

Figure 5.5 shows simulink model of trolley planned trajectory xd(t). This model consists of iterative
learning strategy and Matlab function block of the trolley acceleration trajectory from equation
5.7. Angles θ̇ and θ from block diagram of kinematic equation 5.5 is used in Matlab function block
of anti-swing mechanism to compute ẍa. Finally to go from acceleration trajectory to position
trajectory it is used two integrator blocks. The simulation results of reference trajectory and swing
angle of payload in degrees is shown in 5.1.

Figure 5.5: Simulink model of planned trajectory

35

Noting the fact that the planned trajectory does not include any terms related to m, we can
conclude that the proposed method is robust against payload weight variations. This merit is of
significant importance for practical applications.

All parameters for trolley reference and planned trajectory is shown below and are taken from
paper [5].

pr(1) = 0.6m pd = 0.6m g = 9.8m/s2 Γ = 0.015 (5.11)
ε = 3.5 α = β = 50 k1 = 1.2 k2 = 0.48 (5.12)

Figure 5.6 and 5.7 shows simulation results comparison of trolley Trajectory and swing angle from
both simulink models. The simulation results show that the swing angel for payload is reduced by
small change of reference trajectory using anti-swing mechanism.

Figure 5.6: Comparison of trolley trajectory. Blue curve is the reference trajectory and the red
curve is the planned trajectory.

Figure 5.7: Comparison of payload swing angel trolley from trajectory. Blue curve is the swing
angle from reference trajectory and the red curve is the swing angle from planned trajectory.

The planned trajectory from simulation is used further for control of Crane end-effector.

36

5.2 Control of End-effector for crane model in Simulink
The control task concerning control of crane end-effector is to get the crane end-effector to fol-
low a desired trajectory movement in horizontal direction. The desired trajectory is to move the
end-effector from an initial point to another desired point in x-direction. The initial location is
set to 23.15 m, which is the x-coordinate when the crane arm is fully extended, and the desired
location is set to 15 m. After the end-effector has reached the desired location, the aim is to keep
the end-effector steady at this point.

Figure 5.8 shows the desired trajectory of the crane end-effector. This trajectory is the same as
planned trajectory for 2-D overhead cranes from chapter 5.1 to damp out unexpected payload
swing. The only difference is that the start and end point of the end-effector was changed.

Figure 5.8: Desired position in x-direction

5.2.1 Zigler Nichols Closed Loop Tuning

There are different methods to find parameters for the PID, PD and PI controllers. The Ziegler-
Nichols method is one of these tuning methods, which is used in this project. It is performed by
setting the I (integral) and D (derivative) gains to zero. The ”P” (proportional) gain, Kp is then
increased (from zero) until it reaches the ultimate gain Ku which is the largest gain at which the
output of the control loop has stable and consistent oscillations as shown in figure 5.9, the value of
the ultimate period Pu can be found by running the Simulink model and used ”Peak Finder” tool
in Simulink as shown in figure 5.10.

37

Figure 5.9: Procedure to find the ultimate gain Ku

Figure 5.10: Using peak finder to determine the ultimate period Pu

From this method the ultimate gain became Kp = 10000 and ultimate period became Pu = 17.
The controllers parameters can be calculated by using equations from table 3.4. The calculation
results of controllers parameters are presented in table 5.2.1

Type Kp Kd Ki
PI 4500 0 317
PD 8000 17000 0
PID 6000 12750 706

Table 5.1: Ziegler-Nichols closed-loop controller parameters

38

5.2.2 PID Controller

A proportional derivative (PID) controller is implemented to control the crane end-effector position
and make sure that it follow the desired planned trajectory with very small error,the PD controller
is designed with feedback system. The PID controller is used to improve the dynamic response as
well as to reduce or eliminate the steady-state error. The derivative controller improve the transient
response. The integral controller reduces the steady-state error.

The PID controller design is developed, and taking into account gravity compensating because of
the crane weight. Figure 5.11 shows the design of the PID controller with gravity compensation
for the crane.

Figure 5.11: Control of the crane end-effector position using PID-controller with gravity compen-
sation

5.2.3 PD controller

A proportional derivative (PD) controller is implemented to control the crane end-effector position
and make sure that it follow the desired planned trajectory with very small error,the PD controller
is designed with feedback system. The proportional part has ability to reduce the error, and make
the closed loop system faster, but at same time can make the closed loop system to overshoot more.
Figure 5.12 shows the PD controller design with gravity compensation.

Figure 5.12: Control of the crane end-effector position using PD-controller with gravity compensa-
tion

39

5.2.4 PI Controller

A proportional Integral (PI) controller is implemented to control the crane end-effector position
and make sure that it follow the desired planned trajectory with very small error, The PI controller
is designed with feedback system. The proportional part has ability to reduce the error, and make
the closed loop system faster, but at same time can make the closed loop system to overshoot more.
While the integral controller reduces the steady-state error. Figure 5.13 shows the PI controller
design with gravity compensation.

Figure 5.13: Control of the crane end-effector position using PI-controller with gravity compensa-
tion

5.3 Control of Joints for crane model in Simscape
A PID controller is implemented to control the crane joints position with sine wave as input signal
and make sure that it follow the desired sine wave with very small error, The PID controller is
designed with feedback system, the values of the controller parameters gains are very big. The
proportional part has ability to reduce the error, and make the closed loop system faster, but at
same time can make the closed loop system to overshoot more. While the integral controller reduces
the steady-state error. Figure 6.13 shows the PID controller design with gravity compensation.

Figure 5.14: Control of the crane joints angle using PID-controller with gravity compensation

40

5.4 Control of End-effector for crane model in Simscape
To control the end-effector for the crane in the Simscape model a PID controller was used. The
trajectory planning used as reference input signal and PID controller with large controller parame-
ters gains, to be sure that the desired end-effector and measured end-effector position in x direction
have small error. Figure 5.15 shows the PID controller design with gravity compensation.

Figure 5.15: Control of the crane end-effector using PID-controller with gravity compensation

In chapter 6.5 it is explained why it was not choose to create controller design as PI and PD for
simscape crane model.

41

Chapter 6

Simulation results

In this chapter simulation results from the control designs will be presented. This includes results
from the control designs concerning control of end-effector position in horizontal directing.

6.1 Control of End-effector for crane model in Simulink
Simulation results will be presented by using following controllers:

PID-controller
PD-controller
PI-controller

Simulation results of each of controller will be presented as the desired end-effector position in
x-direction compared to the measured end-effector position in x-direction. Error between desired
and measured end-effector position in x-direction will be presented in form of a graph with respect
to time and with a maximal value.

42

6.1.1 PID Controller

From Ziegler Nichols closed-loop tuning method the ultimate gain became Ku = 10000 and the
ultimate period became Pu = 17, which resulted in the following controller parameter for a PID:

Kp = 6000
Ki = 706
Kd = 12750

Figure 6.1 shows simulation results of the measured and desired position in x-direction by using the
PID-controller design with the calculated controller parameters and Figure 6.2 shows simulation
result of the error between desired and measured position.

Figure 6.1: Comparison of desired and mea-
sured end-effector position in x-direction using
Ziegler-Nichols parameters for PID-control.
The blue curve is the desired and the red
curve is the measured end-effector position in
x-direction.

Figure 6.2: Error between desired and mea-
sured end-effector position in x-direction using
Ziegler-Nichols parameters for PID-control.

From figure 6.2, the maximal error between desired and measured end-effector position is 3.2m.

Figure 6.3 and 6.4 shows new results whereKp andKd have been increased. It was done to minimize
error between desired and measured end-effector position.

Figure 6.3: Comparison of desired and mea-
sured end-effector position in x-direction using
increased gains for PID-control.

Figure 6.4: Error between desired and mea-
sured end-effector position in x-direction using
increased gains for PID-control.

From figure 6.4, the maximal error between desired and measured end-effector position is 2.735mm.

43

6.1.2 PD Controller

From Ziegler Nichols closed-loop tuning method the ultimate gain became Ku = 10000 and the
ultimate period became Pu = 17, which resulted in the following controller parameter for a PD:

Kp = 8000
Kd = 17000

Figure 6.5 shows simulation results of the measured and desired position in x-direction by using
the PD-controller design with the calculated controller parameters and Figure 6.6 shows simulation
result of the error between desired and measured position.

Figure 6.5: Comparison of desired and mea-
sured end-effector position in x-direction us-
ing Ziegler-Nichols parameters for PD-control.
The blue curve is the desired and the red
curve is the measured end-effector position in
x-direction.

Figure 6.6: Error between desired and mea-
sured end-effector position in x-direction
using Ziegler-Nichols parameters for PD-
control.

From figure 6.6, the maximal error between desired and measured end-effector position is 1.8m.

Figure 6.7 and 6.8 shows new results whereKp andKd have been increased. It was done to minimize
error between desired and measured end-effector position.

Figure 6.7: Comparison of desired and mea-
sured end-effector position in x-direction using
increased gains for PD-control.

Figure 6.8: Error between desired and mea-
sured end-effector position in x-direction
using Ziegler-Nichols parameters for PD-
control.

From figure 6.8, the maximal error between desired and measured end-effector position is 2.735mm
.

44

6.1.3 PI Controller

From Ziegler Nichols closed-loop tuning method the ultimate gain became Ku = 10000 and the
ultimate period became Pu = 17, which resulted in the following controller parameter for a PI:

Kp = 4500
Ki = 317

Figure 6.9 shows simulation results of the measured and desired position in x-direction by using
the PI-controller design with the calculated controller parameters and Figure 6.10 shows simulation
result of the error between desired and measured position.

Figure 6.9: Comparison of desired and mea-
sured end-effector position in x-direction us-
ing Ziegler-Nichols parameters for PI-control.
The blue curve is the desired and the red
curve is the measured end-effector position in
x-direction.

Figure 6.10: Error between desired and
measured end-effector position in x-direction
using Ziegler-Nichols parameters for PI-
control.

The figures 6.10 shows error between desired and measured end-effector position which begins to
increase rapidly after 100s and reaches 38m.

Figure 6.11 and 6.12 shows new results where Kp have been increased. It was done to minimize
error between desired and measured end-effector position.

Figure 6.11: Comparison of desired and mea-
sured end-effector position in x-direction using
increased gains for PI-control.

Figure 6.12: Error between desired and
measured end-effector position in x-direction
using Ziegler-Nichols parameters for PI-
control.

From figure 6.12, the maximal error between desired and measured end-effector position is 50.22mm.

45

6.2 Discussion of control results for crane model in Simulink
The design of the PID controller succeed to track the desired end-effector position, and keeps the
error between the desired and measured position very small. When using the design of the PD
controller, the results of controlling the tracking of the desired end-effector position were better
than the results from PID controller. The reason was the integral part was removed which leads to
reduce the error. The results from both the PID when running simulation shows that the maximum
error is 3.2m see figure 6.2, and when the PID controller parameters were increased with a huge
values, the error becomes very small 2.735mm see figure 6.4. The results from the PD shows that
the maximum error is 1.8m see figure 6.6, and when the PD controller parameters were increased
with a huge values, the error becomes very small 2.735mm see figure 6.8. It is obvious that the
error from PD is smaller than the error from the PID.

When the PI controller was used to control the end-effector and when at 100 second the system
starts to oscillate as it seen in figure 6.9, in addition of the oscillations the error increases as the
time increases see the figure 6.10 (larger than others controllers), this means the system might be
unstable when time increasing. When the PI controller parameters were increased with a huge
values, the error becomes very small 50.22mm see figure 6.12 but it still are much higher than PID
and PD results.

6.3 Control of Joints for crane model in Simscape
Results from simulation of the PID-controller design include measured joint angles versus desired
joint angles and the error between desired and measured joint angles. Controller parameters for
the PID-controller design are found from testing several values. The best results were obtained
when Kp, Ki and Kd where increased to their limits, which eventually resulted in very high gains.

Figure 6.13 shows simulation results of the measured and desired joints angles by using the PD-
controller design with very high gains and Figure 6.14 shows simulation result of the error between
desired and measured position.

Figure 6.13: Measured joint angles versus desired joint angles using PID-controller with gravity
compensation

46

Figure 6.14: Error between desired and measured joint angles using PID-controller with gravity
compensation

The maximum error for the joint 1 is 2.6mm, joint 2 2.8mm and joint 3 1.2mm, as it can be seen
in figure 6.14.

6.4 Control of End-effector for crane model in Simscape
A proportional, Integral and Derivative (PID) is used to control the end-effector of the crane mdel
in Simscape. The reference input signal is s-shape trajectory planning to simulate the system. A
huge controller gains were used to verify that the desired end-effector and measured end-effector
poisition and keep the error as small as possible.

Figure 6.15 shows simulation results of the measured and desired position in x-direction by using
the PID-controller design with very high gains and Figure 6.16 shows simulation result of the error
between desired and measured position.

Figure 6.15: Measured versus desired end-effector position using PID-controller with gravity com-
pensation

47

Figure 6.16: Error between desired and measured end-effector position using PID-controller with
gravity compensation

6.5 Discussion of control results for crane model in Simscape
The results from the crane joints were the same as the sine wave input single with PID controller,
this means that the Simscape model verified see figure 6.13. The error was 2.6mm, 2.8mm and
1.2mm for the joint 1,2 and 3 respectively as seen in figure 6.14.

When controlling the end-effector by using trajectory planning and PID controller the error be-
tween the desierd and measured end-effector position was large see figure 6.16, this could be because
of PID controller and because of lack of time we were not able to design or use another control
method to control the crane and get better result, and using of Ziegler-Nichols Tuning method was
not possible.

The trajectory planning could the other reason because it designed in horizontal direction(x), it
may help if the trajectory planning was in three directions.

The proportional, derivative (PD) and proportional, integral (PI) controllers were used to control
the system with different parameters gains and the results were the same with no change.

48

Chapter 7

Conclusions and Future Work

7.1 Conclusions
The aims of this project are to model, simulate and control a marine crane operations. Through
the project a mathematically model of the crane were developed using robot modeling theory.

It was created two crane models: first, Simulink model and second, Simscape model. The Simulink
model was developed based on crane dynamic equations and the Simscape model was developed
using the Simmechanics library (Simscape Multi-body). The tow crane models was utilized as a
plant for different control systems (PID, PD and PI).

A trajectory planning scheme is developed to put forward to generate a desired trajectory for the
payload transportation process.

The trajectory planning scheme is combined with the PID controller algorithm to control the crane
in x-direction.

Crane end-effector was controlled in dynamic crane simulink model and best simulation results
with small error was received using the PID and PD controllers to control of end-effector.

A Simscape model for the crane was developed using simMechanics (Simscape Multibody), and
this model was used as a virtual prototype software. The Simscape crane model includes body0,
body1, body3, pulleys, cable and payload.

The crane joints angels was controlled in simscape model by using PID-controller with high gain
and simulation results showed that were typically same, that means the Simscape model is able to
be controlled.

The simulation results from controlling end-effector in Simscape model using PID, PD and PI
controllers were not good enough because the error between the desired end-effector position and
measured end-effector was big.

49

7.2 Further Work
Improvements on this thesis could to try to control the crane in 3D directions (x,y,z) with different
operational positions and conditions.

The only PID, PD and PI controllers were tested in this project, thus the more advanced controller
would be interesting.

In reality an offshore cranes work in rough conditions and effected by other forces and in this project
we did not get access to software that can model the marine craft and vessel, further work could
be to combine the Simscape model with the vessel model and marine craft model.

The payload with fixed cable length is controlled in this project, further can payload with variable
cable investigate and all able forces.

50

Chapter 8

Appendix

8.1 Matlab script for Forward Kinematics

1 f unc t i on [x , y , z]= fcn (q0 , q1 , q2)
2

3 %_______________Data Given______________________
4

5 L1=4.4 ; %Length o f the f i r s t l i n k
6 L2=15; %Length o f the second l i n k
7 L3=8.15; %Length og the th i rd l i n k
8

9 c0=cos (q0) ;
10 c1=cos (q1) ;
11 c12=cos (q1+q2) ;
12

13 s0=s i n (q0) ;
14 s1=s i n (q1) ;
15 s12=s i n (q1+q2) ;
16

17 %_______________End−e f f e c t o r position______________________
18

19 x=c0 . ∗ (L2 .∗ c1+L3 .∗ c12) ;
20 y=s0 . ∗ (L2 .∗ c1+L3 .∗ c12) ;
21 z=L1+L2 .∗ s1+L3 .∗ s12 ;

8.2 Matlab script for Inverse Kinematics

1 f unc t i on [q0 , q1 , q2]= fcn (x , y , z)
2

3 %_______________Data Given______________________
4

5 L1=4.4 ; %Link o f f s e t ; v a r i ab l e j o i n t parameter f o r j o i n t 1
6 L2=15; %Length o f the second l i n k
7 L3=8.15; %Length og the th i rd l i n k
8

9 %__________joint2 Kinematic______________________
10 x_p=sq r t (x.^2+y .^2) ;
11 z_p=z−L1 ;
12

13 c2=(x_p.^2+z_p.^2−L2.^2−L3 .^2) /(2∗L2∗L3) ;
14 s2=−s q r t (1−c2 .^2) ;
15

51

16 q2=atan2 (s2 , c2) ;
17

18

19 %__________joint1 Kinematic_____________________
20 q1=atan2 (z_p , x_p)− atan2 ((L3∗ s i n (q2)) , (L2+L3∗ cos (q2))) ;
21

22

23

24

25 %__________joint0 Kinematic_____________________
26 q0=atan2 (y , x) ;

8.3 Matlab script for Inertia matrix

1 f unc t i on M_inverse = fcn (q0 , q1 , q2)
2

3 %%%%%%%_Data_%%%%%%%%%
4

5 c1=cos (q0) ;
6 s1=s i n (q0) ;
7 c2=cos (q1) ;
8 s2=s i n (q1) ;
9 c3=cos (q2) ;

10 s3=s i n (q2) ;
11 c23=cos (q1+q2) ;
12 s23=s i n (q1+q2) ;
13

14 % In e r t i a Tensor and mass o f Body 1
15 m1=267880;
16 I1x=534248;
17 I1y=1.01755 e+06;
18 I1z =707533;
19

20

21 % In e r t i a Tensor and mass o f Body 2
22 m2=134427;
23 I2x =65191.9;
24 I2y=1.83276 e+06;
25 I2z =1.85226 e+06;
26

27 % In e r t i a Tensor and mass o f Body 3
28 m3=25380.7;
29 I3x =20975.5;
30 I3y=171449;
31 I3z =170786;
32

33 % Length o f l i n k 2 and 3
34 l 2 =15;
35 l 3 =8.15;
36

37

38 % Equations f o r the i n e r t i a matrix
39 M11=I1y+I2x ∗ s2^2+I2y ∗ c2^2+I3x ∗ s23^2+I3y ∗ c23^2+m2∗(1/2∗ l 2) ^2∗ c2^2+m3

∗(1/2∗ c23+l2 ∗ c2) ^2 ;

52

40 M12=0;
41 M21=0;
42 M13=0;
43 M31=0;
44 M22=I2z+I3z+m2∗(1/2∗ l 2)^2+m3∗((1/2∗ l 3)^2+l2^2+l2 ∗ l 3 ∗ c3) ;
45 M23=I3z+m3∗((1/2∗ l 3) ^2+1/2∗ l 2 ∗ l 3 ∗ c3) ;
46 M32=M23 ;
47 M33=I3z+m3∗(1/2∗ l 3) ^2 ;
48

49 % In e r t i a matrix
50 M=[M11 M12 M13 ; . . .
51 M21 M22 M23 ; . . .
52 M31 M32 M33] ;
53

54 % Inve r s e I n e r t i a matrix
55 M_inverse=inv (M) ;

8.4 Matlab script for Coriolis and centripetal matrix

1 f unc t i on C= fcn (q0 , q1 , q2 , dq0 , dq1 , dq2)
2

3 %%%%%%%_Data_%%%%%%%%%
4

5 c1=cos (q0) ;
6 s1=s i n (q0) ;
7 c2=cos (q1) ;
8 s2=s i n (q1) ;
9 c3=cos (q2) ;

10 s3=s i n (q2) ;
11 c23=cos (q1+q2) ;
12 s23=s i n (q1+q2) ;
13

14 % In e r t i a Tensor and mass o f Body 1
15 m1=267880;
16 I1x=534248;
17 I1y=1.01755 e+06;
18 I1z =707533;
19

20

21 % In e r t i a Tensor and mass o f Body 2
22 m2=134427;
23 I2x =65191.9;
24 I2y=1.83276 e+06;
25 I2z =1.85226 e+06;
26

27 % In e r t i a Tensor and mass o f Body 3
28 m3=25380.7;
29 I3x =20975.5;
30 I3y=171449;
31 I3z =170786;
32

33 % Length o f l i n k 2 and 3
34 l 2 =15;
35 l 3 =8.15;

53

36

37

38

39 % Equations f o r the Co r i o l i s and c e n t r i p e t a l matrix
40 C11=(s2 ∗ c2 ∗(I2x−I2y)+c23∗ s23 ∗(I3x−I3y)−m2∗(1/2∗ l 2) ^2∗ c2∗ s2−m3∗((1/2∗ l 3)

∗ c23+l2 ∗ c2) ∗((1/2∗ l 3) ∗ s23+l2 ∗ s2)) ∗dq1+(c23∗ s23 ∗(I3x−I3y)−m3∗(1/2∗ l 3)
∗ s23 ∗((1/2∗ l 3) ∗ c23+l2 ∗ c2)) ∗dq2 ;

41 C12=(s2 ∗ c2 ∗(I2x−I2y)+c23∗ s23 ∗(I3x−I3y)−m2∗(1/2∗ l 2) ^2∗ c2∗ s2−m3∗((1/2∗ l 3)
∗ c23+l2 ∗ c2) ∗((1/2∗ l 3) ∗ s23+l2 ∗ s2)) ∗dq0 ;

42 C13=(c23∗ s23 ∗(I3x−I3y)−m3∗(1/2∗ l 3) ∗ s23 ∗((1/2∗ l 3) ∗ c23+l2 ∗ c2)) ∗dq0 ;
43 C21=−C12 ;
44 C22=−1/2∗m3∗ l 2 ∗ l 3 ∗ s3 ∗dq2 ;
45 C23=−1/2∗m3∗ l 2 ∗ l 3 ∗ s3 ∗dq1−m3∗(1/2∗ l 3) ∗ l 2 ∗ s3 ∗dq2 ;
46 C31=−C13 ;
47 C32=1/2∗m3∗ l 2 ∗ l 3 ∗ s3 ∗dq1 ;
48 C33=0;
49

50 % Co r i o l i s and c e n t r i p e t a l matrix
51 C=[C11∗dq0+C12∗dq1+C13∗dq2 ; . . .
52 C21∗dq0+C22∗dq1+C23∗dq2 ; . . .
53 C31∗dq0+C32∗dq1+C33∗dq2] ;

8.5 Matlab script for Gravity vector

1 f unc t i on G = fcn (q0 , q1 , q2)
2

3

4 %%%%%%%_Data_%%%%%%%%%
5

6 c1=cos (q0) ;
7 s1=s i n (q0) ;
8 c2=cos (q1) ;
9 s2=s i n (q1) ;

10 c3=cos (q2) ;
11 s3=s i n (q2) ;
12 c23=cos (q1+q2) ;
13 s23=s i n (q1+q2) ;
14

15 % The grav i ty a c c e l e r a t i o n
16 g=−9.81;
17

18 % Mass o f Body 2 and 3
19 m2=134427;
20 m3=25380.7;
21

22 % Length o f l i n k 2 and 3
23 l 2 =15;
24 l 3 =8.15;
25

26 % The grav i ty vec to r
27 G= [0 ; . . .
28 m2∗g∗1/2∗ l 2 ∗ c2+m3∗g∗1/2∗ l 3 ∗ c23+l2 ∗ c2 ; . . .
29 m3∗g∗1/2∗ l 3 ∗ c23] ;

54

Bibliography

[1] Syvertsen, P.G.Modeling and Control of Crane on Offshore Vessel. NTNU, Trondheim, Norway.
-, 2011.

[2] Forward kinematics. Retrieved 27.11.19, from https://www.codeproject.com/Articles/
756070/Simulator-Axis-Articulated-Robotsl. 2019.

[3] Magnus Berthelsen Kjelland. MAS501: Crane Kinematics. -, 2013.
[4] Yiming Fu Ning Sun Yongchun Fang and Biao Lu. “Nonlinear Stabilizing Control for Ship

Mounted Cranes with Ship Roll and Heave Movements: Design, Analysis and Experiments.”
In: IEEE/ASME Transactions on Mechatronics 48.10 (2018), pp. 1781–1793.

[5] Yudong Zhang Ning Sun Yongchun Fang and Bojun Ma. “a novel kinematic coupling based tra-
jectory planning method for overhead cranes.” In: IEEE/ASME Transactions on Mechatronics
17.01 (2012), pp. 166–173.

[6] F. Heltha R.S. Arvin M.I Solihin. “Modeling and Control Desgin for Rotary Crane System Us-
ing Matlab Smuscape Toolbox.” In: IEEE 5th control and system graduate research colloquium
11.05 (2014), pp. 170–175.

55

https://www.codeproject.com/Articles/756070/Simulator-Axis-Articulated-Robotsl
https://www.codeproject.com/Articles/756070/Simulator-Axis-Articulated-Robotsl

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Project Description
	Assignment Requirements
	System Description
	Technical Approach
	Outline of Report
	Software Used During The Project
	SolidWorks
	Matlab
	Simulink
	Simscape SimMechanics

	Literature Review
	Trajectory Planning Method for Overhead Cranes
	Control of Ship Mounted Cranes
	Modeling and Control for Rotary Crane Using Matlab/Simulink

	Preliminary theory of crane modeling and control
	Kinematics
	Forward and Inverse kinematics
	The Denavit-Hartenberg Convention
	Velocity - The Jacobian

	Dynamics
	Lagrange's Approach
	Kinetic Energy
	Potential Energy
	Equations of Motion

	Control Theory
	PID-controller
	P-controller
	PI-controller
	PD-controller
	Ziegler-Nichols Tuning

	Modeling of the crane
	Description of the Crane
	Crane Kinematics
	Crane Geometry Simplification
	Forward Kinematics: Denavit-Hartenberg
	Inverse Kinematics
	Validation of Forward Kinematics
	Geometric Jacobian between Frame 3 and Joints

	Crane Dynamics
	Kinetic Energy
	Potential Energy

	Dynamic Crane Model in Simulink
	Crane Model in Simscape
	Browser Based CAD Modelling Tool Onshape
	Simscape Multibody (SimMechanics)

	Control of the crane
	Trajectory Planning
	Control of End-effector for crane model in Simulink
	Zigler Nichols Closed Loop Tuning
	PID Controller
	PD controller
	PI Controller

	Control of Joints for crane model in Simscape
	Control of End-effector for crane model in Simscape

	Simulation results
	Control of End-effector for crane model in Simulink
	PID Controller
	PD Controller
	PI Controller

	Discussion of control results for crane model in Simulink
	Control of Joints for crane model in Simscape
	Control of End-effector for crane model in Simscape
	Discussion of control results for crane model in Simscape

	Conclusions and Future Work
	Conclusions
	Further Work

	Appendix
	Matlab script for Forward Kinematics
	Matlab script for Inverse Kinematics
	Matlab script for Inertia matrix
	Matlab script for Coriolis and centripetal matrix
	Matlab script for Gravity vector

	Bibliography

