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Abstract In this study, we develop an analytical formula to approximate the damping coef-
ficient as a function of the coefficient of restitution for a class of continuous contact models.
The contact force is generated by a logical point-to-point force element consisting of a lin-
ear damper connected in parallel to a spring with Hertz force–penetration characteristic,
while the exponent of deformation of the Hertz spring can vary between one and two. In
this nonlinear model, it is assumed that the bodies start to separate when the contact force
becomes zero. After separation, either the restitution continues or a permanent penetration
is achieved. Therefore, this model is capable of addressing a wide range of impact prob-
lems. Herein, we apply an optimization strategy on the solution of the equations governing
the dynamics of the penetration, ensuring that the desired restitution is reproduced at the
time of separation. Furthermore, based on the results of the optimization process along with
analytical investigations, the resulting optimal damping coefficient is analytically expressed
at the time of impact in terms of system properties such as the effective mass, penetration
velocity just before the impact, coefficient of restitution, and the characteristics of the Hertz
spring model.

Keywords Impact · Continuous contact model · Hertz spring · Damping coefficient ·
Coefficient of restitution · Multibody systems

1 Introduction

In some applications, multibody systems may experience intermittent motions due to the
collisions between different components, existence of the joint clearance, or joint locking
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[4, 5, 14, 18, 24, 26]. Different methods can be used to model the impact in a multibody
system. These approaches have been reviewed in detail in [7, 19].

Piecewise approach has largely been used to model the impact. This technique is mainly
applicable when the duration of contact is significantly short. Based on this assumption, the
configuration of the system including translational and angular coordinates are considered to
remain unchanged during the period of contact. However, the system experiences a discon-
tinuous change at the velocity level. In the piecewise method, the integration of the equations
of motion is halted just before the impact occurs. Then impulse–momentum equations are
formed. These equations relate the change in both linear and angular momenta of the system
to impulsive forces and moments. Since applied loads (forces and moments) are bounded,
their impulses during the very short period of contact are ignored in the momentum balance
equations. These equations along with the elastic characteristic of the impact, which is re-
flected in the coefficient of restitution, are then used to compute the jumps in the velocities
of the system [22, 23]. These results in addition to the velocities just before the impact can
now be used to find the velocities immediately after the impact. The numerical integrator
uses the resulting velocities and the coordinates of the system just before the impact as a set
of initial conditions to integrate the equations of motion of the system.

Another approach treats an impact as a continuous phenomenon. Allowing penetration
between contacting bodies during the period of contact, this model results in a continu-
ous change in the positions and velocities. Additionally, without interrupting the integration
of equations of motion, contact forces are activated at the contact points and included in
the dynamic equations of motion as long as the bodies remain in contact. In the Kelvin–
Voigt viscoelastic model, the contact force is generated by a logical point-to-point linear
spring–damper element [8]. However, this linear model is incapable of capturing the non-
linear nature of the impact. Furthermore, it generates a nonphysical tensile contact force if
zero penetration is considered as the separation condition. To remove this shortcoming, it is
assumed in [2] that the bodies separate at the moment when the contact force becomes zero,
while allowing the deformation to continue after the separation of the bodies until the end
of the complete restitution. This model has been further extended by using a fractional order
damping element [3].

The Hertz model [10] can better capture nonlinear characteristics of the impact. In this
continuous model, the force element consists of a spring with nonlinear force–penetration
relationship which is obtained based on the local stress distribution. This method can only
be used for impacts with elastic characteristics since it does not consider any energy dissi-
pation. Adding a logical linear damper to the Hertz spring can further capture the energy
dissipation during impact. However, the model generates a nonphysical tensile force be-
fore the complete restitution is achieved if the separation of the bodies is considered at the
instant at which the penetration becomes zero [12]. To overcome this artifact, Hunt and
Crossley introduced a hysteresis damping factor to modify the damping force [12]. In fact,
the modification of the damping force in this model results in zero contact force and pene-
tration at the beginning and the end of the period of contact. Although a multibody system
experiences an impulsive behavior, because of the extremely short contact period, the dissi-
pation of damping forces in the system except for the one related to the local deformation
are mainly neglected. Therefore, due to the importance of local deformations at the contact
point, different methods have been used to characterize the hysteresis damping factor based
on the properties of the direct central impact of two spherical objects [6, 11, 15, 17, 27, 29].
Similar estimation has been presented in [16, 29] when permanent indentation after the sep-
aration is included in the model. Other estimations for the hysteresis damping factor have
been developed when the force model changes during compression and restitution phases



Optimal damping coefficient for a class of continuous contact models

of contact [13, 20]. These estimations have been expressed in terms of the coefficient of
restitution and of the geometrical and mechanical properties of the contacting bodies, which
are reflected in the parameters of the Hertz contact model. Since all of these methods use
approximations, in some situations the continuous model with the estimated damping factor
may not necessarily recover the desired restitution based on which the estimation has been
generated.

The damping coefficient has been characterized as a function of the coefficient of resti-
tution with a model containing a linear damper connected in parallel to a spring with Hertz
force-deformation property of two interacting spheres [25], where the exponent of deforma-
tion is known to be n = 3/2. In this paper, we extend the characterization of the damping
coefficient for a general class of Hertz spring models in which the exponent of deformation
in the force–penetration relation can vary between one and two. Furthermore, it is assumed
that the separation occurs when the contact force becomes zero, while either the complete
restitution may have not yet been achieved or the permanent penetration may have been
reached. To determine the damping coefficient, we apply an optimization process to ensure
that the desired restitution is reproduced at the time of separation. In fact, this optimization
is conducted on the solution of the equations governing the dynamics of the direct central
impact. We further conduct a series of analytical studies and numerical experiments on the
characteristics of the resulting optimal damping coefficients. It is shown that the optimal
damping coefficient can analytically be expressed in terms of system properties at the time
of impact such as the effective mass, penetration velocity just before the impact, coefficient
of restitution, and the geometrical and mechanical properties of the contacting bodies which
are reflected in the parameters of the Hertz contact model. Simulation results show that the
contact force model with the proposed analytical approximation of the damping coefficient
performs perfectly in recovering the desired restitution, while guarantying non-zero contact
force at the time of separation.

In this paper, we first provide an overview of the continuous analysis of frictionless di-
rect central impact in Sect. 2. This is followed by implementing the optimization-based
approach to compute the damping coefficient for the zero contact force separation condition
in Sect. 3. Characterization of the optimal damping coefficient through analytical investiga-
tions and numerical experiments are then conducted in Sect. 4. This is followed by numerical
verification and simulation in Sects. 5 and 6, respectively. Finally, conclusions are drawn in
Sect. 7.

2 Analysis of direct central impacts through continuous force models

In many applications of multibody dynamics, the impact is assumed to generate a local
deformation. Therefore, the most common continuous contact models are constructed based
on the characteristics of the direct central impact between two objects, mainly in spherical
shapes [1, 6, 11, 12, 14, 16]. Figure 1 shows the schematic of two colliding spheres of
masses mi and mj . The unit vector n is the direction normal to the surface of contact.
In the direct central impact it is assumed that the velocities of the colliding bodies just
before the impact at −t , i.e. −Vi and −Vj , lie on the axis of vector n. Additionally, similar
to the piecewise modeling of the direct central impact, in the continuous contact model,
the effect of the applied loads is considered insignificant compared to the contact force
due to the very short contact duration. Therefore, as shown in Fig. 1, during the contact
period only contact force fc is continuously being applied to the spheres along the n axis. In
this scheme, the contact cycle is divided into two phases: compression and restitution. The
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Fig. 1 Direct central impact of
two spheres

compression phase starts at −t when contact between the bodies occurs. The indentation
(penetration) then increases until it reaches its maximum value, at which both bodies find the
same velocity. At this moment, the restitution phase starts which is followed by a continuous
decrease in the penetration until both bodies separate at +t with velocities +Vi and +Vj ,
respectively.

Following the free-body diagrams of Fig. 1, we can construct the equations of motion of
each body during the period of contact along the n axis as

miδ̈i = −fc, mj δ̈j = fc, (1)

where δi and δj denote the coordinates of the mass centers of spheres i and j along the n
axis, respectively. Defining the penetration δ and effective mass m as

δ � δi − δj , (2)

m � mimj

mi + mj

, (3)

we develop the following Ordinary Differential Equation (ODE) governing the dynamics of
the penetration:

mδ̈ = −fc,

δ(0) = −δ = 0, (4)

δ̇(0) = −δ̇.

where

−δ̇ = −Vi − −Vj . (5)

The main challenge in the continuous contact model is to determine a mathematical ex-
pression for fc and tune its parameters based on known information about the system during
the impact in order to better capture the physics of this phenomenon. Hertz model uses stress
distribution and presents the contact force as the following nonlinear spring [10]:

fc = kδn. (6)

In this model, both k and n depend on the geometry and/or the material properties of the
contacting bodies. For instance, for two spheres in contact or for a locally spherical surface
and a plane n becomes 3/2, while in the contact between two locally plane surfaces n is
established as one [15].

Since the Hertz model does not introduce any energy dissipation, it may not accurately
present non-elastic impacts. To consider the energy dissipation during an impact, a linear
damping force cδ̇ is included, resulting in

fc = cδ̇ + kδn. (7)
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Fig. 2 Behavior of the contact
force versus penetration for
different force models

This yields the following ODE governing the dynamics of the penetration with the same
initial conditions of Eq. (4):

mδ̈ + cδ̇ + kδn = 0. (8)

The solid curve in Fig. 2 shows the behavior of this contact force versus penetration. This
figure shows a non-zero compressive contact force at point A which corresponds to −t , the
start of the compression phase. The compression continues to point B where the maximum
deformation δm is reached. The restitution phase then starts at B and continues to point C

where the spheres separate. The dotted curve in this figure indicates that using this model be-
yond point C generates a nonphysical tensile force. Therefore, in order to avoid any contact
force at the time of separation, the bodies need to be released at point C which corresponds
to +t .

Due to computational limitations, as of several decades ago, it was not possible to predict
the exact time of separation of the two bodies in forward dynamic integration of the equa-
tions of motion. Therefore, in order to overcome the artifact of tensile force of Eq. (8), Hunt
and Crossley [12] proposed the damping force to be presented as μδ̇δn, where μ is called
the “hysteresis damping factor”. This description for damping transforms the continuous
contact force to

fc = (μδ̇ + k)δn. (9)

This results in the following ODE:

mδ̈ + (μδ̇ + k)δn = 0, (10)

with the same initial conditions of Eq. (4). The dashed curve in Fig. 2 shows the behavior
of this contact force versus penetration. As it is observed, colliding bodies experience zero
contact force and penetration at the beginning and at the end of contact. As a result, the
model does not produce a tensile force.

The hysteresis damping factor μ in Eq. (10) is a parameter representing the dissipation
of energy in an impact. Therefore, researchers have attempted to find a relationship between
μ and the corresponding coefficient of restitution since the introduction of this contact force
model. The coefficient of restitution between the two colliding spheres of Fig. 1 is defined
as

e = −
+Vi − +Vj

−Vi − −Vj

= −
+δ̇

−δ̇
. (11)
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The proposed relationships between μ and e have been derived using the following energy
balance during the entire period of the direct central impact:

1

2
m(−δ̇)2(1 − e2) =

∮
fcdδ. (12)

The left hand side of this equation represents the drop in the kinetic energy of the system
during the impact, and the integral on the right side is the work done by the contact force
during the entire cycle of impact.

Hunt and Crossley suggested the following expression approximating μ as a function of
e [12]:

μ = 3k(1 − e)

2(−δ̇)
. (13)

Lankarani and Nikravesh [15, 17] used the general trend of Hertz contact model and ex-
pressed an estimation of the damping factor as

μ = 3k(1 − e2)

4(−δ̇)
. (14)

The estimations presented in Eqs. (13) and (14) can be used if the coefficient of restitution
is close to unity [6, 15, 17]. This drawback was removed with the following estimation:

μ = 3k(1 − e)

2e(−δ̇)
, (15)

proposed by Hu and Gua [11]. In another attempt, using fundamental characteristics of the
Kelvin–Voigt model, Ye et al. [29] and Flores et al. [6] overcame the shortcoming of Eq. (14)
by estimating the damping factor as

μ = 8k(1 − e)

5e(−δ̇)
. (16)

The estimations presented in Eqs. (15) and (16) are applicable to a wider range of coeffi-
cients of restitution [6, 11, 29]. It should be noted that these expressions have been proposed
based on different approximations of the solution of Eq. (10). As such, using the estimated μ

of Eqs. (13)–(16) and solving Eq. (10) for the entire period of contact, the output coefficient
of restitution

eout = −
+δ̇

−δ̇
(17)

may not necessarily be the same as the desired e based on which μ has been estimated. In
other words, the estimated μ may not accurately reproduce the desired restitution.

As reported in [9], the exact analytical solution of ODE of Eq. (10) has been presented
in [21, 28]. Therefore, without any approximation, the damping factor based on which the
desired restitution can be recovered is computed using the following expression [9]:

μ = d k

e (−δ̇)
, (18)
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where d ∈ [0,1] is the solution of the following equation:

1 + d
e

1 − d
= exp

{
d

(
1 + 1

e

)}
. (19)

3 Hertz contact model with linear damping

The solid curve in Fig. 2 shows typical behavior of the Hertz contact model with linear
damping, as expressed by Eq. (8). This curve clearly shows that, if the contact force is not
removed from the model at point C when the two bodies separate, an undesirable tensile
force will continue to be present in the equations of motion. Due to the computational defi-
ciencies that existed several decades ago, the exact times of contact and separation such as
points A and C in Fig. 2, respectively, could not be accurately detected during the integration
of the equations of motion. In order to avoid such computational shortcomings, researchers
adopted the contact model of Hunt and Crossley. However, as the dashed curve in Fig. 2
shows, this model artificially changes the characteristics of the original Hertz contact model
with linear damping.

With advances in numerical methods and computational capabilities, most well devel-
oped numerical integrators are now capable of detecting the occurrence of an event, such as
the start or the end of a contact. In order to take advantage of the existing numerical capabil-
ities, in the study that is presented in this paper, we return to the Hertz contact model with
linear damping, as expressed by Eq. (8). Then we attempt to develop an analytical formula
approximating the damping coefficient c as a function of a desired value for the coefficient
of restitution.

In this model, to avoid any tensile contact force during the period of impact, we assume
that in the restitution phase the bodies start to separate at t = s t provided that the contact
force is zero, i.e.

c s δ̇ + k (sδ)n = 0, (20)

where

sδ = +δ = δ(s t), s δ̇ = +δ̇ = δ̇(s t). (21)

As shown in Fig. 2, in this model point C corresponds to t = +t = s t at which the separation
occurs. In this study, sδ could represent either a permanent penetration with no restitution af-
ter the separation or a temporary indentation which allows the continuation of the restitution
after the bodies separate.

In order to find the damping coefficient c with the main objective of recovering the de-
sired restitution e, the solution of the ODE presented in Eq. (8) should yield a penetration
velocity at the time of separation that satisfies the condition eout = e, where

eout = −
+δ̇

−δ̇
= −

s δ̇

−δ̇
. (22)
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Without using any approximation for the penetration velocity profile, in this work, we apply
the following optimization process to obtain the value of c:

minimize
c

|eout − e|

subject to mδ̈ + cδ̇ + kδn = 0

δ(0) = 0, δ̇(0) = −δ̇

c s δ̇ + k (sδ)n = 0 (at t = s t)

(23)

This optimization in fact ensures that the computed damping coefficient can accurately re-
cover the desired restitution. We note that, for given e, m, −δ̇, k, and n, the values of sδ and
s δ̇ at the time of separation +t = s t are dependent on c, which is unknown in advance.

To numerically solve the proposed optimization problem and compute the damping co-
efficient, any optimization technique could potentially be used. For instance, this problem
has been addressed in [25] by using the method of bisection. Since most optimization meth-
ods use an iterative procedure, the optimal damping coefficient copt is obtained when the
following condition is satisfied:

|eout − e|
e

≤ ε, (24)

where ε is a small number and eout is defined in Eq. (22). Furthermore, in order to halt
the integration process of the equations of motion at each iteration, we can use MATLAB
built-in function “event” to detect the instant at which the separation condition of Eq. (20)
is met. It should be noted that the result of the optimization problem automatically satisfies
the energy balance of Eq. (12) since we have not used any approximation.

4 Analytical expression for optimal damping coefficient

We now conduct an analytical and a numerical investigation to characterize copt as a function
of system parameters m, −δ̇, k, n, and the desired e.

4.1 Analytical investigation to characterize copt

In this section, we analytically study some characteristics of copt . We start with the model of
Eq. (8) in the absence of damping force which reduces to the original Hertz model

mδ̈ = −kδn, (25)

with the following analytical solution:

δ̇2 = (−δ̇)2 − 2k δn+1

m(n + 1)
. (26)

Setting δ̇ = 0 yields the maximum penetration of the Hertz model as

δm =
[ (n + 1) m

2k
(−δ̇)2

] 1
n+1

. (27)
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We note that the model of Eq. (8) contains a damping force. The dissipation due to the
damping force does not allow the penetration at the separation instant to exceed the maxi-
mum indentation obtained in Eq. (27). This can mathematically be expressed as

sδ ≤ δm. (28)

On the other hand, the damping coefficient can be obtained using the condition of Eq. (20):

c = −k (sδ)n

s δ̇
. (29)

Comparing Eqs. (28) and (29) yields

c ≤ −k (δm)n

s δ̇
. (30)

Imposing the desired restitution condition s δ̇ = −e (−δ̇) on this inequality, we are allowed
to replace c with copt , resulting in

copt ≤ k (δm)n

e (−δ̇)
. (31)

Using the maximum penetration of Eq. (27) in the absence of damping, we can express
Eq. (31) as

copt ≤ k

e (−δ̇)

[
m(n + 1)(−δ̇)2

2k

] n
n+1

. (32)

This inequality can be further simplified as

copt ≤ 1

e

[(
n + 1

2

)n

k (−δ̇)n−1 mn

] 1
n+1

. (33)

Introducing a slack variable λ ∈ [0,1], this inequality can be transformed to the following
equality:

copt = λ

e

[(
n + 1

2

)n

k (−δ̇)n−1 mn

] 1
n+1

. (34)

The natural logarithm of this equation can be expressed as

ln copt = lnλ − ln e + n

n + 1
ln

n + 1

2

+ 1

n + 1
lnk + n − 1

n + 1
ln (−δ̇) + n

n + 1
lnm. (35)

The inequality of Eq. (32) can alternatively be developed by rescaling penetration and
time by δ̄ = δ

δm
and t̄ = t

δm/− δ̇
, respectively, and using them in the separation condition of

Eq. (20) and enforcing s δ̇ = −e (−δ̇) and δ̄ ≤ 1.
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Fig. 3 Characterizing effect of m on copt

4.2 Computational experiments to characterize copt

Based on the analytical study of copt in the previous section, we realize that the optimal
damping can be expressed using Eq. (34) or (35). The term λ in these equations is not just
a parameter; i.e., it could potentially be a function of system properties. In the following
sections, we perform four simulation experiments to investigate the dependency of λ on m,
−δ̇, k, n, and the desired e.

We should note that, for each of the following investigations, the value of ε in Eq. (24)
is selected as 10−8. Furthermore, the curve fittings in these studies are performed using
MATLAB curve-fitting toolbox.

4.2.1 Dependency of λ on m

In the first investigation, we numerically study the dependency of λ on m. In order to do so,
we assume that −δ̇ = 1 m/s, k = 1 N/mn, e = 0.7. Then we sweep the effective mass and
n by choosing, respectively, 200 and 50 values for these quantities linearly separated in the
following ranges:

10−5 ≤ m ≤ 50 kg,

1 ≤ n ≤ 2.

For each resulting system, we solve the optimization problem of Eq. (23) for copt .
Based on the optimization results, we can show the behavior of ln copt versus lnm in

Fig. 3(a) for the representative values of n. It is observed that this relationship can be ex-
pressed by the following linear function:

ln copt = lnα1 + β1 lnm, (36)

where α1 and β1 are auxiliary variables. The points shown by markers • in Fig. 3(b) indicate
the behavior of the slope β1 as a function of n as we solve the optimization problem. It
is observed that the curve in the form of n

n+1 can be fitted to β1 (solid line in Fig. 3(b)),
resulting in

ln copt = lnα1 + n

n + 1
lnm, (37)



Optimal damping coefficient for a class of continuous contact models

Fig. 4 Characterizing effect of −δ̇ on copt

or equivalently,

copt = α1 m
n

n+1 . (38)

We note that n
n+1 , the slope of lnm which has been found through curve fitting on the solu-

tion of the optimization problem, is the same as the corresponding term in Eq. (35). There-
fore, the linear relationship between ln copt and lnm in the form shown in Eq. (37) for given
−δ̇, k, and e indicates that λ in Eq. (35) is independent of the effective mass. Furthermore,
the dependency of copt on n confirms that λ should be a function of this parameter.

4.2.2 Dependency of λ on −δ̇

In this investigation, we study the dependency of λ on −δ̇. We first assume that m = 1 kg,
k = 1 N/mn, e = 0.7. We then sweep −δ̇ and n by selecting, respectively, 200 and 50 values
for these quantities linearly separated in the following ranges:

0.01 ≤ −δ̇ ≤ 50 m/s,

1 ≤ n ≤ 2.

For each resulting system, we solve the optimization problem of Eq. (23) for copt . Figure 4(a)
shows the behavior of ln copt as a function of ln (−δ̇) for the selected values of n. It is ob-
served that the following linear function can describe the relationship between ln copt and
ln (−δ̇):

ln copt = lnα2 + β2 ln (−δ̇), (39)

In this expression α2 and β2 are auxiliary variables. The slope β2 is shown in Fig. 4(b) for
each system with a specified n using • markers. As is shown in this figure, n−1

n+1 is the best
fit to these points, yielding

ln copt = lnα2 + n − 1

n + 1
ln (−δ̇), (40)
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Fig. 5 Characterizing effect of k on copt

or, equivalently,

copt = α2 (−δ̇)
n−1
n+1 . (41)

It is observed that the slope of ln (−δ̇) is the same as the corresponding term in Eq. (35). As
such, based on the linear relationship between ln copt and ln (−δ̇) in the form presented in
Eq. (40) for given m, k, and e, we conclude that λ in Eq. (35) is independent of −δ̇.

4.2.3 Dependency of λ on k

In previous investigations, we showed that λ is independent of −δ̇ and m. Therefore, in order
to study the dependency of λ on k, we assume that m = 1 kg, −δ̇ = 1 m/s, and e = 0.7 in
Eq. (35). Then we sweep k and n by, respectively, choosing 200 and 50 values, selected in
the following ranges:

105 ≤ k ≤ 1010 N/mn,

1 ≤ n ≤ 2.

For each resulting system, we solve the optimization problem in Eq. (23) for copt . The rep-
resentative results in Fig. 5(a) shows that ln copt varies linearly as a function of ln k as

ln copt = lnα3 + β3 lnk, (42)

where α3 and β3 are auxiliary variables. The value of the slope β3 for each system with a
specified n is shown in Fig. 5(b) with • markers. The best fit of 1

n+1 for β3 results in

ln copt = lnα3 + 1

n + 1
lnk, (43)

or, equivalently,

copt = α3 k
1

n+1 . (44)
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Fig. 6 Behavior of copt vs. e;
the solid curve
copt = 1.59 (e−0.3794 − 1) is
fitted to the optimization results
for n = 1.2, The dashed curve
copt = 2.47 (e−0.2323 − 1) is
fitted to the optimization results
for n = 1.8

As it is observed, the slope of ln k is the same as the one in Eq. (35). Therefore, the linear
relationship between ln copt and lnk in the form presented in Eq. (43) for given m, −δ̇, and e

indicates that λ in Eq. (35) is independent of k.

4.2.4 Dependency of λ on e and n

So far our investigations have shown that λ is independent of −δ̇, m, and k. In order to
investigate the dependency of λ on e and n, we assume that m = 1 kg, −δ̇ = 1 m/s, and
k = 1 N/mn. We then pick 600 points for e and 100 points for n linearly separated in the
following ranges:

0.45 ≤ e ≤ 1,

1 ≤ n ≤ 2.

For each system, we solve the optimization problem of Eq. (23) for copt. As shown in Fig. 6
for some representative values of n, the optimization results indicate that the behavior of copt

versus e obeys approximately the following pattern:

copt = α (eβ − 1), (45)

where α and β are only functions of n and computed using the following procedure. First for
each individual value of n ∈ [1,2], we plot copt vs. e (similar to the graph shown in Fig. 6),
and compute the corresponding values of α and β . Figure 7 shows the resulting values of α

and β as we sweep n, which can then be curve fitted using the following expressions:

α = 0.3331 n4 − 1.48 n3 + 3.077 n2 − 2.306 n + 1.794, (46)

β = 1.285 n(0.2553) − 1.725. (47)

Substituting Eq. (45) for copt , which is obtained by fitting a curve to the simulation results,
into the analytical formula of Eq. (34), and knowing that m = 1 kg, −δ̇ = 1 m/s, and k =
1 N/mn, we can express λ as

λ = α (eβ − 1) e

( n+1
2 )

n
n+1

. (48)
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Fig. 7 Characterizing α and β as functions of n

4.3 Closed-form formula for copt

In previous sections, we concluded that λ is independent of m, −δ̇, and k. Furthermore,
we found that λ can be expressed in the form shown in Eq. (48). In order to present an
expression for copt as a function of system parameters, we replace the function obtained for
λ from Eq. (48) into Eq. (34), resulting in the following closed-form solution:

copt = α (eβ − 1)
[
k (−δ̇)n−1 mn

] 1
n+1

, (49)

where α and β are computed using Eqs. (46) and (47), respectively. This expression shows
that copt approaches 0 as e approaches 1, while the damping coefficient approaches infinity
as e approaches 0. Furthermore, the exponents of −δ̇, m, and k in Eq. (49) are exact values
which are in agreement with the corresponding expressions in Eq. (34), while the accuracy
of the expressions for α and β depends of the number of data points as well as the accuracy
chosen to solve the optimization problem. As such, we can directly solve the optimization
problem of Eq. (23) or use the expression of Eq. (49) to obtain the value of copt .

Substituting the closed-form formula for the damping coefficient of Eq. (49) in Eq. (7),
the contact force in the continuous model is expressed as

fc = α (eβ − 1)
[
k (−δ̇)n−1 mn

] 1
n+1

δ̇ + k δn. (50)

Finally, we can determine the magnitude of penetration at the time of separation by enforcing
s δ̇ = −e (−δ̇) in Eq. (20) as

sδ =
(−δ̇ copt e

k

) 1
n

, (51)

where copt is computed using Eq. (49).
The value of n in the literature is mainly assigned to 3/2 which represents the contact

between two spheres or a sphere and plane surface. Therefore, we explicitly express the
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Fig. 8 Studying the accuracy of
Eq. (49) by showing the upper
bound of the absolute error vs. e

optimal damping of Eq. (49) for n = 3/2 as

copt = 1.95 (e−0.3 − 1) k0.4 (−δ̇)0.2 m0.6. (52)

This expression has also been reported in [25].

5 Numerical verification

In this section, we perform several numerical experiments to verify the validity and accuracy
of the formula of Eq. (49).

5.1 Randomly selected values for the system parameters

The closed-form formula of Eq. (49) was derived through a series of numerical investiga-
tions where arbitrary values for mass, stiffness, and initial penetration velocity were assigned
to the system parameters. In order to verify that the accuracy of this formula does not depend
on the assigned values, we perform the following numerical investigation.

We randomly assign values to each of the system parameters in the following ranges:

10−5 ≤ m ≤ 102 kg,

105 ≤ k ≤ 1010 N/mn,

10−3 ≤ −δ̇ ≤ 102 m/s,

1 ≤ n ≤ 2.

We also assign a value to the desired coefficient of restitution in the range 10−4 ≤ e ≤ 1.
Then we determine the optimal value for copt using Eq. (49). We solve the following equa-
tions governing the dynamics of the continuous contact model:

m δ̈ + copt δ̇ + k δn = 0,

δ(0) = −δ = 0, (53)

δ̇(0) = −δ̇,
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and stop the simulation at s t when the separation condition of copt
s δ̇ + k (sδ)n = 0 is met.

Based on the simulated value of the separation velocity, we determine eout using Eq. (22),
then the absolute error of the simulation is computed as |eout − e|.

We repeat the above simulation 300 times for different sets of randomly selected values
of system parameters m, k, −δ̇, and n. For each given value of e, we determine the max-
imum absolute error. Figure 8 shows this upper bound of the absolute error versus e. It is
observed that the application of the formula of Eq. (49) can accurately reproduce the desired
restitution.

5.2 Optimal damping for n = 1

For n = 1, the system is reduced to the linear model of Kelvin–Voigt [8] presented by the
following ODE:

mδ̈ + cδ̇ + kδ = 0,

δ(0) = −δ = 0, (54)

δ̇(0) = −δ̇.

By applying the separation condition of Eq. (20) to the exact analytical solution of this
model, Butcher and Segalman [2] have proven that the exact value of the coefficient of
restitution can be related to the damping ratio ξ as

eexact =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
( − ξ√

1−ξ2
tan−1(

2ξ
√

1−ξ2

2ξ2−1
)
)

ξ < 1,

( ξ−
√

ξ2−1

ξ+
√

ξ2−1

)(
2ξ

√
ξ2−1

2ξ2−1
)

ξ > 1,

(55)

where

ξ = c

2
√

km
. (56)

It should be noted that special consideration should be made for the correct determination
of the quadrant of the argument of tan−1 when ξ <

√
2/2.

Using n = 1, we can express the damping coefficient of Eq. (49) as

copt = 1.4181 (e−0.44 − 1)
√

km. (57)

In order to study the accuracy of Eq. (57), we assume that m = 1 kg, −δ̇ = 1 m/s, and
k = 1 N/m. We then sweep e in the range 10−4 ≤ e ≤ 1, and use Eq. (57) to find the cor-
responding optimal damping coefficient. We further calculate the damping ratio for each
resulting copt using Eq. (56) and substitute it in Eq. (55) to compute the exact value of the
corresponding coefficient of restitution. Figure 9(a) shows the behavior of eexact versus e. To
better compare these values, we plot the absolute error |eexact − e| in Fig. 9(b). It is observed
that the formula presented in Eq. (57) can accurately capture the damping properties of the
system.
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Fig. 9 Studying the accuracy of the formula of Eq. (57) for n = 1

Fig. 10 Schematics of a
two-pendulum system: the initial
configuration of the system is
shown by solid bodies and the
configuration of the system at the
first impact is shown by dotted
bodies

6 Numerical simulation

In this section, we use the presented contact force model for the impact simulation of two
pendulums and compare the results with the traditional modeling techniques. As shown in
Fig. 10, each pendulum is modeled as a rod with negligible thickness and uniform mass dis-
tribution. We assume the following system parameters: m1 = 1 kg, m2 = 0.2 kg, L1 = 6 m,
L2 = 4 m, and a = 2 m. The simulation starts with the configuration shown in Fig. 10 for the
rods with solid boundaries, representing the initial condition θ1 = π/12 rad, θ2 = −π/2 rad,
and θ̇1 = θ̇2 = 0 rad/s. The impact between the bodies are modeled using different tech-
niques. First, the piecewise method with the application of the impulse–momentum formu-
lation is used to address the dynamics of the system during impact [23]. Then, the continuous
contact force model of Eq. (50), developed in this paper, is used to express the dynamics of
impact during the period of contact. Finally, the Hunt–Crossley continuous contact model of
Eq. (9) with the damping factor of Eq. (16) is used to simulate the dynamics of the system
during the period of contact. Figure 11 shows the behavior of θ̇1 and θ̇2 for these simulations
while e = 0.3, n = 3/2, and k = 108 N/m1.5 are used for the continuous contact models. It
is observed that the system experiences three impacts during an 8-second simulation. The
configuration of the system for the first impact is shown by bodies with dotted boundaries in
Fig. 10. Furthermore, Fig. 11 shows that the presented method in this paper can capture the
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Fig. 11 Comparison between the results of the simulation of the double pendulum system, solid curve:
piecewise method; dashed curve: presented method with the force model of Eq. (50); dotted curve: Hunt and
Crossley force model of Eq. (9) with damping factor of Eq. (16)

dynamics of the system more accurately. Figure 12 also compares the contact force versus
penetration of the presented continuous model against that of the Hunt and Crossley force
model of Eq. (9) with damping factor of Eq. (16) during the first period of contact.

7 Conclusion

In this paper, we have presented an analytical expression to compute the optimal damping
coefficient in a class of nonlinear continuous force models. The contact force model consists
of a spring–damper force element in which the spring obeys force–penetration characteris-
tics of the Hertz model. Furthermore, it has been assumed that the exponent of the deforma-
tion in the Hertz model can be assigned values between one and two. We have applied an
optimization process to compute the damping coefficient of the linear damper in the contact
model such that the desired restitution is reproduced at the time of separation. Furthermore,
unlike most of other reported models in literature, in which the separation condition is con-
sidered at the instant at which both penetration and contact force are zero, in this work we
have considered zero contact force as the only condition for separation. After separation,
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Fig. 12 Contact force vs.
penetration during the first period
of impact, solid curve: presented
method with the force model of
Eq. (50); dashed curve: Hunt and
Crossley force model of Eq. (9)
with damping factor of Eq. (16)

either the restitution continues or permanent indentation may have been reached. As such,
the presented model covers a wider range of impact problems. We have verified the validity
and accuracy of the proposed formula through conducting several numerical simulations on
systems with randomly-assigned parameters. Additionally, in the case of the Kelvin–Voigt
model, it has been shown that the proposed formula can successfully recover the exact so-
lution of this model. Finally, we have applied the presented formulation to demonstrate the
impact of a two-pendulum system and compared the results against those of the piecewise
method and the Hunt–Crossley-based continuous model.
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