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Abstract

Since the publication of the study by DeMiguel, Garlappi & Uppal (2009), where they
demonstrate that none of the 14 mean-variance optimization strategies outperform the
naive diversification, several studies claim to defend the superiority of portfolio optimiza-
tion strategies relative to the naive diversification (see e.g. Kritzman, Page & Turkington
(2010), Tu & Zhou (2011), Kirby & Ostdiek (2012)). However, in a recent study by
Zakamulin (2017), the author states that the superior performance of these optimized
strategies appears due to exposures to established factor premiums. Motivated by the
study of Zakamulin (2017), this thesis evaluates the out-of-sample performance of four
risk-based strategies relative to the naive diversification across 25 empirical datasets pro-
vided by Kenneth French. Additionally, we assess whether the (out)performance could be
attributed to established factor premiums. We find that three of four risk-based strategies
on average deliver superior performance over the naive diversification in terms of Sharpe
ratio, although the performance on the individual datasets varies significantly. Each risk-
based strategy generates statistically significant alphas in the CAPM, both on average,
and in nearly each dataset. In addition, we show that the superior performance of these
risk-based strategies compared to the naive diversification, and in terms of CAPM alpha,
are mostly generated in bear markets. After controlling for several risk factors through
the Fama-French five-factor model, the alphas of any risk-based strategy becomes neither
economically nor statistically significant. The main conclusion that we reach in this thesis
is that the superior performance of the risk-based strategies is likely to be attributed to

established factor premiums.
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1 Introduction

The mean-variance paradigm introduced in the seminal paper by Markowitz (1952) constitutes
a theoretical framework to construct efficient portfolios. In a static setting, the mean-variance
model represents the optimal way to allocate capital among risky assets. However, the practical
usefulness of the model has been overshadowed by the difficulties associated with forecasting
the vector of mean returns and the covariance-variance matrix due to estimation error. The
estimation error related to the model parameters could lead to extreme portfolio weights and
poor out-of-sample performance. Especially with mean returns that are considered notoriously
difficult to forecast accurately, compared to the more stable and predictable covariance-variance
matrix. Consequently, several researchers have turned their focus to risk-based strategies that
optimize the portfolio weights solely based on assets risk, and are therefore less affected by the
impact of estimation error. Despite the numerous approaches devoted to mitigate the impact
of estimation error, DeMiguel, Garlappi & Uppal (2009) present results that question the value
added by optimized portfolios relative to the naive diversification strategy. Specifically, they
evaluate 14 mean-variance models across seven empirical datasets and find that none of these
optimized portfolios consistently outperform the naive diversification, which allocates capital
equally among the assets under consideration.

These findings resulted in numerous studies that claim to defend the superiority of optimized
portfolio strategies. Kritzman, Page & Turkington (2010) show that the minimum-variance and
mean-variance portfolios provide higher average Sharpe ratio across eight empirical datasets
compared to the naive diversification, although the outperformance is not statistically justified.
Tu & Zhou (2011) construct optimal combinations of the naive diversification rule and vari-
ous optimized portfolio rules and show that they outperform the naive diversification strategy
across seven empirical datasets. Kirby & Ostdiek (2012) develop two alternative methods of
mean-variance portfolio strategies and demonstrate that these outperform the naive diversifica-
tion strategy with both economically and statistically margins across four empirical datasets.
Additionally, several other studies provide compelling results for the optimized portfolios ability

to outperform the naive diversification.



More recently, Zakamulin (2017) shows that all recent empirical studies surrounding portfolio
optimization use the Sharpe ratio as a performance measure without controlling whether the
superior performance of these optimized portfolios appears due to exposures to one or several
profitable anomalies. The author constructs three optimal portfolios on 17 empirical datasets and
convincingly shows that none of these strategies deliver superior performance after controlling
for the low-volatility effect, which Zakamulin (2017) demonstrates is present for nearly all of
the datasets provided by Kenneth French. Zakamulin (2017) concludes that portfolio strategies
that seem sophisticated in nature can potentially result in rather simple portfolio strategies that
only benefit from some profitable market anomalies such as the low-volatility anomaly. This
low-volatility anomaly refers to the phenomenon where low-volatility stocks provide superior
risk-adjusted returns compared to their riskier peers. The existence of the low-volatility effect
has been known for a long period and has been documented in several studies (see e.g. Haugen
& Baker (1991), Blitz & Van Vliet (2007), Baker, Bradley & Wurgler (2011)).

Motivated by the study conducted by Zakamulin (2017), this thesis evaluates the performance
of four risk-based strategies relative to the naive diversification, and additionally assess whether

1L We construct four

the (out)performance could be attributed to established factor premiums.
risk-based strategies that are characterized by weighting each asset solely based on the assets
risk rather than the mean returns, which is difficult to estimate with precision. Specifically, we
use two optimal strategies considered in the literature, the minimum-variance portfolio (MVP),
and the volatility-timing strategy (VT) proposed by Kirby & Ostdiek (2012). Additionally, we
suggest two ad-hoc strategies that assign weights based on the assets inverse standard deviation
and CAPM beta. The goal of these ad-hoc strategies is to demonstrate that one does not need
sophisticated optimal strategies to outperform the naive diversification.

Our thesis extends previous literature in several ways. First, existing empirical studies usually
evaluate the performance of optimized portfolios relative to the naive diversification using a few
arbitrary empirical datasets, chosen among a great number of available datasets in the Kenneth
French data library. The performance of a particular portfolio strategy could be affected by the
sorting-characteristics to the individual dataset, and those arbitrary datasets could have been
selected to substantiate the author’s main point. To prevent this “cherry-picking” of datasets, this
thesis evaluates the performance across 25 empirical datasets formed on portfolios of U.S. stocks
provided by Kenneth French. Second, we assess the performance of the risk-based strategies

relative to the naive diversification in bull and bear markets, which to the best of our knowledge

1Optimized portfolios are henceforth referred to as risk-based strategies. The naive diversification can
also be characterized as a risk-based strategy, we wil however only refer to strategies that optimize the
weights based on the assets risk.



has never been sufficiently explored. This is done to get a deeper insight into the nature of the
performance and assess whether the (out)performance is mostly generated in bull or bear markets.
Third, we propose to use a generalized approach to look at the aggregate portfolio performance
across the 25 datasets for each of the risk-based strategies. This generalized approach gives us
the opportunity to gain insight into the risk factors that could potentially drive the superior
performance, and additionally study the risk exposure over time. Fourth, the newly proposed
Fama-French five-factor model is used to assess the factor exposure of the risk-based strategies.

We find that on average, three of four risk-based strategies deliver superior performance over
the naive diversification in terms of the Sharpe ratio. However, the performance on the individual
datasets varies significantly. Each risk-based strategy generates statistically significant alphas
in the CAPM, both on average, and in nearly every dataset. When we control for several risk
factors, through the Fama-French five-factor model, the positive alpha of any risk-based strategy
becomes insignificant both on average and in virtually all datasets. These results are robust
to changes in the estimation window, and across different time periods. The results we obtain
in the bull and bear markets show that the risk-based strategies superior performance over
the naive diversification appears to be mostly generated during bear markets where we observe
statistically significantly higher mean returns relative to the naive diversification. Additionally,
the risk-based strategies display a higher alpha during bear markets compared to bull markets in
the CAPM. Through the aggregated performance, we show that each risk-based strategy, across
the 25 datasets, delivers statistically significant alphas in the CAPM, and when we introduce
the five-factor model, the significant alphas vanish. The aggregated performance displays that
the four risk-based strategies load significantly on the value (HML), profitability (RMW), and
investment (CMA) factors. Results that are in line with previous studies (see e.g. Clarke,
de Silva & Thorley (2006), Fama & French (2016), Zakamulin (2017)). Additionally, the results
we obtain for the two ad-hoc strategies substantiate the point made in Zakamulin (2017), that one
can create rather simple portfolio strategies without the need for optimization, though directly
exploits profitable anomalies, could result in superior performance over the naive diversification.

The remainder of this thesis is structured as follows: Section 2 provides a review of theory
and existing literature. Section 3 presents the data we use in this thesis. Section 4 addresses the
research method we use for the empirical analysis. In Section 5 we present the empirical results
we obtain from our study. Section 6 covers the discussion, whereas Section 7 draws the main

conclusion of our study.



2 Theory & Literature Review

2.1 Modern Portfolio Theory and Superiority of Optimized Port-

folios

In the seminal paper by Markowitz (1952), the author derived the optimal rule for allocating
capital among risky assets to maximize the expected return for a given level of risk or vice versa,
minimize the risk for a given level of expected return. The mean-variance framework requires
knowledge of mean returns and the covariance-variance matrix to optimize the portfolios, and
if one only consider risky assets, then the optimal portfolio will depend on the investor’s risk
preferences. These mean-variance optimal portfolios create the efficient frontier, which is illus-
trated graphically as the upper part of a hyperbola in a mean return-standard deviation space.
Tobin (1958) extended the paper from Markowitz (1952) and illustrated that the introduction
of a risk-free asset shifted the efficient frontier to the Capital Allocation Line, which represents
a straight line from the risk-free rate to the tangent of the efficient frontier. This tangent point
is known as the tangency portfolio and represents the optimal combination of risky assets in the
presence of a risk-free asset.

In theory, the mean-variance model represents the optimal way of allocating capital, though
the model has been criticized for its practical usefulness due to the difficulties of forecasting the
model parameters. The mean-variance model treats the estimated parameters as true realiza-
tions, while they are actually estimated with uncertainty. Therefore, the practical implemen-
tation of the mean-variance model tends to generate extreme portfolio weights that are highly
time-varying and delivers poor out-of-sample performance. Michaud (1989) refers to the mean-
variance optimization model as “error mazximizers” due to the large errors associated with the
estimation of mean returns and the variance-covariance matrix. Several studies suggest that im-
plementation of constraints, shrinkage estimators, and various extensions of the mean-variance
strategy could reduce the impact of estimation error (see e.g. Chopra & Ziemba (1993), Jagan-
nathan & Ma (2003), Ledoit & Wolf (2004)). In spite of these studies, DeMiguel et al. (2009)

present results that question the value added by optimized portfolios relative to the naive di-
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versification strategy. They thoroughly assess 14 mean-variance optimization strategies across
seven empirical datasets and show that none of those strategies produce consistently better
out-of-sample performance than the naive diversification strategy. The authors implement the
mean-variance model and various extensions designed to reduce the impact of estimation er-
ror. Their results indicate that the implementation of various constraints only lead to modest
improvement in the performance compared to the naive diversification. DeMiguel et al. (2009)
conclude that the estimation error associated with the mean-variance strategies erodes much of
the out-of-sample performance. As a result, the naive diversification was consequently proposed
as an obvious benchmark strategy when assessing other sophisticated strategies, due to its low
implementation costs and relatively good performance.

More recently, several studies claim to defend the superiority of optimized portfolios relative
to the naive diversification. Kritzman et al. (2010) find that the minimum-variance and the mean-
variance portfolio strategy provide superior performance compared to the naive diversification.
Although, they conclude superiority of the mean-variance strategies without relying on any
statistical tests of the difference in Sharpe ratio. Tu & Zhou (2011) develop new portfolio
strategies that include the weighted combination of the optimized portfolio rules with the naive
diversification rule and show that these combinations outperform the naive diversification. Kirby
& Ostdiek (2012) develop two alternative mean-variance portfolio strategies based on the earlier
work of Kirby, Ostdiek & Fleming (2001, 2003), namely the volatility-timing and the reward-to-
risk timing strategy. These two portfolio strategies, which are devoted to mitigate the impact of
estimation error, focus only on the assets volatility and returns, and ignores the correlation among
the assets to optimize the portfolio weights. Kirby & Ostdiek (2012) evaluate the performance
of these two strategies relative to the naive diversification across four preselected datasets and
show that they outperform the naive diversification by economically and statistically margins.
In line with Kirby & Ostdiek (2012), Stivers & Sun (2016) suggest that these strategies that
only focus on the diagonal of the variance-covariance matrix could mitigate the estimation error,
and consequently outperform the naive diversification. The authors evaluate the performance of
three idiosyncratic-volatility strategies and the volatility-timing strategy proposed by Kirby &
Ostdiek (2012) and illustrate that they outperform the naive diversification in terms of Sharpe
ratio.

In another recent study conducted by Zakamulin (2017), the author provides a cautionary
note regarding the use of Kenneth French datasets while measuring the performance by means of
Sharpe ratio. The latter means that the authors do not consider the possibility that some of these

optimized strategies provide superior performance simply due to tilting towards one or several
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profitable anomalies. Zakamulin (2017) first illustrates that the low-volatility effect is present in
virtually all 17 datasets obtained from the Kenneth French online data library. Second, the author
implements three optimization strategies, the minimum-variance portfolio, volatility-timing, and
reward-to-risk timing strategy, and shows that these strategies on average provide higher Sharpe
ratio relative to the naive diversification. In addition, Zakamulin (2017) demonstrates that the
three strategies generate economically significant annualized CAPM alphas of 1.5-1.8%. When
the author controls for an additional risk factor, the Fama-French HML factor, which can be
viewed as a proxy for the low-volatility effect (see Blitz (2016)), the augmented 2-factor alphas
of these strategies become neither economically nor statistically significant. Zakamulin (2017)
concludes that to assess the mean-variance efficiency of optimized portfolios, it must be shown

that the superior performance remains when controlling for known factor premiums.

2.2  Asset Pricing Theory

Based on the work by Markowitz (1952), Sharpe (1964), Lintner (1965), and Mossin (1966)
developed the Capital Asset Pricing Model (CAPM), which aims to explain the relationship
between risk and expected return. According to the CAPM, the portfolio’s expected return can
be expressed as the sum of the risk-free rate and the portfolio’s risk exposure times the expected
market risk premium. Thus, investors should be compensated in two ways for buying a portfolio,
(i) Time value of money (r¢), (ii) and systematic risk associated with the investment. The CAPM

is given by

Blrp) = vy + Byp(Elrm] —7y), (2.1)

where E[rp] is the expected return of portfolio p, r¢ is the risk-free rate, ; is the market risk
exposure for portfolio p, and E|r,,| is the expected return for the market portfolio.

Several studies have later questioned the adequacy of the model. Early empirical tests of
the Security Market Line illustrate that the relationship is flatter than expected by the CAPM
(Black, Jensen & Scholes (1972)). In other words, portfolios of low beta stocks deliver higher risk-
adjusted returns than predicted by the CAPM, whereas portfolios of high beta stocks provide
lower risk-adjusted returns than predicted by the CAPM. A similar conclusion is drawn by
Haugen & Heins (1975), where the authors find that the relationship between risk and return
was not that straightforward as previously claimed. The criticism was mainly based on the fact
that there was no distinct connection that increased risk would give an increased return (will

be discussed in Section 2.3). Several other studies reveal other empirical shortcomings with the
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CAPM by sorting stocks into portfolios depending on the stocks fundamental characteristics (see
e.g. Basu (1977), Reinganum (1981), Banz (1981)). These portfolios provide higher returns than
are justified by the CAPM and lead to the discovery of cross-sectional stock return patterns,
such as the size and value anomalies.

During the early 1990s, Eugene Fama and Kenneth French published several papers regard-
ing the construction of a multi-factor model that extends the CAPM with two factors, the size
and value anomalies (Fama & French (1993)). The size factor, SMB (’Small-Minus-Big’), cap-
tures average returns of small-cap stocks relative to large-cap stocks, and value factor, HML
("High-Minus-Low’), captures average returns of value stocks relative to growth stocks. Previ-
ous empirical tests indicate that the model provides higher explanatory power in describing the

cross-sectional stock returns (Fama & French (1993)). The three-factor model is defined as

Elrp) =1¢ + Bpi(Elrm] —1¢) + Bp2E[SMB] + B, 3E[HML], (2.2)

where E[SM B| and E[HML] are the expected return of the size and value factors. The beta
coefficients, 3,2, and 3,3 denote the exposure to the size and value factors for portfolio p,
respectively. The three-factor model improves the ability to explain the cross-sectional stock
returns relative to the CAPM, although it fails to describe the cross-sectional variations in
portfolios sorted on momentum. Jagadeesh & Titman (1993) find that portfolios ranked on their
previous price movements over the past 3-12 months are usually followed by price movements in
the same direction. Based on the observations by Jagadeesh & Titman (1993), Carhart (1997)
augment the Fama-French three-factor model with an additional factor, the one-year momentum
factor (PR1YR).

More recently, Fama & French (2015) include two additional factors to improve the cross-
sectional explanatory power of the existing three-factor model. The evidence of Novy-Marx
(2013), Titman, Wei & Xie (2004), where they argue that the three-factor model fails to describe
the cross-sectional variations related to profitability and investment, led Fama and French to in-
clude a profitability and investment factor to their existing three-factor model. The profitability
factor, RMW (’Robust-Minus-Weak’), captures average returns of portfolios consisting of robust
operating profitability compared to portfolios consisting of weak operating profitability. While,
the investment factor, CMA ("Conservative-Minus-Aggressive’) captures average returns of port-
folios consisting of conservative (low) total asset growths relative to portfolios of aggressive (high)

total asset growths. The Fama-French five-factor model is defined as

E[Tp] = Tf+ﬂp71(E[Tm]—’I’f)+/Bp72E[SMB]—|—5p73E[HML]+,Bp74E[RMW]+,Bp75E[CMA], (23)
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where E[RM W] and E[C M A] are the expected return of the profitability and investment factors.
The beta coefficients, 3,4, and 8,5 denote the exposure to the profitability and investment
factors for portfolio p, respectively. Fama & French (2016) show that the inclusion of two new
factors consistently improve the model performance compared to the three-factor model, and is
intended to capture the cross-sectional patterns in average stock returns left unexplained by the
three-factor model. Fama & French (2016) further advocate that “ Positive exposures to RMW
and CMA go a long way toward capturing the average returns of low-volatility stocks, whether

volatility is measured in terms of total returns or residuals” (Fama & French (2016) p.27).

2.3 Low-Volatility Anomaly

Contrary to a fundamental principle in finance, low-volatility portfolios have historically provided
superior risk-adjusted returns compared to their riskier peers. The phenomenon is not new,
and empirical studies have for a long period provided compelling evidence for its existence and
persistence. Early empirical tests of the CAPM demonstrate that portfolios of low-beta stocks
deliver higher risk-adjusted returns compared to portfolios of high-beta stocks (Black et al.
(1972), Haugen & Heins (1975)). In more recent time, several studies document the superior
performance earned by low-volatility portfolios. Haugen & Baker (1991) construct a minimum-
variance portfolio of the 1000 largest U.S. stocks for the period 1972 to 1989 and find that
the MVP consistently outperforms the market portfolio in terms of both higher returns and
lower volatility. Chan, Karceski & Lakonishok (1999), Jagannathan & Ma (2003) and Clarke
et al. (2006) present similar evidence and show the superior performance of a minimum-variance
portfolio compared to a value-weighted index. Blitz & Van Vliet (2007) show that there exist
a low volatility effect in the U.S., European and Japanese equity markets. The authors suggest
a simple methodology approach to exploit the low volatility effect, by sorting stocks into decile
portfolios ranked on volatility (beta). They find that there are still significant alphas remaining
in low-volatility portfolios after controlling for size, value and momentum factors. In a follow-up
article, Blitz, Pang & van Vliet (2013) report a low volatility effect for emerging equity markets,
by demonstrating that the empirical relation of the risk-return trade-off is flat and sometimes
negative. Frazzini & Pedersen (2014) construct a market neutral Betting-Against-Beta (BAB)
factor, which has long exposure in low beta stocks and short exposure in high beta stocks, and
demonstrate that this factor produces significant risk-adjusted returns.

Although research studies have provided compelling evidence for the existence of the low-
volatility anomaly, there is a disagreement about the explanations behind the low-volatility

effect. Some researchers argue from a behavioral standpoint. Baker et al. (2011) apply a similar
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ranking approach as Blitz & Van Vliet (2007) and find that regardless of the classification of
risk, low-volatility portfolios outperform their riskier peers. The authors point to the benchmark
hypothesis as to why the low-volatility effect persists. This builds on the idea that portfolio
managers who are measured against a particular benchmark will have an incentive to overweight
high-volatility stocks and underweight low-volatility stocks in an attempt to beat the benchmark.

Several other studies argue about the possibility that the low-volatility effect is merely a
manifestation of other anomalies. Clarke, de Silva & Thorley (2006) show that the MVP provide
superior performance over the market portfolio, and demonstrate that the MVP implicitly tend
to tilt towards the value and size factors. Similarly, de Carvalho, Lu & Moulin (2012), and
Goldberg & Geddes (2014) illustrate that the excess return of a minimum-variance strategy
could largely be attributed due to exposures to the value factor. Blitz (2016) constructs a low-
volatility risk factor on U.S. stocks, by following the methodology by Fama & French (1993).
The author distinguishes between small-cap and large-cap low-volatility strategies, and evaluates
the performance by means of the Sharpe ratio and mean excess returns for various subperiods
from 1929 to 2014. Blitz, suggests that over half a century the low-volatility effect seemingly can
be explained by the HML factor. Yet, the author clarifies that the performance of low-volatility
strategies in some periods cannot be explained by exposure to the HML factor.

In an attempt to attribute the superior performance to known risk factors, Scherer (2011)
uses the Fama-French three-factor model augmented with two characteristic low-volatility factors.
Scherer (2011) shows that 83% of the variation from minimum variance strategies excess returns
can be attributed to these five risk factors and concludes that optimized strategies that aim to
minimize risk are nothing more than an inefficient way to capture various factor premiums. Chow,
Hsu, Kuo & Li (2014) construct the MVP and four heuristic-based portfolios based on the risk-
parity strategy. By using the Carhart four-factor model augmented with the Frazzini-Pedersen
BAB factor, and a duration factor, Chow et al. (2014) attempt to identify the sources of return
premium associated with low-volatility strategies. The authors show that factor analysis of low-
volatility portfolios reveals that in excess of market-weighted return, returns are substantially
driven by the exposure towards value, BAB, and duration premium. Novy-Marx (2014) shows
that the low-volatility effect is explained by the Fama-French three-factor model augmented
with a profitability factor, and concludes that “ High profitability is the single most significant
predictor of low volatility” (Novy-Marx (2014) p.2). Further on, Fama & French (2016) verify
these results and illustrate that their new five-factor model can explain the returns on both
low-beta sorted stocks as well as low-volatility sorted stocks. They argue that positive exposures

to the two new factors RMW and CMA absorb the high average returns associated with low-



beta and low-volatility portfolios that are left unexplained by the three-factor model. While the
negative exposure to RMW and CMA absorb the low average returns associated with high-beta
and high-volatility portfolios that are left unexplained by the three-factor model.

Existing literature surrounding portfolio optimization is a subject of conflict. First of, re-
searchers arguably disagree whether portfolio optimization delivers superior performance relative
to both the naive diversification, and a value-weighted portfolio, and whether the performance
is persistence across time and geographical areas. Second, there exists a disagreement whether
the outperformance of optimal portfolios (or risk-based strategies) is attributed to exposure to
established factor premiums. Risk-based strategies that solely focus on minimizing risk arguably
benefits from the low-volatility effect. Thus, the question arises whether the newly proposed
Fama-French five-factor model can ezplain the superior performance generated by risk-based

strategies.

3 Data

3.1 Kenneth French Datasets

The data we use for the empirical analysis consist of 25 empirical datasets, which are obtained
from the online data library of Kenneth French.! These datasets are similar to those used in
previous studies by DeMiguel et al. (2009), Kritzman et al. (2010), Kirby & Ostdiek (2012),
and Zakamulin (2017), as well as several other research studies surrounding portfolio optimiza-
tion. The datasets include portfolios that are formed using different criteria, and contain stocks
listed on the NYSE, AMEX, and NASDAQ with available equity data. The portfolios are value
weighted and exhibit return series with a monthly frequency. The time periods for the empirical
datasets varies, but are adjusted to cover the similar period from July 1963 to December 2016.
The choice of the starting point is such that it coincides with the period used in previous studies.
However, the length of the period is extended due to newly accessible data in the online data
library.

Table 1 reports an overview of the empirical datasets, which includes the dataset number,

abbreviation, and the number of portfolios in each dataset. The first 15 empirical datasets contain

'http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

10


http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

3.2. Risk Factors 3

Table 1: Kenneth French datasets
The table presents all the empirical datasets that are obtained from the Kenneth French data
library. # Denotes the dataset number, and N denotes the total number of portfolios included
in each dataset.

# Dataset Abbreviation N
1 Portfolios formed on Size Size 10
2 Portfolios formed on Book-to-Market BookM 10
3 Portfolios formed on Operating Profitability OP 10
4  Portfolios formed on Investment Inv 10
5  Portfolios formed on Momentum Mom 10
6  Portfolios formed on Short-Term-Reversal ShortTR 10
7  Portfolios formed on Long-Term-Reversal LongTR 10
8  Portfolios formed on Accruals Acc 10
9  Portfolios formed on Market Beta MktB 10
10 Portfolios formed on Net-Share-Issues NSI 10
11 Portfolios formed on Variance Var 10
12 Portfolios formed on Residual Variance ResVar 10
13 Portfolios formed on Earnings-to-Price E-P 10
14  Portfolios formed on Cashflow/Price CF-P 10
15 Portfolios formed on Dividend Yield Div-Y 10
16  Portfolios formed on Industry Ind 10
17 Portfolios formed on 30 Industry 30Ind 30
18 Portfolios formed on Size and Book-to-Market Size-BM 25
19  Portfolios formed on Size and Operating Profitability Size-OP 25
20 Portfolios formed on Size and Long-Term-Reversal Size-LTR 25
21 Portfolios formed on Size and Momentum Size-MOM 25
22 Portfolios formed on Size and Investment Size-INV 25
23 Portfolios formed on Operating Profitability and Investment OP-INV 25
24 Portfolios formed on Book-to-Market and Operating Profitability BM-OP 25
25  Portfolios formed on Book-to-Market and Investment BM-INV 25

10 portfolios, where all stocks are sorted into decile portfolios based on univariate sorts. The
two following empirical datasets include stocks that have been sorted based on industries. The
first industry-dataset consists of 10 portfolios, whereas the second industry includes 30 industry
portfolios. The rest of the datasets have been constructed by sorting stocks into 25 portfolios

based on bivariate sorts.

3.2 Risk Factors

The return series of the risk factors in the Fama-French five-factor model are also collected from
the online data library by Kenneth French. These return series include the MKT (excess return
of the market portfolio), SMB (Small-Minus-Big), HML (High-Minus-Low), RMW (Robust-
Minus-Weak) and CMA (Conservative-Minus-Aggressive), and are constructed by value-weighted
portfolios of stocks listed on the NYSE, AMEX, and NASDAQ. The MKT factor represents the
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Table 2: Descriptive statistics of the factor returns
The table provides summary statistics for the risk-factors in the Fama-French five-factor model
over the period July 1973 to December 2016. MKT listed in column 1 represents the excess
return on the market portfolio, SMB and HML are listed under column 2 and 3, and represent
the size and value factors. Column 4 and 5 show RMW and CMA, which are the profitability
and investment factor, respectively.

MKT SMB HML RMW CMA

Summary statistics

Mean return 6.86 3.31 4.46 3.23 4.22
Standard deviation 15.85 10.50 10.19 8.20 6.86
Skewness -0.56 0.38 0.05 -0.39 0.36
Kurtosis 2.01 4.27 2.12 12.67 1.81

excess return on the market portfolio. The one-month Treasury bill rate represents the risk-free
rate of return. The size factor SMB reflects the average return of portfolios with small-cap stocks
minus the average return of portfolios with large-cap stocks. The value factor HML displays the
average return of portfolios with high book-to-market stocks (value stocks) minus the average
return of portfolios with low book-to-market stocks (growth stocks). The profitability factor
RMW shows the average return of portfolios with robust operating profitability stocks minus
the average return of portfolios that contain weak operating profitability stocks. The investment
factor CMA reflects the average return of portfolios with conservative investment stocks minus
the average return of portfolios with stocks that invest aggressively.

Table 2 presents the descriptive statistics for the various risk factors for the sample period
July 1973 to December 2016. It is evident from Table 2 that the MKT and HML factors provide
the two largest mean returns of 6.86% and 4.46%, respectively. While the SMB, RMW, and CMA
factors provide values of 3.31%, 3.23%, and 4.22%, respectively. Panel B displays the standard
deviation, and we note that the MKT present the highest standard deviation of 15.85%. The
factors SMB, HML, RMW, and CMA display standard deviations of 10.50%, 10.19%, 8.20%, and
6.86%), respectively. Figure 3.2 plots the logarithmic cumulative return for the market portfolio?,
for the period July 1973 to December 2016. In addition, the gray shaded areas represent the bear

periods (we describe the detection of turning points between bull and bear phases in Section 4).

2The market portfolio is given by M KT + Ty
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Figure 1: Bull and bear markets in the U.S. stock market
The figure illustrates the cumulative return for the value-weighted market portfolio for the time
period July 1973 to December 2016. The detection of turning points between the bull (white

areas) and bear phases (grey areas) are obtained using the dating algorithm of Bry & Boschan

(1971).

4 Methodology

This section presents a description of the methods we use for the empirical analysis. First, in
Subsection 4.1, we describe the various portfolio strategies. Specifically, two optimal portfolio
strategies that are considered in the literature, two ad-hoc strategies, and additionally the naive
diversification strategy, which we use as a benchmark strategy. In Subsection 4.2, we describe the
out-of-sample procedure to estimate the parameter inputs in order to simulate the performance
of the risk-based strategies. The description of the various portfolio performance measures is
described in Subsection 4.3. In Subsection 4.4, we present the statistical tests that we use
for the portfolio performance. Subsection 4.5 includes a description of the methodology to
identify turning points between the bull and bear phases. Last, in Subsection 4.6, we present
the methodology we use to evaluate the risk exposure across the empirical datasets. The free
programming language R have been used to construct, implement and analyze the performance

of the various portfolio strategies.!

"https://www.r-project.org
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4.1 Portfolio Strategies

4.1.1 Minimum-Variance Portfolio

The general prescription of the mean-variance optimization model is to minimize the risk for a
given level of expected return, or vice versa, maximize the expected return for a given level of risk.
While each of the various optimal portfolios located on the efficient frontier requires estimates
of mean returns, have MVP the unique property of minimizing the risk without relying on mean
returns. Illustrated graphically, is the MVP located at the left-most tip on the efficient frontier.
There exist two different approaches that lead to the solution for the optimal MVP weights. The
general approach is to derive the solution directly from the optimal weights of the mean-variance
portfolio under the assumption that all of the mean returns are equal. The optimal weights
for the mean-variance portfolio are then reduced to the optimal solution for the MVP, and will
thereby produce the highest Sharpe ratio. This can be justified on the following ground. The
Sharpe ratio is given by SR = “;ﬁ, where ¢ and o are the mean return and standard deviation
for portfolio p. if u is equal for all the assets, then minimizing o will be the only way to increase
the Sharpe ratio.

The second approach is to find the weights for asset ¢, which provides the portfolio with the

lowest risk. To find the weights of the respective assets, we solve the following minimization

problem

1
min  —w'Yw, st w'l=1, (4.1)
w

where w is an IV x 1 vector of portfolio weights, 3. is an N x N covariance matrix, 1 is an N x 1
vector of ones, and w'l = 1 is the budget constraint. Solving this minimization problem leads
to the following solution

¥ 11

Wmvp = m, (42)

where WP is a vector of weights for the MVP.
The above-mentioned solution for the MVP weights is a closed-form solution. Hence, the
solution is in the absence of short-sale restrictions. To obtain the weights for the MVP with

short-sale restrictions, we solve the following minimization problem
1
min §w'2w, st. w'l=1, and w; >0, (4.3)

w

where w; > 0 assures non-negativity in the asset weights. To estimate the optimal weights for the
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MVP in the presence of short-sale restrictions, we obtain the results through a numerical solu-
tion.? We impose short-sale restrictions to create our results comparable to the recent literature

(DeMiguel et al. (2009), Kirby & Ostdiek (2012), Zakamulin (2017)).3

4.1.2  Volatility-Timing Strategy

Kirby & Ostdiek (2012) introduce two new methods of mean-variance portfolio selection, namely
the volatility-timing strategy (VT), and the reward-to-risk timing strategy. The VT strategy
uses sample information about the assets conditional variance to determine the portfolios weights,
while the reward-to-risk timing strategy incorporates information about conditional means. How-
ever, since the mean returns are prone to larger estimation error than variances, and we only
consider risk-based strategies in this thesis, we will only use the VT strategy. According to Kirby
& Ostdiek (2012), there are 4 notable features that characterize the VT strategy: (i) First, it
does not require optimization, (ii) Second, it does not require covariance matrix inversion, (iii)
Third, it assures non-negative weights, (iv) Fourth, through volatility changes, the sensitivity of
the portfolio weights can be adjusted with a tuning parameter.

Kirby & Ostdiek (2012) show that if one assumes that all pair-wise correlations between the
assets are 0 (i.e. the covariance matrix becomes a diagonal matrix), then the weights for the

MVP is given by

e Na/ed)

where o2 is the estimated conditional variance of the excess return on asset i. Therefore, if

WMVP _ (1/07) (4.4)

the covariance matrix remains diagonal for all ¢, then the MVP will be equivalent to a very
simple volatility-timing strategy. Although Kirby & Ostdiek (2012) do not expect the covariance
matrix to be diagonal, they explain that by setting the pair-wise correlations to zero might
perform better than using the full covariance matrix. To facilitate the possibility of determining

how the portfolio weights respond to volatility changes, they propose the following strategy

D SN VIR

T is the weight for asset i, a? is the estimated conditional variance of the excess return

WVT — (1/a7)" (4.5)

where sz
on asset i, and 7 is a tuning parameter that determines the aggressiveness of rebalancing the
portfolio weights due to volatility changes. As n — 0, the VT weights will approach the portfolio

weights of the naive diversification. While, as n — oo, the weight on the lowest-volatility asset

2A quadratic programming solver, quadprog, has been used to obtain the weights of the MVP.
3Transaction costs and taxation related to monthly rebalancing and capital gains will also be disre-
garded.
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will approach 1. Kirby & Ostdiek (2012) illustrate that these two strategies outperform the
naive counterpart with n € (2,4). Following the approach by Zakamulin (2017), we set n = 4.
Kirby & Ostdiek (2012) argue that the VT strategy outperforms the naive diversification due to
the two following features: First, due to its simplicity and long-only weights, the VT strategy is
less prone to estimation risk. Second, by increasing the value of the tuning parameter, 7, above

unity, will decrease the portfolio’s turnover and transaction costs.

4.1.3 Ad-Hoc Strategies

To illustrate the point made by Zakamulin (2017), that one can create rather simple portfolio
strategies that outperform the naive diversification, we construct two ad-hoc strategies. These
two strategies, which aim to exploit the low-volatility effect, are referred to as the Low-Volatility
and Low-Beta strategies. In contrast to previous methods (MVP, VT), these two strategies do
not optimize the weights for all the available assets. Rather, the principle behind these two
strategies is to concentrate the weights on a few assets with the lowest volatility. The first
strategy assigns weights based on the assets inverse standard deviation, and the other strategy
assigns weights based on the assets inverse CAPM beta. Since low-volatility stocks also tend
to be low-beta stocks and vice versa, we will expect these two portfolio strategies to produce
relatively similar results.

To illustrate the portfolio weighting procedure, assume we have ten assets in our investment
universe. First, we estimate the standard deviation (beta) for each asset and then filter out assets
with standard deviation (beta) larger than g, where ¢ is the lower 30% quantile threshold value.
Such that the remaining assets with standard deviation (beta) less than ¢, will be included in
the respective portfolio strategies. For this illustration, the lower 30% quantile will consist of 3
assets. These three assets will then be weighted according to their inverse standard deviation
(beta). The two portfolios are rebalanced monthly such that the assets that were included one
month, will be dropped the next period if the volatility (beta) is above this threshold value.
Similarly, with the assets that were excluded one month, will be included the next period if the
volatility (beta) is below this threshold value.

To construct the Low-Volatility (1/0) strategy, we first estimate the standard deviation of
each asset, 0;, where i = {1,2,..., N}, and N denotes the total number of assets in the respective
dataset. We then compute the threshold value, ¢, based on the vector of standard deviations,

and filter out assets with o; < ¢g. Let IN; denotes the remaining assets with o; < ¢. The
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Low-Volatility (1/0) strategy is given by

wite = o) 46
A s) o

7 is the weight for asset i, and o; is the estimated standard deviation of asset 4.

1/

where w;

Similarly, for the Low-Beta (1/53), we first estimate the CAPM for each asset by using
Equation 4.12, and then obtain the beta ; pr, where i = {1,2,..., N}, and N denotes the total
number of assets in the respective dataset. We then compute the threshold value ¢, for the
vector of betas, and filter out the assets with 3; ps < ¢. Let N; denote the remaining assets with
Bim < q. The Low-Beta (1/5) strategy is then determined by

s (1/Bn)

7 47
' S (1/Biar) o

where wil /8 is the weight for asset 7, and 3; ys is the estimated CAPM beta of asset i.

4.1.4 Naive Diversification

The naive diversification strategy, which is also referred to as the equally-weighted portfolio,
is constructed such that each asset is equally weighted. The naive diversification does not re-
quire any optimization or parameter estimates and is therefore not affected by the impact of
estimation error. Consequently, the naive diversification produces comparable, and often better
out-of-sample performance relative to other more complex strategies (DeMiguel et al. (2009)).
The naive diversification is mean-variance efficient if the asset returns and the volatility are
equal for all assets, and if all the pair-wise correlations are similar. Thus, the idea behind the
naive diversification makes sense if one belives that the model parameters can not be forecasted
(de Carvalho et al. (2012)).

DeMiguel et al. (2009) suggest two reasons to why the naive strategy is preferred as bench-
mark: First, it is easy to implement in practice and produce low implementation costs, and
Second, despite the huge contribution to the field of portfolio optimization, investors still rely
on simple allocation rules to allocate their wealth across assets. The naive strategy will be used
as a benchmark to assess the relative performance produced by the various risk-based strategies,
and is given by

WiV = 2

i N’ (48)

1/N

where w,; """ is the weight of asset ¢, and N represents total number of assets in the respective

dataset.
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4.2 Estimation Procedure

To calculate the portfolio weights for the respective risk-based strategies, we use a rolling window
approach to simulate the out-of-sample performance. This procedure verifies how the various
portfolios strategies would have performed during a specific time period. The out-of-sample
approach is implemented as follows: Consider a sample with a total number of monthly returns
T. The full sample is divided into an in-sample period, and an out-of-sample period. The split
between the in-sample and out-of-sample period occurs at time ¢. The historical period from the
start of the sample period 1 to t is used as a look-back period, denoted M, to estimate the model
parameters for the portfolio strategy. At the end of time ¢, we use the input parameters from
1 to t to determine the relevant portfolio weights that are held for the period ¢ to ¢t + 1. These
weights are then used to compute the return in month ¢ + 1. For the next period, at the end of
t+1, the new portfolio weights will be adjusted based on the estimation of the model parameters
from 2 to t + 1, and held until the end of £ 4+ 2. This process is then continued by including the
next month while discarding the earliest month. This way, the portfolio weights are rebalanced
monthly by using the lookback period of length M to estimate the model parameters. This
rebalancing process continues until we have a total of T'— M out-of-sample returns. Following
Zakamulin (2017), DeMiguel et al. (2009), and Kirby & Ostdiek (2012), we set M = 120 months
as the look-back period to estimate the model parameters. Consequently, the split between the
in- and out-of-sample occurs at July 1973. IL.e. the first ten years of our sample will be the start
of our look-back period.

The estimation error associated with forecasting of the model parameters could impact the
out-of-sample performance of the risk-based strategies. Several studies attempt to reduce the
impact of estimation error. Chopra & Ziemba (1993) show that misspecification of mean returns
could reduce the performance of mean-variance portfolios in a substantial way. The authors argue
that the errors obtained from the forecasted mean returns are about ten times as important as
the errors obtained from the covariance matrix. They suggest that by removing the mean return
input could increase the performance of the mean-variance portfolios, due to the removal of the
“error-in-means” problem. Jagannathan & Ma (2003) introduce short-selling restrictions to a
minimum-variance portfolio and show that this reduces the estimation error. Ledoit & Wolf
(2004) propose a shrinkage method to decrease the estimation error of the sample covariance
matrix. They suggest that the standard statistical method of estimating the covariance matrix
tends to contain errors in the most extreme coefficients. Their shrinkage approach pull extremely

high (low) coefficients in the covariance matrix downwards (upwards), and will thereby approach
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the constant-correlation matrix. The reasoning behind this is that those estimated coefficients
in the sample covariance matrix that are extremely high (low) tend to contain a lot of positive
(negative) error, and therefore need to be pulled downwards (upwards) to compensate for that.
On the contrary, Zakamulin (2015) shows that the shrinkage approach by Ledoit & Wolf (2004) is
a computationally intensive method that is unable to reduce the forecasting error nor the tracking
error. Therefore, we use the sample covariance-matrix as a predictor for the future covariance-
matrix to create comparable results to recent literature (DeMiguel et al. (2009), Kirby & Ostdiek
(2012), Zakamulin (2017)).

4.3 Performance Measures

This subsection covers the description of the performance measures we use to evaluate the per-
formance of the various portfolio strategies. This includes a description of the Sharpe ratio,
maximum drawdown, factor models, and the Dual Beta Model. We present a description of the

statistical tests in the Subsection 4.4.

4.3.1 Sharpe Ratio

The Sharpe ratio introduced in Sharpe (1966) is a risk-adjusted performance measure that is
used to evaluate portfolio strategies. Its simplicity and ability to compare the performance of
portfolios with different risk exposures are the reason why many favor the technique. However,
the Sharpe ratio also has its limitations; it can give a misleading indication if the returns are not
normally distributed, weighing the downside risk equally as the upside potential, and it does not
control for the risk-based explanations of the performance. Despite its limitations, the Sharpe
ratio remains the industry standard risk-adjusted performance measure. The estimated monthly
Sharpe ratio is computed according to

SpM = 1 (4.9)

Op
where j1,, and o0, are the monthly out-of-sample mean return, and standard deviation of portfolio
strategy p, respectively. 7y is the risk-free rate of return. The annualized out-of-sample Sharpe

ratio is computed based on the monthly Sharpe ratio for portfolio p and can be expressed by

SR, = SR)'V12. (4.10)
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4.3.2 Maximum Drawdown

Maximum drawdown reflects the maximum accumulated loss during a specific time period, and
provides an indication of the portfolio strategies downside risk. It measures the portfolio strate-
gies largest peak-to-trough decline in value and is quoted as the percentage of the peak value.
The maximum drawdown is given by*

mazrcot(Wr — Wy)

MD =
W, ’

(4.11)

where W, is the value of the portfolio at time ¢t = {1,2,...,T}. Note that 7 < ¢, which ensures

that the peak occurs before the trough during the specific time period.’

4.3.3 Factor Models

The CAPM and Fama-French five-factor model is our two performance attribution models. We
include the CAPM to show that when one omit known anomalies, the risk-based strategies will
generate positive alpha. While the five-factor model is able to control for five known market
anomalies that cannot be explained by the CAPM. Various studies show that there remain
positive alphas that are unexplained by the exposure to risk factors in the Fama-French three-
and Carhart four-factor models. For instance, Frazzini & Pedersen (2014) show that the Carhart
four-factor model is not suitable to describe the cross-sectional returns of low-volatility stocks,
and Novy-Marx (2014) finds similar results by using the three-factor model. Fama & French
(2015) present the new Fama-French five-factor model, which add a profitability (RMW), and
an investment (CMA) factor to their three-factor model. The authors test the model on the U.S
stock market and find that the two additionally factors improve the explanatory power of the

cross-sectional stock returns relative to the three-factor model. The CAPM is given by
Rp,t = Qp + Bp,lRM,t + €pts (412)

where R, ; is the excess return of portfolio p in period ¢. The intercept ay, is the pricing error
relative to portfolio p’s exposure to the market factor. Rz is the excess market risk premium
and (3, 1 is the portfolio’s exposure to the systematic risk component, the market factor. Finally,
€p,t denotes the error term and represents the idiosyncratic risk unexplained by the model.

The Fama-French five-factor model allows us to control and further attribute the performance

4Definition adopted from Chekhlov & Zabarankin (2005)

5The R-code used to obtain the maximum drawdown is provided by Valeriy Zakamuline

6More correctly, we use the single-index model, which is a practical implementation of the CAPM.
For the sake of simplicity will we only refer to the CAPM, instead of the single-index model.

20



4.3. Performance Measures 4

towards five established factor premiums. The five-factor model is given by
Rp,t = Oép =+ BpJRM,t + ﬁp,QSMBt + 5p73HMLt =+ ﬂp74RMWt + ﬂp75CMAt + 6p,t7 (413)

where R,; is the excess return of portfolio p in period t. The intercept a,, is the pricing
error relative to portfolio p's exposure to the systematic risk factors. Rps; is the excess market
risk premium, SM B; and H M L; are the size and value risk factors from Fama & French (1993).
RMW,, CM A, are the profitability and investment factors introduced by Fama & French (2015),
and 8,1, Bp.2, Bp,3: Bpa, Bps, are the corresponding exposures to the systematic risk factors for
portfolio p. Finally, €,; denotes the error term and represents the idiosyncratic risk unexplained

by the model.

4.3.4 Dual Beta Model

The Dual Beta Model is used to differentiate the model parameters in bull and bear markets
and is inspired by the study of Bhardwaj & Brooks (1993). The fundamental principle behind
the Dual Beta Model is that there exists a time-varying risk exposure, which is in contrast to
the CAPM that assumes constant risk exposure over time. The Dual Beta Model is constructed
to statistically test the difference of the parameter estimates in bull and bear markets. i.e. If
there exist a time-varying relationship between return and risk across different states of the
economy. This way, the Dual Beta Model allow us to get a deeper insight into the nature of the
performance, and assess whether the CAPM alpha of the optimal strategies is mostly generated
in bear compared to bull markets.

The construction of the Dual Beta Model starts with the dating of bull and bear markets in
order to create the dummy variable. We will elaborate on our choice for detecting turning points

between bull and bear markets in Subsection 4.5. The Dual Market Beta Model is defined as
Ryt =oa1+as- D+ B1- Ry + B2 Rarg - Di + €p g (4.14)
which is equivalent to

Rp,t = Op bull + (ap,bear - ap,bull) . Dt + Bp,bull . RM,t + (Bp,bear - Bp,bull) . RM,t . Dt + Ep,t (415)

where R, ; is the excess return of portfolio p, Rys; is the excess market return in month ¢, and
Dy is a dummy variable equal to one for bear months, and zero for bull months. The estimates
a1 and By represent the average risk-adjusted return and the systematic risk exposure for the

market in bull periods, respectively. The estimates as, and fs determine whether the average
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risk-adjusted return and systematic risk for a given portfolio differ in bull and bear markets.

4.4  Statistical Inference

This subsection describes the testing procedure we use to statistically test the various perfor-
mance measures presented in the subsection above. Statistical inference usually starts with
choosing an appropriate type of test, which is either standard parametric- or non-parametric
tests. The former tests, which include tests such as the Student’s t-test, are easier to implement,
and faster to compute. However, the limitations of using a parametric test procedure surround
the strong distributional assumptions of the data. The test statistics might produce inaccurate
inference if the data deviate from, e.g. a normally distributed population.

In contrast to parametric tests, non-parametric tests make no assumption of the probability
distribution function, and provide an alternative way of obtaining the distribution function of a
parameter under investigation and could significantly provide more accurate inference (Brooks
(2008)). However, the limitations of non-parametric tests are the lack of statistical power if
the normality assumptions of the corresponding parametric method hold. In Appendix 1, we
present the normalized moments and the Shapiro-Wilk test for normality. The Shapiro-Wilk test
reveals that we reject the null hypothesis of normality for all portfolio strategies on each dataset.
Consequently, we use only non-parametric tests to statistically test the various performance

measures and the parameters from the regression models.

4.4.1 Statistical Test for the Sharpe Ratio

In terms of Sharpe ratio, we compute the difference in the Sharpe ratio ASR = SR, — SRy,
where SR, and SR;,y denote the annualized out-of-sample Sharpe ratio for the risk-based
strategy p and the naive diversification, respectively. We then formulate the null hypothesis that

this difference, ASR, is non-positive
Hy: ASR<0 versus Hp:ASR > 0.

Lately, Jobson & Korkie (1981) test with Memmel (2003) correction hav been the preferred
way of statistically testing the difference in the Sharpe ratios. The test statistic is given by
SR, — SRy /N
VT 20— p) + 5SS + SR\ — 2SR, SRy p?)] ’

z =

(4.16)

where 2 is a standard normally distributed test statistic. SR;, and SR,y is the monthly out-

of-sample Sharpe ratio for the risk-based strategy p and the naive diversification, respectively.
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While p is the correlation coefficient between the two portfolios. This parametric test is fairly easy
to implement, and several authors use this approach (see e.g. DeMiguel et al. (2009), Stivers &
Sun (2016), Zakamulin (2017)). However, this approach assumes normality in both return series,
and the test statistic is asymptotically distributed as a standard normal. The model’s strong
underlying assumptions decreases the power of statistical inference when the data deviate from
normality. Therefore, using Jobson & Korkie (1981) test with Memmel (2003) correction could
provide inaccurate inference, and thus, it will be more suitable to chose a non-parametric test to
evaluate the difference in the Sharpe ratios.

We therefore use the stationary block bootstrap procedure by Politis & Romano (1994) to
obtain the distribution of ASR. Bootstrapping is used to obtain a description of the model
estimators by using the data points themselves, and it involves resampling repeatedly with re-
placement from the actual data (Brooks (2008)). The block bootstrap procedure is particularly
useful when there exists serial dependence or non-normality in the data. The block bootstrap
procedure contrary to the standard bootstrap procedure draws random blocks of data instead of
one-by-one.” This way, the dependence of time series remains intact, while the standard boot-
strap destroys the dependence. Opposed to overlapping and non-overlapping block bootstrap
procedure which defines a fixed block length, the stationary bootstrap generates blocks of ran-
dom length, where each block length is generated from a geometric distribution. To choose the
appropriate average block length, we use the method proposed by Politis & White (2004) with
the correction made in Patton, Politis & White (2009).%

Let X; = {Ry, Ri/n;} denote the observed pairs of excess return for portfolio p and the
naive strategy, where t = {1,2,...,T}. Let b denote the index for the bootstrap number, and
denotes the block length of b. Since the block length is not fixed, the block length ° is generated
from a geometric distribution with probability ¢q. Let By = (Xj,...,X; »_1), be the block
containing [ observations starting from X;, where the Bth block begins from a random index
i thas is generated from the discrete uniform distribution on {1,...,7'}. Then the procedure
consists of choosing blocks By, B, ..., B; by randomly resampling with replacement from the
available blocks Bi, Bo, ..., B, where K denotes the number of blocks. The process produces
a new paired pseudo time-series with the same number of observations as the original sample.
In each iteration, we calculate ASR, which is the difference between {R,,;} and {R;/y}. After
N bootstrap simulations, we obtain an approximation of the probability distribution of ASR.?

To test the null hypothesis that the difference is non-positive, let n denote the number of times

"The standard bootstrap method first introduced by Efron (1979)
8The R-package np successfully employs the implementation of the method.
9We set N = 10.000 iterations to obtain the distribution.
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4.4. Statistical Inference 4

ASR is less than zero. The p-value is then calculated as §. Decision rule: P-value < significance

value «, then reject Hy, else fail to reject Hy.!°

4.4.2  Statistical Test for Regression Models

In terms of the regression output we obtain from the CAPM and the Fama-French five-factor
model, let ay denote the estimated alpha for the risk-based strategy p, and S, ; denote the

estimated beta of factor j. The null and alternative hypotheses is given by

Ho:0p=0 versus Hij:ap#0
Hy:Bp; =0 versus Hj:f,; #0.

Similarly, given the estimated parameters in the Dual-Beta Model, let Aoy, = o pear — Op bl s
where  peqr and ap pyy provide the estimated alpha in bear and bull periods for portfolio p,
respectively. Let AB, = Bppear — Bppuit, Where B, peqr and By, puy provide the estimated market
exposure in bear and bull periods for portfolio p, and consequently, A gives the difference in
the respective parameters. We then carry out the following hypothesis test where we test if the
model parameters are statistically different from zero in the Dual-Beta Model. The null and

alternative hypotheses is given by

Hy:Aap =0 versus Hp:Aap #0
Hy:AB, =0 versus H;:ApB, #0.

We employ a non-parametric residual-resampling bootstrap procedure for accurate statistical
inference when we evaluate the respective model parameters. For statistical inference through
standard regression models to be accurate, the underlying assumption of normality in the distur-
bance term €, must be fulfilled. Table 7 in Appendix 2 reveals that we reject the null hypothesis
for normality of each regression model considered in this thesis. There exist several reasons as
to why the residual resampling approach is the appropriate method for our study. For instance,
when there is nonlinearity, non-constant variance or outliers in the underlying data — these prop-
erties will not be carried over into the resampled data sets (Fox & Weisberg (2011)). To simplify
the residual-resampling bootstrap procedure for the reader, we illustrate the implementation for
the CAPM.!!

First, for the risk-based strategy p, we estimate the CAPM by using Equation 4.12, and

obtain the fitted values 7,;, and the estimated residuals €,;, where ¢t = {1,2,...,T}. Next,

10We use the R package boot to construct the stationary block bootstrap procedure.
"This approach is partially adopted from Brooks (2008).
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4.4. Statistical Inference 4

we draw a sample with replacement from the residuals of portfolio p, which we refer to as égt,
where b denotes the index for the bootstrap number. Next, we generate a dependent bootstrap
variable by adding the fitted values 7, ;, to the bootstrapped residuals, fgt:fp?t + €27t. We then
regress this new dependent variables on the original data Ry, to obtain pseudo time-series of

the monthly excess return of portfolio p

ff),t = OA‘p + /Bmkt7pRM,t + ép,t- (417)
For each iteration, we obtain two bootstrapped coefficients, ézf and ﬁflkt,p’ and after NV bootstrap

simulations we obtain an approximation of the probability distribution of the two estimates.!?
The distribution is then used to estimate the bootstrapped standard error SF*, and we compute
the SE” as the standard devation of the bootstrapped coefficients. Given the standard error
values, we calculate the new respective t-test statistics for each parameter in order to statistically

test the null hypothesis

~

ta, = % t8, 00, = ity (4.18)
~ %k ) m PNEIPN ) .
" SE(aB) " SE(BE,,)

where t,, is the new alpha t-statistics, and tg,,, , is the new beta t-statistics for portfolio
p. SE” (Gp), and SAE(*Bmkt,p), are the new standard error estimates obtained from the boot-
strap procedure. The respective P-values of the t statistics are then obtained. If P-value(t) <

significance value a, then reject Hy, else fail to reject Hy.'3

4.4.3 Wilcoxon Signed-Rank Test

The two sample Wilcoxon test is a non-parametric test that is used to test for differences in the
mean of paired observations, and is appropriate to use when the data deviate from normality.
Let A,u’; = ,u’; — u’f N denote the difference in mean return, where k represents either bull or
bear period, u’; is the mean return for the risk-based strategy p, and u’f /N is the mean return for
the naive diversification. We then specify the null hypothesis that the difference in mean return

of the risk-based strategy p to the naive diversification is non-positive
Hy : Au’; <0 versus Hip: Au’zﬁ > 0.

Let X; = {rps,m1/n} denote the observed pairs of return for portfolio p and the naive

strategy, where t = {1,2,...,T}. For each pair X;, compute the absolute difference }rp — TN

)

and sgn(rp —rl/N), where sgn is the sign function. Then, exclude pairs with ‘rp — Tl/N‘ =0, and

12We set N = 10.000 iterations to obtain the distribution.
13We use the R package boot to construct the residual-resampling bootstrap procedure.
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4.5. Classification of Bull-Bear Markets 4

let N, denote the remaining pairs. We then sort the remaining pairs, INV,. based on the absolute
differences from smallest to largest. Next, we rank the pairs, N,, and let R; denote the rank.
Finally, compute the test statistic W,

Nr.

W= Z[sgn(:rp —yin) - Ri] (4.19)

If P-value(W') < significance value «, then reject Hy, else fail to reject Hy.

4.4.4 Brown’s Method to Combine P-values

To ensure a thorough evaluation regardless of the individual datasets, we combine the p-values
obtained from the individual statistical tests. The Fisher’s Method appears to be the preferred
way to combine p-values. However, the Fisher’s Method is only appropriate when the statistical
tests are independent. Since these statistical tests will be affected by the same underlyings shocks
(market events) can we characterize these tests as dependent. As such, we use an extension to
Fisher’s Method, the Brown’s Method.!* Brown’s method is a technique used to combine the
p-values from multiple dependent statistical tests to form a single overall test, which bears upon
the same null hypothesis. In addition to the p-values we obtain from each dataset, we also

present a combined p-value for each statistical tests presented in Table 4, Table 6, and Table 7.

4.5 Classification of Bull-Bear Markets

The detection of turning points between bull and bear phases are obtained from the dating
algorithm of Bry & Boschan (1971).1° Bull markets are commonly understood as a general rise
in prices, whereas bear markets are characterized by a general fall in prices. However, a unique
definition of the turning points between the two markets has not yet been determined. There
exist two main camps when it comes to detecting turning points. The first group believes that in
order to qualify for a bull (bear) period, the stock market should rise (fall) substantially, without
any consideration of the length of the rise (fall). Whereas the latter group believes that prices
should rise (fall) over a substantial period of time.

Designed to detect turning points in the business cycles, the algorithm of Bry & Boschan
(1971) consists of two main steps; initial turning points between bull and bear phases, and
censoring operations. The detection of the turning points starts with; First, determine the

turning points by setting a window of length 7indow 0On either side of the date and then identifying

14We use the R package metap to compute the combined p-value using Browns Method.
5We use the R package BBdetection developed by Zakamulin, to employ the algorithm of Bry &
Boschan (1971)
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a peak or trough to find out if the value is higher or lower than other points in the window.
Second, one imposes an alternating sequence of peaks and troughs by selecting the highest
maximum and lowest minimum. Next, peaks and troughs are eliminated in the first and last
Teensor months.  Fourth, phases that last less than 7,45 months are eliminated, unless the
threshold value 6 is below the relative change in value over a single month. Fifth, cycles that
last less then 7.y months are eliminated. Although it is unclear how to appropriately choose
the parameters of the censoring operations, we choose to follow the default approach of the R-
package, which are the parameters defined in Pagan and Sossounov (2003). The five parameters

We use are {Twindow = 87 Tcensor = 67 Tphase = 47 Teycle = 167 0 = 20}

4.6 Aggregate Portfolio Performance

Several studies show that the superior performance of risk-based strategies can be attributed to
the exposure to various risk-factors. Clarke et al. (2006) show that the MVP tends to possess
both a size and value bias. Scherer (2011), de Carvalho et al. (2012), and Goldberg & Geddes
(2014) show that the superior performance of a minimum-variance strategy can be attributed
to exposure to the value factor. To evaluate the factor exposure for the risk-based strategies
across the 25 empirical datasets, we suggest to use a generalized approach that aggregates the
out-of-sample performance generated in each dataset. This will provide us with factor estimates
unaffected by the sorting characteristics possessed in each individual dataset, and thereby allow
us to get an insight into which risk factors that drive the performance and additionally study
the risk exposure over time.

To employ this method, we construct an aggregated return series of the out-of-sample per-
formance across the empirical datasets. Let r;f,t denote the return vector of portfolio p, and k
denotes the respective dataset number, where t = {1,2,...,T}. We then compute the aggregated

return series across the 25 datasets,

25

1

A

Ry =52 > Ther (4.20)
k=1

where Rﬁt is the aggregated return-vector of the risk-based strategy p.
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5 Empirical Results

In this section, we present the results of the empirical study. First, we initiate our analysis
by examining the out-of-sample portfolio performance over the 25 datasets for the period July
1973 to December 2016. This includes both summary statistics (Table 3) and statistical tests
(Table 4). The statistical tests include; the difference in the Sharpe ratios, the CAPM alphas,
and the Fama-French five-factor alphas. Second, we present the performance in bull and bear
markets, which include summary statistics that contains mean return and standard deviation
(Table 5), and in addition, we present the results obtained from the two sample Wilcoxon test
(Table 6), and the Dual Beta Model (Table 7). To the end, we present the results for the
aggregated performance across the 25 datasets. This includes the risk factor loadings on each
risk-based strategy (Table 8), as well as the time-varying factor risk exposure.(Figure 5, and

Figure 6).

5.1 The Performance of Risk-Based Strategies

5.1.1 Summary Statistics

Table 3 summarizes the performance of the four risk-based strategies and the naive strategy,
in terms of annualized mean return, annualized standard deviation, annualized Sharpe ratio,
and maximum drawdown. Our results indicate that the naive diversification yields on average,
across the 25 datasets, the highest mean return of 12.95%. Similarly, the MVP, VT, Low-Vol,
Low-Beta present mean returns of 12.21%, 12.62%, 12.61%, and 12.89%, respectively. When we
evaluate the risk characteristics of the portfolio strategies, it is evident from Table 3 that the naive
diversification also displays the highest standard deviation of 16.69%, on average. The MVP,
VT, Low-Vol, and Low-Beta strategies provide values of 14.29%, 14.67%, 14.68%, and 14.78%
respectively. Thus, the risk-based strategies provide a substantial reduction in risk relative to
the naive strategy. Likewise, the reduction in risk is also reflected by means of the maximum
drawdown, M D. The smaller the M D value, the more resilient the portfolio is during market

turmoil. The MVP exhibits on average, the lowest maximum drawdown of 46%, whereas the
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Figure 2: The risk-return tradeoff
This figure provides a graphical illustration of the risk-return tradoeff for the portfolio strategies.
The figure is based on average values from Table 3, and cover the period July 1973 to December
2016. The mean returns and standard deviations are annualized and reported in percentage.

VOL, Low-Vol, and Low-Beta strategies provide values of 47%, 47%, and 48%, respectively. The
naive diversification is the portfolio strategy that exhibits the largest drop during the sample
period, and is reflected by a maximum drawdown of 53%, on average. This indicates that the
risk-based strategies earn slightly lower mean returns on average, yet in addition, they provide
a substantial reduction of risk relative to the naive diversification on average, across the 25
datasets.

Figure 2 provides a graphical illustration of the risk and return relationship for the risk-
based strategies, on average. We observe that the risk-based strategies exhibit slightly lower mean
return compared to the naive diversification, but with a significant reduction in risk. The Sharpe
ratios from Table 3 show a superior risk-return tradeoff produced by the risk-based strategies
relative to the naive diversification. The naive diversification exhibits the lowest Sharpe ratio
on average compared to the other risk-based strategies, which all show somewhat similar Sharpe
ratios. The naive diversification renders a Sharpe ratio of 0.49, whereas the MVP, VT, Low-Vol,
and Low-Beta strategies generate Sharpe ratios of 0.52, 0.54, 0.54, and 0.55 respectively.

5.1.2 Statistical Tests

Table 4 summarizes the statistical tests for the risk-based strategies across the 25 datasets and
includes the difference in the Sharpe ratios to the naive diversification, the CAPM alphas, and
the alphas in the five-factor model by Fama and French. Table 4 shows that the MVP generates a
statistically significant differences in the Sharpe ratios for five datasets, and the difference in the

Sharpe ratio is not statistically significant at conventional levels, on average. The VT strategy

29



5.1. The Performance of Risk-Based Strategies

870 G9°0 8L¥I 687CI y'0 ¥90 89FI 19¢T 70 ¥90 L9FT ¢9¢Cl 9¥'0 ¢9°0 6¢¥I Tccl €40 6V0 699T 96°CI oderoay
760 690 6671 8GET 090 990 G8¥I <CO€ET ¢g'0 990 00°GT STET €40 870 PLPVI 88TI G¢’'0 990 PO09T 69€T AUT-ING G¢
280 ¢90 8T'SGT ¢I'vl y¢'0 990 96FI ¥6'CT ¢G'0 990 OTdr Tr€etT ¢80 P90 I8VIL clel G¢'0 TS0 €991 Grel dO-Nd 7¢
870 8¢'0 ¢SVl 60°€T 9’0 L9°0 TSVI L6°CT Ly'0 890 89TI 8c€l €70 €90 9¢¥l TLET 760 670 1191 69¢I AU[-dO  €¢
6V'0 <90 0€GT 7Cvl 870 090 9T'GT G8°€ET 67'0 990 €T'GT L€l 80 €90 vVl Leel ¢G40 G900 8LLT vVl AUT-9ZIS  CG

870 740 €6'GT 6E€T 870 99°0 <CLGT €9°¢T 70 990 TLST 9€°€T G7'0 190 68FI <Fcl 96°0 090 &8I C6'ET WON-9Z15  T¢
6V'0 690 08GI TOVT 870 99°0 LGGT GVET 80 LG40 P¥ET TG€l 6V'0 740 <¢L¥L 0L¢CT €6°0 690 I8LL €T4I drLT°7S  0¢

160 8¢°0 98°GT 88€T 090 S0 €GCT 92T  6F0 €90 €9¢T 66T G0 ¥G0 OLFT 29¢l €50 TS0 SSLT FOTI dOo71S 61
960 860 0LSGT G8'€T IS0 LG0 GEST 29€T TS0 8S0 SFST 69°€T 160 €50 9LFVI €9CT  ¥S0 FG0 9LLT TFEI INg-021S 8T
60 €90 0L€T TFET S0 950 LLET SFCT TPF0 G0 88CT TITCl 680 S¢0 26l FGIT €90 SF0 1991 08¢l puiog L1
PO CGL0 TLTl ITFT 8€0 F90 98Tl 86Tl 280 190 29Tl 2€el FE0 650 ¥FEl 01Cl SP0 190 GSFI 1€Tl puior 91
290 C€G0 S6'€T 0Pl LP0 190 SCE€T 66CT  6F0 990 C9ET TI€TT  ¢¢0 ¢¢0 T9€T LTI €90 IS0 96FT 1€l A-AIQ GT
€60 80 T6FT TIFET  0S0 GG0 LI'ST LOET IS0 €SS0 €6FT COEl 090 SS0 06FI 88Tl 190 €50 8TCT 06Tl d-J10 ¥1
970 €GO FI'CT €0°ET  LP0 950 €6FT 0T 6F0 CS0 S6FT C6CT  LPO0 €50 E€I'GT 89T 090 €90 OFCT 16Tl dd €1
70 €0 00F%T €12l IF0 190 66°€T STIT €0 ¥90 €S€l 6611 680 IS0 8¢l €IT 650 TF0 6£8T 0FCl TRASY  ZT
8€'0 €0 8LTT LLTT  S€0 €S0 8LTT LLUIT 680 €S0 0Tel ¥FIT  L80 6V0 89TT 0S0T 690 ¢F'0 €081 T1€%al AT
050 0F0 LFST G601 050 6£0 €961 GL0T 160 €0 €L6T LSTIT 090 0F0 8GGT 20Tl ¥9°0 680 8L9T €1l ISN 0T
PO LG0 FLTT €6'TT FFO LG0 FLTT €6TT PO LS0 L9CT 96TT  SF0 990 9€TT 99TT 2S00 LFO0 F69T 99°CT N 6
Tro LF0 TEFT T¢Il 0 8F0 6CFT €SIl €0 0S0 S9FT 902l €70 FE0 LIPT IFEl  SF0 FF0 1291 6811 0y 8
6V'0 950 ST'CT 0Z'€T  SF0 ¥G0 ¢6FT 8¢l 6F0 <S0 PIGT FI'El 670 8¢0 €¢GT 9G€T 090 ¥¢°0 ¢09T 9¥'€l I L
Y0 OGP0 €2¢T 1911 FFO 9F0 FI'CT 89TT 9F0 9F0 €€'ST 6LTIT FFO0 PO ST'GT 6GTT GS0 BP0 8G9T  L6'TT IS 9
€0 80 09°C¢T ST €0 8F0 SI'ST 80¢T  9%0 0S0 0TST Lgel  FF0 6F0 ST'ST 612l 990 TF0 6L9T S9°TT LLaCe) A\
870 €GO TEFT FeTl S0 FG0 STFT 6FCl 6F0 <SSO FOFT LLTl SF0 990 6TFI GLET 190 090 G8'CT €9°Tl Aaul§
W0 160 96F%T ¢rel  TIF0 090 €6FT €2¢l  LF0 8F0 9T¢T T0gl €0 €50 GLFT 09gl €50 ¢F0 9T'9T 8GTT do ¢
8G'0 G0 TECT L0€T  FEO FGO FIST 06Tl ¢SO0 <SSO LU'ST FIET 090 €60 OTGT GLZT 690 ¥G'0 9LCT 6T°€l Nd ¢
€60 LP0 9T9T TPl g¢0 8F0 9091 grel 190 9%0 ST9T S8TZl IS0 gF0 6TST EI'TT €50 090 TSI T8ET ozig |
aw _Yds o 1 aw_yds o " aw_ Y5 o " aw_y¥s o " aw_ys o " qqy - #
(¢/1) eyog-moq (2/1) 10A-mO7 Suruy-A)Iye[on S0URLIEA -WUNWIUIA UOIJROYISISAL(]-OATEN]

"IN ASoreq)s
9AT100dS01 91} JO UMOPMRIP WNWIXRU 97} SMOUS § Uwnod ‘A[eulq Y§ orpel adreyq pezienuur 9} syioder ¢ uwnfo)) ‘.0 UO)RIASD pIRPUR)S puUe
‘71 wInjel ueow pozienuue oY) Ae[dstp A8ojers orojprod oAr3oodsod o) Iopun ‘g pur [ UWN[O)) -joseIep 9A1100dsol o) JO UOIRIADI(JE O]} SO}0USP
‘qQqV PUR ‘IoqUINU J9SeIRP S} SOJOUSD F# UOIJRIYISIOAID SATRU 9} SB [[oM SR ‘SOIF0)RI)S Paseq-YSLI o1} I0J $o1)sIIr)s Arewruns sopraoxd o[qe) SIyJ,

sjosejep Gg uo sdIjsije)s Arewrwing :¢ S[qel,

30



5.1. The Performance of Risk-Based Strategies )

provides a statistically significant difference in the Sharpe ratios for 11 datasets, and the difference
is on average, statistically significant at the 1% level. The Low-Vol and Low-Beta strategies
deliver statistically significant difference in the Sharpe ratios in 10 and 11 datasets, respectively.
While on average, the difference in the Sharpe ratio are for both strategies statistically significant
at the 1% level.

In terms of the CAPM alphas, it is evident from Table 4 that all the risk-based strategies
deliver economic and statistical significant alphas for the majority of the datasets. On average,
the MVP, VT, Low-Vol, and Low-Beta strategies generate values of 1.768%, 1.826%, 1.878%,
and 2.185%, which are statistically significant at the 1% level, respectively. This means that on
average, any of the four risk-based strategies allows an investor to generate economically and
statistically significant annualized alphas from 1.768% to 2.185%. The MVP produces statisti-
cally significant alphas in 19 out of 25 datasets, while the VT, Low-Vol, and Low-Beta produce
statistically significant alphas in 22, 21, and 20 datasets, respectively.

When we assess the alphas in the Fama-French five-factor model, we observe that the positive
and statistically significant alphas that remain in the CAPM becomes statistically insignificant
for the majority of the datasets. Specifically, only two statistical significant alphas remain in the
MVP, yet the values are negative. The same applies for VT, and Low-Vol where there exist five
and four negative statistically significant alphas. For Low-Beta, there is only one alpha estimate
that remains positive and statistically significant, whereas four remain negative and statistically
significant. On average, the introduction of the five-factor model results in alpha estimates that
are neither economically nor statistically significant for the MVP, VT, and Low-Beta strategies.
For the Low-Vol strategy, the five-factor alpha is statistically significant, though its value is
negative. These results reveals that the CAPM alphas is most likely generated due to exposure

to the five risk factors in the five-factor model.
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Table 4: Statistical tests on 25 datasets
The table reports the out-of-sample estimates for the entire period July 1973 to December 2016.
The difference in annualized Sharpe ratio of each risk-based strategy versus naive, SR, — SRy,

is denoted as ASR. a?AP M Jenotes the alpha in the CAPM, whereas ag F5 denotes the alpha
in the Fama-French five-factor model. The associated p-values are reported in parentheses. The
average p-values are constructed using Brown’s method to combine p-values. Note that that
alphas are annualized and reportd in percentage. Significance values: ***p < 0.01, **p < 0.05,
*p < 0.10.

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/3)
” ASR QCAPM G FFS ASR  afAPM  oFFS ASR  afAPM  oFFS ASR  aCAPM o FFS
1 -0.079 -0.084 0.403 -0.039 0.501 0.084 -0.020  0.783*** 0.419 -0.024 0.830 0.594
(0.87) (0.85) (0.32) (0.86)  (0.14)  (0.77) (0.69)  (<0.01)  (0.16) (0.75)  (0.11) (0.17)
2 -0.012 1.847  -0.694 0.011  2.097**  -0.589 -0.003  2.105* -0.975 0.002 2.233* -1.019
(0.64)  (0.02)  (0.29) (0.29)  (<0.01)  (0.19) (054)  (0.02)  (0.15) (047)  (0.01)  (0.13)
3 0.103***  1.559*** 0.623 0.056***  0.759***  0.044 0.078*  1.179** 0.210 0.090**  1.352*** 0.293
(<0.01) (<0.01) (0.24)  (<0.01) (<0.01) (0.87)  (<0.01) (0.02)  (0.66)  (<0.01) (<0.01) (0.54)
4 0.065* 2.153**  -0.254 0.049*  1.831"* -0.380 0.045  1.811™*  -0.581 0.046  1.868* -0.776*
(0.06)  (<0.01) (0.62) 0.01)  (<0.01) (0.17) (0.13)  (<0.01)  (0.17) (0.11)  (<0.01)  (0.08)
5 0.077 1.222 -0.723 0.082***  1.195* -0.857 0.071* 1.139 -1.151* 0.067* 1.147 -0.815
(0.04)  (0.10)  (0.29)  (<0.01) (0.06)  (0.11) (0.05)  (0.13)  (0.09) 0.07)  (0.16)  (0.29)
6 0.015 0.474 -0.111 0.024 0.497 -0.205 0.022 0.573 -0.297 0.015 0.479 -0.277
034  (039)  (0.84) (0.18)  (0.17)  (0.56) 028) (0.29)  (0.58) 034  (0.39)  (0.62)
7 0.035 2.594*>  -0.010 0.010  2.067*  -0.553 -0.002  1.966***  -0.576 0.014  2.2417*  -0.245
(0.15)  (<0.01)  (0.99) (0.35)  (<0.01) (0.22) (0.51)  (<0.01)  (0.35) (0.37)  (<0.01)  (0.70)
8 0.100™  1.804™*  1.020 0.057*  1.059**  0.598 0.034 0.766 0.220 0.033 0.751 0.203
0.02)  (<0.01) (0.12) (0.01)  (<0.01) (0.10) (0.17)  (0.12)  (0.64) (0.17)  (0.13)  (0.66)
9 0.095 2.557 0.290 0.104*  2.299™*  -0.133 0.098*  2.293**  -0.727 0.098*  2.293™*  -0.727
(015  (0.02)  (0.76) (0.09)  (<0.01)  (0.84) (0.08)  (<0.01)  (0.28) (0.09)  (<0.01)  (0.28)
10 0.011 -0.086  -2.176*** 0.042* 0.174  -1.118** -0.005 -0.446  -2.066*** 0.009 -0.227  -1.811*
(042)  (091) (<0.01)  (0.07)  (0.73)  (0.02) (056)  (0.50) (<0.01)  (0.41) (0.73) (<0.01)
11 0.075 1.598 -0.485 0.130*  2.023*  -0.537 0.131**  2.003** -0.740 0.131**  2.003** -0.740
(023  (0.11)  (0.59) (0.06)  (0.02)  (0.43) (0.04)  (0.01)  (0.20) (0.04)  (0.01)  (0.20)
12 0.090 1.484* 0.152 0.120*  1.685**  0.132 0.092*  1.363* -0.384 0.112**  1.643** -0.224
(0.15)  (0.08)  (0.82) (0.03)  (<0.01) (0.77) (0.08)  (0.04)  (0.39) (0.04)  (0.01)  (0.61)
13 -0.009 1.769™  -0.990 0.014  1.965***  -0.557 0.021  2.212"*  -0.457 0.013  2.180"*  -0.996
062)  (0.02)  (0.10) (0.20)  (<0.01)  (0.19) (0.27)  (<0.01)  (0.46) (0.33)  (<0.01)  (0.12)
14 0.012 2.156™ -0.732 0.020  2.099** -0.801* 0.015 2261 -1.155* 0.048 2772 -0.722
(036)  (0.01)  (0.29) (0.16)  (<0.01)  (0.08) 037)  (0.01)  (0.10) (0.13)  (<0.01)  (0.30)
15 0.009 2.091* -1.339 0.051 2.306* -1.301* 0.103**  3.285"*  -0.694 0.044  2.638*  -1.471*
(045  (0.07)  (0.15) (0.14)  (0.01)  (0.04) (0.04)  (<0.01)  (0.40) (025 (0.02)  (0.08)
16 0.083 3.091** 1.251 0.097  3.113**  0.480 0.133*  3.677** 0.870 0.236**  5.151***  2.616*
(0.16)  (<0.01)  (0.26) (0.12)  (<0.01) (0.63) 0.04) (<0.01) (0.40)  (<0.01) (<0.01) (0.02)
17 0.060 2.534™ 0.450 0.088  2.535™*  -0.139 0.078*  2.258**  -0.354 0.149**  3.458*** 0.110
(027)  (0.03)  (0.69) (0.12)  (<0.01) (0.88) (0.09) (<0.01) (0.61)  (<0.01) (<0.01) (0.90)
18 -0.010 1.867* -0.148 0.033  2.562*  -0.432 0.026  2.551™**  -0.801 0.035  2.742™*  -0.461
(0.60)  (0.01)  (0.83) (0.19)  (<0.01) (0.38) (030)  (<0.01)  (0.15) (0.18)  (<0.01)  (0.38)
19 0.016 1.733** 0.700 0.007  1.598™*  0.092 -0.004  1.399™*  -0.070 0.056*  2.570™* 0.247
(0.42)  (<001)  (0.22) (0.41)  (<0.01) (0.80) (0.54)  (<0.01)  (0.84) (0.07)  (<0.01)  (0.65)
20 -0.048 1.972* 0.016 -0.021  2.349™*  -0.323 -0.030  2.266™*  -0.718 -0.003  2.769"** 0.063
(0.75)  (0.01)  (0.98) (0.74)  (<0.01)  (0.50) (0.78)  (<0.01)  (0.16) (0.48)  (<0.01)  (0.90)
21 0.014 1.608**  -0.003 0.047*  2.069**  -0.352 0.058*  2.291™*  -0.653 0.042  2.119™  -0.427
(041)  (0.04)  (1.00) (0.07)  (<0.01)  (0.46) (0.06) (<0.01)  (0.20) (0.13)  (<0.01)  (0.45)
22 -0.018 1.634™*  -0.498 0.016  2.129"*  -0.355 0.054  2.748"™*  -0.034 0.073*  3.163*** 0.360
(0.61)  (<0.01)  (0.35) (0.33)  (<0.01)  (0.28) (0.10)  (<0.01)  (0.93) (0.02)  (<0.01)  (0.39)
23 0.136™*  3.241 0.405 0.088™* 2357  -0.165 0.074™ 2176  -0.569 0.082*  2.343"*  -0.740"
(<0.01) (<0.01) (0.56)  (<0.01) (<0.01) (0.63) (0.03)  (<0.01) (0.18) (0.01)  (<0.01)  (0.10)
24 0.033 2.105** -1.055 0.048*  2.155"*  -0.886" 0.043  2.109™* -1.078* 0.112%  3.342**  -0.347
0.27)  (0.02)  (0.16) (0.09) (<0.01) (0.08)  (0.16) (<0.01) (0.05  (<0.01) (<0.01) (0.55)
25 -0.067 1.265  -1.964™* 0.011  2.234™ -0.915"* 0.006  2.189"*  -0.868 0.038  2.757*  -0.484
092) (015 (<0.01)  (0.31) (<0.01) (0.04) (0.43)  (<0.01)  (0.10) (0.15)  (<0.01)  (0.37)
Avg. 0.031 1.768**  -0.235 0.046**  1.826™*  -0.367 0.045*  1.878"** -0.529** 0.061** 2185  -0.312
(0.12)  (<0.01)  (0.14) (0.01) (<0.01) (0.12)  (<0.01) (<0.01) (0.01)  (<0.01) (<0.01) (0.12)

IT
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5.2 Assymetric Performance in Bull-Bear Markets

In this subsection, we present the results for the bull and bear markets. This include summary
statistics for the risk-based strategies and the naive diversification, the results of the Wilcoxon

test, and the results for the Dual Beta Model.

5.2.1 Summary Statistics

Table 5 reports the annualized mean returns and standard deviations for the risk-based strategies
and the naive diversification during bull and bear markets. The naive diversification shows
the highest mean return during bull markets with 25.23%, on average. Similarly, the MVP,
VT, Low-Vol, Low-Beta generate values of 22.34%, 23.21%, 23.09%, and 23.32%, respectively.
Furthermore, the results for mean returns during bear markets shows the resilient feature of
the risk-based strategies relative to the naive diversification. The MVP shows the lowest drop
in mean return with -19.00 %, on average. The other risk-based strategies illustrate similar
tendencies as the MVP with -19.99%, -19.65%, and -19.19% for the VT, Low-Vol, and Low-Beta
strategies, respectively. The naive diversification suffers a loss of -24.84%, on average.

Further, we observe during bull markets, that the naive diversification presents a standard
deviation of 14.64%, on average. The risk-based portfolio strategies provide a substantial re-
duction in volatility relative to the naive diversification during bull markets. The MVP, VT,
Low-Vol, and Low-Beta strategies provide standard deviations of 12.76%, 12.99%, 13.04%, and
13.12%, respectively. During bear markets, we observe that the volatility increases significantly.
The MVP delivers the lowest standard deviation of 14.97%, on average. Similarly, the standard
deviations are 17.88%, 15.54%, 15.53%, and 15.76% for the naive, VT, Low-Vol, and Low-Beta
strategies, respectively. Figure 3 provides an illustration of the relationship between the mean
returns and standard deviations for these four risk-based strategies, on average. In Panel A, we
illustrate the relationship during bull markets, while Panel B shows bear markets. We observe
that the risk-based strategies appear to be somewhat clustered together whether we look at bull
or bear markets. Moreover, the two figures reveal that during bull markets, the riskier strategies
generate a higher mean return, while during bear markets, the less risky strategies are more
resilient in terms of mean returns. Although, we observe large variations in the performance for
each dataset. For instance, the mean return of the Low-Beta during bear markets varies between

-25.75% in dataset 1, to -10.54% in dataset 16.
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Figure 3: Risk-return tradeoff in bull and bear markets
This figure provides the risk-return relationship between the respective portfolio strategies. Panel
A displays the performance in bull markets, whereas Panel B displays the performance in bear
markets. The figure is based on average values that we obtain from Table 5. The mean returns
and standard deviations are annualized and reported in percentage.

5.2.2 Statistical Tests

The empirical results we obtain from the two sample Wilcoxon test are presented in Table 6.
The difference in the mean returns between the risk-based strategies and the naive diversifica-
tion during bull markets range from -1.91% to -2.89%, on average. During bear markets, we
observe a greater dispersion in the mean returns between the risk-based strategies and the naive
diversification. The MVP, VT, Low-Vol, and Low-Beta strategies provide statistically significant
differences in mean returns over the naive diversification with values of 5.84%, 4.85%, 5.19%,
and 5.66%, on average. Interestingly, these results indicate that the four risk-based stragies un-
derperform slightly in bull markets, while outperform during bear markets, relative to the naive
diversification.

Table 6 illustrates that there exists a large variation of the difference in mean returns on
the individual datasets. For instance, the difference in mean returns for the MVP and naive
diversification range from -1.54% to 19.60% in bear phases. In dataset 11, for the MVP, VT,
Low-Vol, and Low-Beta, the differences are 19.60%, 17.41%, 15.00%, and 15.00%, respectively.
While in the first dataset, the difference in mean returns for the MVP, VT, Low-Vol, and Low-
Beta strategies are -1.54%, -1.74%, -1.17%, and -0.91%, respectively. This show that the naive
diversification actually perform better during bear markets relative to the risk-based strategies
for the first dataset.

To assess the risk-adjusted performance of the risk-based strategies, we construct a Dual Beta
Model. This model statistically tests the difference in the regression estimates during bear and

bull phases.! When we assess the risk-adjusted return in bull markets from Table 7, we observe

INote that when we refer to the difference during the two market phases, we refer to A = Bear — Bull
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Table 6: Two Sample Wilcoxon test in bull and bear markets
This table provides the results from the two sample Wilcoxon test. # denotes the dataset number.
The difference between mean returns is denoted as A;Lf,, where k represents either bull or bear

period. Note that Ap® is annualized and reported in percentage. The associated p-values are
reported in parentheses, and average p-values are constructed using Brown’s method to combine
p-values. Significance values: ***p < 0.01, **p < 0.05, *p < 0.10.

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/3)

# AMBull A‘u/Bea'r AMBull AMBear ANBull A‘u/Bea'r AMBull AMBem‘
1 -3.08 -1.54 -1.61 -1.74 -1.47 -1.17 -1.58 -0.91
(0.98) (0.66) (0.96)  (0.74) (0.92)  (0.72) (0.97)  (0.70)
2 -1.16 1.37 -0.69 1.49* -1.17 2.01 -1.10 2.49*
(0.80) (0.19) (0.90)  (0.04) (0.82)  (0.14) (0.89)  (0.05)
3 -0.81 6.26** -0.68 3.86™** -1.16  6.21™ -0.88 6.12%*
(0.93) (<0.01) (0.98)  (<0.01) (0.98) (<0.01)  (0.95) (<0.01)
4 -2.21 7.19*** -1.24 4.32%* -1.89 5.16"* -1.95 5.55™**
(1.00) (<0.01) (1.00)  (<0.01) (1.00) (<0.01)  (1.00) (<0.01)
5 -1.56 6.90* -1.22 6.17 -1.72 6.94* -1.48 6.60"*
(0.83) (<0.01) (0.67)  (<0.01) (0.89) (<0.01)  (0.83) (<0.01)
6 -1.38 2.72%* -1.15 2.81%* -1.39 3.11% -1.38 2.80*
(0.98) (0.05) (0.98)  (<0.01) (0.97)  (0.02) (0.95)  (0.05)
7 -0.96 3.34% -1.14 2.19** -1.98  3.48" -1.41 3.24%
(0.86) (<0.01) (0.98)  (<0.01) (0.99) (<0.01)  (0.91) (<0.01)
8 -1.28 6.06%* -0.94 3.58"* -1.98  4.60™* -2.02 4.71%
(0.95) (<0.01) (0.98)  (<0.01) (0.99) (<0.01)  (0.99) (<0.01)
9 -6.24 1517 -4.87 12.15%* -4.67  11.39" -4.67 11.39**
(0.99) (<0.01) (0.99)  (<0.01) (0.99) (<0.01)  (0.99) (<0.01)
10 -2.13 5.35** -0.98 4.04* -2.20 4.44* -1.96 4.50**
(0.99) (0.01) (0.99)  (<0.01) (0.09)  (0.01) (0.99)  (0.01)
11 -8.76 19.60*** -6.81 17.41%* -5.58  15.00"** -5.58 15.00%**
(0.98) (<0.01) (0.97)  (<0.01) (0.95) (<0.01)  (0.98) (<0.01)
12 -6.35 14.76*** -4.73 12.88** -4.33  11.08" -4.18 11.77*
(0.96) (<0.01) (0.97)  (<0.01) (0.96) (<0.01)  (0.97) (<0.01)
13 -0.66 0.85 -0.47 1.34% -0.55 1.91* -0.79 2.67*
(0.91) (0.15) (0.95)  (<0.01) (0.90)  (0.02) (0.94)  (<0.01)
14 -0.25 0.67 -0.22 1.15* -0.27 1.53 -0.17 2.61*
(0.77) (0.26) (0.80)  (0.07) (0.67)  (0.28) (0.41)  (0.07)
15 -2.92 6.64*** -1.82 5.62%** -2.02 8.99*** -2.01 6.54***
(0.97) (<0.01) (0.99)  (<0.01) 0.97) (<0.01)  (0.96) (<0.01)
16 -3.69 10.51** -3.48 10.78*** -2.89  11.65** -1.42 12.12%**
(0.99) (<0.01) (0.99)  (<0.01) (0.98) (<0.01)  (0.74)  (<0.01)
17 -5.34 11.33*** -4.26 10.28** -290  7.64™* -2.60 10.55**
(0.99) (<0.01) (0.99)  (<0.01) (0.99) (<0.01)  (0.94) (<0.01)
18 -3.01 1.98 -1.67 2.20* -1.89 2.56™ -1.40 2.00*
(0.99) (0.23) (0.98)  (0.06) (0.95)  (0.05) (0.94)  (0.07)
19 -2.72 2.57 -1.81 1.30* -2.06 1.12 -1.59 4.27*
(0.96) (0.11) (0.99)  (0.07) (0.98)  (0.20) (0.96)  (<0.01)
20 -3.39 0.12 -2.38 0.33 -2.40 0.12 -1.99 1.13*
(0.97) (0.35) (0.99)  (0.21) (0.98)  (0.32) (0.99)  (0.09)
21 -3.28 3.99* -2.10 4,18 -2.01 4.627* -2.31 4.99%*
(0.98) (0.09) (0.98)  (<0.01) (0.97) (<0.01)  (0.99) (<0.01)
22 -3.88 2.93 -2.19 1.83 -1.97 3.54 -1.79 4.58**
(0.99) (0.15) (0.99)  (0.11) (0.99)  (0.02) (0.99)  (<0.01)
23 -1.72 9.44*** -1.17 6.00** -1.61  6.08"** -1.67 6.79"
(0.99) (<0.01) (0.99)  (<0.01) (0.99) (<0.01)  (0.99) (<0.01)
24 -2.43 5.72%** -1.52 4.527* -1.82 4747 -0.78 6.37
(0.99) (<0.01) (0.99)  (<0.01) (0.99) (<0.01)  (0.82) (<0.01)
25 -2.98 2.20 -1.38 2.57 -1.72 297 -1.16 3.53**
(0.99) (0.18) (0.99)  (<0.01) (0.99) (<0.01)  (0.98) (<0.01)
Avg. -2.89 5.84*** -2.02 4.85% -2.15  5.19** -1.91 5.66*
(0.99) (<0.01) (0.99)  (<0.01) (0.99) (<0.01)  (0.99) (<0.01)
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that the CAPM alphas vary significantly between the respective datasets for all of the risk-based
strategies. The MVP delivers statistically significant CAPM alphas in 9 datasets during bull
markets. For the VT, Low-Vol, and Low-Beta, the numbers are 15, 8, and 8, respectively. While
on average, we observe that each of the four risk-based strategies deliver statistically significant
alphas that range from 1.171% to 1.481%. This indicates that even in bull markets, the risk-based
strategies do perform significantly well in terms of risk-adjusted return.

When we evaluate the differences in the alphas during bear and bull markets, the MVP
generates a statistically significant difference in 3 out of 25 datasets (Table 7). Yet the difference
in the first dataset is negative, which indicates that the alpha is higher in bull markets relative
to bear markets. For the other two datasets, the MVP shows a higher risk-adjusted return in
bear markets relative to bull markets. For the VT, Low-Vol, and Low-Beta, we observe that
the three strategies produce statistically significant differences in alpha for 8, 5, and 6 datasets,
respectively. While on average, the difference in the alpha during bear and bull markets for
the MVP is 0.852%, although the value is not statistically significantly different from zero.
Similarly, the VT, Low-Vol, and Low-Beta generate on average, statistically significant difference
in the alphas of 1.865%, 1.746%, and 1.929%. Again, we observe large variations for the various
datasets. For instance, the Low-Beta delivers a difference in the alpha of 6.346% in dataset 21,
while for dataset 9 the difference is -1.642%. The Dual Beta model illustrates that there exists, to
some degree, a time-varying relationship in the estimated alpha between bear and bull markets,
and in addition, the alphas from the CAPM is generated mostly during bear markets.

To see if any of the four risk-based strategies implicit change the exposure to the market
during bear and bull periods, we include a third column which is the difference in the CAPM
beta (Table 7). Interestingly, we observe small variation between the factor loading on the
CAPM beta in the two markets for each risk-based strategy. The MVP shows 2 datasets where
the difference in the CAPM beta is statistically significant. The numbers for the VT, Low-VOL,
and Low-Beta are 5, 5, and 6 datasets, respectively. We do observe a reduced exposure towards
the market in bear markets for each of the four risk-based strategies during the majority of
the datasets. The difference in the market exposure on average, are -0.017, -0.015, -0.021, and
-0.018 for the MVP, VT, Low-Vol, and Low-beta, respectively. Although, none of the values are

statistically significantly different from zero.
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Table 7: Dual Beta Model for bull and bear markets
The table provides the alpha and beta estimates for the Dual Beta Model. # denotes the dataset
number. The first column under the respective portfolio strategy reports the estimates of the
alpha for bull markets cp,;. Column two provides the difference in alpha for bear and bull Ac.
Whereas the third column shows the difference in market beta for bear and bull market A3. The
associated p-values are reported in parentheses. Average p-values are constructed using Brown’s
method to combine p-values. The values for alpha are annualized, and reported in percentage.
The rest is presented monthly. Significance values: ***p < 0.01, **p < 0.05, *p < 0.10.

Minimum-Variance

Volatility-timing

Low-Vol (1/0)

Low-Beta (1/3)

# Qpuil Aa AB Qpull Aa AB Qpull A AB Qpull Aa ApB
1 0.450 -1.865* 0.003 0.492 0.777 0.019 0.695* 0.824 0.013 0.805 0.761 0.017
(0.39)  (0.10)  (0.85) (0.24)  (0.30)  (0.20) (0.06)  (0.20)  (0.32) (0.22)  (0.58)  (0.45)
2 1.235 0.939 -0.034 1.364* 2.038 -0.018 1.654 1.025 -0.017 1.573 1.997 -0.012
(0.19)  (0.64)  (0.29) 0.09)  (023)  (0.52) (0.13)  (0.66)  (0.65) (0.16)  (040)  (0.76)
3 0.947 1.293 -0.025 0.392 1577 0.005 0.383 3.045** 0.002 0.679 2.877* 0.009
(015  (0.35) (026 (025 (0.03) (066)  (0.52)  (0.02)  (0.93) 026)  (0.02)  (0.66)
4 0.941 3.666™  -0.022 0.913* 2.023*  -0.036* 1.128 1.576 -0.025 1.041 2.035 -0.027
(0.24)  (0.03)  (0.42) (0.10)  (0.08)  (0.06) (0.11)  (0.30)  (0.31) 017)  (0.21)  (0.30)
5 -0.100 1.928  -0.077* 0.042 1.856  -0.062** -0.309 1.591 -0.097*** -0.130 2.262 -0.064*
(091)  (0.32)  (0.02) (0.96)  (0.25)  (0.02) (0.74)  (042) (<0.01)  (0.90)  (0.29)  (0.07)
6 0.535 -1.732 -0.038 0.261 -0.158  -0.026* 0.480 -1.507  -0.047* 0.403 -1.701 -0.050**
(043)  (0.23)  (0.10) (056)  (0.87)  (0.09) (047)  (028)  (0.04) (0.56)  (0.25)  (0.03)
7 2.001** 3.005 0.020 1.256* 2.139 -0.023 1.128 3.074 -0.002 1.443 3.073 0.002
(0.03)  (0.13)  (0.54) (0.09)  (0.17)  (0.37) (0.21)  (0.10)  (0.96) (011)  (0.11)  (0.94)
8 1.651** -0.328  -0.023 0.977** 0.147 -0.004 0.659 0.581 0.005 0.597 0.941 0.009
(0.03)  (0.84) (0.40)  (0.04) (0.88) (0.80)  (0.28)  (0.65)  (0.83) 033)  (047)  (0.66)
9 2.101 1.105 -0.015 1.720* 0.428 -0.044 1.825* -1.642  -0.086** 1.825* -1.642  -0.086**
0.12)  (0.70)  (0.74) (0.10)  (0.85)  (0.22) (0.10)  (0.48)  (0.02) (0.10)  (0.48)  (0.02)
10 -0.700 0.362 -0.049 -0.343 0.078  -0.047* -0.898 0.367 -0.034 -0.530 0.106 -0.026
(047)  (0.86)  (0.14) (058)  (0.95)  (0.03) (027)  (0.83)  (0.24) (051) (095  (0.35)
11 1.146 2.117 0.011 1.311 0.956 -0.043 1.332 -0.811 -0.084** 1.332 -0.811 -0.084**
(0.36)  (0.42)  (0.80) (0.22)  (0.67)  (0.24) (0.18)  (0.70)  (0.01) (0.18)  (0.70)  (0.01)
12 1.312 -1.071 -0.044 1.174 -0.376  -0.058** 1.031 -1.541 -0.071* 1.107 -0.902  -0.074**
(021)  (0.63) (0.22) (0.13)  (0.82)  (0.03) (021) (037  (0.01) (0.17)  (0.60)  (<0.01)
13 0.990 0.836 -0.053 1.058 2.154 -0.031 1.706* 1.881 -0.000 1.021 2.784 -0.039
(029)  (0.68)  (0.11) (0.16)  (0.17)  (0.22) (0.07) (035  (0.99) (032)  (0.20)  (0.27)
14 2.290** -1.266  -0.019 1.600* 1.019 -0.022 1.941* 0.703 -0.013 2.518** 0.244 -0.018
0.03)  (057)  (0.59) (0.05  (0.56)  (0.45) (0.08)  (0.76)  (0.74) (0.03)  (0.92)  (0.65)
15 2.448* 1.604 0.075 1.998* 1.258 0.003 2.816™* 3.430 0.042 3.043** 1.476 0.076
(0.08)  (0.59)  (0.13) (0.08)  (0.60)  (0.95) (0.04)  (023)  (0.36) (0.04)  (0.63)  (0.13)
16 3.297 -1.022 -0.006 2.891** 1.097 0.007 3.009** 1.986 -0.013 5.150"*  -2.168 -0.055
(0.02)  (0.74)  (0.90) 0.03)  (0.70)  (0.88) 0.03)  (0.50)  (0.78)  (<0.01) (0.49)  (0.28)
17 2.758* 0.284 0.028 2.063* 2.855 0.028 1.038 2.905 -0.042 1.805 3.090 -0.079*
(0.06)  (0.93)  (0.57) 0.09)  (026) (0.51) (030) (0.17)  (0.22) (0.14)  (0.23)  (0.06)
18 1.382 0.995 -0.021 1.721* 3.501* 0.009 1.616 3.463 -0.001 2.166™* 2.907 0.019
(0.14)  (0.61)  (0.52) (0.05)  (0.06)  (0.76) (0.11)  (0.10)  (0.98) (0.04)  (0.19)  (0.60)
19 1.287* 1.154 -0.013 0.785 3.628*** 0.015 0.576 3.228*** 0.004 0.987  5.997** 0.002
0.07)  (045)  (0.60) (0.15)  (<0.01) (0.43) 0.27)  (<0.01)  (0.83) (0.26)  (<0.01)  (0.95)
20 1.716* 1.247 0.007 1.338*  4.445*** 0.017 1.271 4.453** 0.019 1.530 5.790*** 0.029
0.07)  (054)  (0.82) (0.09)  (<0.01) (0.54) (0.14)  (0.01)  (0.53) (0.10)  (<0.01)  (0.36)
21 0.722 0.242  -0.078** 0.819  4.680*** 0.000 1.182 5.020%** 0.022 0.788 6.346™** 0.035
(0.45)  (0.90)  (0.02) (0.31)  (<0.01)  (1.00) (0.18)  (<0.01)  (0.47) (041)  (<0.01)  (0.30)
22 1.013 1.280 -0.026 1.194*  2.643* -0.022 1.356**  4.019*** -0.030 1.743**  5.280*** -0.001
(0.19)  (0.44)  (0.33) (0.05)  (0.04)  (0.29) (0.05)  (<0.01)  (0.20) (0.04)  (<0.01)  (0.98)
23 2.060** 3.814* -0.015 1.341%  3.184** -0.016 1.202* 2.309 -0.034 1.275 3.026* -0.025
(0.04)  (0.07)  (0.66) (0.03)  (0.02) (047 (0.10)  (0.13)  (0.18) (0.11)  (0.07)  (0.36)
24 1.567 1.200 -0.021 1.526* 1.993 -0.009 1.539 1.294 -0.021 2.927% 2.083 0.013
(0.16)  (0.61)  (0.59) (0.08)  (029)  (0.76) (0.10)  (0.52)  (052)  (<0.01) (038)  (0.73)
25 0.974 1.521 0.011 1.386* 2.676 -0.013 1.317 2.384 -0.022 1.919** 2.372 -0.019
(037)  (0.51)  (0.77) (0.09)  (0.13)  (0.66) (0.14)  (021)  (0.47) (0.05) (025  (0.56)
Avg. 1361 0852 -0.017 1171 1.865" -0.015  1.187** 1.746"* -0.021 1481 1.920"*  -0.018
(<0.01)  (0.67) (0.21)  (<0.01) (<0.01) (0.13)  (<0.01) (<0.01) (0.12) (<0.01) (<0.01) (0.11)
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5.3 Aggregate Portfolio Performance

This subsection presents the results from the aggregated portfolio performance for each risk-
based strategy. This method allows us to study the factor exposure on average across the 25

datasets, and in addition to evaluate the risk exposure over time.

5.3.1 Regression Analysis

Table 8 reports the estimates for the CAPM and the Fama-French five-factor model for the risk-
based strategies. We observe that in the CAPM, each risk-based strategy produce on average,
positive and highly statistically significant alphas at the 1% level. In Panel A, we observe that
the MVP generates an annualized alpha of 1.768%, on average. In Panel B, C, and D, for the
VT, Low-Vol, and Low-Beta we see that on average, the annualized alphas are 1.826%, 1.878%,
and 2.185%, respectively. Further, Table 8 illustrates that on average, each risk-based strategy
present a market beta that range from 0.835 to 0.885, which is not surprising considering that
the main idea behind these strategies is to minimize risk. These results coincide with Table 4,
where we observe highly statistically significant alphas in the CAPM, on average.

When we examine the regression coefficients in the Fama-French five-factor model, we first
observe that the CAPM alphas becomes negative and insignificant (Table 8). This reveals that
the positive statistical significant CAPM alphas are likely generated by the exposure to the
additional factors in the Fama-French five-factor model. When we assess the factor loadings,
which gives an indication of the main drivers behind the performance, the HML, RMW, and
CMA factors are all positive and statistically significant for all risk-based strategies at the 1%
level. The difference in the alpha from the CAPM to the five-factor model is mainly attributed
to exposure towards these three factors (illustrated in Figure 4). The market beta, MKT, in
the five-factor model displays more or less similar estimates as in the CAPM model (Table 8).
Each of the risk-based strategies display factor loadings below one against the market and are
highly statistically significant. The exposure to the SMB factor varies between the risk-based
strategies. For the MVP, we observe a statistical factor of -0.056, indicating that to some degree
the MVP tends to favor high capitalization stocks. Contrary to the MVP, the VT and Low-Beta
render a positive statistical significant exposure towards SMB of 0.021 and 0.038. Further on, the
Low-Vol demonstrates an insignificant factor loading of ~ 0. The factor loading on SMB from
each of the risk-based strategies, all display small loadings, which indicate it most likely does not
matter whether the stock is small-cap-, or large-cap stocks, as long as it possesses low-volatility.

To further show the relationship between the average excess return for each of the risk-based
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Table 8: Regression analysis of the aggregated peformance

The table provides the regression output for the aggregated portfolio peformance for each risk-
based strategy. Panel A shows the results for the MVP, and Panel B displays the VT. Panel C and
D reports the results for the Low-Volatility and Low-Beta, respectively. The associated p-values
are reported in parentheses. Alphas are annualized and reported as percentage. Significance

values: ***p < 0.01, **p < 0.05, *p < 0.10.

Model a Burr Bsmp Bumr  Bruw  Boma  Riy
Panel A: Minimum-Variance Portfolio
CAPM 1.768* 0.835*** 0.93
(<0.01) (<0.01)
Fama-French 5 factor -0.235  0.910™* -0.056™* 0.106™* 0.147** 0.179"* 0.97
(0.50)  (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
Panel B: Volatility-Timing strategy
CAPM 1.826™* (.885*** 0.96
(<0.01) (<0.01)
Fama-French 5 factor -0.367  0.949**  0.021*  0.117** 0.163*** 0.149™* 0.98
(0.23) (<0.01) (0.02) (<0.01) (<0.01) (<0.01)
Panel C: Low Volatility (1/0)
CAPM 1.878** (0.876*** 0.94
(<0.01) (<0.01)
Fama-French 5 factor -0.529  0.952**  -0.002  0.129** 0.179** 0.176** 0.97
(0.12)  (<0.01) (0.83) (<0.01) (<0.01) (<0.01)
Panel D: Low Beta (1/03)
CAPM 2.185**  (0.874*** 0.94
(<0.01) (<0.01)
Fama-French 5 factor -0.312  0.945***  0.038** 0.15***  0.165** 0.167** 0.97
(0.35)  (<0.01) (0.03) (<0.01) (<0.01) (<0.01)
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Panel A: CAPM
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Figure 4: Portfolio Return Decomposition
This figure provides return contribution to various risk factors for the risk-based strategies.
Panel A provides the decomposition from the CAPM, whereas Panel B shows the contribution
from Fama-French five-factor model. The total return contribution for the respective strategy is
annualized and illustrated as excess return over risk-free rate. The sample period is July 1976
to December 2016

strategies and the factor loadings, we graphically illustrates the decomposition of the portfolios
excess return in Figure 4. By multiplying the respective factor return with the portfolios factor
loading, we obtain the respective factors contribution towards the total excess return. From
Figure Figure 4 in Panel A, we present the decomposition of the CAPM, and illustrates the
contribution to the market factor M KT, and the CAPM alpha. Further, in Panel B, the positive
alphas in the CAPM vanish when the risk factors in the five-factor model are taken into account.
Thus, it is clear that a high factor loading on HML, RMW, and CMA combined with the fact that
these three factors generate a high mean return over the sample period contribute significantly to
the total return of each portfolio (Table 2, Figure 4). Considering that the risk-based strategies
are long-only, the exposure to the market is high, and thus the market contributes most to the

total return.
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5.3.2 Time-Varying Exposure

To evaluate the time-series dimension of each of the risk-based strategies performance, we report
estimates from a rolling 3-year alpha (Figure 5). The rolling window approach let us track how
the respective portfolio performance varies over time. Panel A illustrates the 3-year rolling alpha
for each risk-based strategy in the CAPM, whereas Panel B displays the respective rolling-alpha
estimates using the five-factor model. Evidently, from Panel A, the 3-year rolling alpha for each
of the risk-based strategies, exhibit time-varying estimates. In the period before the dot-com
bubble, we observe a decline in the CAPM alpha estimates, which illustrate that the market
portfolio outperforms the risk-based strategies during the bull period. During the bear period
from 2001 to 2004 (dot-com bubble), we observe an increase in the rolling alpha estimates for the
risk-based strategies. This substantiates our earlier results that these strategies generate superior
performance mostly during bear markets. However, we do not observe the same tendency during
the global financial crisis, where the rolling alpha estimates remain rather small. Even though
the rolling alpha estimates dictate a highly time-varying behavior, is it evident from Panel A that
the 3-year alpha remains positive for most of the time. Moreover, Panel B illustrates the 3-year
rolling five-factor alpha where we observe a much smaller variability, which is a consequence of
the exposure to the five risk factors.

Figure 6 illustrates the time-varying exposure to the five-factor model for each risk-based
strategy. It is obvious from Figure 6 that the factor exposures experience a time-varying behavior.
The exposure to the SMB factor for each risk-based strategy is for most of the time negative or
around zero. We observe a more time-varying behavior on the HML and CMA factors. In fact,
during the first 30 years of our analysis until 2006-2007, the rolling factor exposure to the HML
factor remained positive. We observe that in bear markets, where the risk-based strategies tend
to be more resilient, implicit increase the exposure to the HML factor. We further observe that
from the beginning of the global financial crisis the exposure to the HML factor has dropped
below zero. From 2010-2011, the implicit exposure towards the RMW and CMA factors have
increased substantially, and are the two remaining factors with a positive loading. Fama and
French argue that “low-volatility stocks tends to behave like those of firms that are profitable but
conservative in terms of investment” (Fama & French (2015) p.21), and illustrate that positive

exposure to the RMW and CMA factors capture the average returns of low-volatility stocks.
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Panel A: 3-years Rolling CAPM Alpha
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Figure 5: Rolling 3-year alpha
This figure provides the 3-year rolling alpha estimates for the risk-based strategies. The first
3-year alpha estimate is from July 1973 to July 1976. The next 3-year alpha estimate will be
rolled on month forward, while we discard the first month. Panel A illustrates the CAPM alpha,
whereas Panel B depicts the 3-year rolling Fama-French five-factor alpha estimates. Note that
the alpha estimates are annualized and presented in percentage.
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Figure 6: Rolling 3-year factor exposure
This figure provides a 3-year rolling factor exposure. The first 3-year factor estimate is from
July 1973 to July 1976. The next 3-year factor estimate will be rolled on month forward, while
we discard the first month. Panel Al, A2, B1, B2 shows MVP, VOL, Low-Vol, and Low-Beta,
respectively.

5.4 Robustness Checks

In this subsection we briefly discuss the various changes we undertake in the design setup to
check for robustness of our main results. First, we present the robustness check from dividing
the dataset into two equal sample sizes. The first period is from July 1973 to March 1995,
whereas the second period is from April 1995 to December 2016. Second, we change the setup
by using a 5-year lookback period instead of using 10-years. The results are further presented in
Appendix 5, 6, and 7.

The general conclusion across the robustness tests are that the risk-based strategies still
provide a statistically significant difference in the Sharpe ratio compared to the naive diversifi-
cation. The results vary slightly across the two subperiods, and the outperformance appears to
be stronger during the second period, from July 1995 to Dec 2016. Further, in terms of CAPM

alpha, the risk-based strategies still deliver statistically significant values on average, regardless
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of whether one looks at the first or second subperiod, or change the lookback period. Similarly,
when we controll for several risk factors through the Fama-French five-factor model, the statisti-
cally significant alphas from the CAPM vanish. Thus, our main results remain intact regardless

of changes in the setup.

6 Discussion

Although risk-based strategies merely focus on minimizing risk, it turns out that these strate-
gies also deliver good performance. However, we do observe large variations in the portfolio
performance when we assess the results for each datasets. The various tables that present sta-
tistical tests, all show large variations regardless of the various performance measures we use
(see Table 4, Table 6, and Table 7). There exists no particular consistency in the risk-based
strategies ability to outperform the naive diversification in each respective dataset. Already
Kirby & Ostdiek (2012) point out this fact in their paper, where they show that their timing
strategies are influenced by the datasets characteristics. Measuring the performance of various
optimal portfolios compared to the naive diversification on a few arbitrary datasets provided by
Kenneth French could create a misleading impression of superiority of optimized portfolios over
naive diversification (or vice versa), while in fact the various portfolio strategies simply could
benefit from the respective sorting characteristics possessed in each dataset. Several studies claim
superiority over the naive diversification while they simply evaluate the performance over a few
arbitrary datasets among a large number of available datasets on the Kenneth French library.
These datasets could consequently have been “cherry-picked” to best suit the author’s conclusion.
Yet our reason for including 25 empirical datasets was to prevent this bias, and more thoroughly
evaluate the relative performance of four risk-based strategies over the naive diversification.
When we assess the difference in the Sharpe ratio between the risk-based strategies and the
naive diversification, we observe that three of four risk-based strategies statistically significantly
outperform the naive diversification on average, across the 25 datasets. The MVP is the only
risk-based strategy that does not outperform the naive diversification on average, by conventional
levels. Similarly, Zakamulin (2017) shows that the MVP does not outperform the naive diversi-
fication by statistically significant margins, on average. Also, DeMiguel et al. (2009) found no

evidence indicating that the MVP consistently outperform the naive diversification. The authors
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suggest that the estimation error associated with forecasting the model parameters leads to poor
out-of-sample performance. Stivers & Sun (2016) argue that the use of full-matrix strategies
generally can lead to larger estimation error compared to portfolio strategies that only uses the
diagonal of the covariance matrix. Indeed, the VT, and Low-Vol strategies, which simply use
the diagonal of the covariance-matrix to assign the portfolio weights, deliver a statistically sig-
nificant difference in the Sharpe ratio over the naive diversification, on average. The Low-Beta
strategy that uses the assets inverse beta to assign weights also delivers statistical significant
differences in the Sharpe ratio over the naive diversification, on average. Kirby & Ostdiek (2012)
document superior performance for the VT strategy relative to the naive diversification across
four empirical datasets, and Stivers & Sun (2016) present similar results as Kirby & Ostdiek
(2012), by demonstrating that the VT outperform the naive diversification across five empirical
datasets. The results obtained for the two ad-hoc strategies, the Low-Vol, and Low-Beta show
how one can implement simple portfolio strategies on Kenneth French datasets, measure the
performance by means of Sharpe ratio and statistically significantly outperform the naive diver-
sification. Although the performance varies over each dataset, these two strategies do however
deliver the highest number of statistically significant differences across the 25 datasets, relative
to the two other risk-based strategies. Though the outperformance is most likely attributed to
the low-volatility effect, which Zakamulin (2017) illustrates is present in virtually all datasets
provided by Kenneth French.

All the risk-based strategies deliver statistically significant CAPM alphas for almost all of the
empirical datasets, and on average, the CAPM alphas are statistically significant at the 1% level.
Zakamulin (2017) demonstrates that both the MVP and VT produce economically significant
annualized alphas of 1.5% and 1.68% in the CAPM. When Zakamulin (2017) augments the CAPM
with the HML factor, the alpha of any optimized portfolios strategy becomes neither economically
nor statistically significant. When we assess the performance based on the five-factor model of
Fama-French, almost all of the statistically significant positive alphas in the CAPM vanish. Even
though some alphas are statistically significant, those values are negative. The empirical results
we obtain for the five-factor model may be interpreted as if the remaining CAPM alpha is fully
explained by exposure to the five risk factors. In line with Fama & French (2016), who show
that their new five-factor model fully captures the remaining significant alphas that are left
unexplained by the three-factor model. For the sake of thoroughness, we present the results from
the three- and four-factor models in Appendix 3. The results show that there remain positive
and statistically significant alphas on average, and for the majority of the datasets. Consistent

with Frazzini & Pedersen (2014), and Novy-Marx (2014) who find that there remain significant
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positive alphas of low-volatility portfolios from the Fama-French three- and Carhart four-factor
model.

When we assess the performance of the risk-based strategies during bull and bear markets,
we observe that the superior performance over the naive diversification is mainly due to the
performance during bear markets. The risk-based strategies arguably benefit from their resilient
feature during market downturns. The difference in the mean returns illustrates that the risk-
based strategies compared to the naive diversification only slightly underperform during bull
markets, while outperform during bear markets (see Table 6). These results indicate that the
risk-based strategies experience a much less drawdown than the naive diversification during
bear markets, while simultaneously capturing the upside potential during bull markets. This
is further confirmed by our results obtained from the Dual Beta Model, where we find that
each risk-based strategies deliver statistically significant alphas in bull markets. In addition, the
VT, Low-Vol, and Low-Beta strategies deliver a statistically significant difference in the alpha
during bear and bull markets. Implying that the three strategies statistically deliver higher risk-
adjusted return in bear markets. Though, we have not found any studies that statistically test
the performance of risk-based strategies during bull and bear markets, a few papers do however
mention the outperformance of risk-based strategies. Scherer (2011) evaluates the MVP during
different regimes, without statistically testing the performance, and shows that in bull markets,
the MVP tends to underperform relative to the market portfolio, while in bear markets, it tends
to outperform.

Through the aggregated portfolio performance we show that over all datasets, each of the
four risk-based strategies produce statistical significant CAPM alphas. This indicates that the
market is not able to explain all the excess return of these strategies and that one or several risk
factors are necessary to explain the excess return. Further, we report statistically insignificant
alphas in the Fama-French five-factor model. The factor loading of value (HML), profitability
(RMW), and investment(CMA) are highly statistically significant for all the risk-based strategies,
which indicate that the three factors contribute economically to the overall portfolio returns (see
Figure 4). Value stocks also tend to be low-risk stocks: so minimizing the volatility would
naturally create a positive factor loading on value factor. Despite the fact that we use an
approach that to the best of our knowledge has not been used before, our results are comparable
to previous studies. Clarke et al. (2006) show that the MVP tend to have both a value- and a
size bias. Similarly, Scherer (2011) points to the value exposure in the MVP and suggests that
strategies aimed at minimizing risk are nothing more than an inefficient way to capture factor

risk premium. Several other studies (de Carvalho et al. (2012), Goldberg & Geddes (2014), Chow
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et al. (2014)) also illustrate that the returns of risk-based strategies are substantially driven by
the exposure to the value factor. Zakamulin (2017) shows that the CAPM augmented with the
HML factor, which can be viewed as a proxy for the low-volatility effect, erodes every positive
significant alpha in the CAPM. The obtained results from these authors are in line with what
we find, and further strengthen our results.

Figure 6 illustrates how the behavior of factor exposure is highly time-varying. After the
global financial crisis, the exposure towards HML has dropped below zero, indicating a shift
from value to more growth stocks. This may be explained by the increased popularity and
huge cash-inflows into low-volatility strategies (see Goldberg & Geddes (2014)). Similarly to our
results, Goldberg & Geddes (2014), illustrate that over the period 1973 to December 2012 much
of the excess return of a minimum variance strategy could be largely attributed to tilts towards
value, and further argue that the boosted interest in low-volatility portfolios largely explains why

the value factor has shifted from cheap to more expensive stocks post global financial crisis.

7 Conclusion

Since the publication of the study by DeMiguel et al. (2009), where they demonstrate that none
of the 14 mean-variance optimization strategies outperform the naive diversification, several
empirical studies claim to defend the role of portfolio optimization (see e.g. Kritzman et al.
(2010), Tu & Zhou (2011), Kirby & Ostdiek (2012)). However, in a recent study conducted by
Zakamulin (2017), the author states that the superior performance of these optimized portfolio
strategies appears due to exposure to one or several profitable market anomalies, and not as a
result of better mean-variance efficiency.

This thesis evaluates the performance of four risk-based strategies relative to the naive diversi-
fication, and additionally assess whether this (out)performance could be attributed to established
factor premiums. We use two optimal mean-variance portfolio strategies considered in the liter-
ature, namely the minimum-variance portfolio (MVP) and the volatility-timing strategy (VT),
and two ad-hoc portfolio strategies that assign weights based on the assets inverse standard
deviation and the CAPM beta. These two ad-hoc strategies directly exploit the low-volatility
effect, which Zakamulin (2017) illustrates is present in virtually all datasets provided by Kenneth

French. We extend previous studies by using 25 empirical datasets provided by Kenneth French,
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where the time period is extended due to newly accessible data. The performance of risk-based
strategies relative to the naive diversification is measured across both bull and bear markets to
differentiate the performance during the two phases. To gain insight into the risk factors that
drives the performance, and additionally study the risk exposure over time, we construct a gen-
eralized approach where we look at the aggregate portfolio performance across 25 datasets. The
newly proposed Fama-French five-factor model is used to assess the factor exposures.

Our results indicate on average, that the VT, Low-Vol, and Low-Beta strategies outperform
the naive diversification in terms of Sharpe ratio. Although, the results vary significantly over the
individual datasets. The two simple ad-hoc strategies constructed to exploit the low-volatility
effect delivers superior performance over the naive diversification and thus substantiating the
point that one does not necessarily need sophisticated portfolio strategies to outperform the
naive diversification. Moreover, each risk-based strategy generates statistically significant alphas
in the CAPM, both on average, and in nearly each dataset. The superior performance of the
risk-based strategies compared to the naive diversification, and in terms of CAPM alpha, are
mostly generated in bear markets. When we control for several established factor premiums
through the Fama-French five-factor model, the alpha of any risk-based strategy becomes neither
economically nor statistically significant. The positive factor loadings on HML, RMW, and CMA
indicate that these factors significantly contribute to the total return for each risk-based strategy.
These findings are in line with several other studies that advocate that the performance of risk-
based strategies could be attributed to factor exposures. We reach the same general conclusion as
Zakamulin (2017) that the superior performance of risk-based strategies is likely to be attributed

to exposure towards established factor premiums rather than better mean-variance efficiency.
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Appendix 1: Normality Test for the Risk-based strategies

Table 9: Normality test for the risk-based strategies
This table reports the normalized moments of each risk-based strategy across 25 datasets, as
well as a normality test. Shapiro-Wilk test for normality tests if the distribution under scrutiny
follows a normal distribution. Formally represented as: Hg : € ~ N(p,02), Hy : €= ~ N (i, 0?).

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/3)
# Kurt. Skew. Shapiro-W. Kurt. Skew. Shapiro-W. Kurt. Skew. Shapiro-W. Kurt. Skew. Shapiro-W.
1 197 -0.43 <0.01 233 -0.6 <0.01 2.06 -0.51 <0.01 2.15  -0.54 <0.01
2 241  -0.46 <0.01 2.49  -0.52 <0.01 2.69 -0.51 <0.01 2.54  -0.47 <0.01
3 24 -0.5 <0.01 234 -0.52 <0.01 232 -0.49 <0.01 2.69  -0.56 <0.01
4 208 -047 <0.01 226 -0.5 <0.01 236 -0.51 <0.01 2.08 -0.45 <0.01
5 197 -0.35 <0.01 194 -04 <0.01 1.97  -0.39 <0.01 1.76  -0.37 <0.01
6 197 -0.51 <0.01 212 -0.52 <0.01 1.96  -0.49 <0.01 1.94 -0.5 <0.01
7 342  -0.54 <0.01 321  -0.51 <0.01 349  -0.57 <0.01 329  -0.53 <0.01
8 156 -0.35 <0.01 1.96 -0.46 <0.01 1.8  -0.42 <0.01 1.84 -0.44 <0.01
9 236 -0.35 <0.01 255  -0.43 <0.01 235  -043 <0.01 233  -0.42 <0.01
10 226  -0.38 <0.01 236 -0.45 <0.01 226 -0.39 <0.01 236 -0.41 <0.01
11 152 -0.34 <0.01 2.04 04 <0.01 2.04 -0.38 <0.01 2.02 -0.37 <0.01
12 143 -0.28 <0.01 1.83  -0.36 <0.01 1.92  -0.35 <0.01 1.91  -0.35 <0.01
13 2.09 -0.27 <0.01 235  -041 <0.01 231 -0.38 <0.01 243  -0.3 <0.01
14 1.7 -0.28 <0.01 222  -0.44 <0.01 2.19  -0.31 <0.01 2.14  -0.26 <0.01
15 3 0.02 <0.01 2.08 -0.25 <0.01 3.06 -0.21 <0.01 3.59  -0.37 <0.01
16 1.12  -0.08 <0.01 132 -0.26 <0.01 1.43  -0.28 <0.01 1.05 -0.26 <0.01
17 136 -0.14 <0.01 2.05 -0.38 <0.01 256 -0.36 <0.01 2.63 -0.27 <0.01
18 1.88 -0.28 <0.01 2.8  -0.61 <0.01 247 -0.54 <0.01 291  -0.65 <0.01
19 232  -03 <0.01 2.71 -0.6 <0.01 237 -0.53 <0.01 2.59  -0.59 <0.01
20 3.74 -0.51 <0.01 3.45 -0.62 <0.01 343  -0.62 <0.01 3.65 -0.67 <0.01
21 1.72  -0.15 <0.01 2.46  -0.55 <0.01 2.81 -0.58 <0.01 241 -0.57 <0.01
22 19 -0.37 <0.01 2.69 -0.59 <0.01 2.58  -0.51 <0.01 2.8  -0.63 <0.01
23 2.68 -0.42 <0.01 2.6 -0.51 <0.01 235 -048 <0.01 247  -0.5 <0.01
24 243  -0.27 <0.01 2.44  -0.45 <0.01 2.3 -0.4 <0.01 226 -0.46 <0.01
25 188 -0.33 <0.01 245  -0.48 <0.01 248  -0.39 <0.01 2.82  -0.46 <0.01

Appendix 2: Normality Test for Regression Models

Table 10: Normality tests for regression models
This table reports the aggregated portfolios normalized moments, as well as a normality test for
the residuals obtained from CAPM and Fama-French five factor. Shapiro-Wilk test for normality
tests if the distribution under scrutiny follows a normal distribution. Formally represented as:
Hy:e~N(p,02), Hy : =~ N(p,02).

Skewness Kurtosis Shapiro-Wilk Skewness Kurtosis Shapiro-Wilk

CAPM Fama-French 5 factor
Minimum-variance portfolio 0.19 7.07 <0.001 0.34 2.85 <0.001
Volatility targeting 0.79 12.23 <0.001 0.69 5.8 <0.001
Low Volatility (1/0) 0.82 14.09 <0.001 0.75 7.07 <0.001
Low Beta (1/3) 1.13 12.13 <0.001 0.87 6.86 <0.001
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Appendix 3: Results from Fama-French Three-Factor Model

Table 11: Performance tests on 25 datasets for FF3
The table reports the out-of-sample estimates for the entire period 1973:07 - 2016:12. The
difference in annualized Sharpe ratio of each risk-based strategy versus naive, SR, — SRy n, is

denoted as ASR. afAPM denotes the alpha in the CAPM, whereas af'F3 denotes the alpha
in the Fama-French three-factor model. The associated p-values are reported in parentheses.
The average p-values are constructed using Brown’s method to combine p-values. Note that that
alphas are annualized and reportd in percentage. Significance values: ***p < 0.01, **p < 0.05,
*p < 0.10.

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/3)
” ASR QCAPM G FF3 ASR  alAPM G FF3 ASR  aQAPM  [F3 ASR  aCAPM G FF3
1 -0.079 -0.084 0.387 -0.039 0.501 0.109 -0.020  0.783**  0.445 -0.024 0.830 0.323
(0.88)  (0.85)  (0.32) (0.85)  (0.14)  (0.69) (0.67)  (<0.01)  (0.12) (0.74)  (0.11)  (0.46)
2 -0.012 1.847 0.305 0.011  2.097*  0.303 -0.003  2.105*  -0.064 0.002 2.233  -0.153
0.63)  (0.02)  (0.64) (0.31)  (<0.01) (0.51) (0.56)  (0.02)  (0.93) (043)  (0.01)  (0.82)
3 0.103™*  1.559***  1.182** 0.056***  0.759***  0.472* 0.078*  1.179*  0.838* 0.090"** 1.352***  0.929*
(<0.01) (<0.01) (0.02)  (<0.01) (<0.01) (0.08) (0.01)  (0.02)  (0.08)  (<0.01) (<0.01) (0.05)
4 0.065* 2.153™*  1.058* 0.049*  1.831™* 0.924*** 0.045  1.811** 0.834* 0.046  1.868™*  0.800
(0.07)  (<0.01)  (0.05) (0.02)  (<0.01) (<0.01)  (0.12) (<0.01) (0.08) (0.11)  (<0.01)  (0.12)
5 0.077** 1.222 0.547 0.082"**  1.195* 0.461 0.071* 1.139 0.344 0.067* 1.147 0.450
0.03)  (0.10)  (0.45)  (<0.01) (0.06)  (0.44) 0.05)  (0.13)  (0.64) (0.08)  (0.16)  (0.58)
6 0.015 0.474 0.402 0.024 0.497 0.255 0.022 0.573 0.313 0.015 0.479 0.246
(0.36)  (0.39)  (0.46) (0.18)  (0.17)  (0.47) (028)  (029)  (0.55) (0.36)  (0.39)  (0.66)
7 0.035 2.594**  1.424* 0.010  2.067*  0.886* -0.002  1.966"*  0.879 0.014  2.241*  1.025
(0.17)  (<0.01)  (0.04) (0.32)  (<0.01)  (0.08) (053)  (<0.01)  (0.18) (0.37)  (<0.01) (0.12)
8 0.100™  1.804*** 2.037*** 0.057*  1.059*** 1.339*** 0.034 0.766 1.007** 0.033 0.751 0.963**
(0.01)  (<0.01) (<0.01)  (0.01) (<0.01) (<0.01)  (0.16)  (0.12)  (0.03) (0.16)  (0.13)  (0.04)
9 0.095 2557 1.767* 0.104*  2.299***  1.561** 0.098*  2.293"*  1.560** 0.098  2.293™*  1.560**
(017)  (0.02)  (0.06) (0.07)  (<0.01)  (0.03) (0.07)  (<0.01)  (0.04) (0.10)  (<0.01)  (0.04)
10 0.011 -0.086 -0.568 0.042* 0.174 -0.119 -0.005 -0.446 -0.778 0.009 -0.227  -0.610
(0.40)  (0.91)  (0.45) 0.07)  (0.73)  (0.81) (053)  (0.50)  (0.23) (0.40)  (0.73)  (0.34)
11 0.075 1.598 0.593 0.130*  2.023* 1.103 0.131=  2.003**  1.128* 0.131*  2.003**  1.128*
(021)  (0.11)  (0.50) 0.07)  (0.02)  (0.13) (0.05)  (0.01)  (0.09) 0.04)  (0.01)  (0.09)
12 0.090 1.484* 1.096 0.120"  1.685*** 1.221** 0.092*  1.363**  0.990* 0.112*  1.643* 1.222*
(0.14)  (0.08)  (0.10) (0.03)  (<0.01) (0.01) (0.07)  (0.04)  (0.05) (0.04)  (0.01)  (0.02)
13 -0.009 1.769** 0.643 0.014  1.965**  0.776 0.021  2.212*  0.799 0.013  2.180**  0.460
(0.60)  (0.02)  (0.34) (020)  (<0.01) (0.12) (0.28)  (<0.01) (0.22) (0.34)  (<0.01) (0.51)
14 0.012 2.156™ 0.746 0.020  2.099"*  0.633 0.015 2.261* 0.518 0.048 27727 0.619
(0.36)  (0.01)  (0.31) (0.14)  (<0.01)  (0.23) (0.37)  (0.01)  (0.49) (0.14)  (<0.01)  (0.40)
15 0.009 2.091* -0.347 0.051 2.306* 0.234 0.103*  3.285™*  0.828 0.044  2.638™  -0.208
(0.45) (0.07)  (0.70) (0.13)  (0.01)  (0.73) (0.04)  (<0.01) (0.32) (0.25)  (0.02)  (0.81)
16 0.083 3.0917  2.304*" 0.097  3.113™* 2.021* 0.133™  3.677™*  2.455** 0.236™*  5.151**  4.329**
(0.16)  (<0.01) (0.03) (0.10)  (<0.01)  (0.04) (0.05)  (<0.01) (0.02)  (<0.01) (<0.01) (<0.01)
17 0.060 2.534* 1.614 0.088  2.535™* 1.487 0.078*  2.258"*  1.738** 0.149™*  3.458***  2.886"*
(029)  (0.03)  (0.14) (0.11)  (<0.01)  (0.10) (0.09)  (<0.01) (0.02)  (<0.01) (<0.01) (<0.01)
18 -0.010 1.867* 0.556 0.033  2.562***  0.490 0.026  2.551*  0.171 0.035  2.742***  0.092
(0.57)  (0.01)  (0.41) (0.21)  (<0.01) (0.33) (0.27)  (<0.01)  (0.76) (0.19)  (<0.01)  (0.86)
19 0.016 1.733**  1.473* 0.007  1.598"*  0.681* -0.004  1.399"*  0.429 0.056*  2.570**  0.971*
(0.40)  (<0.01) (<0.01)  (042) (<0.01) (0.07) (051)  (<0.01) (0.22) (0.07)  (<0.01)  (0.07)
20 -0.048 1.972% 1.091 -0.021  2.349"*  0.752 -0.030  2.266™*  0.526 -0.003  2.769"*  0.911*
(079)  (0.01)  (0.14) (0.73)  (<0.01)  (0.13) (0.78)  (<0.01)  (0.33) (0.52)  (<0.01)  (0.08)
21 0.014 1.608* 1.101 0.047*  2.069™*  0.703 0.058*  2.291™*  0.578 0.042*  2.119"*  0.438
(043)  (0.04)  (0.16) (0.08)  (<0.01) (0.18) (0.06)  (<0.01) (0.30) (0.10)  (<0.01) (0.45)
22 -0.018 1.634**  0.878 0.016  2.129**  0.907** 0.054  2.748%*  1.352*** 0.073**  3.163*** 1.458***
(0.63)  (<0.01) (0.13) (0.33)  (<0.01)  (0.02) (0.11)  (<0.01) (<0.01)  (0.01) (<0.01) (<0.01)
23 0.136™*  3.241**  2.091*** 0.088™**  2.357** 1.253*** 0.074*  2.176™  1.130** 0.082"  2.343**  0.977*
(<0.01) (<0.01) (<0.01)  (<0.01) (<0.01) (<0.01)  (0.03) (<0.01) (0.02) (0.03)  (<0.01)  (0.06)
24 0.033 2.105** 0.394 0.048*  2.155"*  0.364 0.043  2.109**  0.175 0.112"*  3.342**  0.792
0.25)  (0.02)  (0.61) (0.06)  (<0.01)  (0.50) (0.16)  (<0.01) (0.76)  (<0.01) (<0.01)  (0.20)
25 -0.067 1.265 -0.254 0.011  2.234*™*  0.559 0.006  2.189™*  0.602 0.038  2.757**  0.657
0.94)  (0.15)  (0.74) (0.31)  (<0.01)  (0.27) (0.45)  (<0.01)  (0.29) (0.12)  (<0.01)  (0.24)

Avg. 0.031 1768 0.901"*  0.046" 1.826™* 0.775"*  0.045™* 1.878* 0.752"*  0.061** 2.185"* 0.891*"
(0.14)  (<0.01) (<0.01) (0.04) (<0.01) (<0.01)  (<0.01) (<0.01) (<0.01)  (<0.01) (<0.01) (<0.01)

o6



Appendix 4: Results from Carhart Four-Factor Model

Table 12: Performance tests on 25 datasets for Carhart four-factor model

The table reports the out-of-sample estimates for the entire period 1973:07 - 2016:12. The
difference in annualized Sharpe ratio of each risk-based strategy versus naive, SR, — SRy/n, is

denoted as ASR. achP M denotes the alpha in the CAPM, whereas ag‘"h“” denotes the
alpha in the Carhart four-factor model. The associated p-values are reported in parentheses.
The average p-values are constructed using Brown’s method to combine p-values. Note that that
alphas are annualized and reportd in percentage. Significance values: ***p < 0.01, **p < 0.05,

*p < 0.10.
Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/3)
# ASR a(IJAPM a(i‘arhart ASR a,lC'APM a,ZOarhart ASR a(IJAPM a(i‘arhart ASR a,lC'APM a,ZOarhart
1 -0.085 -0.191 0.052 -0.035  0.567 0.050 -0.020  0.785"  0.444 -0.033  0.738 0.324
0.92)  (0.65)  (0.89) 0.78)  (0.11)  (0.86) (0.70)  (0.02)  (0.14) (0.94)  (0.22)  (0.50)
2 0.002 2,110 0.033 0.034*  2.429***  0.452 0.060*  2.969***  0.545 0.086**  3.405™*  0.779
(0.54)  (<0.01)  (0.96) (0.06)  (<0.01) (0.33) (0.08)  (<0.01)  (0.40) (0.04)  (<0.01) (0.25)
3 0.092**  1.377*  1.069** 0.062***  0.840™*  0.546" 0.060**  0.902* 0.496 0.057  0.839" 0.511
(<0.01) (0.01)  (0.04) (<0.01) (<0.01) (0.05) (<0.01)  (0.06)  (0.30) (0.04) (0.07)  (0.26)
4 0.022 1.572* 0.319 0.042*  1.727"**  0.704* 0.039  1.729"*  0.791 0.036  1.747**  0.563
(0.38) (0.02)  (0.58) (0.06)  (<0.01)  (0.06) (0.16)  (<0.01) (0.11) (0.16)  (<0.01)  (0.30)
5 0.059* 1.017 0.226 0.070***  1.056 0.292 0.056**  0.964  -0.126 0.042 0.882 0.738
(0.08)  (0.23) (0.78)  (<0.01) (0.12)  (0.65) (0.04)  (0.24)  (0.87) (020)  (0.35)  (0.40)
6 0.002 0.294  -0.114 0.019 0.433 0.034 0.019 0.534  -0.022 0.010 0.416  -0.173
(0.48)  (0.60)  (0.85) (0.14)  (0.26)  (0.93) (0.32)  (0.35)  (0.97) (0.34)  (048)  (0.77)
7 0.038 2,561 0.948 0.022  2.197"*  0.716 0.043  2.575"*  1.075* 0.024  2.327"*  0.696
(0.18)  (<0.01)  (0.14) (0.18)  (<0.01) (0.13) (0.18)  (<0.01)  (0.08) (0.26)  (<0.01)  (0.26)
8 0.106™  1.893*™* 1.771*** 0.064™ 1.161™* 1.317"** 0.046*  0.931™  1.058** 0.050*  1.000™  1.094**
(0.02) (<0.01) (<0.01) (0.02)  (<0.01) (<0.01) (0.08)  (0.05)  (0.03) (0.06) (0.04)  (0.02)
9 0.089 2.409* 1.199 0.099*  2.232"*  0.972 0.098*  2.292* 0.869 0.100*  2.318"*  0.893
(0.18)  (0.02)  (0.19) (0.08) (<0.01) (0.17) 0.08)  (0.01)  (0.26) (0.06)  (<0.01)  (0.24)
10 0.009 -0.108  -0.442 0.048* 0282  -0.157 0.043 0.304  -0.091 0.042 0.271  -0.029
(0.50)  (0.89)  (0.56) (0.06)  (0.59)  (0.76) (020)  (0.64)  (0.89) (0.20)  (0.67)  (0.96)
11 0.082 1.651* 0.380 0.129*  2.007*  0.673 0.142**  2.099"*  (.782 0.143**  2.133**  (.887
(0.30)  (0.09)  (0.67) (0.06)  (0.02)  (0.36)  (<0.01) (<0.01) (0.22)  (<0.01) (<0.01) (0.17)
12 0.085 1.349* 0.743 0.114™  1.596™*  0.835" 0.108*  1.546** 0.770 0.117* 1717 0.850
(0.20) (0.08)  (0.25) (0.04) (<0.01) (0.09) (0.04)  (0.01)  (0.10) (0.06) (0.01)  (0.10)
13 -0.035 1.423* 0.034 0.013  1.965™*  0.625 0.008  1.957*  0.648 0.027  2.333***  0.506
(0.82) (0.07)  (0.96) (0.26)  (<0.01) (0.22) (0.38)  (<0.01) (0.30) (0.32)  (<0.01)  (0.46)
14 0.002 1.998** 0.475 0.014  2.006™*  0.491 0.005 2.078 0.239 0.045 2712 0.358
0.56)  (0.02)  (0.52) (0.22)  (<0.01) (0.36) (0.46)  (0.02)  (0.75) (0.22)  (<0.01) (0.62)
15 0.082 2.966**  1.045 0.116*  3.185*  1.339* 0.146*  3.772"*  1.599* 0.099  3.246**  1.079
(0.12)  (<0.01)  (0.24) (0.02)  (<0.01)  (0.05) (0.04)  (<0.01)  (0.05) (0.10)  (<0.01)  (0.20)
16 0.061 2,763 1.837* 0.078  2.834™* 1.818" 0.053  2.546™ 1421 0.174**  4.233**  2.750**
(0.26)  (0.01)  (0.09) (0.16)  (<0.01)  (0.07) (0.14)  (0.02)  (0.16)  (<0.01) (<0.01) (0.01)
17 0.031 2.142* 1.234 0.089 2537 1.613* 0.082  2.346™  1.474* 0.118™  3.108™*  1.780*
(0.38) (0.06)  (0.27) (0.22)  (<0.01)  (0.08) (0.10)  (<0.01)  (0.07) (0.04)  (<0.01)  (0.08)
18 0.009 2.182**  0.602 0.046  2.756™*  0.651 0.031  2.627  0.360 0.046 2953  0.242
(052)  (<0.01) (0.41) (0.22)  (<0.01)  (0.22) (0.16)  (<0.01)  (0.53) (0.14)  (<0.01)  (0.66)
19 0.042 2.103"*  1.618"** 0.018  1.770™*  0.713* 0.011  1.653"*  0.622 0.032  2.180™* 0415
(0.34)  (<0.01) (<0.01)  (0.32) (<0.01) (0.07) (0.34)  (<0.01) (0.12) (0.16)  (<0.01)  (0.46)
20 -0.072 1.545%  0.428 -0.023  2.289***  0.761 -0.022  2.349**  0.592 -0.015  2.553**  0.714
0.76)  (0.04)  (0.54) (0.68)  (<0.01) (0.11) (0.72)  (<0.01)  (0.25) (0.56)  (<0.01)  (0.18)
21 -0.007 1.327 0.581 0.023  1.732*  0.568 0.057  2.346"*  0.878 0.019  1.873*  0.589
(0.64)  (0.10)  (0.47) (0.28)  (0.01)  (0.32) (0.10)  (<0.01) (0.15) (0.32)  (0.03)  (0.36)
22 -0.033 1.460** 0.304 0.006  1.997*  0.592 0.028 2337 0.991** 0.047*  2.768*  1.029**
(0.74) (0.03)  (0.63) (0.48)  (<0.01) (0.15) (0.26)  (<0.01)  (0.03) (0.08)  (<0.01) (0.03)
23 0.110™  2.852***  1.660** 0.083**  2.285"**  1.006™* 0.081™*  2.294**  0.986** 0.066™*  2.106™*  0.685
(0.04)  (<0.01) (0.03)  (<0.01) (<0.01) (0.02)  (<0.01) (<0.01) (0.05)  (<0.01) (<0.01) (0.19)
24 0.087% 2947 0.979 0.079***  2.589**  0.671 0.092%*  2.847*  (.721 0.159***  4.050**  1.335**
(0.06)  (<0.01) (0.24)  (<0.01) (<0.01) (0.22)  (<0.01) (<0.01) (0.21)  (<0.01) (<0.01) (0.04)
25 0.002 2.262*  0.580 0.035**  2.560™*  0.766 0.035**  2.560"*  0.971* 0.059**  3.024™*  0.689
(0.48)  (<0.01) (0.44) (0.04) (<0.01) (0.12) (0.04) (<0.01)  (0.08) (0.04) (<0.01)  (0.24)
Avg. 0.031* 1.756**  0.702** 0.050™*  1.881*** 0.722*** 0.052"*  1.974** 0.724** 0.062"** 2,197  0.772"*
(0.10)  (<0.01) (0.03)  (<0.01) (<0.01) (<0.01)  (<0.01) (<0.01) (<0.01)  (<0.01) (<0.01) (<0.01)
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Appendix 5: Robustness Tests: Subperiod 1973:07 - 1995:03

Table 13: Robustness checks 1: Statistical tests for subperiod 1
The table shows out-of-sample estimates for the subperiod 1973:07 - 1995:03. The difference
in annualized Sharpe ratio of each risk-based strategy versus naive, SR, — SRy, is denoted

as ASR. af4PM denotes the alpha in the CAPM, whereas afF5 denotes the alpha in the
Fama-French five-factor model. The associated p-values are reported in parentheses. The average
p-values are constructed using Brown’s method to combine p-values. Note that that alphas are
annualized and reportd in percentage. Significance values: ***p < 0.01, **p < 0.05, *p < 0.10.

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/03)
ﬂ’L ASR a?AP}VI (J¢§F5 ASR O{?‘APM a;“Fs ASR ()(]CAPM (¥§F5 ASR a]CAPJ\I U{QFF,‘S
1.00 -0.167 -1.056 -0.938* -0.093  -0.002  0.190 -0.064 0478  0.776** -0.070 0.409 0.472
(0.95)  (0.13)  (0.07) (0.97)  (1.00)  (057)  (0.83) (0.15)  (0.02) (0.92)  (041)  (0.36)
2.00 -0.032 1.755"  0.423 -0.005  2.096"**  0.418 0.006  2.407*  0.508 0.006  2.428*  0.016
(0.75)  (0.04)  (0.61) (0.59)  (<0.01) (0.37) (0.45)  (0.02) (0.53) (0.47) (0.02) (0.98)
3.00 0.066* 1.328*  0.930 0.026"  0.615**  0.486* 0.027  0.675 0.488 0.046*  0.986* 0.741
(0.06)  (0.07)  (0.25) (0.04) (0.03)  (0.07) (0.21)  (0.22) (0.40) (0.07) (0.08) (0.21)
4.00 0.092* 2.352**  1.061 0.049"  1.665**  0.467 0.047  1.651** 0.477 0.063 1.896*** 0.564
(0.05) (<0.01) (0.15) (0.05)  (<0.01) (0.14) (0.14)  (0.01) (0.39) (0.10)  (<0.01)  (0.32)
5.00 0.055 0.700 1.250 0.062*  0.734 0.818 0.028  0.280 0.426 0.072 1.039 1.505
(0.10)  (0.40)  (0.18) (<0.01)  (0.22)  (0.21) (0.26)  (0.74) (0.66) (0.10) (0.27) (0.14)
6.00 -0.015 0.240  -0.040 -0.009 0.260  -0.023 -0.016 0237 -0.317 -0.018 0.214 -0.116
(0.60)  (0.72)  (0.96) (0.64) (0.47)  (0.95) (0.65)  (0.73) (0.67) (0.67) (0.77) (0.89)
7.00 -0.028 1.137  0.359 -0.016  1.262  0.232 -0.020  1.245 0.402 -0.027 1.162 0.298
(0.70)  (0.18)  (0.69) (0.69) (0.05)  (0.71) (0.58)  (0.14) (0.65) (0.71) (0.18) (0.74)
8.00 0.038 0.920  0.177 0.032 0.726*  0.295 0.031 0.750 0.119 0.023 0.637 -0.068
(0.29)  (0.25)  (0.82) (0.16)  (0.09)  (043)  (0.27) (0.23)  (0.83) (0.30)  (0.32)  (0.90)
9.00 0.106  2.502* 1.121 0.098  2.066™  0.577 0.082  1.801**  0.237 0.082 1.801**  0.237
(0.18)  (0.10)  (0.45) (0.14) (0.04)  (0.55) (0.17)  (0.05) (0.77) (0.16) (0.05) (0.77)
10.00 -0.068 -1.861** -1.419 -0.013  -1.077**  -0.455 -0.053  -1.648** -1.278* -0.076  -2.030"* -1.744*
(0.90)  (0.03)  (0.12) (0.78)  (<0.01) (0.30) (0.88)  (0.02) (0.09) (0.99)  (<0.01)  (0.02)
11.00 0.074 1.456 0.404 0.096 1.475 0.378 0.072 1.093 0.122 0.072 1.093 0.122
(0.26)  (0.28)  (0.75) (0.15) (0.13)  (0.67) (0.19)  (0.17) (0.87) (0.20) (0.17) (0.87)
12.00 0.032 0.748  0.034 0.069 1.097 0.651 0.048  0.810 0.479 0.048 0.810 0.479
(0.39)  (0.48)  (0.97) (0.19) (0.11)  (0.26) (0.28)  (0.18) (0.30) (0.25) (0.18) (0.30)
13.00 -0.001  1.500*  0.560 0.018  1.725"*  0.725 0.058  2.446**  1.089 0.005 1.677*  -0.305
(0.49)  (0.05)  (0.48) (0.15)  (<0.01) (0.13)  (0.12) (<0.01) (0.20) (0.44)  (0.08)  (0.73)
14.00 -0.017 1.143  0.279 0.012  1.486™*  0.286 -0.018  1.145  -0.438 0.057 2392 0.285
(0.64)  (0.18)  (0.75) (0.28)  (<0.01) (0.55) (0.67)  (0.18) (0.61) (0.13) (0.02) (0.75)
15.00 0.065 2.512*  -0.141 0.081 2.400* 0.227 0.123*  3.116* 0.047 0.130* 3.259* 0.043
(0.32)  (0.09)  (0.91) (0.10) (0.02)  (0.78) (0.06)  (0.02) (0.96) (0.07) (0.02) (0.97)
16.00 0.090 2.804" 1.967 0.084 2.528* 1.412 0.178* 3.801**  1.932 0.206™  4.201**  3.246™
(0.27)  (0.09)  (0.25) (0.24) (0.08)  (0.35) (0.04) (<0.01) (0.17) (0.05)  (<0.01)  (0.03)
17.00 0.117  3.104*  1.906 0.088  2.463*  1.141 0.063  2.033**  1.388 0.092  2.493*  0.990
(0.25)  (0.05)  (0.25) (0.20) (0.05)  (0.38) (0.22)  (0.02) (0.11) (0.11) (0.01) (0.32)
18.00 -0.116  0.824  -0.554 -0.022  2.183**  0.517 -0.023  2.196**  0.174 -0.007  2.469**  0.374
(0.90)  (0.38)  (0.53) (0.67)  (<0.01) (0.29) (0.64) (<0.01) (0.72) (0.58)  (<0.01)  (0.52)
19.00 -0.070  0.711 1.075 -0.071 0.616*  0.795™ -0.062  0.739**  0.718** -0.057  0.837"*  0.888**
(0.81)  (0.35)  (0.13) (0.91) (0.09)  (0.02) (0.86)  (0.04) (0.03) (0.84) (0.05) (0.02)
20.00 -0.193  0.100  -0.679 -0.097  1.507**  0.520 -0.121  1.118 0.291 -0.096 1.606* 0.361
(0.98)  (0.93)  (0.57) (0.96)  (0.04) (042)  (0.99) (0.14)  (0.66) 0.98)  (0.07)  (0.61)
21.00 -0.097  0.163 1.034 -0.027  1.175*  0.794 -0.035  1.051 0.292 -0.054 0.806 0.044
(0.87)  (0.87)  (0.36) (0.74) (0.09)  (0.15) (0.81)  (0.15) (0.63) (0.88) (0.36) (0.95)
22.00 -0.065 1.288  -0.134 -0.029  1.784**  0.583 0.002  2.295* 1.160™* 0.017  2.559*  0.879*
(0.72)  (0.12)  (0.84) (0.72)  (<0.01) (0.11) (0.46) (<0.01) (<0.01) (0.30)  (<0.01)  (0.05)
23.00 0.072  2.438*  0.440 0.037 1.724*  0.398 0.021  1.490*  -0.121 0.045 1.863*** 0.344
(0.13)  (0.02)  (0.68) (0.11)  (<0.01) (0.33) (0.33)  (0.01) (0.82) (0.12)  (<0.01)  (0.52)
24.00 0.056  2.489*  0.428 0.034  2.024™*  0.537 0.054  2.316™*  0.535 0.113™*  3.295"*  (.378
(0.19)  (0.02)  (0.67) (0.13)  (<0.01) (0.31) (0.10)  (<0.01) (0.39) (<0.01) (<0.01)  (0.57)
25.00 -0.038 1.717* -0.116 0.002  2.248**  0.470 -0.006  2.166**  0.247 0.032  2.747*  0.413
(0.73)  (0.07)  (0.90) (0.44)  (<0.01) (0.30)  (0.56) (<0.01) (0.70) (0.24)  (<0.01)  (0.47)
Avg. -0.002 1.241** 0.377 0.016™  1.391**  0.498 0.017  1.428**  0.390 0.028"  1.626*** 0.418
(0.52) (<0.01) (0.76) (0.03)  (<0.01) (0.12) (0.23) (<0.01) (0.20) (0.02)  (<0.01) (0.31)
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Appendix 6: Robustness Tests: Subperiod 1995:04 - 2016:12

Table 14: Robustness checks 2: Statistical tests for subperiod 2
The table shows out-of-sample estimates for the subperiod 1995:04 - 2016:12. The difference
in annualized Sharpe ratio of each risk-based strategy versus naive, SR, — SRy, is denoted

as ASR. af4PM denotes the alpha in the CAPM, whereas afF5 denotes the alpha in the
Fama-French five-factor model. The associated p-values are reported in parentheses. The average
p-values are constructed using Brown’s method to combine p-values. Note that that alphas are
annualized and reportd in percentage. Significance values: ***p < 0.01, **p < 0.05, *p < 0.10.

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/3)
# ASR QfAPM oIS ASR  ofAPM o I'FS ASR  ofAPM - oIS ASR  ofAPM o FFS
1.00 0.016 0.855*  1.070** 0.019 0.988 0.341 0.029 1.089**  0.444 0.024 1.242 1.004
(0.44)  (0.08)  (0.04) (0.33)  (0.10)  (0.40) (0.32)  (0.03) (0.33)  (0.32)  (0.18)  (0.10)
2.00 0.010 2.003 -0.968 0.029 2.155*  -0.641 -0.012 1.872 -1.294 -0.003 2.068 -1.364
(0.46)  (0.11)  (0.35) (0.20)  (0.06) (0.40)  (0.62)  (0.19) (0.24)  (0.45)  (0.17)  (0.22)

3.00  0.147°"  1.824™  0.410 0.095* 0.962*  0.021  0.142** 1.772* 0411  0.145"* 1807  0.426
(<0.01) (0.02)  (0.57) (<0.01) (0.04) (0.96)  (<0.01) (0.03) (0.60)  (<0.01) (0.02)  (0.57)

400 0.032 1.976*  -1.021 0.048  2.061*** -0.503 0.040  2.031 -0.846 0024  1.891* -1.335"
(0.32)  (0.05)  (0.15) (0.14)  (<0.01) (0.25) 0.23)  (0.04) (0.17) 0.34)  (0.07)  (0.04)
500 0115 1914  -0.793 0.119* 1833 -0775  0.136™ 2193 -0.717 0072 1425  -1.234
(0.05)  (0.11)  (0.43) (0.02)  (0.09)  (0.35) (0.02)  (0.07) (0.46) (0.17)  (0.28)  (0.28)
6.00 0.053 0772 -0.144 0.064*  0.794  -0.109 0070 0984 -0.147 0.057 0811  -0.267
(0.21)  (0.37)  (0.87) 0.07)  (0.20)  (0.85) (0.11)  (0.23)  (0.85) 0.18)  (0.34)  (0.75)
7.00 01207  4.282%*  1.520 0.049  3.072*  0.235 0.020  2.903**  0.069 0.069 3.519%*  0.788
(0.04)  (<0.01) (0.11) (0.11)  (<0.01) (0.70) (0.29)  (<0.01) (0.93) (0.11)  (<0.01)  (0.38)
800 0.171%* 2768 1564 0.087% 1462  0.591 0037 082 -0.168 0043 0904  -0.036
(<0.01) (<0.01)  (0.10) (0.02)  (0.02)  (0.34) (0.23)  (0.28) (0.82) (0.20)  (0.23)  (0.96)
9.00 0082 2697  -0.566 0.115  2.697  -0.499 0.125  3.033% -0.740 0125  3.033*  -0.740
(0.28)  (0.08)  (0.65) (0.15)  (0.04)  (0.60) (0.15)  (0.04) (0.49) (0.16)  (0.04)  (0.49)
10.00 0.119*  1.884  -1.096 0.118% 1570 -0.372 0063 0018 -1435 0121 1745  -0.412
(0.08)  (0.14)  (0.30) (0.02)  (0.08)  (0.64) (0.20)  (0.40)  (0.14) 0.05)  (0.11)  (0.67)
11.00 0.085 1.876  -0.774 0.185*  2.796* -0.432  0.200% 3.120% -0.524  0.209** 3.120  -0.524
(0.31)  (0.20)  (0.53) (0.06)  (0.04)  (0.67) (0.04)  (0.02)  (0.56) (0.04)  (0.02)  (0.56)
12.00 0.153  2.273*  0.257 0.181*  2.370*  0.175 0.148*  2.060* -0.340  0.190~ 2.619*  0.005
(0.10)  (0.08)  (0.80) (0.06)  (0.03)  (0.80) (0.07)  (0.08) (0.66) 0.03)  (0.02)  (0.99)
13.00 -0.016  2.208*  -1.346 0011  2.357%  -0.670 20.022  2.095* -1.073 0023  2.830%  -0.846
(0.59)  (0.09)  (0.14) (0.36)  (0.03)  (0.30) (0.63)  (0.10) (0.23) (0.33)  (0.04)  (0.36)
14.00 0.046  3.348"  -0.151 0.031  2.867 -0.450 0.052  3.568" -0.302 0.037  3.314"  -0.442
(0.25)  (0.02)  (0.89) (0.18)  (0.02)  (0.55) (0.21)  (0.02) (0.78) 0.31)  (0.03)  (0.68)
15.00 -0.056  1.696  -2.078 0013 2309 -1.778* 0074  3.509% -1.023  -0.050  2.014  -2.326*
(0.75)  (0.33)  (0.12) (0.40)  (0.13)  (0.07) (0.16)  (0.05) (0.42) (0.72)  (0.30)  (0.08)
16.00 0.079 3474  0.981 0120  3.866"  0.560 0.086 3747 0306  0.276* 6.344** 2983"
(0.24)  (0.03)  (0.51) (0.15)  (0.01)  (0.68) (0.27)  (0.03) (0.84) (0.02)  (<0.01)  (0.09)
17.00 -0.002  2.073  -0.617 0098  2.819*  -0.392 0118  2.790* -0.718  0.241% 4.781"**  0.460
(0.50)  (0.22)  (0.70) (0.17)  (0.05)  (0.75) (0.08)  (0.03) (0.48) (0.02)  (<0.01) (0.73)
18.00 0.103*  2.949*  0.503 0.090*  2.951**  -0.499 0073 2890 -1.115  0.074* 2957  -0.555
0.09)  (0.01)  (0.62) (0.06)  (0.02)  (0.54) (0.14)  (0.04) (0.24) 0.07)  (0.04)  (0.48)
19.00 0.122°  2.869**  1.089 0.094" 2.641**  0.515 0.060  2.091** 0.100  0.169"* 4.352"* 1.130*
(0.08)  (<0.01) (0.18) (0.02)  (<0.01) (0.31) (0.10)  (<0.01) (0.85)  (<0.01) (<0.01) (0.08)
20.00 0.139% 40227  1.892" 0.071*  3.323"*  0.420 0.080** 3.564** 0167 0105 4.057"* 1.259*
0.04)  (<0.01)  (0.04) (0.06)  (<0.01) (0.52) (0.05)  (<0.01) (0.81)  (<0.01) (<0.01) (0.07)

21.00 0.153*  3.195" 0735  0.141** 3.107** 0258  0.167°* 3.656** 0.194  0.153"* 3548  0.623
(0.03)  (<0.01) (0.47)  (<0.01) (<0.01) (0.72)  (<0.01) (<0.01) (0.80)  (<0.01) (<0.01) (0.44)
2200 0.037 2051 -0.433 0.069 2555 -0.232  0.114* 3203 0045  0.135"* 3.845"*  0.900
(0.32)  (0.03)  (0.55) (0.10)  (<0.01) (0.63) (0.04)  (<0.01) (0.94)  (<0.01) (<0.01) (0.12)
23.00 0.213** 4.157** 1.043  0.152° 3.112"* 0360  0.138"* 2986 -0.312 0129 2962 -0.575
(<0.01) (<0.01) (0.28)  (<0.01) (<0.01) (0.53)  (<0.01) (<0.01) (0.62) (0.03)  (<0.01)  (0.40)

24.00 0.014 1872 -1.697 0069 2416 -0.881 0034 2001 -1.359  0.112° 3453 -0.443
(0.44)  (0.20)  (0.13) (0.13)  (0.05)  (0.29) (0.31)  (0.13)  (0.12) (0.08)  (0.03)  (0.65)
25.00 -0.096 0960 -2.792" 0022 2337 -1.073 0021  2336° -1.040  0.044 2838  -0.617
(0.900)  (0.51)  (0.01) (0.32)  (0.05)  (0.16) (0.30)  (0.05) (0.22) (0.17)  (0.03)  (0.49)

Avg. 0.074** 2400** -0.136"  0.084** 2377 -0.233  0.080"* 2453** -0457  0.101* 2.859"* -0.086
(<0.01) (<0.01) (0.04)  (<0.01) (<0.01) (0.86)  (<0.01) (<0.01) (0.88)  (<0.01) (<0.01) (0.20)
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Appendix 7: Robustness Tests: 5 Year Look-Back Period

Table 15: Robustness checks 3: Statistical test 5-year look-back period
The table shows out-of-sample estimates for the entire period 1973:07 - 2016:12 with a look-back
period of 5 years instead of 10 years. The difference in annualized Sharpe ratio of each risk-based
strategy versus naive, SR, — SRy y, is denoted as ASR. afAPM denotes the alpha in the

CAPM, whereas a5 ¥® denotes the alpha in the Fama-French five-factor model. The associated
p-values are reported in parentheses. The average p-values are constructed using Brown’s method
to combine p-values. Note that that alphas are annualized and reportd in percentage. Note that
that alphas are annualized and reportd in percentage. Significance values: ***p < 0.01, **p < 0.05,
*p < 0.10.

Minimum-Variance Volatility-timing Low-Vol (1/0) Low-Beta (1/03)

4 ASR a§APM ofFs ASR  ofAPM G FF5 ASR ~ ofAPM  (FF5 ASR  ofAPM  (FFS
1.00 0078  -0.074  0.059 0.035 0567  0.029 0024 0715 0.349 0.037 0689  0.505
(0.86)  (0.87)  (0.86) (0.83)  (0.11)  (0.92) 0.70)  (0.01)  (0.22) (0.85)  (0.26)  (0.30)
2.00 0038  2.675%  -0.194 0.034* 24297  -0.146 0.059* 2.962"**  0.201 0.084%  3.384**  0.202
(0.20)  (<0.01)  (0.78) (0.08)  (<0.01) (0.74) (0.09)  (<0.01)  (0.76) (0.02) (<0.01) (0.77)
3.00  0.099™* 1.505**  0.583 0.062*  0.840**  0.052 0.062%  0.924*  -0.144 0.058  0.851* -0.074
(<0.01) (<0.01)  (0.28) (<0.01) (<0.01)  (0.85) 0.05)  (0.06)  (0.76) 0.05)  (0.06)  (0.87)
400 0030 1676 -0.897* 0.042*  1.727*  -0.506" 0.039 1.728"* -0.510 0.036  1.748"** -1.035*
(0.27)  (0.01)  (0.08) (0.07)  (<0.01)  (0.08) (0.15)  (<0.01)  (0.25) (0.18)  (<0.01) (0.03)
500 0.054 0926  -1.079 0.070™ 1056  -1.021* 0.056 0953  -1.050 0043 0898 -1.014
(0.14)  (0.25)  (0.15) (0.04)  (0.12)  (0.09) (0.12)  (0.24)  (0.16) 0.20)  (0.34)  (0.25)
6.00 0.003 0278  -0.590 0019 0433  -0.349 0.018 0524  -0.529 0009 0410  -0.742
(0.48)  (0.61)  (0.27) (0.26)  (0.26)  (0.35) (0.32)  (0.35)  (0.33) (0.41)  (0.49)  (0.21)
700 0020  2376"*  -0.004 0022 2197 -0.251 0.043 2567  0.225 0024 2.326™  -0.142
(0.25)  (<0.01)  (0.99) (0.20)  (<0.01)  (0.56) (0.14)  (<0.01)  (0.70) (0.28)  (<0.01) (0.81)
8.00 0.098* 1.769*  1.010* 0.064*  1.161**  0.567 0.049°  0.978"  0.464 0.055*  1.058"  0.544
(0.02)  (<0.01)  (0.09) (<0.01) (<0.01) (0.13) (0.08)  (0.04)  (0.31) (0.06)  (0.03)  (0.25)
9.00 0094 2546  0.143 0.099 2232  -0.014 0.100  2.327  -0.651 0.103* 2373 -0.604
(0.18)  (0.02)  (0.88) (0.11)  (<0.01)  (0.98) (0.11)  (<0.01)  (0.34) (0.09)  (<0.01) (0.39)
10.00 0.012  -0.039 -1.943"*  0.048"  0.282 -1.067" 0.042 0201 -1.319* 0043 0299 -1.362"
(0.41)  (0.96)  (<0.01) (0.07)  (0.59)  (0.03) (0.19)  (0.66)  (0.03) (0.17)  (0.64)  (0.02)
11.00 0.102 1.964*  -0.442 0.129°  2.007**  -0.426 0.142% 2109  -0.444 0.144%  2.155"*  -0.537
(0.19)  (0.06)  (0.62) (0.09)  (0.02)  (0.54) (0.03)  (<0.01) (0.45) (0.03)  (<0.01) (0.37)
12.00 0.097 1537 0.225 0.114*  1.596™  0.170 0.111* 1578  -0.034 0.121%  1.775"*  -0.179
(0.13)  (0.06)  (0.72) 0.05)  (0.01)  (0.71) 0.05)  (0.01)  (0.94) (0.03)  (<0.01)  (0.69)
13.00 0.003  2.001*  -0.868 0013  1.965** -0.635 0.008  1.962"* -0.577 0.029  2.366"* -0.624
(0.48)  (0.02)  (0.21) (0.27)  (<0.01) (0.15) (0.41)  (<0.01) (0.33) (0.24)  (<0.01) (0.32)
14.00 0.031  2.508"  -0.566 0.014  2.006™* -0.881* 0.006 2083 -1.266* 0.046  2.724*  -0.802
(0.26)  (<0.01)  (0.45) (0.23)  (<0.01)  (0.06) (0.45)  (0.02)  (0.06) (0.15)  (<0.01)  (0.24)
15.00 0.105  3.453** -0.188 0.116% 3.185"* -0.304 0.148" 3.812**  -0.303 0.117*  3.655"* -0.813
(0.11)  (<0.01)  (0.84) (0.02)  (<0.01) (0.64) (0.02)  (<0.01) (0.70) (0.06)  (<0.01)  (0.36)
16.00 0.052 2783  0.703 0.078  2.834™*  0.458 0.054  2576*  -0.154 0.130*  4.034™  0.766
(0.30)  (0.02)  (0.53) (0.17)  (<0.01)  (0.64) 0.26)  (0.02)  (0.87) 0.09)  (<0.01) (0.52)
17.00 0.052 2528  0.226 0.089  2.537%*  0.133 0.086* 2391  -0.420 0.071  2.966*  -0.925
(0.32)  (0.04)  (0.85) (0.15)  (<0.01)  (0.88) (0.09) (<0.01) (0.56) (0.21)  (0.02)  (0.44)
18.00 0.013  2.378"*  0.008 0.046  2.756"* -0.253 0.031  2.605" -0.662 0.046  2.920"*  -0.303
(0.43)  (<0.01)  (0.99) (0.15)  (<0.01)  (0.62) (0.26)  (<0.01) (0.23) (0.15)  (<0.01) (0.58)
19.00 0.027  1.945%*  1.178* 0.018 1770  0.125 0.010  1.615%*  0.033 0.034  2.205"* -0.088
(0.36)  (<0.01)  (0.05) (0.31)  (<0.01)  (0.74) (0.41)  (<0.01)  (0.93) (0.21) (<0.01) (0.87)
20.00 -0.099  1.200  -0.913 0.023 2280 -0.354 0025 2.274™  -0.675 20.019  2479™  -0.291
(0.95)  (0.11)  (0.20) (0.77)  (<0.01)  (0.43) 0.78)  (<0.01)  (0.15) 0.72)  (<0.01)  (0.58)
21.00 -0.026  1.101  -0.693 0.023 1732  -0.732 0.053° 2257 -0.615 0017  1.835 -0.678
(0.67)  (0.20)  (0.40) (0.29)  (0.01)  (0.18) (0.09) (<0.01) (0.29) (0.34)  (0.04)  (0.30)
22.00 -0.059  1.094  -0.987* 0.006  1.997 -0.485 0.023  2.248"* -0.374 0.045 2717 0.155
(0.78)  (0.11)  (0.09) (0.43)  (<0.01)  (0.17) (0.29)  (<0.01) (0.33) (0.12)  (<0.01) (0.73)
23.00 0.121™ 2972  0.553 0.083™ 2.285"*  -0.253 0.083*  2.308"*  -0.506 0.069  2.146™* -0.879*
(0.02)  (<0.01)  (0.43) (0.01)  (<0.01)  (0.50) (0.02)  (<0.01) (0.23) (0.05)  (<0.01)  (0.05)
24.00 0.101** 3.134**  0.044 0.079*  2.580"**  -0.360 0.095% 2.880* -0.424  0.162* 4.090"*  0.451
(0.04)  (<0.01)  (0.96) (<0.01) (<0.01) (0.48) (0.01)  (<0.01) (0.43) (<0.01) (<0.01) (0.47)
25.00 0.021  2.620"  -0.534 0.035*  2.560* -0.374 0.036  2.565=* -0.111 0.063*  3.086™*  -0.162
0.31)  (<0.01)  (0.48) (0.09)  (<0.01) (0.41) (0.17)  (<0.01)  (0.83) 0.04)  (<0.01) (0.77)
Avg. 0.037** 1874**  -0.207 0.050™* 1.881** -0.275  0.052* 1969** -0.380  0.060** 2.208"* -0.345
(<0.01) (<0.01)  (0.24) (<0.01) (<0.01) (0.32) (<0.01) (<0.01)  (0.36) (<0.01) (<0.01) (0.27)
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Reflection Notes

The School of Business and Law at University of Agder request us to write a reflection note that
includes a discussion of how the topic of this thesis relates to internationalisation, innovation
and accountability, and will start this reflective note by briefly discuss the thesis main theme,
and then our findings and conclusion.

In this thesis have we evaluated the performance of four risk-based strategies relative to the
naive diversification strategy, and additionally assessed whether the (out)performance could be
attributed to established factor premiums. The four risk-based strategies are characterized by
weighting each asset solely based on the assets risk. We found that three of four risk-based
strategies, on average, delivered superior performance in terms of Sharpe ratio over the naive
diversification. Further, we evaluated the outperformance during bull and bear markets to get
a deeper insight whether the outperformance of risk-based strategies over the naive is mostly
generated during bear markets contra bull markets. The results obtained in the bull- and bear
phases illustrated that risk-based strategies perform significantly better during bear markets
compared to the naive diversification. Finally, we evaluated whether the outperformance could
be attributed to established factor premiums. The results obtained from the Fama-French five-
factor model indicated that all risk-based strategies tilt towards known market anomalies. We
suggest in line with Zakamulin (2017) that the superior performance of risk-based strategies
is likely to be attributed to exposure towards established factor premiums rather than better
mean-variance efficiency. Our thesis extends previous literature in several ways. First, existing
empirical studies usually evaluate the performance of optimized portfolios relative to the naive
diversification using a few arbitrary empirical datasets, chosen among a great number of available
datasets in the Kenneth French library. The performance of a particular portfolio strategy could
be affected by the sorting-characteristics to the individual dataset, and those arbitrary datasets
could have been selected to substantiate the authoraAZs main point. To prevent this “cherry-
picking” of datasets, this thesis evaluates the performance across 25 empirical datasets formed
on portfolios of U.S. stocks provided by Kenneth French. Second, we assess the performance
of the risk-based strategies relative to the naive diversification in bull and bear markets, which
to the best of our knowledge has never been sufficiently explored. This is done to get a deeper
insight into the nature of the performance and assess whether the outperformance is mostly
generated in bull or bear markets. Third, we propose to use a generalized approach to look at
the aggregate portfolio performance across 25 datasets for each of the risk-based strategies. This

generalized approach gives us the opportunity to gain insight into the risk factors that drive the
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superior performance, and additionally study the risk exposure over time. Fourth, the newly
proposed Fama-French five-factor model is used to assess the factor exposure of the risk-based
strategies. Last, to demonstrate that one does not need complex optimal strategies to beat the
naive diversification, we introduce two new ad-hoc portfolio strategies that directly exploit the

low volatility effect.

Reflection Note 1

The quantitative courses, especially Advanced Econometrics and the Computational Finance
courses at the university undoubtedly equipped us with the correct knowledge to implement
such a quantitative thesis. In the context of internationalization, our thesis is highly international
with a theme surrounding portfolio optimization. There exists a heated debate in the academic
community in regards to whether optimized portfolios add value, which our study contributes
to. We use datasets formed on U.S stocks provided by Kenneth French, but our study is still
adaptable to other countries. In the context of innovation, the methodology we use could not
have been done without the superior computer power that exists today.

Further, as of today, several investors have never heard of optimized portfolios, and several
investors only invest in a few risky stocks, rather than gain from the possible diversification
benefit that follows from optimized portfolios. Recently though several global investment funds
have gained interest into risk-based strategies, due to their resilient feature during market down-
turns. In the aftermath of the 2007-2008 global financial crisis, MSCI Barra, S&P 500, including
other index providers constructed various risk-based strategy indices by means of optimized- and
ranking-based (heuristic) approaches to suit its characteristics. Their motivation includes; in-
creased downside protection during recessions, attractive substitute over other asset classes such
as bonds and cash, which lately has offered poor return, and proven high performance during
bull markets as well as bear markets. Several other providers have started with factor investing,
which directly exploit the market anomalies that exist. These factor premiums, which we argue is
the main part of the outperformance of risk-based strategies. We believe that our study is highly
relevant. Pension funds, among others, are responsible to manage and allocate large amount
of money and the need for diversification and optimally balance the tradeoff between risk and
return is important. These funds do not have the possibility to “gamble” with stocks, and more
importantly they must protect their investment during market downturns. Therefore, risk-based
strategies that simply focus on risk is without a doubt a subject that is especially interesting

nowadays.
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Reflection Note 2

I will now address the following three factors: international, innovation, and responsibility. The
School of Business and Law at the University of Agder highlights these factors as important
for productive professionals within the field of business and administration. During the master
program with major in Finance, we have gained some knowledge about economics, business
administration, and finance, throughout the different courses that have been presented by the
School of Business and Law at the University of Agder. All the specific courses have been taught
in English. This is very positive in the way that we become more international through using
English as the common research/international language.

In the context of internationalization, the management industry has become more complex,
due to the increasing development of computer technology. Quantitative portfolio strategies and
portfolio optimization have gradually been a more widespread theme within the financial in-
dustry. The Modern Portfolio Theory and other related financial theories focus on quantitative
models, but these models have been difficult to implement in practice earlier due to the difficul-
ties associated with the extensively number crunching. However, as the computer technology has
been developed, the portfolio rules and procedures have become more easily adaptable. Addi-
tionally, the financial industry and markets have become increasingly advanced, interconnected,
and globalized. The increasing advances of the Internet and the computer technology have to
lead to an increasing pace of news and information flow, and the availability of international
financial assets, which was before only restricted to domestic markets. As a consequence, the
increasing dependencies between countries have emerged. For example, the massive collapse of
the 2007-2008 global financial crises led to a global downturn for countries worldwide, since the
financial markets are so interconnected. As a result, it has been much more important with
computer algorithms that handle portfolios that optimize the weights based on risk. These al-
gorithms change portfolio weights depending on different market phases that should benefit the
overall portfolio.

The innovation related to the portfolio management industry and its portfolio strategies are
continuously under progress. Briefly stated earlier, the advances in the computer technology
have also led to an increasing number of quantitative funds that use computer-based models and
quantitative portfolio strategies to exploit market abnormalities. For example, the AQR Capital
that uses statistical methods and research-based consistent approach for portfolio construction.
These processes of construction of new models will continue as the computer technology develops
and innovation associated with exploiting stock characteristics. During the specialization in

finance, we have obtained a much deeper insight into financial theories and technical expertise

63



in financial and econometric problems. Additionally, we have been introduced to statistical
programs such as STATA and R.

Next, we will concentrate on the responsibility issues associated with portfolio optimization
and the financial industry. Portfolio optimization represents the process where one optimizes a
portfolio depending on a set of respective assets. As such, there exist a vast of ethical challenges
associated with these portfolio investment strategies. For example, a portfolio manager could
only use return-series of firms to optimize a portfolio without looking at firm characteristics.
Thus, if there exist some financial assets that prevail ethical issues, then these portfolios do
indirectly support their views. This is a potential problem for portfolio managers that need to
be aware of such issues before they implement various algorithms on stocks and financial assets.
Additionally, the portfolio manager could potentially benefit the portfolio and the sustainability

by addressing such issues.
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