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Abstract

The  importance  of  students’  prior  knowledge  to  their  current  learning  outcomes  cannot  be
overemphasised.  Students with adequate prior knowledge are better prepared for the current learning
materials  than  those  without  the  knowledge.  However,  assessment  of  engineering  students’  prior
mathematics  knowledge  has  been  beset  with  a  lack  of  uniformity  in  measuring  instruments  and
inadequate  validity  studies.  This  study  attempts  to  provide  evidence  of  validity  and  reliability  of  a
Norwegian national test of  prior mathematics knowledge using an explanatory sequential mixed-methods
approach. This approach involves use of  an item response theory model followed by cognitive interviews
of  some students among 201 first-year engineering students that constitute the sample of  the study. The
findings confirm an acceptable construct validity  for the test  with reliable items and a high-reliability
coefficient of  .92 on the whole test. Mixed results are found on discrimination and difficulty indices of
questions on the test with some questions having unacceptable discriminations and require improvement,
some are easy, and some appear too tricky questions for students. Results from the cognitive interviews
reveal the likely reasons for students’ difficulty on some questions to be lack of  proper understanding of
the questions, text misreading, improper grasping of  word-problem tasks, and unavailability of  calculators.
The findings underscore the significance of  validity and reliability checks of  test instruments and their
effect  on  scoring  and  computing  aggregate  scores.  The  methodological  approaches  to  validity  and
reliability checks in the present study can be applied to other national contexts.
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1. Introduction
Students’ knowledge before a teaching-learning activity has been reported in diverse fields of  studies to
exert  enormous  influence  in  facilitating  proper  understanding  of  current  learning  materials.  Many
psychological theories (e.g., self-efficacy theory) have acknowledged and emphasised this strong predictive
role of  prior knowledge on the current learning outcomes (Bandura, 1997; Marton & Booth, 1997). The
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correlation between prior academic achievement and students’ performance in the presented tasks has
been  extensively  reported  in  the  literature.  In  a  study  of  60  first-year  undergraduate  students  of
accounting and economics reported by Duff  (2004), prior academic achievement is found to correlate
(r=.53) with academic performance positively, and it is the best among other predictors such as age and
gender. This report is corroborated in a much larger sample longitudinal study in which prior academic
achievement is  also found to be the best,  among other factors,  in predicting 1,628 secondary school
students’ performance in reading and mathematics (Engerman & Bailey, 2006).

Furthermore,  Ayán  and García  (2008)  compare  the  efficacy  of  linear  and  logistic  regression  models  in
predicting 639 undergraduate students’ performance, and both models favour prior academic achievement over
other factors such gender and school location. In the same year, Hailikari, Nevgi and Komulainen (2008)
conducted a special problem-solving mathematical assessment to determine students’ prior knowledge in their
study and its predictive power of  academic performance. Their report shows that prior knowledge, coupled
with previous academic success explained 55% of  the variability observed in the performance of  students on
mathematics tasks. Similar results are also reported, elsewhere, (e.g., Casillas, Robbins, Allen, Kuo, Hanson &
Schmeiser, 2012; Newman Ford, Lloyd & Thomas, 2009; Richardson & Abraham, 2012). ‐

Recently, a group of  researchers Martin, Wilson, Liem and Ginns (2016) recorded mixed results on the
prior  knowledge  predictive  power  of  performance  in  a  2-year  longitudinal  study  among  university
students.  High  school  results  as  proxies  for  measuring  prior  knowledge  correlate  well  with  the
performance at the beginning of  their study while the ongoing semester course grades take the lead later.
Though, this finding seems not contradictory to the earlier reported ones as both high school grades and
the ongoing semester course grades still refer to prior academic achievement of  the students in some
sense.  The  findings  reported  by  Aluko,  Daniel,  Oshodi,  Aigbavboa  and  Abisuga  (2018);  Opstad,
Bonesrønning and Fallan (2017) corroborate this point. Aluko et al. (2018) utilised more sophisticated
statistical tools such as logistic regression and support vector machine learning to establish high correction
between prior academic achievement and performance.

Despite the importance of  prior knowledge and its correlation with students’ performance, studies on
psychometric properties of  measures of  engineering students’ prior mathematics knowledge are scarce in
the literature. As such,  the primary purpose of  the present study is to validate a prior knowledge of
mathematics test (PKMT), owned by the Norwegian Mathematical Council, using an item response theory
(IRT) model coupled with some cognitive interviews to extract detail information on likely reasons why
some questions are challenging for students. The present study will not only provide empirical evidence
for the validity of  the PKMT but also offer pieces of  advice to the Norwegian Mathematical Council
towards an improvement of  specific items on the test. Further, validation of  the PKMT is also crucial for
our ongoing relatively large-scale quantitative study on the contributions of  prior mathematics knowledge,
approaches to learning and self-efficacy on year-one engineering students’ performance in mathematics at
a Norwegian university. It is important to remark that the report presented in this article is preliminary
and as such more studies are still ongoing in relating the scores of  students on the prior knowledge of
mathematics test to students’ grades and other constructs.

The remaining part of  the present article is arranged such that a conceptual framework is elucidated in the
next section. The section was followed by another section where issues related to methodology, e.g., an
overview of  some specifics of  the PKMT, sample of  the study and procedure of  data collection and
analysis are presented. This is followed by a section where we present and discuss ensuing results from
both the quantitative and the qualitative approaches to data analysis. The last section, before the reference
list  sheds  more  lights  on  the  significant  findings  of  the  study,  gives  some  concluding  remarks  and
acknowledges the strengths and potential weaknesses of  the study.
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2. Conceptual Framework 
2.1. The Conceptualisation of  Prior Knowledge

There  seems  to  be  no  agreement  among  educationists  and  psychologists  on  a  definition  of  prior
knowledge. Though, it is used to be captured as cognitive entry behaviour enshrined in Bloom’s taxonomy
(Bloom,  1976).  The  definition  of  Bloom’s  cognitive  entry  behaviour  as  “those  prerequisite  types  of
knowledge, skills, and competencies which are essential to the learning of  a particular new task or set of
tasks” (Bloom, 1976: page 122) has been criticised and considered outdated in some quarters (e.g. Dochy,
De Rijdt & Dyck, 2002). In their review, Dochy et al. (2002) explicate many synonymous terms used to
describe prior knowledge in the literature and consider their general interpretations to be “definitional
snippets or vague statements” (Dochy et al., 2002: page 267). Thus, Dochy et al.  (2002) propose and
describe prior knowledge as:

The whole of  a person’s knowledge, which is as such dynamic in nature, is available before a certain learning task,
is structured, can exist in multiple states (i.e. declarative, procedural and conditional knowledge), is both explicit
and tacit in nature and contains conceptual and metacognitive knowledge components (Dochy et al., 2002: page
267).

Another  approach  through  which  prior  knowledge  has  been  conceptualised  is  from  an  angle  of
domain-specific tasks or accomplishments. In this view, prior knowledge is seen as the level of  knowledge
related to a specific field being studied which varies distinctively depending on the relevance and the
quality of  the material currently under study (Dochy, 1996; Hailikari et al., 2008). Thus, prior knowledge in
the present study refers to prior mathematics performance of  students before they start their university
education. 

The notion of  domain-specific prior knowledge seems to provide a basis for different indicators used in
the literature to assess prior knowledge of  the learners. There has been little coherence between various
indicators used by educationists as proxies to quantify students’ prior knowledge. This lack of  uniformity
can  be  linked  to  the  type  of  studies,  e.g.  longitudinal  (Engerman  &  Bailey,  2006),  meta-analysis
(Richardson & Abraham, 2012); students under study, e.g. university (Ayán & García, 2008), high school
students (Casillas et al., 2012); the field of  study, e.g. accounting (Duff  2004), mathematics (Hailikari et al.,
2008), economics (Opstad et al., 2017), and architecture (Aluko et al., 2018). In several of  these studies,
researchers have used students’ test scores on standardised tests, high school grades and entrance exams
(Aluko et al., 2018; Casillas et al., 2012; Duff  2004; Newman Ford et al., 2009) while others have used‐
students previous semester/year grades (Ayán & García, 2008; Engerman & Bailey, 2006; Martin et al.,
2016;  Zakariya,  2016)  or  a  special  exam  on  problem-solving  (Hailikari  et  al.,  2008)  to  assess  prior
knowledge. 

2.2. Study Setting

Students  that  are  admitted  into  science  and  engineering  courses  at  Norwegian  universities  have  the
freedom to  choose  between  three  routes  and  two  endpoints  for  their  mathematics  studies  at  upper
secondary schools (grades 11-13). The routes are practical mathematics (P-Mat) aiming at applications of
mathematics, social science mathematics (S-Mat) and advanced mathematics for science and technology
(R-Mat)  and  they  can  conclude  their  study  of  mathematics  after  two  or  three  years  at  their  upper
secondary schools. The Norwegian Mathematical Council has consistently administered a prior knowledge
of  mathematics test (PKMT) to year-one university and college students since 1984. The PKMT aims to
provide  empirical  evidence for  monitoring  of  the  basic  knowledge  of  mathematics  with  a  focus  on
undergraduate  students  following  mathematics  intensive  programmes  (e.g.  engineering  programmes)
across universities and colleges in Norway. The PKMT is conducted every two years since 2001, and the
latest was conducted in Autumn 2019. Prior to the year 2001, the test was conducted in 1984, 1986, 1999
and 2000. Accordingly, based on the results of  the PKMT pieces of  advice are offered by the Norwegian
Mathematical Council to government agencies, Norwegian Research Council, universities, colleges, and
other mathematics education stakeholders in Norway.  However,  it  is  apparent that  some mathematics
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educators and researchers in Norway have reservations about the validity of  the PKMT. It is the opinion
of  the authors that some of  these reservations could be traced to a lack of  validation studies on the
instrument which has motivated the present study.

3. Methodology
3.1. Measure

The PKMT has two main parts. The first part contains background information about the students
such  as  gender,  age,  some  information  about  the  highest  mathematics  content  followed  in  upper
secondary schools, and some items on attitudes towards mathematics. The second part is a 16-item test
on basic  mathematics tasks that are developed based on secondary school (grades 8-10) curriculum.
Items 1 and 2 have three parts each, items 9 and 11 have two parts each, while other items have only
one part  each to make a total  of  22 questions  on the  test.  Questions  9a,  11a,  11b,  14  and 15  are
standard  multiple-choice  questions  while  others  are  short  open-ended  questions.  Before  the
commencement of  the present study, the PKMT is administered using paper and pencil format. Thus,
we  independently  digitalised  the  test  and  administered  it  online  under  classroom  supervision.
Coincidentally,  the  Norwegian  Mathematical  Council  also  shifted  to  digital  PKMT  in  the  2019
administration of  the test at the national level. The use of  calculators is not allowed, and it takes 40
minutes to complete the test, including the time to complete background information. Sample questions
of  the PKMT are not included in the present article for confidentiality reasons. However, questions on
the test can be categorised into five clusters: (a) basic operations of  addition, multiplication, division
and ordering of  fractions and decimals; (b) simple percentages, ratio, proportion and average speed; (c)
solving linear equations and inequalities including an application of  Pythagoras theorem; (d) reading a
Cartesian graph, slope of  a straight line, similar triangles and volume of  solid shapes;  and (e) word
problems on  writing,  interpreting  and solving  linear/simultaneous  equations.  Further,  some  of  the
questions are discussed in parts in a way that they are not identifiable during the presentation of  some
interview transcripts.

3.2. Participants

A total of  201 year-one engineering students in a Norwegian university including 34 females and 167
males took the PKMT in Autumn 2019. The average age of  the students is 20.64 years, with a minimum
of  17 years and a maximum of  36 years. Appropriate consents are sought from the Norwegian Centre for
Research Data (NSD) as well as individual students who took parts in the test. The students are made to
understand that taking part in the study is entirely voluntary and that their refusal to give consent will not
in any way affect their grades. They are promised that utmost confidentiality will be ensured in dealing
with their data and that no student is identifiable during and after the study. The data used for the present
study are completely anonymous and are available upon request from the corresponding author. 

3.3. Data Analysis

The collected data are initially scored dichotomously using 1 point for a correct answer and 0 point for a
wrong. The scored data are analysed using a quantitative method. A two-parameter IRT model was used to
investigate item parametrisations such as item discriminating and difficulty indices as well as item reliability
of  the test. An IRT model is a framework that characterises a relation between examinee’s ability or latent
trait as measured by a scale and the examinee’s responses to each item on the scale (DeMars, 2010). IRT
models  can  be  one-parameter,  two-parameter,  three-parameter,  unidimensional  (i.e.,  items  measure  a
common  latent  trait)  and  multidimensional  (i.e.,  items  measure  separate  clusters  of  a  latent  trait)
depending on the complexity of  the scale. The basic notion of  the two-parameter IRT model is that a
subject’s probability of  getting an item correct is a monotonic increasing function (e.g., an exponential
function) of  two sets of  parameters: (a) the location (item difficulty) on the latent trait (in our case, prior
mathematics  knowledge)  to  be  measured;  and  (b)  the  slope  (item  discrimination)  of  item  response
function (IRF) otherwise known as item characteristic curve (ICC). Equation 1 presents a mathematical
representation of  a two-parameter IRT model.
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(1)

Equation 1 shows the probability (P) that a student with latent variable  θ (competence on the PKMT)
answers an item (Xi = 1) correctly which has both item difficulty and discrimination indices of  ai and bi

respectively and e is an exponential function. The test scores on the PKMT is put on a metric determined
by IRT model such that the group latent variable is normally distributed (mean = 0 and standard deviation
= 1) with values ranging from -3.5 to +3.5. Each item discrimination index (ai , i = 1, 2, …, 22) has the
same metric as the latent variable (θ) with values ranging over the set of  real numbers. It measures the
extent to which an item discriminates between students of  low and high ability on the PKMT. Items with
negative or less than 0.20 ai’s have been recommended to be rejected while items with 0.20 ≤ ai’s  < 0.40
demonstrate appropriate discrimination and may be improved and items with   ai’s  ≥ 0.40 demonstrate
good discrimination (DeMars, 2010; Ebel & Frisbie, 1991). However, depending on the sample size, item
discrimination is not expected to be excessively high. Also, each item difficulty index (bi , i = 1, 2, …, 22) is
on the same metric as the latent variable (θ) with value range over the set of  real numbers, and a practical
range  between -2  and  2  to  avoid  too  easy  or  too  tricky  items  on  the  test  (DeMars,  2010).  It  gives
information on the amount of  the latent variable (θ) at which 50% of  the students will get a correct score
on each item. In as much as there seems to be no specific range of  values to ascertain good difficulty
index, empirical evidence has supported retaining items of  the middle index of  difficulty on the test (Ebel
& Frisbie, 1991).

In line with unidimensionality assumption of  IRT models (DeMars, 2010), a one-factor model of  the
PKMT with its 22 questions hypothesised to measure a common construct is evaluated using mean and
variance  adjusted  unweighted  least  squares  estimator  with  theta  parametrisation  (ULSMV-Theta).
ULSMV-Theta  is  used  because  of  its  satisfactory  performance  and  precision  in  estimating  model
parameters for a dichotomously scored IRT modelling in Mplus (Paek, Cui, Ozturk-Gubes & Yang, 2018).
The model fit is assessed using multiple criteria. For an appropriate fit, we follow the recommendations of
the ratio of  chi-square value to the degree of  freedom of  less than 3coupled with a root mean square
error of  approximation (RMSEA) of  less than .06 with non-significant 90% confidence interval (Brown,
2015), comparative fit and Tucker-Lewis indices (CFI and TLI) of  greater than or close to .90 (Bentler,
1990). Further, we look at the significant level or otherwise of  the factor loading of  each of  the items on
the test. This is necessary to determine the contribution of  these items to the test and to estimate each
item reliability using standardised R-square values.

The qualitative  method of  data  analysis  takes  the  form of  a  cognitive  interview.  This  interview was
conducted to further probe and to determine the most likely reasons why some perceived too difficult
questions based on the results  of  statistical  analysis  are not  answered correctly.  We rely  on students’
experience that voluntarily consented to take part in the interviews. In addition to the general consent to
take part in the research project, special consent was requested from each student before the interview to
audio record individual’s utterances. The semi-structured cognitive interview was individually conducted in
Norwegian using some leading questions with samples as follow:

If  you, please take a look at this task, do you think this is a task you would have mastered?

Do you have any idea on how to solve that one? Is it clear what they ask?

What do you think is the reason why many students got this question incorrect?

You get some calculations there, and you only have paper and pencil accessible, do you think that a calculator had
been necessary for some students on this task?

A total of  seven students were interviewed, including six males and one female. Each interview lasted
about 15 minutes, and the collected data were transcribed and translated into English. Selected results
from these interviews are presented in the next section.
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4. Results and Discussion
4.1. Results of  Quantitative Analyses

Results from the analysis of  a one-factor model of  the PKMT with its 22 questions hypothesised to
measure  a  common  construct  of  students’  prior  mathematics  knowledge  are  presented.  Descriptive
statistics of  the analysed data as well as some initial parameters are shown in Table 1. The table shows the
number of  correct and incorrect responses of  each item on the test, including the respective standardised
factor loadings, R-square values, and the p-values. 

Question Number of
correct

responses

Number of
incorrect
responses

Factor
loading

p-value R-square p-value

1A 173 28 .388 .001 .151 .091

1B 123 78 .472 < .001 .223 .006

1C 103 98 .444 < .001 .197 .006

2A 151 50 .454 < .001 .206 .017

2B 112 89 .562 < .001 .316 < .001

2C 85 116 .537 < .001 .288 < .001

3 64 137 .530 < .001 .281 < .001

4 116 85 .557 < .001 .310 < .001

5 143 58 .549 < .001 .301 < .001

6 128 73 .660 < .001 .436 < .001

7 113 88 .679 < .001 .461 < .001

8 133 68 .804 < .001 .646 < .001

9A 48 153 .169 .078 .029 .379

9B 19 182 .336 < .001 .113 .034

10 13 188 .553 < .001 .306 .001

11A 176 25 .891 < .001 .794 .003

11B 60 141 .350 < .001 .123 .033

12 82 119 .734 < .001 .539 < .001

13 58 143 .604 < .001 .365 < .001

14 86 115 .618 < .001 .382 < .001

15 125 76 .736 < .001 .542 < .001

16 67 134 .695 < .001 .483 < .001

Table 1. Descriptive statistics of  the 22-item PKMT

The results presented in Table 1 reveal that Question 11A of  the PKMT has the highest number of
correct responses with 176 students got it correctly while Question 10 has the least number of  correct
responses with only 13 students got it correctly. All the item factor loadings are significant except for
Question 9A, which has an insignificant factor loading of  .169 (p = .078). These factor loadings reflect
the strength at which each of  the questions of  the PKMT measures the purported prior mathematics
knowledge the instrument is designed to measure. Thus, from this initial analysis, one can deduce that
Question 9A has little or no substantial contribution to the instrument. Further, upon squaring each of
these standardised factor loadings, a measure of  variability (R-square) and reliability of  each question on
the PKMT was established. For instance, 31.6% and 79.5% variances of  Question 2B and Question
11A, respectively, are explained by the latent construct of  students’ competence on the PKMT. And
that these questions are reliable with significant reliability coefficients of  .316 and .795, respectively. On
the other hand, questions 1A, 2A, 9A, 9B and 11B have non-significant reliability coefficients of  .151, .
206, .029, .113, and .123, respectively, at α = .01 level of  significance. The reliability of  the whole test
was found to be .92 using a latent variable approach described in (Raykov, Dimitrov & Asparouhov,
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2010; Raykov & Marcoulides, 2016). The goodness of  fits statistics from the analysis of  the one-factor
PKMT model are presented in Table 2.

Model fit statistics Values

Chi-square (χ2)
Value 272.892

df 209

χ2/df 1.306

p-value .002

CFI/TLI
CFI .903

TLI .893

RMSEA
Estimate .039 

90 per cent C.I. .025 .051

Probability RMSEA <= .05 .927

Table 2. Selected goodness of  fit indices of  the one-factor PKMT model

The results presented in Table 2 show an appropriate fit of  the evaluated one-factor model of  the PKMT.
The chi-square statistic seems a bit high and significant (p=.002). However, its ratio to the degree of
freedom is less the recommended value of  3 for an acceptable model fit. Both the CFI and the TLI values
are within the recommended values of  an acceptable model fit (Bentler, 1990). The RMSEA is excellent
with  its  value  within  the  90  per  cent  confidence  interval,  and  its  probability  is  not  significant.  This
non-significant RMSEA probability shows that the model demonstrates a close fit of  the data and that the
hypothesis of  not-close fit should be rejected (MacCallum, Browne & Sugawara, 1996). Thus, the overall
fit statistics confirm that the hypothesised one-factor construct of  prior mathematics knowledge exposed
by the 22 questions is supported by empirical evidence. After establishing the model fit of  the PKMT, we
now turn to its item quality as explicated by item response theory parametrisation. The ensuing results on
item discrimination and difficulty indices of  each item on the PKMT as well as their respective p-values
are presented in Table 3. 

The  results  presented  in  Table  3  show that  all  the  questions  on the  PKMT have  acceptable  item
discrimination indices except for Question 9A (a9A = 0.172, p = .087) and Question 11A (a11A = 1.958,
p = .223)  which demonstrate too weak and too strong discriminations, respectively, among the students.
The inference can be drawn from the non-significant estimates of  the discrimination indices of  these
two questions. According to the classifications of  item discrimination index by Ebel and Frisbie (1991),
it can be inferred that our empirical evidence supports the removal of  Question 9A and Question 11A
from the test,  Questions  9B and 11B have appropriate  discriminating indices  but  can be improved
upon, and all other questions have good discrimination indices. Further, it is also revealed in Table 3
that some questions demonstrate appropriate difficulty. At the same time, some questions demonstrate
excessive item difficulty (i.e. too difficult questions), and other questions demonstrate weak difficulty
(i.e. easy questions). For instance, questions 1C, 2B, 2C, 4, 7, 9A, 12, and 14 demonstrate appropriate
difficulty  with  the  non-significant  estimates  (p  >  .01)  of  their  respective  difficulty  indices.  Also,
questions 1A, 1B, 2A, 5,  6,  8,  11A, and 15 are relatively easy questions  depending on the absolute
magnitude  of  their  estimates  while  other  questions,  e.g.  questions  3,  9B,  10,  and  11B are  difficult
questions. Selected results of  why students perceived some of  these questions difficult are presented in
the next section.
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Question Item discrimination p-value Item difficulty p-value

1A 0.421 .004 -2.795 .002

1B 0.536 < .001 -0.602 .006

1C 0.495 < .001 -0.070 .725

2A 0.510 < .001 -1.494 < .001

2B 0.679 < .001 -0.256 .112

2C 0.637 < .001 0.362 .040

3 0.626 < .001 0.890 < .001

4 0.670 < .001 -0.350 .034

5 0.657 < .001 -1.016 < .001

6 0.877 < .001 -0.531 < .001

7 0.924 < .001 -0.231 .080

8 1.354 < .001 -0.518 < .001

9A 0.172 .087 4.198 .090

9B 0.357 < .001 3.908 < .001

10 0.664 < .001 2.741 < .001

11A 1.958 .223 -1.295 < .001

11B 0.374 < .001 1.509 .001

12 1.081 < .001 0.317 .012

13 0.758 < .001 0.923 < .001

14 0.786 < .001 0.294 .049

15 1.086 < .001 -0.422 .001

16 0.965 < .001 0.620 < .001

Table 3. IRT parameterisation of  the PKMT

4.2. Results of  Cognitive Interviews

To further  probe  why  some  questions  are  perceived  difficult  by  the  students,  we  interviewed  some
students to hear their views and suggestions for the improvement of  such difficult questions. Results from
the transcripts of  interviews for Question 10 (this  is  a word-problem type question that requires the
students to manipulate some percentages and give the final answer in decimal number) show that some
students find it challenging to understand the question because of  its practical and word-problem nature.
Some of  the  reasons  stated  for  getting  the  question  incorrect  by  most  students  are  lack  of  proper
understanding of  the question, text misreading, and unavailability of  calculators. The students also think
that provision of  calculators during the test administration could improve their performance on such
difficult tasks. For the reason that they are used to working on mathematical tasks with calculators lately,
as mentioned by one of  the students “I would have thought about this for a while, I guess I had to because we are so
used to use the calculator all the time”.

Similarly, when the interviewer asked the following questions about Question 9: What is difficult here?
What  makes  this  a  bit  difficult?  If  you  could  try  to  describe  in  words  what  makes  it  difficult  to
understand?  Note:  Question  9  is  a  word-problem type  that  requires  the  students  to  manipulate  the
purchase  of  oranges  and  bananas  in  kilogrammes  using  letters  rather  than  numbers.  One  of  the
interviewees responded with the following answer: 

No, it is more. I think it was difficult to understand. That the a stands for, I am more like I do not manage to
deal with practical tasks after I began doing theoretical tasks […] This is a typical example of  what I find
difficult, that a is how many kilograms of  oranges that you buy, and b is for bananas. What is 10a plus 15b?
And then I become, like – actually I think I could have solved it if  I had more time. If  I had thought more about
it. It is not how to solve it; it is more like I put a lot more energy into solving this task than this task [she points
to task 3 which is on calculating the volume of  a compound figure] because it is too much text and I become
stressed, and I think back to the practical math that I had and that I did not like.
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It can be deduced from the excerpts of  interview transcriptions for Question 9 that some students could
not solve the problem correctly because of  their inadequate reading comprehension, interpretations, and
improper understanding of  the word-problem task. Meanwhile, of  the six difficult questions (3, 9B, 10,
11B, 13 and 16) identified in Table 3, only questions 3 and 11B are not posed in word problems. Thus, it
can be inferred that the challenge with our students lies on their improper grasping of  word-problem
tasks which could stem from their preference for other types of  mathematical tasks as evident in one of
the student’s response during the interview “It is not how to solve it, it is more like I put a lot more energy into
solving this task than this task [she points to task 3 which is on calculating the volume of  a compound figure]
because it is too much text and I become stressed, and I think back to the practical math that I had and that I did not like” .
This finding conforms to the global trend of  students’ perceived difficulty of  mathematical word-problem
tasks at  elementary,  secondary and university  levels  (e.g.,  Vilenius Tuohimaa,  Aunola & Nurmi,  2008;‐
Zheng, Swanson & Marcoulides, 2011).

5. Conclusions
Prior mathematics knowledge of  students has been identified as instrumental to the learning outcomes of
current materials. Both theoretical and empirical evidence has been documented to support this claim
(Bandura, 1997; Zakariya, 2016). However, proper assessment of  students’ prior mathematics knowledge
has been beset with inconsistency in the available numerous measuring instruments and lack of  validation
studies. Attempts are made in the present study to validate a national test of  prior mathematics knowledge
of  university students in Norway using mixed methods research design. The design involves the use of
item response theory to provide psychometric properties of  the test and cognitive interviews to probe
plausible reasons why students find some questions challenging. 

The findings of  the present study provide empirical evidence for the construct validity of  the Norwegian
prior knowledge of  mathematics test. In particular, our evaluation of  a one-factor model shows that the
test is  measuring just  a single latent variable (i.e.  prior  mathematics knowledge of  students)  that  it  is
purported to measure. Further, it is also found that out of  the 22 questions on the test only questions 1A,
2A,  9A,  9B  and  11B  demonstrate  lack  of  acceptable  reliability  coefficients.  However,  the  reliability
coefficient of  the whole test using latent variable approach is found to be very high (.92) which proves
high internal consistency of  the items on the test (Raykov et al., 2010). The latent variable approach is
used to compute the reliability coefficient of  PKMT because of  its reported excellent performance over
the popular  Cronbach’s alpha and Kuder-Richardson formula 20 (e.g.,  Raykov et al.,  2010;  Raykov &
Marcoulides, 2016). In as much as most of  the reviewed literature in the present study (e.g., Hailikari et al.,
2008; Newman Ford et al., 2009) do not report reliability coefficients of  their measures of  prior academic‐
knowledge, the reliability coefficient of  the PKMT is higher than the one reported by Lee and Chen
(2009) but slightly lower than the Kuder-Richardson coefficient reported by Casillas et al. (2012).

The findings  of  the  present  study also show that questions  on the PKMT are at  different  levels  of
difficulty  and  variant  discriminations  between  students  of  low  and  high  competence  in  the  prior
mathematics knowledge test. These findings have several implications on the validity and reliability of
aggregate scores of  the test and other analyses (e.g. means comparisons between universities and previous
years) usually presented by the Norwegian Mathematical Council. For instance, the assignment of  a score
of  1 point to an easy and poorly discriminating item, e.g., Question 11A and to a challenging and good
discriminating item, e.g., Question 10 may bias the aggregate scores of  students with low ability upward
on the test and reduce the aggregate scores of  highly competent students. This kind of  bias in aggregate
scores  is  a  threat  to  the  validity  of  the test  and a typical  disadvantage  of  using classical  test  theory
approach in scoring tests (DeMars, 2010). Thus, we urge the Norwegian Mathematical Council to use item
response theory which can incorporate the test item difficulty and discrimination indices in the scoring
process such that more valid aggregate scores can be obtained. Moreover, of  course, a more reliable mean
score comparison can be made.  Further, compelling evidence is  also provided in the findings of  the
present study that suggests the removal of  or at least improvement in item wordings and presentation of
questions 9A, 9B, 11A and 11B on the test. 
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Moreover, six out of  the 22 questions of  PKMT are also found to be very difficult for students to answer
correctly. Empirical evidence from cognitive interviews of  some students who took part in the test reveals
potential  reasons  why  these  questions  are  perceived  difficult.  Some of  the  ascribed  causes  of  poor
performance  on  these  questions  are  lack  of  proper  understanding  of  the  question,  text  misreading,
improper grasping of  word-problem mathematical tasks, and unavailability of  calculators. Given that low
performance  on  word-problem  tasks  is  not  peculiar  to  Norwegian  engineering  students  (e.g.,
Vilenius-Tuohimaa et al., 2008), we recommend innovative teaching and learning strategies to alleviate
these problems. Such strategies can be the use of  modelling activities, problem-based learning, and so on
(Greer,  1997;  Zakariya,  Ibrahim  &  Adisa,  2016)  to  foster  understanding  and  interpretation  of
word-problem  mathematical  tasks.  The  Norwegian  Mathematical  Council  may  also  consider  the
introduction of  calculators in subsequent PKMT administrations. Finally,  this  section is concluded by
acknowledging some strengths and potential weaknesses of  the findings of  this study. 

6. Strengths and Potential Weaknesses of  this Study
A strength of  this study lies in the use of  explanatory sequential mixed-methods approach to data analysis
(Bryman, 2016) that involves a robust quantitative analysis procedure in terms of  an IRT followed by
some cognitive interviews. The interviews avail us the opportunity to look at the data beyond statistical
analyses and provide a more elaborate description of  the phenomenon. Another strength of  this study
encompasses a relatively large data set of  201 engineering students used in the present study. The large
sample involved is a potential for generalisation of  our findings, especially now that such large-scale study
is scarce in mathematics education research. However, a potential limitation of  the present study could
stem from a lack of  external validity of  the PKMT. There was no independently measured variable such
as students’ grades, and grade point average through which the predictive validity of  the PKMT can be
confirmed. We did not investigate the content validity of  the test items as we lack the permission to do so.
Instead, our findings only provide evidence for its psychometric property. Also, the restriction of  the
sample of  the study to a Norwegian university and only engineering students might, in a way, limit the
generalisation  of  our  findings.  Thus,  we  recommend  the  replications  of  the  present  study  in  more
substantial  and more diverse university  student populations.  Despite  these limitations,  our study does
provide potential cues on the construct validity, reliability, and item quality of  the PKMT which will be
useful to Norwegian Mathematical Council, researchers, and other stakeholders in mathematics education.
The  methodology  adopted  in  the  present  study  can  also  be  applied  in  other  national  contexts  to
investigate the validity of  their measures. 
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