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Abstract
Fiddler crabs are abundant, semi-terrestrial crustaceans inhabiting tropical, subtropical and warm temperate coasts world-
wide. Some species build above-ground sedimentary structures at or near the opening to their burrows. The functions and 
shapes of these constructions vary interspecifically and according to the sex of the builder. Here, we compile the dispersed 
reports on these structures, suggest uniform naming for different shapes, review explanations for their functions and explore 
associations between the attributes of builders and their structures. We found that 47 fiddler crab species build at least one 
type (or subtype) of structure, including chimneys, hoods, pillars, semidomes, mudballs, and rims. Sedimentary structures 
show a strong association with sediment type as well as builder front type, genus and sex, but not with fiddler crab clade. 
Experimental studies have revealed distinct, sometimes multiple functions for some of these structures (e.g., female attraction, 
reduction of aggressive behavior and/or landmark orientation); however, most studies have been observational leaving the 
proposed functions of these structures for many species untested. Both field and laboratory experiments as well as observa-
tional studies can help us to better understand these sedimentary structures and their role in fiddler crab behavior and ecology.

Keywords External structures · Burrow · Chimney · Hood · Pillar · Semidome · Mudball · Rim

Introduction

Many animals build structures: ants and termites construct 
nests and underground galleries, beavers build dams, spiders 
weave webs, and so forth (Hansell 2007). Some structures 
have obvious benefits for their builders (e.g. shelter, display 
and ornamentation), yet the functions of many other struc-
tures remain unclear (Hansell 2007). Structures are regu-
larly and appropriately viewed as physical manifestations 
of the behavioral phenotypes of builders (Dawkins 1982; 
Schaedelin and Taborsky 2009; Bailey 2012). When such 
constructions result from manipulation of the sediment in 
the form of tracks, burrows or pellets, they are called bio-
genic sedimentary structures, defined by Frey (1973) as “[a 
product of] the activity of an organism upon or within an 
unconsolidated particulate substrate”.

Fiddler crabs build biogenic above-ground sedimentary 
structures from mud or sand, sometimes more than one type 
per species, in or just above the intertidal zone (Crane 1975; 
Wolfrath 1992; Thurman et al. 2013; Mokhtari et al. 2015). 
There are 106 described species (102 living, 4 extinct), 
encompassing eleven genera and two subfamilies within 
Ocypodidae (Gelasiminae and Ocypodinae) (Rosenberg 
2001; Shih et al. 2016). The group is distributed worldwide 
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(Crane 1975; Rosenberg 2001) and is subdivided in two 
major clades, Atlantic-East Pacific (AEP) and Indo-West 
Pacific (IWP), estimated to have undergone differentiation 
around 17 million years ago (Sturmbauer et al. 1996; Shih 
et al. 2016).

The structures built by fiddler crabs are diverse in form 
and are built via different behaviors. Some are built only by 
males, others by females, and the social and ecological con-
texts in which they are built vary within and among species. 
Not surprisingly, there are several hypothesized functions for 
these structures. The most thoroughly and experimentally 
tested idea is that the relatively tall structures some court-
ing males build by their burrows attract females because 
they elicit landmark orientation, i.e., the tendency of fid-
dler, ghost and related crabs, when away from their bur-
rows, to move toward vertical objects to reduce their con-
spicuousness to predators and thereby reduce their predation 
risk (summarized by Christy and Wada 2015). Yet, recent 
experimental studies on other species showed that the attrac-
tive properties of a similar structure are sex- and context 
dependent, which challenges the claim that such structures 
elicit a common, shared and ancestral behavioral response 
(Kim et al. 2017). Far less well-studied are the structures 
built by female fiddler crabs and their possible functions. In 
this paper, we compile the dispersed reports on sedimentary 
structures built by fiddler crabs, suggest uniform naming 
for different shapes, and review and update explanations for 
their functions.

Literature survey and data analysis

Ethological studies have described and proposed functions 
for fiddler crab above-ground biogenic structures since the 
early twentieth century (see Yamaguchi et al.’s 2005 discus-
sion for details). Among the most comprehensive studies, 
Crane (1975) described fiddler crab constructions as struc-
tures “erected beside the burrows, made of substrate” and 
classified them as three main shapes: chimneys, pillars and 
hoods. von Hagen (1968) highlighted that 12 fiddler crab 
species build structures, followed by Christy (1988a) who 
tallied a total of 14 species. Christy et al. (2001) then stated 
that at least 19 species construct sedimentary structures out 
of sand or mud including hoods, pillars, semidomes, and 
rims (or lips); subsequently, 20 chimney builders were iden-
tified by Shih et al. (2005) and 10 semidome builders were 
compiled by Carvalho et al. (2018).

Our review of the current literature found that at least 47 
fiddler crab species (9 genera) build above-ground sedimen-
tary structures (Table 1). We employed a narrative literature 
review strategy aimed to encompass all published literature 
on the topic: periodic searches from September 2014 to 
August 2019 using the term “fiddler crab” combined with 

“chimney”, “hood”, “shelter”, “oven”, “pillar”, “dome”, 
“semi-dome”, “semidome”, “mudball”, “rim”, “lip”, 
“above-ground structure” or “sedimentary structure” were 
performed using the ISI Web of Science and Google Scholar. 
Searches were followed by checking the reference list of 
papers for any possible missing studies. Seventy-six relevant 
papers on the topic were found (Table 1).

We employed a multiple correspondence analysis (MCA), 
used to identify patterns and associations of categorical vari-
ables (Greenacre and Blasius 2006), to explore relationships 
between descriptive categories of above-ground structure, 
sediment type, builder clade, genus, sex and front  (i.e., 
width between the bases of eyestalks) (categories and data 
are specified in Table 1). Function of sedimentary struc-
tures was not included due to a lack of experimental data 
for some structures, including multifunctionality, which 
can lead to misinterpretation of MCA results. Sedimentary 
structures with vague and uncertain descriptions were also 
not included (all indicated with a ‘?’ in Table 1). Mixed 
sediments were categorized according to their predominant 
sediment type (sand for muddy sand; mud for sandy mud) 
to simplify data interpretation. Additionally, a Chi-Square 
test followed by Cramer’s V test, a measure of association for 
categorical variables, was performed to correlate types (sub-
types) of sedimentary structures with the above-mentioned 
variables. The likelihood ratio (95% confidence interval) 
was assumed when the chi-square assumption was violated 
(McHugh 2013).

Types (and subtypes) of sedimentary 
structures: what is known?

Four types and two subtypes of above-ground sedimentary 
structures were recognized: chimney (Fig. 1a, 26 species); 
hood (or shelter/oven) (Fig. 1b, 11 species), further catego-
rized into pillar (Fig. 1c, 6 species) and semidome (Fig. 1d, 
11 species); mudball (Fig. 1e, 5 species); and rim (or lip) 
(Fig. 1f, 4 species). All fiddler crab genera, except for Petruca 
and Cranuca, represented by Petruca panamensis (Stimpson, 
1859) and Cranuca inversa (Hoffmann, 1874), respectively, 
build at least one type of sedimentary structure (Fig. 2). 

Chimney

Chimneys (also called funnels by Salmon 1987) are tall, 
tower-shaped structures with vertical walls that completely 
encircle the burrow entrance (Fig. 3a). The construction pro-
cess is similar for all male and female builders (Table 1): 
crabs stack mud/muddy sand at the edge of the burrow 
entrance using their pereiopods and chelipeds (Shih et al. 
2005; Gusmão-Junior et al. 2012). The source of chimney 
material is varied; some chimney builders use sediment dug 
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from within their burrows, while others collect with their 
walking legs parcels of sediment from the surface around 
the burrow entrance (Shih et al. 2005).

Several experimental studies have explored the functions 
of chimneys. Wada and Murata (2000) observed that Tubuca 
arcuata (De Haan, 1835) of both sexes build chimneys with 
higher abundance in the reproductive season of spring to 
summer. The authors suggested that chimneys may avoid 
burrow loss to an opponent based on an experiment where 
burrowless crabs were released near burrows with and with-
out chimneys. Shih et al. (2005) described similar behavioral 
patterns in Xeruca formosensis (Rathbun, 1921), testing dif-
ferent hypotheses for chimney function (e.g., sexual attrac-
tion, sunshade effect). Both studies indicated that chimneys 

hide males from predators, while protecting females from 
other males.

Slatyer et al. (2008) suggested that chimney owners are 
“shy” crabs; crabs with chimneys generally spend more 
time in their burrows and less time feeding, minimizing 
their chances of being chased by intruders. It is still unclear 
whether chimneys directly or indirectly affect such behavior. 
The authors stated that Tubuca capricornis (Crane, 1975) 
chimneys hide the entrance to the burrow, making it more 
difficult for occasional intruders to find it, as previously 
mentioned for other species.

Chimney building in Leptuca thayeri (Rathbun, 1900) may 
also be related to burrow defense, mainly to females at late 
gonadal stages, thus enhancing reproductive success (Salmon 

Fig. 1  The types (and subtypes) 
of above-ground biogenic 
sedimentary structures built by 
fiddler crabs: chimney (a), hood 
(b), pillar (subtype) (c), semi-
dome (subtype) (d), mudball 
(e), rim (f) (drawings by FR de 
Grande). Drawings are not in 
the same scale
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1987). Gusmão-Junior et al. (2012) stated that social con-
text does not influence chimney construction, attributing this 
behavior to endogenous factors. Their main hypothesis is that 
chimneys may act in maintaining internal burrow conditions 
(Gusmão-Junior et al. 2012). As observed in Fallicambarus 
fodiens (Cottle, 1863) lobsters (Cambaridae) (Williams et al. 
1974) and Cleistostoma dilatatum (De Haan, 1833) manicure 
crabs (Camptandriidae) (Kim et al. 2011), sedimentary struc-
tures (chimney and tower, respectively) may also help in the 
regulation of burrow evaporation and preservation of internal 
humidity. In this context, L. subcylindrica (Stimpson, 1859) 
also appear to use their above-ground sedimentary structures 
to maintain abiotic conditions (humidity and/or temperature), 
especially during dry periods (Thurman et al. 1984).

A series of studies on T. rosea (Tweedie, 1937) tested 
several functions for chimneys. The chimneys this species 
builds seem to reduce agonistic interactions and improve 
burrow defense against intruders (Tina et al. 2017a). Con-
sistent with results by Slatyer et al. (2008), chimney owners 
spend less time feeding compared to crabs with no chim-
neys (Tina et al. 2018a). The energetic cost of building a 

chimney may require builders to feed faster, also as sug-
gested by Slatyer et al. (2008). Tubuca rosea females tend 
to build longer and deeper burrows with higher chimneys 
than males’s chimneys, supporting the hypotheses that chim-
neys may help to maintain abiotic conditions necessary for 
successful incubation in the burrow (Gusmão-Junior et al. 
2012; Tina et al. 2018b). In sum, these experimental studies 
indicate that chimneys help their builders defend their bur-
rows. Chimneys may also affect the temperature or humidity 
of burrows but such effects and their possible benefits to 
builders have yet to be demonstrated.

Hood

Hoods are morphologically varied structures typically built 
by males, the only fiddler crab constructions to encompass 
three largely different forms, including semidomes, pil-
lars and “typical” hoods. Generally, a hood (also known as 
shelter or oven) consists of a cupped, roughly semi-circular 
mound of sediment which extends above the burrow entrance 
(Fig. 3b, c). While some researchers initially referred to 

Fig. 2  Phylogenetic tree of the Ocypodidae family (Shih et al. 2016) 
with corresponding above-ground sedimentary structures described 
for each genus, clade (Atlantic-East Pacific, AEP and Indo-West 
Pacific, IWP) and subfamily, including the pyramid structures built 

by the ghost crabs Ocypode ceratophthalma (Pallas, 1772), O. kuhlii 
(De Haan, 1835)  and O. saratan (Forskål, 1775) (Linsenmair 1967; 
Jones 1972)
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hoods as shelters (Yamaguchi 1971; Zucker 1974), shelters 
and hoods were later recognized as being the same structure 
(Crane 1975; Yamaguchi 2001). Zucker (1978) explained that 
“shelter” implies a protective function, whereas “hood” is a 
functionally neutral term for these structures. Semidomes, 
also known as half-domes, are more massive and robust 
structures (Zucker 1981) (Fig. 3d). On the other hand, a pillar 
is a narrow, tower-like structure—sometimes conical—which 
is also positioned at the edge of the burrow, often with a skirt 
encircling the burrow opening (Fig. 3e). The terms “semi-
dome” and “pillar” will be used throughout this text as hood 
subtypes, even though these constructions are also considered 
to be in their own category in other studies.

Typical hood builders use their chelipeds, pereiopods 
and the dorsal region of the carapace to manipulate sedi-
ment collected from the surface or inside their burrows into 
the characteristic arching shape (Christy 1982; Yamaguchi 
et al. 2005). As seen by Christy et al. (2001), L. terpsicho-
res (Crane, 1941) build their hoods in one to three activ-
ity bouts, during which they do not feed. Individual males 
build one or two hoods per courtship cycle and from 15% to 
about 60% of males will build a hood on days of peak court-
ship. Semidome and hood construction appears to be similar 
(Matthews 1930; Christy et al. 2001; Chatterjee et al. 2014). 
Interestingly, all courting male L. pugilator (Bosc, 1801) 
(Christy 1982) and L. latimanus (Rathbun, 1893) (Zucker 
1981) build hood-shaped structures and Kim et al. (2004) 
found that over 80% of Austruca lactea (De Haan, 1835) 
males completed their semidome structures during low tide. 
As for the more delicate pillars, crabs scrape surface sandy 
mud, carry it to the burrow with their pereiopods and pile 
it at the edge of the burrow’s entrance with their legs and 
minor chelipeds (Crane 1975; Christy 1988a).

Using an experimental approach, Zucker (1974, 1981) 
provided evidence that L. beebei (Crane, 1941), L. latimanus 
and L. terpsichores with hoods are active primarily in the 
semi-circular area in front of these structures and that L. 
latimanus and L. terpsichores with hoods interact aggres-
sively less often with their neighbors. Consequently, hoods 
built by L. terpsichores are also vital for juveniles avoiding 
conflict with adults (Zucker 1981). In contrast, crabs that do 
not build hoods defend a territory encompassing the entire 
area around the burrow (Zucker 1981). Christy (1988a) 
analyzed lengthy records of the locations and behavior of 
individual courting male L. beebei before and after they built 
pillars and was unable to corroborate the effects reported by 
Zucker (1981): pillars did not affect the distribution of male 
activity around the burrows nor reduce rates of aggressive-
ness toward males located “behind” these structures. Christy 
(1988a) discussed possible reasons why these two studies 
yielded different results.

Christy (1982) reported that burrow resident L. pugila-
tor and M. pugnax (Smith, 1870) tend to brace themselves 

during fights for burrows by pressing their body against their 
hoods. Male L. pugilator usually build hoods from wet sand 
dug from the bottom of their burrows; as this sand dries out, 
salt crystals and desiccated silt act like cement increasing 
the rigidity of hoods and their resistance to fracture, giv-
ing residents a clear advantage over invading challengers 
(Christy 1982). Courting L. pugilator males always build 
hoods which are immediately repaired when damaged, e.g., 
during fights at the burrow entrance, highlighting the impor-
tance of this structure to resident builders independent of the 
presence of mate-searching females. In contrast, courting L. 
terpsichores and L. beebei build hoods and pillars, respec-
tively, but far less often, and they usually do not rebuild 
these structures even when damaged 1.5–2 h after low tide, 
when most sexually receptive females would have found 
mates but burrow defense still remains important (Christy 
1988b; Christy et al. 2001). Greenspan (1982) suggested 
that hoods in M. pugnax may also protect burrows from tidal 
erosion. Yet, at least for the hooded “breeding burrows” of 
L. pugilator found in the supra-tidal zone, tidal erosion is 
not a problem (Christy 1982).

Hoods also attract females and hood building is sexually 
selected by female choice (Christy et al. 2002). Courting 
male L. terpsichores build hoods at the time of the monthly 
and daily tidal cycles when most females seek mates 
(Christy et al. 2001). Small males tend to build relatively 
high structures, increasing their conspicuousness (Christy 
et al. 2001). Christy et al. (2002) experimentally showed that 
L. terpsichores females are differentially attracted to court-
ing males that build hoods (approach rates: with hood = 0.84; 
without hood = 0.66; n = 354 approaches) even when repli-
cas of hoods are added to the burrows of males that do not 
build hoods, suggesting that hoods contribute directly to 
male attractiveness. Most convincing were experiments in 
which hood replicas are positioned about 3 cm away from 
the entrances of males’s burrows; females orient to these 
structures rather than to the courting male about 40% of the 
time when the male does not directly lead the female to the 
entrance to his burrow. In contrast, Perez et al. (2016) did 
not find a female preference for L. terpsichores males with 
hoods, possibly due to the much smaller sample size in that 
study (n = 28 approaches). Similarly, de O. Rodrigues et al. 
(2016) also showed that hoods built by male L. leptodactyla 
attract females.

Male crabs also orient to their own hoods. In field experi-
ments using displaced hoods, some males that move far from 
their burrows to intercept passing females lead the females 
not to their burrow entrance but to the nearby hood replica 
(Christy et al. 2002). This simple observation prompted a 
new line of study indicating that hood building is under sex-
ual selection by indirect male–male competition to maintain 
burrow ownership as well as natural selection for the ability 
to visually relocate a burrow in a quick manner (Ribeiro 
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et al. 2006). Hoods not only assist males in orienting back 
to their burrow, but also enable males to move more freely 
when courting, suggesting they are visual beacons marking 
a male’s home burrow (Kim and Christy 2015). Heatwole 
et al. (2018) found, however, that males with hoods are no 
more likely to reach passing females and do not move greater 
distances from their burrows compared to males without 
hoods. Since males of this species typically move no more 
than 17 cm away from their burrows to attract females, hoods 
may not be beneficial as home beacons during most court-
ship interactions (Heatwole et al. 2018).

Hood building by male L. terpsichores appears to be 
selected by female choice, male–male competition for 
resource (burrow) holding, and predation on both sexes 
(Ribeiro et al. 2006). Sexual signals that are favored by both 
modes of sexual selection, typically operating in sequence, 
are not unusual (Hunt et al. 2009). It has been argued that 
females should prefer male traits that have been tested in 
combat because they will reliably advertise male condition, 
which might benefit females directly or via indirect genetic 
benefits to the offspring (Berglund et al. 1996). Although 
structure building (Backwell et al. 1995; Matsumasa et al. 
2013) and investment in other courtship behavior (Kim et al. 
2010) are condition dependent, hoods may attract both sexes 
and facilitate burrow location because they elicit landmark 
orientation. This “sensory trap” hypothesis (Christy 1995) 
as it pertains to female preference has received considerable 
experimental support (summarized by Christy 2007), includ-
ing demonstration that the preference for pillars built by L. 
beebei (Kim et al. 2006) and the preference for hoods built 
by L. terpsichores (Kim et al. 2007) increase with the per-
ceived risk of predation in females. Although females that 
choose males with structures may enjoy reproductive ben-
efits by mating with males in good condition, such benefits 
cannot explain why males, females not seeking mates and 
females of species that do not build structures are attracted 
to them (Christy 2007).

The effects and functions of the semidomes built by A. 
lactea have also been well-described. Studies of this spe-
cies in Japan use the word “hood” (e.g., Yamaguchi et al. 
2005; Muramatsu 2010a, b); while Korean studies prefer 
“semidome” (e.g., Kim et al. 2004; Zhu et al. 2012). Field 

experiments showed that semidomes are sexual signals, 
reduce aggressive interactions and are landmarks for male 
orientation (see references in Table 1). Kim and Choe (2003) 
also showed that semidome building in A. lactea is related 
to the semilunar cycle of tidal inundation, which in turn 
affects food abundance: males that are given supplemental 
food build more semidomes. The frequency of semidome 
building, however, seems to be independent of food abun-
dance, being instead dependent on environmental factors 
such as temperature (Takeshita et al. 2018).

Zhu et al. (2012) explored the effects of semidome size 
on female orientation. Females prefer courting males with 
normal-sized semidomes over those with half-sized or no 
semidome when seeking mates. When startled by a mock 
predator, females orient preferentially to empty burrows with 
full-sized semidomes over those with half-size or no semi-
dome both during and outside the breeding period. When no 
predator is present, females differentially orient to burrows 
with structures (equally to full- and half-sized structures) 
over those without structures during the breeding period but 
not during the nonbreeding period. Hence, both level of risk 
and the reproductive state of the female may potentiate her 
orientation response to structures. Under reduced predation 
risk, female preference for larger structures appears to be 
contingent upon other stimuli from the courting male. Land-
mark orientation in service of mate choice (the response to 
the mimic in a sensory trap) and in service of risk reduc-
tion (the response selected by the model) may be flexibly 
linked to the benefit to females in both contexts. A recent 
study by Kim et al. (2017) further supports such flexibility; 
female A. lactea preferentially approach sedimentary struc-
tures (in test arenas without males) only during reproductive 
periods and males do not differentially orient to structures. 
Kim et al. (2017) suggested a divergent evolutionary path 
in the group for this behavior, where orientation to hoods 
by females during courtship and to vertical objects for risk 
reduction evolved independently. Interestingly, the closely 
related species A. mjoebergi rarely builds semidomes, due 
to loss of attractive function that is possibly mediated by 
predation and environmental changes (Bourdiol et al. 2018).

Pillar building is a condition-dependent behavior, carried 
out by six species (see Table 1); male L. beebei, for example, 
build more pillars when given supplemental food (Backwell 
et al. 1995) and pillar builders allocate more energy and time 
to claw waving and less to feeding compared to non-build-
ers. Females of this species approach structures not only for 
mating but also for protection (Christy 1988b; Christy et al. 
2003b), which is consistent with the sensory trap hypothesis 
(Christy 1995; Kim et al. 2009). Although males with pillars 
attract more females to their burrows, once attracted to a 
male and burrow, females are equally likely to stay and mate 
whether or not the male has a pillar (Christy 1987). Pillars, 
thus, signal both male condition and the location of male 

Fig. 3  Examples of fiddler crabs that build above-ground sedimen-
tary structures. a Ovigerous female of Leptuca thayeri on a chimney, 
Bertioga, Brazil (photograph by J Pardo). b Male Leptuca terpsi-
chores with a hood, Achotines, Panamá (photograph by J Christy). c 
Male Leptuca leptodactyla with a hood, Peruíbe, Brazil (photograph 
by R de Carvalho). d Male Minuca rapax waving near a semidome, 
Peruíbe, Brasil (photograph by J Pardo). e Male Leptuca beebei with 
a pillar, Rodman, Panamá (photograph by J Christy). f Male Afruca 
tangeri, Nueva Umbria, Spain (photograph by M Hyzny). g Mud-
balls arranged by male Afruca tangeri (photograph by M Hyzny). h 
Male Austruca perplexa with a rim, Okinawa, Japan (photograph by 
J Christy)

◂
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burrows to breeding females (Christy 1988a, b; Backwell 
et al. 1995; Matsumasa et al. 2013). Under high preda-
tion risk, male L. beebei tend to build fewer pillars, either 
because males spend more time sheltering in their burrows 
or because fewer females wander to find mates, reducing the 
benefits of having a pillar (Koga et al. 1998; deRivera et al. 
2003) despite the low energetic cost to build these structures 
(Matsumasa et al. 2013). Finally, pillars in other species are 
often regarded as “poorly-formed hoods” (Crane 1975).

Hoods in general, thus, appear to attract females, orient 
male movement and reduce antagonistic behavior and reduce 
predation risk for both sexes. Semidomes, as well as the pos-
sible functions mentioned above, may further aid in burrow 
defense. Pillars, on the other hand, seem to be exclusively 
related to orientation and mate attraction. Although the 
sensory trap hypothesis has helped explain why both sexes 
orient to sedimentary structures, recent studies suggest that 
orientation for risk reduction and in service of mate choice 
can be uncoupled and evolve independently. The sensory 
trap hypothesis should not be uncritically used to explain 
how structure building benefits males in all species.

Mudball

Mudballs are large, roughly spherical pellets of substrate that 
crabs remove from the burrow during excavation and deposit 
on the surface around the burrow entrance (Fig. 3f, g). All 
fiddler crabs that dig burrows make similar balls of sand or 
mud during burrow construction. Mudballing, when thought 
to have a social function, is the term used for this behavior in 
both male and female Afruca annulipes, A. bengali (Crane, 
1975), A. tangeri (Eydoux, 1835), and Gelasimus tetragonon 
(Herbst, 1790). Mudballs and their deposition differ between 
sexes. Oliveira et al. (1998) stated that muballs produced by 
male A. tangeri are larger than females’s, although this could 
be related to the larger volume of male burrows (Latruffe 
et al. 1999). Chatterjee et al. (2014) showed similar results 
in A. bengali mudballs and Tina et al. (2017b) observed a 
positive correlation between A. annulipes carapace width 
and number of mudballs. Also, females of A. tangeri and 
A. annulipes tend to deposit theirs in a mound near the bur-
row opening, while males usually position their mudballs 
far from the burrow entrance (Oliveira et al. 1998; Burford 
et al. 2001b; Tina et al. 2017b). Interestingly, Burford et al. 
(2001c) observed that some females exhibit a male-like 
mudballing behavior, with similar structural arrangement 
of mudballs; the authors suggested that their masculiniza-
tion may either be a consequence of parasite infestation or 
constitute a behavior to avoid harassment. Mudball function 
remains unclear in A. bengali and G. tetragonon (Weis and 
Weis 2004; Chatterjee et al. 2014).

Mudballing behavior in A. tangeri was first described 
in the early 1960s (Günther 1963). In previous studies, 

mudballs were described as a consequential product of exca-
vation (Crane 1975). Behavioral studies with this species, 
however, showed that both sexes spend more than two hours 
on mudball maintenance (Burford et al. 2001c), and also 
suggested that their function is to define territorial bounda-
ries and prevent invasion and/or conflict with other indi-
viduals (Oliveira et al. 1998; Burford et al. 2000, 2001a). 
Sharing a similar purpose, structures built by the genus 
Ilyoplax (Stimpson, 1858), which are made from surface 
sediments, have also been extensively studied. Barricades 
and/or fences near burrows are built to deter the approach 
of potential competitors and maintain territory (Wada 1984, 
1994; Wada et al. 1998; Christy and Wada 2015).

Oliveira et al. (1998) proposed that A. tangeri mudballs 
attract females, with males producing larger and more 
numerous mudballs than females. The number of mudballs 
may be also related to the degree to which the burrow col-
lapsed during the previous high tide. Latruffe et al. (1999) 
claimed that females may relate male structures and mudball 
distance to the depth of the male’s burrow and, consequently, 
to burrow quality for breeding (Latruffe et al. 1999), but sub-
sequent studies found little support for this function (Burford 
et al. 2001a). Males invest more in the claw waving display 
to attract females during the courtship phase than in mudball 
maintenance (Burford et al. 2001a).

Mudballs may also increase male conspicuousness when 
exposed to different backgrounds, although Cummings et al. 
(2008) stated that these hypotheses required more studies to 
determine that specific role. At present, the likely function 
of mudballs lies in territorial behavior.

Rim

Rims or lips are circular, elevated rings of sediment built 
around the edge of the burrow opening (Fig. 3h). Male crabs 
usually mold rims from sand with their major claw and 
ambulatory legs (Salmon et al. 1978; deRivera 2003; Christy 
2007). No experiments to determine the functions of rims 
have been done. Salmon et al. (1978) noticed that intruder 
male L. panacea often destroy the owner’s burrow entrance. 
Additionally, Christy (2007) suggested that A. perplexa rims 
may make burrow openings more visible from a distance and 
help both males and approaching females locate the burrow.

Results and discussion

Are fiddler crab above‑ground sedimentary 
structures associated with general attributes?

The first two factorial axes of the MCA explained 28.89% of 
the variance (F1: 18.30%, F2: 11.59%, Fig. 4) and the com-
plementary Cramer’s V test showed that types (subtypes) of 
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sedimentary structures are strongly associated with front, 
genus, sex and sediment, but not clade (Tables 2 and 3).  

A variety of types (subtypes) of structures are associ-
ated in Cluster 1, being explained by the AEP clade and the 

Fig. 4  Multiple correspondence analysis. Plots of the following vari-
ables on the first two dimensions (F1 and F2) with the eigenvalue: 
clade (AEP: Atlantic-East Pacific, IWP: Indo-West Pacific), genus 
(Austruca, Afruca, Gelasimus, Leptuca, Minuca, Paraleptuca, 

Tubuca, Uca, Xeruca), front type (broad, narrow, intermediate), sex 
(male, female, both sexes), structure (chimney, hood, pillar, semi-
dome, mudball, rim), type of sediment used to build structures [mud 
(including sandy mud), sand (including muddy sand), both types]

Table 2  Chi-Square and Cramer’s V results comparing sedimentary structures with clade, front, genus, sex and sediment data

Statistically significant p-values are in bold

Chi-square Cramer’s V

Variables Value df p Value

Sedimentary  
structure

Clade 4.831 5 0.437 0.289
Front 26.352 10 0.003 0.443
Genus 59.321 40 0.025 0.446
Sex 37.112 10 0.001 0.533
Sediment 33.134 10 0.001 0.515
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genera Leptuca and Minuca. Otherwise, with few excep-
tions, builders of the IWP clade form two groups: hood-
builders of the genus Austruca (Cluster 2) and chimney-
builders of Gelasimus, Tubuca and Xeruca (Cluster 3). As 
mentioned, clade was the only attribute that did not correlate 
with structure type, where all shapes are present at least 
once in both clades (Fig. 2). Clades (AEP and IWP) are 
expressively divergent and paraphyletic (Shih et al. 2016) 
indicating a non-phylogenetic relationship in the evolution-
ary history of fiddler crab structure types. However, fiddler 
crab genera correlated with structure type, which suggests 
that structures readily diversified due perhaps to social and 
environmental factors. From these novel inferences, further 
studies could explore intra-generic relationships using phy-
logeny-based comparative approaches.

There is an apparent relationship between above-ground 
sedimentary structures and sediment type. Upon close 
inspection of the summarized data, chimneys seem to be 
more common in muddy/muddy sand habitats, pillars are 
more common in sandy mud, hoods/semidomes and rims 
are usually built in sand, and mudballs are a by-product of 
burrow construction in muddy sediments (see references 
in Table 1). These associations indicate that the cohesive-
ness of sandy mud may facilitate construction of delicate 
structures, such as pillars, which probably cannot be built 
of more friable sand (Christy 1988b). Field experiments 
in which replicas of hoods were placed on the burrows of 

courting male L. beebei and replicas of pillars were placed 
on the burrows of courting male L. terpsichores showed 
that hoods, the larger of the two structures (structure height 
was equal), are most attractive to females of both species 
(Christy et al. 2003a). However, L. beebei males with hoods 
do not mate at a greater rate than those with pillars because 
hoods may visually shield some passing females, affecting 
male–female encounter rates. Hence, there was no evidence 
that signal competition currently selects for hood building by 
pillar building L. beebei. Experimental studies manipulating 
sediment type and properties are needed to test these ideas. 
Sediment saturation also influences structure shape: Kim 
et al. (2004) hypothesized that semidome building is usually 
limited by water content of the soil, showing that A. lactea 
males are stimulated to build semidomes when the surround-
ing area is not dry and hard. This may explain why hood 
building typically occurs before low tide in L. terpsichores 
(Christy et al. 2001) and why L. pugilator use moist sand 
from the bottom of their burrows to build hoods (Christy 
1982). Additionally, Mokhlesi et al. (2011) observed that 
the muddy areas inhabited by A. annulipes, a multi-struc-
ture builder, allow building behavior; whereas the sandy and 
drier sediments in which A. sindensis (Alcock 1900) burrows 
limit structure building. These effects of soil moisture on 
construction behavior have been observed in other groups; 
for example, Grow (1981) found that chimney building by 
the crayfish Cambarus diogenes diogenes (Girard, 1852) 
depends on the percentage of soil moisture. Experimental 
studies on the effects of sediment type and moisture content 
on fiddler crab structure building have yet to be conducted.

The majority of chimney builders gathered in Cluster 3 
seems strongly associated with the narrow-front character-
istic and the genera Gelasimus, Tubuca and Xeruca. Both 
sexes build chimneys, with these structures serving as barri-
ers against potential invaders (Slatyer et al. 2008; Wada and 
Murata 2000; Gusmão-Junior et al. 2012; Tina et al. 2017a). 
Narrow-front species tend to mate on the surface close to 
burrows built by females, and these females are typically 
more aggressive toward intruders than are females of broad-
front species (Christy and Salmon 1991). As females tend to 
build more robust and taller structures than males, chimneys 
are likely to play an important role in female incubation 
behavior in these species.

Toward a common nomenclature

Authors have used different terms for the same structures 
built by fiddler crabs. Peters (1955) and Montague (1980) 
attributed chimney building (“towers”) to M. pugnax; while, 
both Crane (1975) and Greenspan (1982) showed that this 
species builds hoods. Crane (1975, page 284) observed 
chimney building behavior in one population of L. stenod-
actylus in the Panama Canal Zone, but Müller (1989) called 

Table 3  Principal coordinates obtained in the MCA for the first two 
axes (F1 and F2)

Variable F1 F2

Clade—AEP − 0.626 − 0.741
Clade—IWP 0.626 0.741
Genus—Afruca 0.101 − 1.182
Genus—Austruca − 0.302 1.499
Genus—Gelasimus 1.650 − 0.349
Genus—Leptuca − 0.841 − 0.615
Genus—Minuca − 0.464 − 0.817
Genus—Paraleptuca 0.669 − 0.107
Genus—Tubuca 1.607 0.131
Genus—Uca 1.057 − 1.876
Genus—Xeruca 1.676 0.103
Front—Broad − 0.513 0.071
Front—Intermediate − 0.055 − 1.889
Front—Narrow 1.559 − 0.165
Sex—Both sexes 0.874 − 0.201
Sex—Female 0.821 − 0.640
Sex—Male − 0.695 0.248
Sediment—Mud 0.477 − 0.276
Sediment—Sand − 0.932 0.413
Explained variance (%) 18.30 11.59
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such structures “pillars or columns”. Leptuca stenodacty-
lus populations, however, have been extensively observed 
in Panama with no indications of such structure building 
behavior (JH Christy, pers. obs.). This species often over-
laps with the hood builder L. terpsichores, which may have 
caused misinterpretations. Some species were nevertheless 
observed building more than one type of structure, high-
lighting the importance of detailed and concise ethological 
descriptions.

The lack of simplified definitions for fiddler crab struc-
tures may explain some inconsistencies in the current lit-
erature. Pope and Haney (2008) described in detail both L. 
musica (Rathbun, 1914) and L. latimanus hood structures 
showing their differences and context-dependent varia-
tions in shape. Upon close inspection of the authors’s fig-
ures and description of L. latimanus structures, we believe 
that L. latimanus hoods could be instead semidomes; the 
same applying to Zucker (1981) when using hoods instead 
of semidomes. Similarly, Mokhlesi et al. (2011) described 
four distinct types and subtypes of structures built by A. 
annulipes (Milne-Edwards, 1837), differentiating between 
hoods, pillars, mudballs and semidomes; the semidome 
structures shown in their figures appear to be yet another 
type of above-ground sedimentary structure. This species, 
thus, builds four structures in addition to this novel struc-
ture. Moreover, in their review of African fiddler crabs, Peer 
et al. (2015) ascribed dome building to G. hesperiae (Crane, 
1975) [previously U. (T.) vocans hesperiae] but we have 
been unable to find this passage in Crane’s work.

Above-ground sedimentary structures seem to have a cru-
cial role for juvenile and smaller crabs. Benefits such as bur-
row protection may lead them to build higher or even a larger 
number of structures than adults in some species (Günther 
1963; Zucker 1974, 1981; Wada and Murata 2000). There is, 
however, an additional behavior observed by Günther (1963) 
where smaller-sized A. tangeri rarely build “turret build-
ings”. This unusual and undescribed type of structure was 
mentioned by Crane (1975) and more recently attributed to 
C. inversa (Atkinson and Eastman 2015). Günther (1963) 
distinguished that structure from the “walled holes” (chim-
neys) constructed by M. vocator (Crane, 1943). Until now, 
no other studies have provided detailed descriptions of the 

“turret” structures built by fiddler crabs. Future ethological 
studies could reveal if turrets are just a by-product of exca-
vated pellets or an actual functional structure.

Conclusions and future directions

Fiddler crabs and their above-ground sedimentary structures 
have been used as a model in ecological and ethological 
studies. Researchers have proposed several hypotheses con-
cerning structure function for a few species, yet most remain 
untested experimentally. Explanations for structure function 
that have been experimentally tested include courtship sign-
aling and biasing of activity space, reduction of territorial 
overlap, visual orientation, refuge from predation, intruder 
exclusion and reduction of aggression between neighbors. 
Future studies should evaluate structure function using 
equivalent experimental designs on species that build similar 
constructions. This, along with the use of simplified terms 
for these structures, would facilitate comparisons between 
groups, especially when referring to hood subtypes, i.e., pil-
lars and semidomes (Table 4).

We envisage an integration between field observations 
and experiments in which structures are altered or removed 
to determine their effects on social interactions and burrow 
microclimate, with varying sediment characteristics. Apart 
from their functions in relation to fiddler crabs, we also lack 
an understanding of how these structures may affect sedi-
ment biogeochemistry and habitat for associated groups, 
especially meiofauna and microbial communities (Bell 
et al. 1978; Kristensen 2008; González-Ortiz et al. 2014; 
Nobbs and Blamires 2015; Citadin et al. 2016). A com-
bined approach should give us a better understanding of the 
relationship between architecture, function and ecological 
effects of these biogenic constructions.
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Table 4  Simplified definitions 
of the six types and subtypes of 
sedimentary structures built by 
fiddler crabs

Type (subtype) Definition

Chimney Tower-shaped structure whose walls completely encircle the burrow entrance
Hood Cupped, semi-circular and rounded projection above the burrow entrance
Semidome Massive and robust semi-hooded structure at the burrow entrance
Pillar Narrow, column-like structure at the edge of the burrow entrance
Mudball Large, roughly spherical pellets of substrate deliberately arranged around the 

burrow entrance
Rim Circular, elevated ring of sediment around the edge of the burrow entrance
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