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Abstract 
 
The Norwegian government has issued a statement where they express concern for high levels 

of contamination in the fjords of Norway. To establish an overview over the contaminants in 

the city fjord of Flekkefjord and to monitor the trends of contaminants over a 6-month period 

of time, an active biomonitoring survey was performed. Blue mussels (Mytilus edulis, Linnaeus 

1758) were transplanted at two different depths (5 m and 15 m depth) in five different locations 

within the fjord. The trace elements arsenic (As), manganese (Mn), aluminium (Al), iron (Fe), 

titanium (Ti) copper (Cu), lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), nickel (Ni) and 

mercury (Hg), were investigated in blue mussels transplanted in the five locations. To complete 

the overview of the contamination in the city fjord the contamination pattern of legacy 

contaminants and emerging pollutants was reported. The levels of some trace elements, such 

as manganese, chromium and zinc changed over the study period, mainly because of an 

undersea landslide causing an upwhirl of contaminated sediments. The landslide happened 

during dredging activity in the fjord, showing how human activity and restoration effort may 

impact fjord biota. The results obtained confirm that active biomonitoring using blue mussels 

is an excellent approach to assess both the status and the trend of inorganic and organic 

contaminants in marine ecosystems.  
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                                                        Sammendrag 
 

Den norske regjeringen har utrykket bekymring over høye forurensningsnivåer i fjordene i 

Norge. For å etablere en oversikt over forurensningene i byfjorden i Flekkefjord og for å 

overvåke trender for forurensninger over en 6-måneders periode, ble en aktiv 

biomonitoringsundersøkelse utført. Blåskjell (Mytilus edulis) ble satt ut på to forskjellige 

dybder (5 m og 15 m dybde) på fem forskjellige steder i byfjorden. Sporelementene arsen (As), 

mangan (Mn), aluminium (Al), jern (Fe), titan (Ti) kobber (Cu), bly (Pb), kadmium (Cd), krom 

(Cr), sink (Zn ), nikkel (Ni) og kvikksølv (Hg), ble undersøkt i blåskjell som var satt ut på de 

fem lokasjonene. For å fullføre oversikten over forurensningen i byfjorden ble 

forurensningsmønsteret av vedvarende og fremvoksende organiske forurensninger undersøkt. 

Nivået på noen sporstoffer, blant annet mangan, krom og sink, endres under 

undersøkelsesperioden, hovedsakelig på grunn av et undersjøisk skred som forårsaket en 

hvirvel av forurensede sedimenter. Mens monitoreringen pågikk, var det mudringsaktivitiet i 

områdene rundt lokasjonene som gav noe innsikt i hvordan menneskelig aktivitet og 

restaureringsinnsats kan påvirke biota i fjorden. Aktiv bioovervåking ved bruk av blåskjell har 

vist seg til å være en utmerket tilnærming for å vurdere både status og trenden for uorganiske 

og organiske forurensninger i marine økosystemer. 
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1. Introduction  
 

Blue mussels (Mytilus edulis, Linnaeus 1758) are bivalves  commonly found along the coast 

in European waters (Brooks et al., 2011). They represent a popular food source (Gosling, 

1992), and can also be used for biomonitoring (Beyer et al., 2017). In this study blue mussels 

are shown to be valuable sentinels for monitoring (Haker, 2011; Misund, 2012) the 

contaminant levels in biota of the city fjord in Flekkefjord.  

 

1.1 Investigated contaminants  
 

Trace elements are substances that are a natural part of our ecosystem, in addition to some 

being developed as a consequence of anthropogenic processes and pressures (Richir & Gobert, 

2016). Trace elements differ in atomic mass and properties, by definition any element having 

an average concentration of less than 100 ppma could be referred to as a trace element (Franco 

et al., 2015). While the generic term “heavy metals” has often been used for trace metals, this 

term is being discussed (Richir & Gobert, 2016). Because some elements are not considered 

“heavy” (e.g., Al and Ni) while others are not considered metals (e.g., As) (Richir & Gobert, 

2016). Trace elements with higher atomic mass such as Lead, Cadmium and Mercury are 

regularly referred to as heavy metals  (Azizi et al., 2018). The trace elements with lower atomic 

mass such as titanium, iron and aluminium are referred to as metals. They are often necessary 

for the organism, but can be toxic if they are absorbed in larger quantities (Azizi et al., 2018). 

Many trace elements are known to be toxic if they are ingested and consumed in large doses 

(Richir & Gobert, 2016), some even in small quantities (cadmium, lead, mercury, arsenic) 

(Aras & Ataman, 2007). However many of them are vital and have essential roles in diverse 

biological and natural processes (zinc, copper, iron) or have positive effects when ingested in 

small quantities (manganese, nickel, iron) (Aras & Ataman, 2007).  

 

Trace elements are non-biodegradable, which causes them to be difficult to remove when they 

have entered an ecosystem (Richir & Gobert, 2016). They are substances that are present in the 

crust of the earth and will be released when activity in the crust occur. Such disturbances can 

occur naturally due to the flow of water (Azizi et al., 2018). They can also be released due to 

anthropogenic activities such as mining, sewage and waste from anthropogenic sources 

(Brooks et al., 2015). Some trace elements can accumulate along the trophic chain (Burger & 
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Gochfeld, 2004) which may affect the ecosystem as a whole when the trace elements enters the 

chain. The accumulation of trace elements can be a major environmental stressor for several 

species (Muszyńska & Labudda, 2019; Richir & Gobert, 2016). Trace elements are known to 

induce physiological responses resulting in negative fitness (Cyr & Romero, 2007; Romero, 

2004), which will impact population dynamics (Wikelski & Cooke, 2006). 

 

Organic contaminants are often referred to as persistent organic pollutants (POPs) and in 

Europe, legacy contaminants (Hutchinson et al., 2013). Legacy contaminants are known to 

bioaccumulate in organisms and they have the ability to affect organisms negatively (Wania & 

Mackay, 1996). They are difficult to break down in the environment, hence persistent, and have 

shown to be moving among different trophic levels when they are accumulated (Jones & De 

Voogt, 1999; Schöne & Krause Jr, 2016). Bioaccumulation, coupled with their danger to 

humans and biota, makes them of interest for research and removal (Jones & De Voogt, 1999).  

Emerging pollutants are a group of “new” substances that have been produced within 

the last decades (Thomaidis et al., 2012). They are now common in aquatic environments, 

although their full effect on biota is still unknown to researchers (Thomaidis et al., 2012) and 

still more types of emerging pollutants and their properties are being discovered.  

The legacy contaminants that will be discussed in this thesis include: Polychlorinated biphenyls 

(PCBs), Polycyclic aromatic hydrocarbons (PAHs), Organochlorine pesticides (OCPs), and 

Organophosphate pesticides (OPs), while emerging contaminants included polybrominated 

diphenyl ethers (PBDEs), and some relevant per – and polyfluoroalkyl substances (PFASs).  

 

PCBs (C12H10-xClx) are a group of  209 congeners that were previously widely used as a coolant, 

as dielectric fluid, in electrical units and in heat transfer fluids (Griesbaum et al., 1989). The 

used of PCBs was discontinued because the compound has large impacts on ecological 

environments and biological life (Hutchinson et al., 2013).  PCBs are known to cause cancer 

and other diseases if exposed to for a longer period of time (Griesbaum et al., 1989).  

 

PAHs are compounds often found in tar and coal deposits, or produced by the burning of some 

types of organic matter (Griesbaum et al., 1989). A PAH itself has often no effect since it is 

extremely abundant in ecosystems (Griesbaum et al., 1989), and the issue here is more often 

linked to long term exposure or in combination with other PAHs. In this case it has shown to 

be linked to growth of cancers and other diseases. 
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OCPs often reach the marine environment from landfill runoff, wastewater discharge or surface 

runoff (Chiesa et al., 2018). Most OCPs are prohibited, however, there are still traces of them 

in biota, the coastal line, and sediments surrounding farmland as well as in lakes and coastal 

waters (Richardson and Zheng 1999).   

 

OPs are used as insecticides, applied as flame retardants and as gas for warfare (Walker et al., 

2016). Their level of toxicity is high, and they are easier to break down than the OCPs, but as 

they are usually present for a shorter amount of time, more acute toxicology is caused, which 

can be difficult to measure. OPs are known to cause behavioural effects in the organisms that 

accumulate them (Walker et al., 2016). Today they are not used as often as previously, because 

of danger they can cause (Kjetil Sagerup, 2011). Despite this, OPs are still used as insecticides 

in some countries as well as applied as flame retardants in certain products (Sidhu et al., 2019). 

OPs have been confirmed to an airborne pollutant in Norway, in addition to being found in 

sediments and animals, according to the Norwegian environment agency (Kjetil Sagerup, 

2011).  

 

PBDEs are a group of emerging contaminants which were previously widely used as flame 

retardants, but have as of recently been banned in most countries as they are a danger to both 

health and the environment (Rahman et al., 2001). They have been shown to dissolve in aquatic 

environmental sediments and in general behave very similarly to PCBs and OCPs due to their 

similar chemical structure (Rahman et al., 2001). PBDEs  bioaccumulate well and can be 

transported far by air and water (Chiesa et al., 2018).  

 

PFASs are a group of emerging contaminants that have been used in various man-made 

products over the last 50 years or so, both in industrial and commercial products (Sammut et 

al., 2019). PFAS are relatively new emerging contaminants and pollutants that are known 

through recent research to cause environmental problems and are toxic for biota. It has also 

been found that they are prone to bioaccumulate in nature through water and organic digestible 

material (Sznajder-Katarzyńska et al., 2019). PFAS has shown to have high absorption levels 

in biota and it has also been found difficult to eliminate them, as they are often accumulated in 

the body (Sznajder-Katarzyńska et al., 2019).  
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1.2 Blue mussels and biomonitoring 
 

Blue mussels, commonly known as mussels or common mussels, are of the class Bivalvia.  

This is a class that includes species of clams, oysters, scallops, and mussels (Gosling, 1992). 

Blue mussels are common in most temperate waters near the coast, usually located near the 

surface of the water (Brooks et al., 2011). They are a popular product for seafood in aquaculture 

since they are easy to grow and farm. They are also used in research as a model organism in 

several projects (Gosling, 1992). Mussels are well dispersed through pelagic larval stages if 

they have good living conditions and this is one of the many reasons why they are being used 

in biomonitoring research (Beyer et al., 2017).  

 

Mussel shells are divided by two halves split in the middle. They are fastened together by a 

mid-dorsal line, and muscles draw the two halves tightly together, which will fasten and protect 

them (Gosling, 1992). When the shell is open, the bivalve may use its foot  for anchoring or 

digging (Saba, 2012). The mantle cavity of a bivalve contains gills that are used for filter-

feeding and respiration (Gosling, 1992). When they feed, they trap fine particles in mucus that 

cover and coats the gills and cilia and then convey the particles to the mouth (Von Moos et al., 

2012) Being suspension-feeders, bivalves are mostly sessile organisms and have no need for 

much movement (Beyer et al., 2017).  

 

Blue mussels have been used in biomonitoring through the mussel watch programme with 

success since 1981 in Norway (Bråte et al., 2018). Mussel watch is important for monitoring 

hazardous contaminants, both organic and non-organic. The most common area to use mussels 

are in coastal areas, where they are found naturally since their biological traits are suited for 

this area (Bråte et al., 2018). Their suitable criteria were further approved by the OSPAR (Oslo-

Paris) commission (Beyer et al., 2017).  

 

An active biomonitoring process requires employing a common mussel, often local, that works 

as a sentinel species in the area of contamination (Beyer et al., 2017). These mussels are then 

placed, often in round baskets (Kljaković-Gašpić et al., 2006) on different depths (Beyer et al., 

2013). In these cages, they will acclimate, accumulate toxins, and later be sampled for analysis.  
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Active biomonitoring means transporting a material, in this case Blue mussels (Mytulus eduilis, 

Linnaeus 1758.), from an unpolluted site, to the site of the study, and thereby exposing them 

to substances that they will absorb (Phillips & Rainbow, 1998). Using farmed mussels allows 

us to ensure that they are as comparable as possible in sex, age, health, size, and background 

concentrations of contaminants because they will be grown and released at the same time. It is 

important to ensure that the project and trends are as precise as possible. The mussels filter 

large amounts of water which causes them to quickly ingest contaminants through feeding if 

they are present in the body of water. The mussels can also be helpful in giving an overview 

over the environment in the ecosystem because they are consumed by several predators 

including fish and crustaceans as well as humans. This makes using blue mussels beneficial, 

compared to many other species.   

 

1.3 Project background 
 

Flekkefjord is both a city and a municipality on the Norwegian southern coast, located in the 

Agder region, at the mouth of a medium long fjord (Fig. 1.2). Flekkefjord has a long history as 

a shipping and trading post, as well as an industrial background in many different areas 

including shipbuilding. The extensive traffic in the city fjord of Flekkefjord has emitted 

chemicals from the ships, and also from the 

coastal industry in the fjords, as described in 

previous ground work performed by agencies 

hired by the Municipality (Haker, 2011). In 

these reports, samples were taken of sediment 

and water in which there was found 

contaminants (Fig. 1.3). The contamination 

issue was discussed recently, and the 

Municipality expressed concern about how the 

implications may have an effect on the 

conditions of the fishery and aquaculture 

industries. These industries lie just outside the 

city fjord and are directly impacted by the water 

quality in the fjord. There are also concerns on 
Figure 1.2: The location of Flekkefjord (red pin) 
in Norway. 
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how the contaminated waters may have implications on how the people use the fjord because 

of how this affects the species that live there.  

Figure 1.3: Level of contaminants (organic and trace elements) in sediments measured in the 

city fjord throughout the years. Contaminants historically comes from industry around the city 

fjord but also from wastewater and recent activities. Figure retrieved from diver Federico 

Haaland Gaeta. 

 

In 2001, the Norwegian government declared in their report “Stortingsmelding nr.12” (2001-

2002) and “Stortingsmelding nr.14” (2006-2007) that a number of Norwegian fjords have 

contaminated sediments, and were in need for action to remove or cover sediments that could 

potentially put human health at risk by restoration activities and dredging of the sediment. The 

biomonitoring initiative in Flekkefjord will be a response to this concern by collectively 

monitor the contamination levels in the city fjord but also by monitoring the potential leakage 

and success of the restoration activities, as previous studies has suggested that dredging may 

result in increased uptake of PAHs, PCBs and trace elements in mussel species (Bellas et al., 

2007; Bocchetti et al., 2008). Routine analysis was conducted of the sediment, sea water, and 

samples of the biota of the different parts of the fjord (Haker, 2011). These analyses revealed 

large portions of PCBs, as well as heavy metals, in samples taken from the sediment. This led 

Flekkefjord Municipality to request and effort to cover the sediment layer, for the safety of the 

inhabitants. The goal was that covering the sediment layer would cause the levels of 

contamination in the fjord to decrease.    
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Bottom sediments are usually a sink for contaminants that enter fjord systems, since the 

contaminants are often heavier than the water, and because the cycling of water in fjords is 

slow (Alvarez et al., 2012). Activities in fjords will often cause the sediment to be disturbed. 

This enhances the risk of the contaminants interacting with marine biota as well as humans, 

which can negatively affect their health (Ghrefat & Yusuf, 2006).    

 

Contaminants vary in molecular structure and composition which determines how they may 

behave in water (Loska & Wiechuła, 2003). Various factors can impact the sediment layer 

including pH, and alterations in temperature and salinity, which changes with seasonal 

variation from the freshwater and seawater input (Perillo, 1995). The sediment layer can also 

be altered through movement caused by external factors such as waves, boat activity such as 

anchoring, currents, disposal, dredging and bioturbation (Walling, 2006). This sort of impact 

on the sediment can cause it to fluctuate and spread into the water masses, as well as travel and 

interact with biological material through animals taking up the particulate contaminants 

(Meador et al., 1995; Weber et al., 2013). In some cases, polluted sediments being covered up 

by human activity is the sole source of the enhancements of organic contaminants and emerging 

pollutants, as well as heavy metals in organisms, which is shown in Bocchetti et al. (2008) and 

Bellas et al. (2007). Despite the issues that follow such actions, these activities are necessary 

to hinder the potential spread of contaminants at a larger scale.       

 

The reason why biomonitoring is a solid solution to measuring how contaminants may impact 

human health, is that it uses organic material that are closer related to how humans may react 

to contaminants, as well as organisms that humans may consume. In addition, it measures the 

waves of exposure before, during, and after restoration efforts. This shows how effective these 

measures are, not only when it comes to water samples, but also in general with biological 

species that are present when the events take place. Biomonitoring will reveal the base values 

of contamination as well as providing a trend over time, which gives a warning if the levels are 

above the health risk limit. This can provide a chance to limit and halt any potential danger and 

damage these substances can cause if they are released.        
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1.4 Significance of the study  
 
This thesis aims to monitor the levels of contamination in blue mussels in the city fjord in 

Flekkefjord over a period of 196 days, and to examine if the contaminant levels in the fjord are 

acceptable in regard to biota and human health. Bioaccumulation of trace elements as well as 

legacy and emerging organic pollutants was measured through an active monitoring approach. 

At the same time, the effect of sediment restoration activities on the monitored blue mussels 

was measured to study the effects of contaminants during restoration efforts. This study can 

contribute in the understanding of how POPs and trace elements bioaccumulate in Flekkefjord, 

and what risks are involved when we excavate fjords for environmental beneficial purposes.    
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2. Materials and methods 
 

2.1 Experimental design 
 

The mussels were purchased from a mussel farm located in Kaldvellfjord in Lillesand county, 

155 km from Flekkefjord. They were grown close to the shore and reproduced naturally, with 

the seasons, before being transported to Flekkefjord in a cooling box within 2 hours of being 

removed from the water. On location they were released, then seeded in cages that were put at 

the five sampling sites (location 1- location 5) (Fig 2.1).  

 
Figure 2.1: The locations of the experimental sites in the city fjord (Location 2-5) and       

Lafjorden (location 1) in Flekkefjord (city red pin). Location 1 is close to the city fjord but far enough 

to be a reference location. 

 

The five sites in Flekkefjord, were chosen based on previous measures done in the sediments 

(Haker, 2011) on organic chemicals and heavy metal pollution. Cage site 1 (location 1, L1) is 

set as a reference site outside of Flekkefjord city bay. (58° 16' 30.0" N - 6° 39' 12.9" E) (fig 

2.1). The fjord in which location side 1 is placed may have runoff contaminants from the city 

fjord but it is expected to be cleaner than the other locations.  
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Cage sites 2-5 (location 2-5, L2-L5) were placed in the inner fjord close to the town. Location 

2 is placed closed to a shipping industry that has measured levels of contaminants in the 

sediment in the past. Amongst these were copper, PAHs and PCBs. (58° 17' 02.7" N - 6° 39' 

15.6" E) (fig 2.1), Location 3 is placed right next to Slippen which was an old industrial site 

where amongst other things there were building of ships. Outside this area there were measured 

PCBs and PAHs in the sediment in the past. (58° 17' 23.0" N - 6° 39' 30.9" E) (fig 2.1), Location 

4 is right by the canal that runs through the city as well as being in the eye of the stream that 

runs from the upper fjord and down into the city fjord. Next to this site there was also a old 

garbage disposal area which may have runoff of metals and other contaminants. (58° 17' 33.8" 

N - 6° 39' 41.3" E) (fig 2.1). Location 5 is placed next to an old tannery as well as being placed 

close to the town and road. From this area there has been efforts to remove contaminated 

sediments in the past (58° 17' 43.3" N - 6° 39' 12.5" E) (fig 2.1). Locations 3, 4 and 5 were the 

locations that were expected to be higher in contaminant levels than the other locations, as they 

were characterized by more operative human activity. Locations 1 and 2 were closer to the 

middle of the fjord where there were more currents and a higher potential for clean water.  

 
 Table 2.1: Dates which the sampling was done. The cages of blue mussels were deployed at 
time 0, the 27th of June 2018, with the last sampling in 2018 being at t=196. For year 2 (2019) 
the first cages were deployed at time 0, the 11th of January and the last sampling was done at 
t=247 (15th of September). Under status there is an overview over which samples are included 
in the thesis.  

Date Time Sample nr Year Status 
 27.06.2018 0 0 1 Included 
 27.07.2018 t=30 1 1 Included 
 10.10.2018 t=135 2 1 Included 
 15.11.2018 t=166 3 1 Included 
 15.12.2018 t=196 4 1 Included 
 11.01.2019 0 0 2 Not included 
 06.03.2019 t=54 1 2 Not included 
 16.05.2019 t=125 2 2 Not included 
 14.07.2019 t=184 3 2 Not included 
15.09.2019 t=247 4 2 Not included 

 
 
At each location, two cages each containing appx. 300 blue mussels were placed at separate 

depths 5 m and15 m to account for any difference in the distribution of contaminants within 

the water column. The cages were inspected by scuba divers to monitor if they were in good 

condition. Since the monitoring started the 27th of June 2018 and had its first proper sampling 

the 27th of July (t=30) (table 2.1), the mussels had been placed in good time as the restoration 
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activities started in August of 2018, which began the dredging of sediments from the inner 

fjord. This allowed us to have some background information about the contamination and 

conditions of the fjord from before the operations in the fjord started. Sample 2 was collected 

10.10.2018 (t=135), sample 3 on 15.11.2018 (t=166), and sample 4 on 15.12.2018 (t=196). In 

2019 the samples were deployed on 11.01.2019. Sample 1 was collected 06.03.2019 (t=54), 

sample 2 was collected 16.05.2019 (t=125), sample 3 on 14.07.2019 (t=184) and sample 4 on 

15.09.2019 (t=247). These samples from 2019 could not be included in this thesis 

unfortunately, this because of time limits and limitations during the analyses process (Table 

2.1). The dredging was finished July of 2019. From 2018 to 2019 the mussels were replaced to 

keep them unrelated to each other. Because of this the mussels were not sampled until March 

so the new mussels could reach the steady state with contaminant levels within the water 

column.  

 

2.2 Data collection and extraction 
 

Around 30 to 50 mussels were collected from each location and each depth. The collection was 

done on the same day and in a short timeframe to avoid potential mussel death. After the 

mussels were collected, they were swiftly transported by boat and stored at -20oC. The mussels 

were kept frozen until the contaminant extraction procedure. 

 

From the frozen stage, 10 mussels were collected to measure the weight and the length of the 

mussels from each depth and location. This was done to allow a correct comparison between 

the data; the goal was to have mussels that were the same size because filtration rate and 

contaminant accumulation can differ between small and big mussels. After the measurements, 

the soft tissue was extracted from the rest of the mussels to be used for measuring the levels of 

organic contaminants. About 200-300g of soft tissue was extracted from each sample of 

mussels to make sure that there was enough to sample for the analysis. The soft tissue was then 

wrapped in tinfoil, marked and frozen down to -20 oC until it was ready to be shipped to the 

laboratory at the University of Milan.    

 

T=166 and t=196 in Location 1 and Location 2 in 2018 were unfortunately lost because of 

storms, rough seas, and winds, which destroyed the cages with the mussels (Table 2.2). This 
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meant that these samples could not be collected at this time, with the exception of the last 

sample in location 2, 5m.  

 

T=135, Location 2, 15m were also all lost because of mass mussel death possibly due to the 

landslide that happened around this time (Table 2.2). The mussels during t=196 in location 5, 

15m did not survive due to possible toxicity.  
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Table 2.2: Sampling overview of 2018 and which samples is included. List of dates and 
status of samplings. The samples marked in grey and with x are the samples that were lost for 

various reasons. 

Sample Location Depth (m) Condition 

t=0 (Sample 1) 

1 5 v 
15 v 

2 5 v 
15 v 

3 5 v 
15 v 

4 5 v 
15 v 

5 5 v 
15 v 

t=30 (sample 2) 

1 5 v 
15 v 

2 5 v 
15 v 

3 5 v 
15 v 

4 5 v 
15 v 

5 5 v 
15 v 

t=135 (sample 3) 

1 5 v 
15 v 

2 5 v 
15 X 

3 5 v 
15 v 

4 5 v 
15 v 

5 5 v 
15 v 

t=166 (sample 4) 

1 5 X 
15 X 

2 5 X 
15 X 

3 5 v 
15 v 

4 5 v 
15 v 

5 5 v 
15 v 

t=196 (sample 5) 

1 5 X 
15 X 

2 5 v 
15 X 

3 5 v 
15 v 

4 5 v 
15 v 

5 5 v 
15 X 
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2.3 Homogenization and lyophilization 
 

Samples were homogenized and separated into two groups from each sample at ~10g, one for 

analysis of organic contaminants and one for heavy metal analysis. The samples were then 

frozen down again at -20oC to await further procedures. The sample dedicated to heavy metal 

analysis were then lyophilized (freeze-dried) to eliminate the water from the meat of the 

mussels. To do this, a freeze-dry machine was used to shock freeze the samples at -40oC and 

then adding heat for a longer time (from 1 up to 2 days) at 20oC to allow the frozen water to 

sublimate from ice to gas. The freeze-drying process worked in two stages: the frozen stage 

and the drying stage. The freezing stage was started as the samples were all deep frozen before 

the lyophilize process. The drying process, or the sublimation process, lowered the pressure 

and added heat, which caused the water to sublimate. Lastly, a vacuum collected the condensed 

water. After this process was done, most of the moisture in the mussels was gone and the dry 

weight of the product remained. The samples for heavy metal analysis were then grinded down 

using a normal kitchen grinder, until the fibres were small and in a powdery state. From this 

they were further broken down into fine powder by a grinder device, which was necessary for 

it to burn more easily.    

 

To analyse the levels of organic contaminants about 3g of frozen samples, of the 10g previously 

collected, were randomly selected and put in clear, clean falcon tubes (QuEChERS extraction) 

to then be transported for lab analysis.  

 

2.4 Chemical analysis 
 

The chemical analysis of the organic contaminants and the trace elements from 2018 was 

performed at the laboratories of the University of Milan by Marco Parolini, Sara Panseri and 

their teams according to published methods (Chiesa et al., 2018; Chiesa et al., 2019; Parolini 

et al., 2020). For continuity, the method was replicated in this thesis. I was involved in the 

analyses of the samples from 2019 during a research stay at the University of Milan where the 

same exact methods were used, but the analyses were not finished before the university had to 

close down due to the COVID-19 pandemic of 2020. 
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2.4.1 Trace element analysis 

The trace element analysis was performed on the following metals: Ca (calcium), K 

(potassium), Mn (manganese), P (phosphorous), Mg (magnesium), Na (sodium), Fe (iron), Zn 

(zinc), Sr (strontium), Cu (copper), Ti (titanium), Pb (lead), Cr (chromium), Al (aluminium), 

Ni (nickel), As (arsenic), Cd (cadmium), and Hg (mercury). The freeze-dried samples were 

mineralized in a microwave system using 3 ml nitric acid SpA (Chiesa et al., 2019). The 

samples were diluted to 50 ml by addition of bi- distilled water. Elemental analysis was 

performed by inductively coupled plasma-atomic emission spectrophotometer. Nebulizing and 

auxiliary gas flows were 12 L min−1 and the radiofrequency power was set at 1000 W. The 

limit of detection (LOD) and limit of qualifications (LOQ) were calculated as three and ten 

times, respectively; the standard deviation of a blank solution with 10 repetitions. The LOQs 

ranged from 0.007 to 0.020. Quality controls were carried out based on the recovery percentage 

study obtained with the certified Reference Materials under reproducible conditions in order to 

verify the accuracy of the analytical procedure. The obtained concentrations were in good 

agreement with a 95% confidence limit with the certified concentrations; relative standard 

deviation (RSD) values were lower than 10%.  

 

2.4.2 Chemicals and reagents that were used in the extraction of organic compounds 

 
A mixed solution of PCB congeners (CB-28; CB-52; CB-101; CB-138; CB-153 and CB-180), 

CB-209 (internal standard [IS] for PCBs and PAHs), a mixed solution of PBDEs (BDE-28; 

BDE-33; BDE-47; BDE-99; BDE-100; BDE-153, and BDE-154 numbered according to the 

IUPAC nomenclature) and fluorobromodiphenyl ether (FBDE), as well as the internal standard 

(IS) for flame retardants were purchased from AccuStandard.  

 

A standard solution of 15 organochlorine compounds (OCPs), and their metabolites (α–HCH; 

hexachlorobenzene; β-HCH; lindane; heptachlor; aldrin; heptachlor epoxide; trans chlordane; 

4,4ʹ-dichlorodiphenyldichloroethylene [4,4ʹ-DDE]; endosulfan I; endosulfan II, endosulfan 

sulfate; endrin, 4,4ʹ-dichlorodiphenyldichloroethane [4,4ʹ-DDD], 2,4ʹ-

dichlorodiphenyltrichloroethane [2,4ʹ-DDT]), six organophosphate compounds (OPs – i.e., 

demeton, disulfoton, diazinon, phorate, mevinphos, ethoprophos), and a standard solution of 
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four polycyclic aromatic hydrocarbons (i.e., chrysene, benzo(α)anthracene, 

benzo(β)fluoranthene and benzo(α)pyrene) were purchased from Restek.  

 

The 17 per- and polyfluoroalkyl substances (PFASs) examined were perfluorobutanoic acid 

(PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorobutane 

sulphonic acid (PFBS), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), 

perfluorohexane sulphonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid 

(PFDA), perfluorooctane sulfonic acid (PFOS), perfluorododecanoic acid (PFDoA), 

perfluoroundecanoic acid (PFUnDA), sodium perfluoro-1-decanesulfonate (PFDS), 

perfluorotridecanoic acid (PFTrDA), perfluorotetradecanoic acid (PFTeDA), 

perfluorohexadecanoic acid (PFHxDA), and perfluorooctadecanoic acid (PFODA). All of 

these compounds and the two 13C-labeled internal standards (ISs), MPFNA, and MPFOS were 

purchased from Fluka (Sigma Aldrich, St. Louis, MO, USA). 

 

2.4.3 Analytical preparation standards 

 
Stock solutions (10 µg mL-1 in hexane) of OCPs, OPs, PCBs, PBDEs, and PAHs were used to 

prepare the working solutions by serial dilutions. Mixed compound calibration solution, in 

hexane, was prepared daily, and the proper volume was used as a spiking solution as well. 

Stock solutions of PFASs (1 mg mL-1) were dissolved in methanol, from which working 

solutions at the concentrations of 10 and 100 ng mL-1 were prepared during each analytical 

session. All the standard solutions were stored at -20 °C. 

 

2.4.4 Extraction procedure for OCPs, OPs, PCBs, PBDEs and PAHs 

 
The extraction of PCBs, PBDEs, OCPs, Ops, and PAHs from mussels were performed using 

the QuEChERS approach method was done according to the validated method described by 

Chiesa et al. (2018). The 2g of mussels in the falcon tubes were numbered according to their 

sample, location, and depth first. Then the internal standard was added. The internal standards 

contain raw product of 25µL PCB 209, 20µL FBDE, and 100µL 4-n Nonyl phenol which are 

compounds that are used to ensure that the methods will work. They are not present in the fjord 

therefore they would not have occurred naturally. 10mL of a mixture of hexane/acetone was 

then added as extraction solvent; the tube was shaken for 2-3 min to mix all the solvents 

together, and then centrifuged for 10 minutes at 5,000rpm at 4 °C. Then, the supernatant was 
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transferred to a QuEChERS purification tube, shaken, and centrifuged at the same conditions. 

The extract was transferred into a flask and evaporated in a centrifuge evaporator. The residue 

of this was dissolved in 1mL of hexane and analysed by GC/MS-MS. 

 

2.4.5 GC-MS/MS analyses 

 
A blank sample without contaminants were used to compare with the contaminated mussels. 

These blank samples were bought in a local market, homogenized fresh from the supermarket, 

and placed directly into falcon tubes before they were frozen and sent to the lab for the same 

analysis procedure as previously described. 

 

Triple quadrupole mass spectrometry (QqQ) in electronic impact (EI) mode was used for the 

detection, identification, and quantification of compounds. A mass spectrometry works by 

generating ions from the organic contaminants and separating them by their mass-to-charge 

ratio (m/z) (Gross, 2006). Then, a standard calibration curve will be created adding five 

standard concentration of the five contaminants (PCB, PBDE, PAH, OCPs, and OPs) that will 

allow to create a calibration curve for each contaminant. The five groups of contaminants also 

have five different calibration curves for each contaminant. Each curve is made considering 

the concentration that is expected to be found (in relationship with previous analyses). The five 

classes include: 

1 PBDE = 0.5 ng/g – 50 ng/g 

2 PCB = 0.5 ng/g – 100 ng/g 

3 PAH = 0.5 ng/g – 100 ng/g 

4 OCPs = 1 ng/g – 500 ng/g 

5 OPs = 1 ng/g – 500 ng/g 

 

In order to prepare the standard calibration curve, we will extract all the samples with the 

QuEChERS extraction protocol. With this, a standard calibration curve will be created, with 

the concentration on the X axis, the A/A on the Y axis, and the concentration Z as the sample.   

A/A is calculated as: Area of Analysis and area of Internal Standard.  
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Figure 2.3: Calculation of the calibration curve of organic contaminants. This provides exact     

concentration of each compound following mass spectrometry. 

 

By the interpolation of the sample Z (of unknown concentration) on the standard calibration 

curve, the concentration of contaminants in the sample will be obtained. This will deduce the 

concentration of Z from the A/A.  

 

The QqQ mass spectrometer was operated in selected reaction monitoring mode (SRM), 

detecting two to three transitions per analyte. Identification of POPs were carried out by 

comparing sample peak relative retention times, with those obtained for standards under the 

same conditions, and the MS/MS fragmentation spectra obtained for each compound. As a 

result of this a list over the present compounds of each site, location, and depth were eventually 

obtained.  

 

2.4.6 Extraction procedure for PFASs 

 
The analysis of PFASs in mussel tissues was only done for the 2018 organic samples. No major 

contamination was detected and because of this combined with unnecessary laboratory costs, 
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a decision was made to exclude this from the 2019 samples. 2g of sample were spiked with the 

2 internal standards at the concentration of 5 μg/mL, and 10 mL of acetonitrile were added for 

extraction and protein precipitation. The sample was then vortexed and sonicated for 15 min. 

After centrifugation (2,500 × g, 4 °C for 10 min), the supernatant was evaporated in a rotary 

vacuum evaporator at 40 °C.  

 

The extract was suspended in 10 mL of water and purified by SPE Oasis WAX Cartridges 

under vacuum. The SPE cartridges were preconditioned with 3 mL of 0.5% ammonium 

hydroxide in methanol, 3 mL of methanol, and 3 mL of Milli-Q water. After sample loading, 

the cartridges were washed with 3 mL of 25 mM acetate buffer pH 4.5 to minimize 

interferences, followed by 2 mL of methanol. The elution was done with 3 mL of 0.5% 

ammonium hydroxide in methanol and the eluate was dried and then suspended in 100 μL of 

methanol: ammonium formate 20 mM (10:90 v/v). 

 

2.4.7 LC-HRMS analyses 

 
The HPLC system was coupled to a QExactive Orbitrap, equipped with a heated electrospray 

ionization (HESI) source, operating in negative mode. A “Synergi Hydro-RP” reversephase 

HPLC column, with a C18 guard column was used for the chromatographic separation. 

Stainless steel capillary tubes were used for minimizing PFAS background contamination in 

the system. Moreover, since PFOA and PFOS were always present in the chromatographic 

system, a small Megabond WR C18 column was introduced between pump and injector, 

allowing us to delay elution of the contaminants of the system by 2 min relative to the analytes 

present in the samples. The mobile phases were: Solvents A (aqueous ammonium formate, 20 

mM), and B (MeOH).  

 

2.5 Statistical analysis 

The same GLM procedure described in Parolini et al., (2020) analysis of PCBs and PAHs was 

completed using RStudio software, the same procedure was similarly used on all the 

investigated trace elements. For the trace elements Microsoft Excel was used to perform the 

raw data percentages and mean, while RStudio was used to visualize the data (RStudio Team, 

2016). The reason for the use of different software’s was the availability of the software while 

the work was being performed and what was found to be useful for the task they were needed 

for. 	
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3. Results 
 

3.1 Status of mussels 
The survival rate of the caged mussels during the 6-month biomonitoring period of Flekkefjord 

was good, although there was some mortality at both depths. The health status of mussels in 

location 1 (L1) and location 2 (L2) after the third sampling (t = 166 days) could not be 

monitored because the cages were lost due to harsh weather. The cage placed at 15 m depth in 

location 3 was confirmed by divers to have been robbed by crabs after the third sampling (t = 

166 days), so fewer than 50 mussels were collected at the fourth and fifth sampling. Full 

mortality of mussels was noted at t =166 days in the cage placed at 15 m depth in location 5, 

meaning that for the rest of the period we did not obtain data from this location.  

 

3.2 Visualisation of data 
Information was obtained from all trace elements. Most elements, however, had low 

concentrations. The raw data for the trace elements can be found in Appendix 1. The focus will 

be on the trace elements that are either considered to be toxic or who showed relevant or 

interesting patterns in the raw data. The rest of the trace elements are excluded in this section 

but are included under Appendix 2. In detail, the trace element data that are presented include 

copper, manganese, lead, chromium, zinc, aluminium, nickel, arsenic, titanium, iron and 

mercury. For the trace elements that are considered highly toxic there is a limit in the graph 

that represents the value of where the limit of contamination for people lies according to SFT 

(2011) (Norwegian environmental agency). This is anything above baseline values, however, 

contamination above the baseline values in this does not mean there is an immediate health 

concern. This is simply done for comparison purposes. For element Ti, Fe, Mn and Al there is 

no indicator in the figure due to there not being any maximum contamination limit for these 

trace elements (SFT, 2011).   
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Figure 3.1: Distribution of copper found in samples at 5 m depth (left) and 15 m depth 
(right). Concentrations above the horizontal black line at 10 mg/kg are considered above 
baseline levels according to SFT (2011). Concentrations are expressed in mg/kg dry weight. 

 

The mussel samples where copper was measured ranged from 3,39 to 30 mg/kg dry weight 

(d.w) (Fig. 3.1). The average  was 12,12 mg/kg at 5 m and 13,07 mg/kg at 15m. There was an 

increase in the 5 m sample at location 2 from 5,79 mg/kg in t=0 to 29,76 mg/kg in t=30 after 

which followed an abrupt decrease at t=135. The other locations also had fluctuating levels, 

but to a smaller degree. In the 15 m sample there was a larger concentration during t=0 than in 

the 5m sample. The mean copper levels are above the background level >10 mg/kg d.w (Table 

3.1). The mean location value were close in concentrations (Table 3.1),  all with values above 

the baseline limit (background concentration).   
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Figure 3.2: Distribution of Manganese found in samples at 5m depth (left) and 15m depth 
(right). Data are expressed in mg/kg dry weight. 

 

 

The concentration of manganese measured in the mussels varied from 4,38 mg/kg to 371,62 

mg/kg, with an average of 53,27 mg/kg at 5 m and an average of 57,90 mg/kg at 15 m depth, 

respectively. There was a distinct increase in the mussel manganese concenstrations at t=135 

for both depths in mussels transplanted to location 3-5 (Fig. 3.2), while the sample for 5 m had 

a higher concentration compared to the other locations. The concentration seemed to linger for 

a longer period at 15 m, particularly at location 5.  
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Figure 3.3: Distribution of lead found in samples at 5m depth (left) and 15m depth (right). 
Concentrations above the horizontal black line at 10 mg/kg are considered above baseline 
levels according to SFT (2011). Concentrations are expressed in mg/kg dry weight. 
 

The concentration of lead measured in the mussels (Fig. 3.3) varied from 2,11 mg/kg to 6,08 

mg/kg and had an average of 3,62 mg/kg at 5 m and an average of 3,38 mg/kg at 15 m. Mean 

lead values values have been above the background limit the whole period with a few increases 

in several of the samples at both meters. At 15 m there was a gradual increase after t=135 

before a decrease for the final sample. At 5 m the concentration rises for the final sample. The 

concentration mean is very similar for all the different locations.  
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Figure 3.4: Distribution of chromium found in samples at 5m depth (left) and 15m depth 
(right). Concentration above the horizontal black line would according to SFT (2011) be 
concidered hazardous to human health. Data are expressed in mg/kg dry weight. 

 

The concentration of chromium measured in the mussels (Fig 3.4) varied from 0,53 mg/kg to 

2,68 mg/kg and had an average of 1,48 mg/kg at 5 m and an average of 1,55 mg/kg at 15 m. 

Chromium had an increase of concentration on t=135 at both depths, with an immediate 

decrease at 5 m and with a slow decrease at 15 m. There is not much noticable difference 

between the locations and all samples are concidered background levels.  
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Figure 3.5: Distribution of aluminium found in samples at 5m depth (left) and 15m depth 
(right). Data are expressed in mg/kg dry weight. 
  

The concentration of Aluminium measured in the mussels (Fig 3.5) varied from 69,21 mg/kg 

to 3276,80 mg/kg and had an average of 439,00 mg/kg at 5 m and an average of 329,65 mg/kg 

at 15 m. Aluminium had an increase of concentration on t=166 at location 3 at 5 m. Compared 

to this increase the levels of aluminium was low for the other samples. There was a slight 

increase of contamnination for the same sample at 15 m but with not as much value compared 

to the increase at 5 m. Location 3 and 4 had the largest levels of aluminium.  
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Figure 3.6: Distribution of zinc found in samples at 5m depth (left) and 15m depth (right). 
Concentration above the horizontal black line would according to SFT (2011) be concidered 
hazardous to human health. Data are expressed in mg/kg dry weight. 
 

 

The concentration of Zinc measured in the mussels (Fig 3.6) varied from 29,50 mg/kg to 131,58 

mg/kg and had an average of 69,38 mg/kg at 5 m and an average of 83,34 mg/kg at 15 m. Zinc 

values was fluctuating but have a steady low throughout the sampling. The concentration of 

zinc at 15m for location 5 had increased from sample t=30 to t=135 and t=166. The highest 

concentration mean is found at location 5 (Table 3.1).  
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Figure 3.7: Distribution of nickel found in samples at 5m depth (left) and 15m depth (right). 
Concentration above the horizontal black line would according to SFT (2011) be concidered 
hazardous to human health. Unit of measurement is mg/kg 

 

The concentration of nickel measured in the mussels (Fig 3.7) varied from 0,19 mg/kg to 3,49 

mg/kg and had an average of 1,56 mg/kg at 5 m and an average of 1,53 mg/kg at 15 m. In t=145 

location 3 at 5 m there is an increase, as well as in the same location for the same and next 

sample at 15 m. Highest mean was found in location 3 (Table 3.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Emma Høysæter Minken 

	 34	

Figure 3.8: Distribution of arsenic found in samples at 5m depth (left) and 15m depth (right). 
 Concentrations above the horizontal black line at 10 mg/kg are considered above baseline 

levels according to SFT (2011). Unit of measurement is mg/kg 
 

The concentration of arsenic measured in the mussels (Fig. 3.8) varied from 1,46 mg/kg to 

18,01 mg/kg had an average of 10,43 mg/kg at 5 m and an average of 9,73 mg/kg at 15 m. 

Arsenic values have differences between the levels and are generally higher than the baseline 

level of contamination, samples of note are t=30 and t=196 days. The highest mean was found 

in location 2 (Table 3.1).  
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Figure 3.9: Distribution of mercury found in samples at 5m depth (left) and 15m depth 
(right). Concentration above the horizontal black line would according to SFT (2011) be 
concidered hazardous to human health.  Unit of measurement is mg/kg 

 
 

The concentration of mercury measured in the mussels (Fig 3.9) varied from 0 to 0,013 mg/kg 

and there was an average of 0,003 mg/kg at 5 m and an average of 0,004 mg/kg at 15 m. Mercury 

had relativly low values to the point where the value was close to zero and very far from the 

standard limits.   
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Figure 3.10: Distribution of Cadimum found in samples 5m depth (left) and 15m depth  (right). 
Concentration above the horizontal black line would according to SFT (2011) be concidered 
hazardous to human health. Unit of measurement is mg/kg. 

 

The concentration of cadmium measured in the mussels (Fig. 3.10) varied from 0,51 mg/kg to 

1,56 mg/kg and had an average of 0,85 mg/kg at 5 m and an average of 0,86 mg/kg at 15 m. 

Cadimum had low values below limit. There was an increase in t=166 location 5 for 5 m as 

well as in t=30 in Location 1 for 15 m. Aside from this the values generally decreased with 

time.    
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Figure 3.10: Distribution of Titanium found in samples 5m depth (left) and 15m depth (right). Unit of 
measurement is mg/kg. 

 

The concentration of titanium measured in the mussels (Fig. 3.10) varied from 1,52 mg/kg to 

13,49 mg/kg and had an average of 6,78 mg/kg at 5 m and an average of 6,96 mg/kg at 15 m. 

There is a visible growth of contamination from the frist two samples and the t=135 sample.  
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Figure 3.10: Distribution of Iron found in samples 5m depth (left) and 15m depth (right). Unit of 
measurement is mg/kg. 

 

The concentration of iron measured in the mussels (Fig. 3.10) varied from 85,72 mg/kg to 

388,26 mg/kg and had an average of 244, 76 mg/kg at 5 m and an average of 260,05 mg/kg at 

15m.  
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 Table 3.1: Mean values for trace elements (mg/kg d.w) at each location 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

  Location 1 Location 2 Location 3 Location 4 Location 5 Mean total 

Cu 10,9  ± 4,34 12,08  ± 8,49 13,4  ± 8,18 12,21  ± 4,57 13  ± 2,99 12,595  ± 5,98 

Mn 14,58  ± 10,57 9,11  ± 7,54 57,69  ± 60,40 82,94  ± 117,38 92,76  ± 105,55 51,416  ± 85,08 

Pb 3,52  ±  0,94 3,25  ± 1,10 3,81  ± 1,10 3,37  ± 0,80 3,49  ± 0,67 3,50  ± 0,89 

Cr 1,61  ±  0,840 1,27  ± 0,440 1,62  ± 0,457 1,60  ± 0,426 1,40  ± 0,226 1,51  ± 0,48 

Al 313,17  ± 329,44 250,68  ± 219,44 590,26  ± 970,17 431,3  ± 323,88 258,05  ± 175,78 368,692  ± 528,50 

Zn 70,34  ± 31,77 66,60  ± 18,50 76,69  ± 28,95 74,34  ± 27,04 84,85  ± 14,90 74,564  ± 25,98 

Ni 1,19  ± 0,66 1,19  ± 0,67 1,78  ± 0,74 1,42  ± 0,50 1,40  ± 0,51 1,54  ± 0,65 

As 10,47  ±  2,541 11,83  ± 3,700 9,67  ± 1,812 9,83  ± 1,987 9,51  ± 3,671 10,43  ± 2,73 

Hg 0,005  ±  0,0041 0,002  ± 0,0020 0,004  ± 0,0026 0,003  ± 0,0023 0,003  ± 0,0017 0,003  ± 0,003 

Cd 1,02  ± 0,323 0,81  ± 0,128 0,79  ± 0,144 0,78  ± 0,159 0,94  ± 0,268 0,86  ± 0,22 

Ti 7,60   ± 3,034 4,23   ± 2,277 6,29   ± 2,694 7,97   ± 3,170 7,54   ± 1,593 6,86   ± 2,795 

Fe 275,56   ± 101,17 182,28   ± 61,83 250,84   ± 71,41 278,43   ± 76,46 258,18  ± 50,39 252,77  ± 75,65 
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3.3 Trace elements standard limits 
 

Comparison of the samples to the limits of the surroundings is done with numbers from the 

Norwegian environmental agency who have converted the values set by the EU to dry weight 

limits for blue mussels (SFT, 2011). These are appropriate to compare with since other projects 

have also used this limitation data to compare with in the future, and to potentially find a more 

common trend in the fjords on a country-wide basis this will then be easier to match with other 

data.  A maximum value and a mean value of trace elements detected was found across all 

samples as included in Table 3.2 and Table 3.3. The limits were retrieved from a report done 

by formally named the pollution control agency in Norway (SFT) in 2011 (Norwegian 

environmental agency). As of now (2020) there is no official limit to the release of manganese 

and aluminium so this data could not be included. 

 

Table 3.2: List of quality standard in mussel d.w based off the Norwegian environmental agency 
(previously SFT) and converted biota limits from the EU. As of now there is no presented upper 
recommended limit for aluminium and manganese. Values are expressed in mg/kg dry weight (d.w).  

Compound   Limits of contaminants in biota 

Baseline/Good/moderate/poor/maximum (mg/kg d.w) 

Reference Maximum  Mean 

Copper (Cu) <10/ 10-30/ 30-100/ 10-200/ >200 (SFT, 2011) 30 12,595 

Manganese (Mn) - 	  -  371.62  51,416 

Lead (Pb) <3/ 3-15/ 15-40/ 40-100/ >100 (SFT, 2011) 6.08 3,50 

Chrominum (Cr) <3/ 3-10/ 10-30/ 30-60 />60 (SFT, 2011) 2.68 1,51 

Aluminium (Al) - 	  -  3276.80 368,68 

Nickel (Ni) >5/ 5-25/ 25-50/ 50-100/ >100 (SFT, 2011) 3.49 1,54 

Arsenic (As) <10/ 10-30/ 30-100/ 10-200/ >200 (SFT, 2011) 18.01 10,43 

Mercury (Hg) <0,2/ 0,2-0,5/ 0,5-1,5/ 1,5-4/ >4 (SFT, 2011) 0.013 0,003 

Zinc (Zn) <200/ 200-400/ 400-1000/ 1000-2500/ >2500 (SFT, 2011) 131.58 74,564 

Cadimum (cd) <2/ 2-5/ 5-20/ 20-40/ >40 (SFT, 2011) 1.56 0,85 

Iron (Fe) -  -  388,26 252,77 

Titanium (Ti) -  -  13,49 6,86 
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 Table 3.3: Concentrations (in mg/kg) of selected metals and heavy metals classified 
according to the limits set by the Norwegian environmental agency  (SFT, 2011). Blue colour 
means concentrations is below the background limit, green colour means there is pollution but 
it is to not immediate concern and there are low to no health risks, yellow colour means there 
are moderate levels of pollution and there may be toxic effects to humans if exposed to for a 
long period. Grey in this table means there is no data. White gaps mean that the data was lost.     

 

 
 
 
 
 
 
 
 

Sample Location depth Aluminum (Al) Manganese (Mn) Arsenic (As) Chrominum (Cr) Copper (Cu) Mercury (Hg)Nickel (Ni) Zinc (Zn) Lead (Pb) Cardimum (cd) Iron (Fe) Titanium (Ti)
t=0 Location 1 5 916,84 12,94 10,28 1,04 13,36 0,003 0,19 66,25 3,72 1,02 345,48 8,41
t=0 Location 1 15 475,45 13,84 8,89 1,76 15,50 0,003 0,91 97,31 4,34 0,91 388,26 11,15
t=0 Location 2 5 362,38 4,38 9,63 1,55 5,79 0,002 1,10 39,55 5,10 0,95 143,57 2,78
t=0 Location 2 15 649,82 5,75 8,66 0,98 14,34 0,002 1,82 77,41 3,04 0,89 217,23 7,08
t=0 Location 3 5 337,72 5,00 7,60 0,91 12,86 0,003 1,12 66,73 3,40 0,95 206,83 7,41
t=0 Location 3 15 221,39 7,83 8,53 1,92 30,00 0,004 1,13 89,29 4,23 0,90 180,28 4,24
t=0 Location 4 5 733,28 5,09 7,85 1,56 12,81 0,002 2,20 65,38 3,36 0,93 202,72 5,80
t=0 Location 3 15 1063,06 8,02 8,55 1,09 11,04 0,002 2,02 61,12 2,79 0,80 205,89 5,49
t=0 Location 5 5 533,22 12,38 8,68 1,48 12,59 0,003 2,35 80,97 3,70 0,80 216,57 5,53
t=0 Location 5 15 378,41 5,46 8,46 1,34 14,51 0,002 1,19 88,64 3,71 1,07 184,30 5,79

t=30 Location 1 5 71,76 5,01 11,98 1,22 3,88 0,003 0,93 32,62 4,14 0,96 120,76 2,44
t=30 Location 1 15 102,86 6,41 14,69 0,53 7,68 0,006 1,57 34,86 2,18 1,56 188,95 6,07
t=30 Location 2 5 89,02 4,93 12,36 0,96 29,76 0,000 0,44 62,11 2,15 0,74 85,72 1,52
t=30 Location 2 15 172,74 5,23 13,81 0,88 8,71 0,000 1,53 52,60 2,40 0,70 166,20 4,75
t=30 Location 3 5 95,37 5,61 12,78 1,49 4,09 0,001 1,24 29,71 3,85 0,86 161,77 3,45
t=30 Location 3 15 148,24 8,07 9,48 1,73 7,33 0,004 1,41 56,37 2,80 0,75 319,09 7,91
t=30 Location 4 5 130,02 6,63 14,32 1,47 5,32 0,002 1,33 36,86 3,20 0,84 209,92 5,17
t=30 Location 3 15 90,19 8,19 10,28 1,24 4,09 0,003 0,75 29,50 2,11 0,57 175,83 3,46
t=30 Location 5 5 69,21 7,88 14,00 1,16 15,96 0,005 2,62 79,00 2,92 0,87 267,91 8,11
t=30 Location 5 15 110,71 9,65 12,16 1,60 14,49 0,002 1,75 59,40 4,06 1,14 290,67 6,96

t=135 Location 1 5 160,78 34,50 7,55 2,68 13,50 0,003 2,09 82,18 4,23 0,57 318,94 9,50
t=135 Location 1 15 151,35 14,77 9,41 2,45 11,47 0,013 1,45 108,83 2,52 1,08 290,98 8,03
t=135 Location 2 5 115,33 23,82 8,49 2,01 10,46 0,005 0,37 88,74 2,83 0,94 244,57 6,59
t=135 Location 2 15
t=135 Location 3 5 512,28 175,89 11,27 1,96 19,17 0,010 3,49 72,34 4,68 0,97 314,65 9,72
t=135 Location 3 15 258,80 130,16 8,25 2,17 6,09 0,003 2,22 110,59 3,54 0,88 242,86 5,67
t=135 Location 4 5 641,99 371,62 9,63 2,33 17,50 0,001 1,71 106,58 3,29 1,11 379,17 13,49
t=135 Location 3 15 395,62 188,03 7,33 2,13 17,64 0,002 0,64 74,76 4,83 0,70 317,28 12,12
t=135 Location 5 5 516,42 284,91 8,71 1,65 6,11 0,006 1,58 90,20 3,05 0,83 324,62 9,48
t=135 Location 5 15 228,39 208,43 9,35 1,53 13,39 0,000 1,59 114,85 3,98 0,78 231,65 6,80
t=166 Location 1 5
t=166 Location 1 15
t=166 Location 2 5
t=166 Location 2 15
t=166 Location 3 5 3276,80 35,18 9,14 0,86 5,85 0,005 1,81 37,42 2,86 0,77 161,33 3,27
t=166 Location 3 15 814,95 84,36 7,43 2,03 20,00 0,004 2,34 99,05 6,08 0,63 357,51 10,41
t=166 Location 4 5 389,88 31,56 9,94 1,14 14,66 0,002 1,72 74,35 3,34 0,84 274,18 8,39
t=166 Location 3 15 592,33 59,67 8,75 1,78 15,04 0,008 1,15 89,57 4,21 0,75 294,30 8,81
t=166 Location 5 5 120,90 59,25 1,46 0,98 12,50 0,004 1,46 75,59 2,96 1,46 225,36 8,08
t=166 Location 5 15 212,37 185,19 9,57 1,26 11,60 0,002 2,55 131,58 2,49 0,95 248,92 6,83
t=196 Location 1 5
t=196 Location 1 15
t=196 Location 2 5 114,82 10,56 18,01 1,23 3,39 0,004 1,90 79,16 3,98 0,67 236,42 2,65
t=196 Location 2 15
t=196 Location 3 5 149,93 31,42 11,52 1,37 11,62 0,003 1,32 95,64 4,36 0,54 260,56 7,57
t=196 Location 3 15 87,15 93,34 10,67 1,76 16,98 0,002 1,70 109,77 2,33 0,69 303,50 3,24
t=196 Location 4 5 167,18 35,07 11,09 1,92 12,84 0,002 1,32 98,36 3,92 0,68 349,52 9,54
t=196 Location 3 15 109,45 115,55 10,54 1,33 11,11 0,007 1,32 106,88 2,64 0,62 375,49 7,40
t=196 Location 5 5 152,82 61,70 13,17 1,55 15,84 0,004 1,99 86,71 4,54 0,51 333,63 10,26
t=196 Location 5 15
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3.4 Trace Element data analysis 
 
Table 3.3: Comparison of significant P-values based on location, time, depth. GLM test was done on 
trace elements and tested for correlations between time, locations and depth on the trace element levels 
measured in the mussels. Interaction between location and time, location and depth and time and depth 
was also analysed. Statistically significant results are marked in bold. F values and df values are 
included in appendix 3.  
 

  Location (loc) Time Depth Loc*Time Loc*Depth Time*Depth 
Ca 0.517 0.221 0.936 0.343 0.143 0.353 
K 0.2888 0.1966 0.5466 0.0815 0.2712 0.0417 

Mn 0.000406 2.36e-06 0.381311 0.001475 0.791168 0.002519 
Mg 0.7811 0.0443 0.6065 0.1382 0.5143 0.1003 
Na 0.5421 0.3797 0.8402 0.1854 0.6307 0.0904 
P 0.9769 0.0563 0.6059 0.4029 0.9534 0.6398 
Fe 0.004269 0.000589 0.110137 0.015570 0.117072 0.023882 
Zn 0.02813 3.98e-05 0.00116 0.26769 0.06995 0.03571 
Sr 0.3777 0.0684 0.7660 0.1274 0.7589 0.0818 
Cu 0.945 0.675 0.502 0.356 0.608 0.491 
Ti 0.0257 0.0193 0.8784 0.1876 0.2452 0.1288 
Pb 0.848 0.560 0.485 0.857 0.731 0.430 
Cr 0.18099 0.00108 0.43109 0.36444 0.08908 0.22750 
Al 0.4796 0.0357 0.2814 0.2323 0.5310 0.5924 
Ni 0.0265 0.5354 0.8072 0.0352 0.1628 0.1559 
As 0.21716 0.00119 0.49167 0.40488 0.33050 0.50064 
Cd 0.127 0.132 0.795 0.330 0.171 0.613 
Hg 0.427 0.325 0.645 0.642 0.131 0.787 

 
 
 

 
Statistical analysis was done to test the two-way interactions for correlations between time, 

locations and depth on the trace element levels measured in the mussels. No significant results 

were noted on the levels measured in mussels transplanted to the city fjord in Flekkefjord for 

trace elements Hg, Pb, Cd, Cu, Sr, Ca, K, Na and P (Table 3.3).  

 

Independently of sampling time and depth, manganese levels significantly differed among the 

sampling locations. Manganese levels measured in L1 were lower than those measured in 

mussels from L4 (P = 0.005 and L5 (P =0.002), while L2 levels were significantly lower than 

those measured in mussels from L3 (P = 0.041), L4 (P = 0.003) and L5 (P = 0.001). No 

differences were observed among L3, L4 and L5 levels of manganese in the mussels. An effect 

was observed with time, with an increase in manganese levels measured in mussels at t = 0 
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compared to those at t = 30 and t = 135 (P < 0.001 in both samples), independently of sampling 

site and depth. However, a decrease in manganese levels was measured at t = 166 days and t = 

196 days compared to t = 135 days (P < 0.002 in both samples). In addition, manganese levels 

measured in mussels transplanted in L3, L4 and L5 at t = 135 days were higher than those 

measured in the same sites at previous time points (P < 0.01 in all the cases). 

 

Similar results as manganese were obtained for iron levels. Levels measured in mussels 

transplanted in L2 had significantly lower concentration from those of all the other sampling 

sites (P < 0.027 in all the cases), independently of sampling time and depth. Overall, Fe levels 

measured in mussels at t = 135 days and t=196 days were significantly higher in concentration 

from those measures at t = 0 day (P < 0.030 in both the cases) and t = 30 days (P < 0.002 in 

both the cases). Despite significant site and time interaction, no clear trend was noted. 

 

Overall, Zinc levels measured in mussels transplanted in L5 were significantly higher than 

those measured in L2 (P = 0.027) but did not differ compared to the other sampling sites. Zinc 

levels measured at t = 0 days significantly differed from those recorded in the other samples (P 

< 0.00446 in all the cases), independently of sampling time and depth. However, the levels of 

Zinc measured in mussels transplanted at 15 m depth were higher than those measured in 

mussels transplanted at 5 m depth (P = 0.001), independently of sampling site and time. 

 

Titanium levels measured in mussels transplanted in L2 were significantly lower than those 

measured in L4 (P = 0.023) and L5 (P = 0.050) but did not differ from the mussels measured 

in other sampling sites. In addition, titanium levels measured at t = 135 days were significantly 

higher than those recorded at t = 30 days (P = 0.010), independently of sampling site and depth. 

 

Overall, Cr levels measured in transplanted mussels at t = 135 days, were significantly higher 

compared to those measured at t = 0 (P = 0.0035) and t = 30 days (P = 0.001), but were 

significantly lower than those measured at t = 166 (P = 0.005) and t = 196 days (P = 0.035), 

independently of sampling site and depth. 

 

A significant effect of sampling time on Mg, Cr, Al, Ni and As was noted, independently of 

sampling site and depth. Mg levels measured in transplanted mussels at t = 0 days were 

significantly lower than those at t = 30 days (P = 0.043), but no other differences in 

comparisons occurred. Al levels measured in transplanted mussels at t = 166 days were 



Emma Høysæter Minken 

	 44	

significantly higher than those measured at t = 30 days (P = 0.054), independently of sampling 

site and depth. A similar result was obtained also for As (P = 0.009), while As levels measured 

at t = 0 were significantly different compared to those at t = 30 (P = 0.0066) and t = 166 days 

(P = 0.0138), independently of sampling site and depth. Levels of nickel measured in mussels 

transplanted in L2 were significantly lower from those recorded in L4 and L5 (P < 0.05 in both 

the cases), independently of sampling time and depth. Despite of significant site and time 

interaction, no clear trend was noted. 

 

3.5. Organic contaminants  
 

Data from analyses of the organic contaminant samples from 2018 were published by Parolini 

et al. (2020). Because the analyses of the samples from 2019 were not finished due to the 

COVID-19 pandemic’s outbreak in Northern Italy, the results are discussed also in this thesis. 

For the sake of the thesis completion, the methods and preparation used to sample and prepare 

the mussels for analyses of the contaminants are included. Briefly, Parolini et al. (2020) found 

that the levels of contamination at t=0 was generally low, and the OCPs and OPs were low for 

the whole period. PCBs and PAHs were detected in 90%-100% of the 2018 samples from t=30 

to t=196 days. PCB concentrations were much higher at 15 m depth compared to 5 m depth, 

and the concentration increased with time. PAH concentration followed the same pattern, 

particularly with Benzo(ß)fluoranthene and benzo(a)pyrene, however these did not differ from 

5 m and 15 m depth (Parolini et al. 2020).  
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4. Discussion 
 

The approach of this thesis was to monitor the concentrations of trace elements and organic 

contaminants in blue mussels in the city fjord of Flekkefjord. Elements which had significant 

results from the analysis were manganese, iron, zinc, titanium, chromium, aluminium and 

nickel. Trace element contaminants that were above the background level for contamination 

were arsenic, copper and lead. Several trace elements did not show significant results, which 

indicates that the levels were stable for the transplantation period. The legacy contaminants 

that were present in the fjord to a great degree were some PAHs and PCBs. According to the 

data, locations 3, 4 and 5 seemed more contaminated than locations 1 and 2.  

 
4.1 Content of trace elements in mussels 
 
The biomonitoring initiative of this thesis was ongoing in parallel with restoration activities 

to cover contaminated sediments n the fjord. In September of 2018, when the dredging 

actives had been going on for three months, there was an incident on the industrial site 

(location 5; Fig. 2.1) which resulted in a major slide of rocks and sand into the fjord. This 

disturbed the sediment close to locations used in the project. Because this happened while in 

the monitoring process, right before t=135, this caused some of the results from surrounding 

locations to be affected. This may also have affected the survival of the mussels in later 

samples, because of the toxins coming from the sediment and the upwhirl. The implications 

of the slide may be most prominent in the mussel samples representing Mn and Al (Fig. 3.2; 

Fig. 3.5). For all samples, some contamination was detected which was expected due to 

previous analyses (Haker, 2011; Misund, 2012) as well as the general presence of trace 

elements in the natural ecosystem. High concentrations at 15 m may indicate that the 

concentrations are caused by leaking from sediments where trace elements are already natural 

and present in the ecosystem (Richir & Gobert, 2016). As of now trace elements presented no 

significant indication that the 15 m samples were decreasing compared to the 5 m samples 

(Table 3.3). This is important to monitor further due to the dredging efforts.  

 

High and fluctuating levels of copper could be due to leakage of contaminated sediments which 

contains fragments of old ship production. A study done in Bergen, a city on the west coast of 

Norway, in 2004 (Airas et al., 2004) indicated that while the copper contamination in general 

was low, the areas with known contamination from shipping had slightly higher levels. While 
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in the Flekkefjord study there were no significant effects, there could still be some fragments 

that affected the concentration. In the same Bergen study there were similarly high levels of 

zinc in areas with heavy shipping traffic, particularly in 15 m samples closer to the sediment. 

This is very likely caused by the same old shipping and boating traffic.  

 

A high level of arsenic were found in location 1 during t=30 where values increased higher 

than the other locations (Fig 3.8). Arsenic had significant values depending on time, so this 

element could be affected by seasonality to some degree. Unfortunately, since arsenic had a 

higher uptake during t=30 and t=166 which is samples from two different seasons this could 

be difficult to determine. However there is knowledge that mussel species may filter arsenic to 

a larger degree during winter and spring months due to less nutrients available (Klarić et al., 

2004). Copper, lead and arsenic was higher than other trace elements, albeit not to an 

immediate worrisome degree. These contaminants are all in the “good” category, according to 

(SFT, 2011). This category indicates that exposure should not be a concern as long as the levels 

remain this low, however there are clear signs of the trace elements presents in the ecosystem. 

Iron levels were significantly lower for location 2 than for any other location, and levels t=135 

days and t=196 days were significantly higher than during the other days. 

 

Chromium levels reported at t=135 days were significantly higher compared to earlier samples 

and they were significantly lower than those reported in the final two samples meaning 

something have triggered chromium to be released at this time. In a study in Farsund (Øxnevad 

et al., 2018), a neighbor municipality, there was reported high levels of chromium in water 

samples that was believed to be coming from contaminated water circulated in the fjord. Haker 

(2011) stated that high levels of chromium were reported in blue mussels in the past but since 

then, levels have gone down to baseline levels. In the raw data the levels are found to be 

baseline, but the significant levels of the mussels during the landslide may indicate that there 

are still contaminants in the sediment.  

 

Manganese became bioavailable during t=135 at 5m location 4. This may be due to 

manganese’s ability to become bioavailable in hypoxic conditions (Ochs et al., 2020) since in 

previous tests of water and sediment, poor oxygen conditions were found, which leads to 

hypoxia (Haker, 2011) . An overexposure of Mn has been reported to cause severe effects on 

some species nervous system and has caused damage to the immune system of lobsters (Ochs 

et al., 2020). It is still unclear what the source of manganese is, but it is an essential element 
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that is used for various forms of industry, so it is likely that it originates from industry or from 

the dredging process since we see that the significant results of manganese are all high for 

locations 3, 4 and 5 which are the locations close to where the slide-out occurred. The samples 

that followed then decreased in concentration.  

 

In Schøyen et al. (2017) the innermost harbour location in Kristiansand had high levels of 

nickel concentration due to a nickel processing plant that was located in the area and the area 

being an active shipping location. In the Flekkefjord study higher concentrations of nickel were 

also found in the inner fjord close to areas that has been contaminated from the shipping 

industry. Nickel measured in water samples in the neighbouring fjord (Øxnevad et al., 2018) 

was suggested to be due to currents, which may also be a possibility due to the significant 

results being independent of depth.   

 

Titanium concentration was significantly high in locations 4 and 5. It was also reported that 

this trace element had high levels at t=135. This could be due to the slide-out but this is unclear. 

Why the titanium levels are high in these areas are unknown since there had not been much 

reported contamination of this element in the past. It was also difficult to find comparative data 

on titanium from similar studies in the area.  

 

4.2 Content of legacy contaminants in mussels 
 

The data discussed below are from Parolini et al. (2020). In the paper, organic samples from 

2018 presents results with PCBs and PAHs. Levels of OCPs, OPs, PBDEs and PFASs were 

either not detected or had levels that were negligible in relation to this project. PCBs and PAHs 

levels were low before the restoration efforts began, however, after t=166 at location 3, 4 and 

5 there was an increase in concentration (Fig 4.1). In Schøyen et al. (2017), PCB-7 exceeded 

the environmental quality standards (EQS) in all stations, and the same is true in the mussel 

samples in this study. The levels of PCB demonstrated can be a serious risk for the health of 

mussel predators and, for the most part they were at the equal level of the mussels monitored 

in Schøyen et al. (2017). This level was above the limits of EU health regulations for food 

safety (Parolini et al., 2020). Another worry with this high level of PCB is the dangers of 

secondary predators carrying the contaminants further up in the food web, which can cause 
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serious health and safety concerns. Doing further tracking of contamination here is vital to 

ensure public health before consuming local mussels.  

It is also worth noting that the levels of four PAHs in locations 3 and 4 exceeded the threshold 

at t = 196 days, especially for benzo(a)pyrene which exceeded threshold for all samples. This 

can be because PAH have a tendency to build up in concentration with exposure to 

contaminants instead of flushing it out. Nonetheless, it may be important to measure native 

mussels to have a clear overview over the contaminant situation.  

     A          B 

-  

 

Figure 4.1: åPAHs (A) and åPCBs (B) contaminants measured in 2018. 5m measurements is 

 on top, while 15m measurements is at the bottom. Figures and data presented by Parolini et al. 

 (2020).  

 

In the 15m depth samples, however, there is a clear difference between the monitoring depths 

(Fig 4.1). The concentration here was higher than the Kristiansand harbour, which was 

expected due to previous monitoring studies on sediment in these areas that showed high 

concentrations (Arve Misund, 2014; Haker, 2011). This paper also showed that the PCB 

congeners measured at 5m depth were low-chlorinated congeners while the mussels measured 

at 15m depth were with high-chlorinated congeners. This could indicate that certain types of 

PCBs may be bioavailable at different depths.  

 



Emma Høysæter Minken 

	 49	

It is predicted that the legacy contaminants will decline. This is mainly because the 

sedimentation process from the dredging efforts will cause the contaminants to be removed 

from the sediment, which in turn reduces the bioavailability. Nonetheless, of the contaminants 

that are the cause for worry is the PCBs and PAHs which both had increased in value in the 

final samplings as well as being far above the recommended limit for several of the locations.   

 

4.3 Differences between locations 
 

Lead in location 1 fluctuated between values while remaining fairly high together with some 

other trace elements. There were, however, no significant values of any trace elements. It is 

important to study this location further to ensure the contaminants remain low considering this 

was a reference site and the contaminants were expected to be at baseline levels. Location 2 

had generally high levels of copper, arsenic and lead but no significant values of any of these.  

 

Location 3 was one of the areas where there was an expectation of a higher level of copper due 

to previous background studies (Haker, 2011; Misund, 2012) and high activity around the 

location in the past. However, this location did not show any significant values of this element 

(Table 3.3). This location had one of the highest measured levels of PCBs, especially in the 

latest samples. It also had a growing level of PAHs. There was also a significant result of 

manganese where the measures reported were significantly higher than those reported at 

locations 1 and 2. The sample t = 135 was higher than those reported in different samples (Fig 

3.2).  

In location 4 the concentration to note is manganese which had a very high concentration, 

which was significantly higher than the other locations, especially after the slide-out. Location 

4 also had significantly high levels of nickel compared to location 2, and it had high levels of 

contamination from PCBs and some PAHs including in the last samples which is a worrying 

trend. Therefore, according to this data, this location is considered to be one of the highest 

contaminated areas.  

Location 5 had high levels of copper, which also matched well with sediment samples where 

they measured high levels (Haker, 2011; Misund, 2012). This location had significant results 

of manganese where the measures reported was significantly higher than those reported at L1 

and L2, especially after the slide-out. This location also had high levels of lead at the 5m depth 

for the final sample at t=196 which could indicate a rise in concentration. High levels of lead 
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can be caused by constant urban run-off from roads (Airas et al., 2004) which can be a cause 

for this since this location is close to roads and houses. Location 5 had the highest levels of 

PCBs, particularly just after the slide-out, and high levels of zinc and nickel.  

 

4.4 Limitations of research / evaluation of method 
 

A limitation concerning the samples is that in one of the copper samples (location 3, sample 

t=0 (Fig 3.1)) the measurement is almost twice as high as the trend of the rest of the samples. 

This could be because of the solution being applied twice, which would give a higher 

measurement. While copper has an increase in later samples at t=166 and t=196 the 

concentration is never as high as in the first sample meaning that since the trend is 

decreasing. This is also an interesting find since in the paper written by Schøyen et al. (2017) 

they have documented the strange contaminant level of copper in one of their first samples. 

This may be a coincidence but they have also received their mussels from the same farm as in 

this project so this may be an error from the manufacturers.   

The mussel death which caused less samples from certain locations has also affected 

the complete overview of the location. This, however, did not decrease the power of the 

dataset since the data that exists still contain much information since there is still a good total 

overview of the locations and contaminants. This issue could be solved by reinforcing the 

mussel cages in the future or having the cages further from the ground to hinder predators, 

but this will also change how the project is operated. All in all, the project was well 

researched, and while some limitations were expected, they did not cause the final product to 

have less value.  

Schøyen et al (2017) discusses that a limit to their study being seasonal fluctuations 

whereas measuring mussels at the location where the mussels originated from would be a 

way to assess the influence of seasonal fluctuations. This is equally a limit to this study. 

Mussels are biological creatures and their digestive system may fluctuate based on season 

and temperature which also varies how much they filter. Other abiotic factors such as 

salinity, primary production and other seasonal cycles could also potentially affect the 

mussels (Franco et al., 2015). The reasons for this not being performed in this study is simply 

because of time and costs, but it is something to be considered for the future of this project.  

 



Emma Høysæter Minken 

	 51	

4.5 Passive biomonitoring  
 

An important factor for having a total overview of the fjord for the sake of evaluating the risk 

for human health is to monitor the species that are consumed locally from the fjord. This is also 

related to the aquaculture industries that are close to the area. This form of monitoring is passive 

biomonitoring where the target species are natural local species in the ecosystem such as crabs, 

fish, mussels, other bivalves and kelp that are collected directly from the environment (Besse 

et al., 2012). Passive monitoring will give a good overview over the natural occurring 

contamination that exist for the local species that are resident in the fjord at all times. 

Monitoring done with fish liver or fillet has been proven to show different results compared to 

in mussels (Nesto et al., 2007) as fish feed differently and have a different living pattern than 

mussels. However, when considering the use of passive biomonitoring there are other factors 

that should be considered before doing such tests. Biotic factors that are easier to control with 

active biomonitoring such as age, size and soft tissue weight become important factors to 

consider when sampling (Franco et al., 2015) as well as when doing analysis. As suggested by 

Schøyen et al. (2017) further studies that can be used to compare active and passive 

biomonitoring are needed to broaden our perspective on how we can do biomonitoring in the 

most effective way.  
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5. Concluding remarks 
 

The results from this thesis contribute to a better understanding of how we can monitor the 

contaminants of fjords in the southern region of Agder. The study is a continuation of an 

ongoing effort of mapping out contaminants and can help to keep the fjord ecosystems healthy. 

This thesis shows that the general values of trace elements is below the threshold of immediate 

concern for human and biota health, however this will be further examined together with the 

finalisation of the dredging efforts and the results from 2019 which is the next stage of the 

project. Data for 2019 has already been collected and is being processed for analysis. There is 

an expectation for these samples that the contamination will be lower than in the 2018 samples 

which will follow the dredging operations and the capping of contaminants. Some trace 

elements discussed were higher than what may be desired for long term health reasons, and 

these should be focused on for the next group of samples. PCBs and some PAHs had 

concentrations that are too high which could potentially be a health risk. PCBs are toxic for 

both humans and for biota and biodiversity when consumed in large quantities. Efforts to 

measure native mussels should be considered in order to give a better overview of the health 

risks. Other studies in the area with passive monitoring on local fish, mussels and crabs is 

highly recommended since it will give an insight on the impact of contamination on local biota 

which benefits the residents along the fjord.  

This project is an important contribution towards creating a proper overview over how 

contaminants may affect and accumulate in biological species in the city fjord of Flekkefjord, 

as well as the rate of how contaminants bioaccumulate differently from how they accumulate 

in sediments. If it is only known how much is freed in the water or in the sediments, there is a 

risk of having an incomplete overview and understanding of how humans can be affected by 

contaminants. Having a direct understanding on how contaminants may accumulate in the biota 

that is used, consumed and cultivated along the fjord strengthens the understanding of how 

connected the environment is with public health and can further the interest and protection of 

the local environment.  
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Appendix 1: Raw data for Trace Elements 2018.  Units = m
g/kg or µg/g

id
sam

pling tim
esite

depth
Ca

K
M
g

Na
P

Fe
Zn

Sr
Cu

M
n

Ti
Pb

Cr
Al

Ni
As

Cd
Hg

1
control

s1
5

4681
8030

5396
21418

6141
345,48

66,25
44,04

13,36
12,94

8,41
3,72

1,04
916,84

0,19
10,28

1,02
0,003

2
control

s1
15

12139
13474

13267
49768

11233
388,26

97,31
74,32

15,50
13,84

11,15
4,34

1,76
475,45

0,91
8,89

0,91
0,003

3
control

s2
5

2417
9647

2195
20383

5169
143,57

39,55
33,02

5,79
4,38

2,78
5,10

1,55
362,38

1,10
9,63

0,95
0,002

4
control

s2
15

12254
8981

4882
26741

4485
217,23

77,41
56,29

14,34
5,75

7,08
3,04

0,98
649,82

1,82
8,66

0,89
0,002

5
control

s3
5

2837
7469

3455
18649

3992
206,83

66,73
30,10

12,86
5,00

7,41
3,40

0,91
337,72

1,12
7,60

0,95
0,003

6
control

s3
15

12619
7639

3129
19171

4140
180,28

89,29
30,00

7,83
4,24

4,23
1,92

221,39
1,13

8,53
0,90

0,004
7

control
s4

5
4570

5399
3474

13481
4670

202,72
65,38

35,73
12,81

5,09
5,80

3,36
1,56

733,28
2,20

7,85
0,93

0,002
8

control
s4

15
7439

5370
4241

16178
4870

205,89
61,12

50,68
11,04

8,02
5,49

2,79
1,09

1063,06
2,02

8,55
0,80

0,002
9

control
s5

5
35843

5270
5390

17028
5209

216,57
80,97

0,00
12,59

12,38
5,53

3,70
1,48

533,22
2,35

8,68
0,80

0,003
10

control
s5

15
8157

7020
3270

15359
4763

184,30
88,64

43,26
14,51

5,46
5,79

3,71
1,34

378,41
1,19

8,46
1,07

0,002
11

cm
p1

s1
5

4741
7834

6360
21168

6926
120,76

32,62
54,36

3,88
5,01

2,44
4,14

1,22
71,76

0,93
11,98

0,96
0,003

12
cm

p1
s1

15
2238

3789
2096

8249
2899

188,95
34,86

22,97
7,68

6,41
6,07

2,18
0,53

102,86
1,57

14,69
1,56

0,006
13

cm
p1

s2
5

3480
19844

11915
59118

5758
85,72

62,11
29,76

4,93
1,52

2,15
0,96

89,02
0,44

12,36
0,74

0,000
14

cm
p1

s2
15

4079
9627

8643
36297

6971
166,20

52,60
41,87

8,71
5,23

4,75
2,40

0,88
172,74

1,53
13,81

0,70
0,000

15
cm

p1
s3

5
3704

6418
6137

18182
6788

161,77
29,71

63,48
4,09

5,61
3,45

3,85
1,49

95,37
1,24

12,78
0,86

0,001
16

cm
p1

s3
15

4412
6260

6682
22568

7137
319,09

56,37
45,23

7,33
8,07

7,91
2,80

1,73
148,24

1,41
9,48

0,75
0,004

17
cm

p1
s4

5
4362

12669
10367

40609
6640

209,92
36,86

60,51
5,32

6,63
5,17

3,20
1,47

130,02
1,33

14,32
0,84

0,002
18

cm
p1

s4
15

4484
11000

8736
32483

6964
175,83

29,50
34,83

4,09
8,19

3,46
2,11

1,24
90,19

0,75
10,28

0,57
0,003

19
cm

p1
s5

5
9858

17250
13328

52369
5854

267,91
79,00

100,18
15,96

7,88
8,11

2,92
1,16

69,21
2,62

14,00
0,87

0,005
20

cm
p1

s5
15

7613
5988

6149
14732

7568
290,67

59,40
66,25

14,49
9,65

6,96
4,06

1,60
110,71

1,75
12,16

1,14
0,002

21
cm

p2
s1

5
33676

7471
6433

25820
5730

318,94
82,18

106,70
13,50

34,50
9,50

4,23
2,68

160,78
2,09

7,55
0,57

0,003
22

cm
p2

s1
15

12129
8898

9394
32886

6113
290,98

108,83
71,36

11,47
14,77

8,03
2,52

2,45
151,35

1,45
9,41

1,08
0,013

23
cm

p2
s2

5
5352

6097
6083

20224
6046

244,57
88,74

43,00
10,46

23,82
6,59

2,83
2,01

115,33
0,37

8,49
0,94

0,005
cm

p2
s2

15
24

cm
p2

s3
5

16532
7937

7488
21517

7226
314,65

72,34
139,13

19,17
175,89

9,72
4,68

1,96
512,28

3,49
11,27

0,97
0,010

25
cm

p2
s3

15
21689

6929
9491

23881
7022

242,86
110,59

6,09
130,16

5,67
3,54

2,17
258,80

2,22
8,25

0,88
0,003

26
cm

p2
s4

5
15057

10165
9511

29450
5804

379,17
106,58

103,98
17,50

371,62
13,49

3,29
2,33

641,99
1,71

9,63
1,11

0,001
27

cm
p2

s4
15

9072
6906

5100
13728

7279
317,28

74,76
65,23

17,64
188,03

12,12
4,83

2,13
395,62

0,64
7,33

0,70
0,002

28
cm

p2
s5

5
6127

8631
7486

25632
6275

324,62
90,20

58,64
6,11

284,91
9,48

3,05
1,65

516,42
1,58

8,71
0,83

0,006
29

cm
p2

s5
15

4533
10681

8393
35421

6016
231,65

114,85
50,13

13,39
208,43

6,80
3,98

1,53
228,39

1,59
9,35

0,78
0,000

cm
p3

s1
5

cm
p3

s1
15

cm
p3

s2
5

cm
p3

s2
15

30
cm

p3
s3

5
4587

7284
7219

24273
6863

161,33
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Appendix 2: Distribution of other trace elements, namely K, Mg, Na, P and Sr, found in 
samples at 5 m depth (left) and 15 m depth (right). Unit of measurement is mg/kg dw. 
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Appendix 3 – GLM analysis of data 
In columns it was reported typical statistical indicators for General Linear Models (GLM), namely F = 
F distribution; df = degrees of freedom; P = P-value representing the likelihood of observing significant 
results outside the mean, assuming that the null hypothesis is correct. In the df column we reported the 
values of degrees of freedom at the numerator and denominator, respectively.  
 

 F df P 
Ca    

Location 0.866 4,40 0.517 
Time 1.725 4,40 0.221 
Depth 0.007 1,40 0.936 

Location*Time 1.301 13,40 0.343 
Location*Depth 2.195 4,40 0.143 

Time*Depth 1.245 4,40 0.353 
    

K    
Location 1.447 4,40 0.2888 

Time 1.847 4,40 0.1966 
Depth 0.389 1,40 0.5466 

Location*Time 2.445 13,40 0.0815 
Location*Depth 1.511 4,40 0.2712 

Time*Depth 3.726 4,40 0.0417 
    

Mn    
Location 14.108 4,40 0.000406 

Time 44.806 4,40 2.36e-06 
Depth 0.839 1,40 0.381311 

Location*Time 7.583 13,40 0.001475 
Location*Depth 0.420 4,40 0.791168 

Time*Depth 8.870 4,40 0.002519 
    

Mg    
Location 0.434 4,40 0.7811 

Time 3.640 4,40 0.0443 
Depth 0.283 1,40 0.6065 

Location*Time 2.002 13,40 0.1382 
Location*Depth 0.871 4,40 0.5143 

Time*Depth 2.602 4,40 0.1003 
    

Na    
Location 0.818 4,40 0.5421 

Time 1.172 4,40 0.3797 
Depth 0.043 1,40 0.8402 

Location*Time 1.769 13,40 0.1854 
Location*Depth 0.665 4,40 0.6307 

Time*Depth 2.726 4,40 0.0904 
    

P    
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Location 0.108 4,40 0.9769 
Time 3.321 4,40 0.0563 
Depth 0.284 1,40 0.6059 

Location*Time 1.181 13,40 0.4029 
Location*Depth 0.161 4,40 0.9534 

Time*Depth 0.650 0 4,40 0.6398 
 

    
Fe    

Location 7.677 4,40 0.004269 
Time 12.877 4,40 0.000589 
Depth 3.073 1,40 0.110137 

Location*Time 4.112 13,40 0.015570 
Location*Depth 2.421 4,40 0.117072 

Time*Depth 4.538 4,40 0.023882 
    

Zn    
Location 4.291 4,40 0.02813 

Time 24.196 4,40 3.98e-05 
Depth 20.176 1,40 0.00116 

Location*Time 1.488 13,40 0.26769 
Location*Depth 3.042 4,40 0.06995 

Time*Depth 3.943 4,40 0.03571 
    

Sr    
Location 1.317 4,40 0.3777 

Time 4.379 4,40 0.0684 
Depth 0.099 1,40 0.7660 

Location*Time 2.850 13,40 0.1274 
Location*Depth 0.468 4,40 0.7589 

Time*Depth 4.089 4,40 0.0818 
    

Cu    
Location 0.177 4,40 0.945 

Time 0.595 4,40 0.675 
Depth 0.485 1,40 0.502 

Location*Time 1.274 13,40 0.356 
Location*Depth 0.702 4,40 0.608 

Time*Depth 0.918 4,40 0.491 
    

Ti    
Location 4.428 4,40 0.0257 

Time 4.871 4,40 0.0193 
Depth 0.025 1,40 0.8784 

Location*Time 1.760 13,40 0.1876 
Location*Depth 1.615 4,40 0.2452 

Time*Depth 2.312 4,40 0.1288 
    

Pb    
Location 0.336 4,40 0.848 
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Time 0.785 4,40 0.560 
Depth 0.526 1,40 0.485 

Location*Time 0.533 13,40 0.857 
Location*Depth 0.509 4,40 0.731 

Time*Depth 1.050 4,40 0.430 
    

Cr    
Location 1.936 4,40 0.18099 

Time 11.067 4,40 0.00108 
Depth 0.673 1,40 0.43109 

Location*Time 1.256 13,40 0.36444 
Location*Depth 2.744 4,40 0.08908 

Time*Depth 1.693 4,40 0.22750 
    

Al    
Location 0.940 4,40 0.4796 

Time 3.942 4,40 0.0357 
Depth 1.296 1,40 0.2814 

Location*Time 1.596 13,40 0.2323 
Location*Depth 0.839 4,40 0.5310 

Time*Depth 0.729 4,40 0.5924 
    

Ni    
Location 4.382 4,40 0.0265 

Time 0.831 4,40 0.5354 
Depth 0.063 1,40 0.8072 

Location*Time 3.228 13,40 0.0352 
Location*Depth 2.051 4,40 0.1628 

Time*Depth 2.098 4,40 0.1559 
    

As    
Location 1.742 4,40 0.21716 

Time 10.788 4,40 0.00119 
Depth 0.510 1,40 0.49167 

Location*Time 1.177 13,40 0.40488 
Location*Depth 1.311 4,40 0.33050 

Time*Depth 0.898 4,40 0.50064 
    

Cd    
Location 2.327 4,40 0.127 

Time 2.281 4,40 0.132 
Depth 0.071 1,40 0.795 

Location*Time 1.330 13,40 0.330 
Location*Depth 1.997 4,40 0.171 

Time*Depth 0.694 4,40 0.613 
    

Hg    
Location 1.056 4,40 0.427 

Time 1.329 4,40 0.325 
Depth 0.225 1,40 0.645 
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Location*Time 0.815 13,40 0.642 
Location*Depth 2.295 4,40 0.131 

Time*Depth 0.425 4,40 0.787 
 


