
How to Bootstrap a Language Workbench

Andreas Prinz1 and Alexander Shatalin2

1University of Agder, Department of ICT, Agder, Norway
2JetBrains, Prague, Czech Republic

andreas.prinz@uia.no, alexander.shatalin@jetbrains.com

Keywords: Language Workbench, Bootstrapping, Metamodelling

Abstract: Language workbenches are designed to enable the definition of languages using appropriate meta-languages.
This makes it feasible to define the environments by themselves, as the meta-languages are also just languages.
This approach of defining an environment using itself is called bootstrapping. Often, such bootstrapping is
difficult to achieve and has to be built deeply into the environment.
The platform Meta-Programming System (MPS) has used bootstrapping for its own definition. In a similar
way, the environment LanguageLab is using bootstrapping for its definition. This paper reports the imple-
mentation of LanguageLab in MPS thereby also porting the bootstrapping. From the experiences general
requirements for bootstrapping language workbenches are derived.

1 Introduction

Meta-modelling (Gonzalez-Perez and Henderson-
Sellers, 2008) is an approach to define languages us-
ing meta-languages. In turn, these languages can
be used to define specifications (programs) of these
new languages. Typically, one would use a meta-
modelling environment, also called language work-
bench1 (Fowler, 2005; Stoffel, 2010; Erdweg et al.,
2013; Völter, 2014), to define languages and meta-
languages. The meta-languages are also languages
and can be defined using the same meta-languages.
This process, called bootstrapping, is mainly an ad-
vantage for the workbench developers. It is typi-
cally not visible to the users. This paper will dis-
cuss two language workbenches, namely MPS (Cam-
pagne, 2014; Pech et al., 2013) and LanguageLab
(Gjøsæter and Prinz, 2013).

The open-source industrial-strength Meta-
Programming System (MPS) is provided by the
company Jetbrains. MPS has several meta-languages
covering a wide range of language-design elements
in order to support comprehensive language design.
All the meta-languages within MPS are defined using
MPS itself making the platform bootstrapped. MPS
features a language called Base Language resembling
Java, which is then available for language extension
and development inside MPS. For example, it is

1There are also grammar-based language workbenches
in addition to the meta-modelling environments.

possible to define new constructs for Java (Base
Language) within MPS. In the project mbeddr (Szabó
et al., 2014), MPS provides an almost complete
definition of C++, allowing C++ to be used and
extended within MPS. This is exactly what mbeddr
does: extending C++ in MPS with state machines and
units for use in embedded device programming.

LanguageLab is an academic project at the univer-
sity of Agder, Norway. It is not concerned with an in-
dustrial strength environment, but rather with the con-
cepts that are needed to make meta-modelling user-
friendly and feasible. The main goal of LanguageLab
is to show the essential concepts of meta-modelling
in a clear and understandable tool, such that it can
be used in university teaching (Gjøsæter and Prinz,
2011). In the same way as MPS, also LanguageLab
is bootstrapped such that the few meta-languages of
LanguageLab are defined within LanguageLab.

MPS and LanguageLab have different focus. The
general idea of MPS is to provide the user with as
much as possible help in defining languages and us-
ing known notation when possible. This leads to the
fact that MPS is based heavily on Java-like languages
for the definition of most aspects in the platform. Lan-
guageLab is focused on a clean environment, and in
this context, it tries to avoid exposing the underlying
language of the platform to the user. Although both
platforms are implemented in Java, this is very visi-
ble in MPS, but not at all visible in LanguageLab.

Based on the strengths of MPS, a project was run



to implement LanguageLab in MPS. This is of inter-
est for LanguageLab, because it puts LanguageLab
onto an industrial-strength platform, thereby improv-
ing the quality of LanguageLab. This is also of inter-
est for MPS, as it challenges MPS to handle a new set
of meta-languages.

In this paper, we describe this implementation, its
results and general conclusions from it. We start with
an introduction of essential terms and concepts of
meta-modelling in Section 2. In Section 3 we discuss
how LanguageLab can be described using MPS. Then
we describe the process how to bootstrap Language-
Lab in MPS in Section 4. In Section 5 we extract
the general requirements for successful bootstrap. We
discuss the project and possible alternatives in Section
6. Finally, we conclude in Section 7.

2 Meta-modelling in MPS and
LanguageLab

This section introduces the concepts and terms used
in meta-modelling in general, and in LanguageLab
and MPS in particular. We normally use the terms
of MPS in this paper, and indicate the different terms
used in LanguageLab. We also indicate the terms used
in Xtext for convenience. Meta-modelling is an ap-
plication of model-driven development (Atkinson and
Kühne, 2003) to language engineering and compiler
construction. Instead of implementing language han-
dling tools, e.g compilers, a model of the language
is created. From this model, tools are automatically
generated (Nytun et al., 2006). This way, languages
can be designed quickly for the programming tasks at
hand (Ward, 1994).

A language model has several different aspects,
which together give a complete description of all im-
portant properties of the language. There are the as-
pect groups of structure, syntax, and semantics, as
well as a group of tool-related aspects. In this section,
we only look into the aspects that have been used in
the project.

2.1 Structure (Abstract Syntax)

The structure (abstract syntax, meta-model) aspect
defines the concepts that are used in the language
and their relationships with each other. Language-
Lab uses the term ’type’ instead of ’concept’. Xtext
uses EMF for the definition of the meta-model2, and
a ’concept’ is represented by a ’class’. Concepts can

2Please note that Xtext often auto-generates the meta-
model from the grammar.

own properties (of basic types) and children (enclosed
concepts). Moreover, concepts can have references
to other concepts. Properties are called ’attributes’
in LanguageLab and EMF, while children and refer-
ences are called ’aggregates’ and ’references’, respec-
tively, in LanguageLab. In EMF, references and chil-
dren are represented by associations, where children
are contained associations. A concept can have a par-
ent concept in terms of inheritance.

A language can be used by creating a specification
(a program) in it. In this case, language concepts are
instantiated into a node structure, where each node
is an instance of a concept. Nodes have values (in-
stances of properties), sub-nodes (instances of chil-
dren), and links to other nodes (instances of refer-
ences).

2.2 (Concrete) Syntax

The concrete textual syntax, called editor in MPS, de-
fines how the specifications should look for the user.
In MPS and LanguageLab the syntax is defined based
on the structure, while for Xtext the structure is de-
rived from the syntax (grammar)3. MPS uses a pro-
jectional editor (Völter et al., 2014), which means
that the editor is presenting the internal node struc-
ture based on the syntax description. LanguageLab is
based on a grammar-approach with LR analysis. The
differences between the two approaches are quite se-
rious in terms of user experience and implementation.
However, for the sake of bootstrapping, the difference
is less important.

2.3 (Dynamic) Semantics

The meaning of the specifications of our new lan-
guage is defined in the semantics. There are two main
ways to do this, namely transformations (compiler)
and executions (interpreter). For reasons of simplic-
ity, only generators are considered here, which are
called ’transformations’ in LanguageLab. Semantics
is out of scope of Xtext, which is mostly concerned
with the front-end, but can connect to semantics tools
within Eclipse. MPS features a template-based gener-
ation with very sophisticated expressions, while Lan-
guageLab has a very simplistic pattern-based trans-
formation language.

3There is an option in MPS to derive the structure from
a grammar. Similarly, Xtext allows to base a grammar on
an existing meta-model (structure).



3 LanguageLab in MPS

The first step for moving LanguageLab (LL) to MPS
is to define LanguageLab in MPS as shown in Fig-
ure 1. The LL generator, structure, and editor meta-
languages are defined in MPS. Finally, an LL Petrinet
language is defined as a sample test language on top
of those meta-languages.

Figure 1: Defining Petrinet in LanguageLab, which is de-
fined in MPS.

3.1 Structure Language

The initial LanguageLab structure language is defined
using standard MPS. In the first place, the language is
not yet a meta-language, but just a plain language pro-
viding the following concepts: Type, Property (with
specializations Attribute, Aggregate, and Reference),
AttributeType, Enumeration, and EnumElement.

When the types of the LanguageLab structure
language are used, they are translated into concept
declarations of the MPS structure meta-language.
This turns the LanguageLab structure language into
a meta-language.

3.2 Editor Language

Textual syntax in LanguageLab is based on a gram-
mar language that is finally translated into an LALR
parser. The editor is using the parser to read input and
a pretty printing tool to show the current text. MPS
works differently. Here, the editor is projectional, and
no parser is needed.

Fortunately, the descriptions of an MPS editor and
a grammar are similar enough to be able to translate
a LanguageLab description into an MPS description.
This is mostly due to both of them being quite declar-
ative. Again, the LanguageLab textual syntax lan-
guage is so far only a language. It becomes a meta-
language because the editor descriptions are trans-
lated into MPS editor language constructs.

3.3 Generator

The transformation language of LanguageLab is very
simplistic compared with the generator language used
by MPS to describe model-to-model transformations.
Therefore, the generator language for LanguageLab
in MPS is an adaptation of the MPS generator lan-
guage, adapted to the LanguageLab structure primi-
tives. It is simplified and only provides the genera-
tor primitives needed for the bootstrap, i.e. the Lan-
guageLab and Petrinet generators.

3.4 Testing with Petrinets

A simple Petrinet language was first built within plain
MPS, and then again with the three LanguageLab lan-
guages explained in this section. With both versions it
was possible to write Petrinet specifications, generate
Java code from them and finally run them.

In the case of LanguageLab, the Petrinet lan-
guage description was first generated into MPS meta-
languages, and from there into Java.

The user experience is almost the same for the
MPS version and the LanguageLab version, which in-
dicates that the two versions are very similar. In addi-
tion, the code generator from Petrinet to Java gener-
ates the same code in both cases.

4 Bootstrapping

The definition of LanguageLab in MPS allows other
languages to be defined in LanguageLab, as shown
for the Petrinet language. But can we do the same
for the LanguageLab languages? The process would
be the same as for Petrinet: first, the description in
LanguageLab is translated to MPS, and then down to
Java, which is finally executed (Figure 2). The ini-

Figure 2: Generation steps.

tial languages defined in Section 3 relate to the last
step. Defining LanguageLab in LanguageLab (the
first step) introduces a definitional cycle which might
spoil the proper function of LanguageLab.

In describing the bootstrap, we distinguish be-
tween the bootstrap situation we want to achieve, and
the creation of this situation in the tool. We start
by discussing the bootstrap situation, before we jump
into the process to create this situation.



4.1 Bootstrap Situation

The final state after bootstrapping is to have a com-
plete description of LanguageLab using Language-
Lab, as shown in Figure 3. This figure depicts the

Figure 3: Ideal bootstrap situation. All languages are de-
fined using LanguageLab (LL).

three LanguageLab languages in their meta-language
role on the left, and in their language role on the right.
Still, the languages are the same as indicated by the
same name.

There are two kinds of dependencies in Figure 3:
use dependencies and references. A use dependency
is a connection between a meta-language and a lan-
guage, i.e. an arrow from the right to the left. Es-
sentially it means that a description is dependent on
the language it is written in. A reference is given be-
tween languages on the same meta-level. In our case,
both the editor language and the generator language
depend on the structure language, as the editor and
the generator descriptions always refer to their con-
cept description.

We see in Figure 3, that the structure language is
central to the bootstrap because of several reasons.

• It has five incoming dependencies.

• It is the only language with incoming references.

• It is needed already for the bootstrap situation.

• In addition, it is the only language with an internal
definition loop (Type being defined by a Type).

Due to this central role of the structure language, we
focus on it now.

Based on the initial languages described in Sec-
tion 3, we can define the LanguageLab structure lan-
guage using the initial LanguageLab structure, editor,
and generator languages, see Figure 4.

The task for bootstrapping the structure aspect is
to replace the LLstructure:MPS language to the left in
Figure 4 with the LLstructure:LL language.

Figure 4: Preparing bootstrap: Defining LanguageLab on
itself, but using MPS.

In order to make this new structure language us-
able, it has to be connected to adapted editor and gen-
erator languages, as shown in Figure 5. The adap-
tation is quite simple aligning the editor and genera-
tor languages with the references structure language,
which is structurally the same in all cases.

The original LanguageLab meta-languages to the
left in Figure 5 are defined using MPS. Using these
languages, a bootstrapped version of the structure lan-
guage is defined and connected to copies of the gen-
erator and editor languages with the change in their
reference dependencies. This step can be repeated as
shown in Figure 5. For the bootstrap process, we need
to replace the initial structure language with the boot-
strapped structure language in order to complete the
cycle. When this is done, the other meta-languages in
the middle column of Figure 5 need to be adapted by
way of their references.

4.2 Bootstrap Process

We could extend the process depicted in Figure 5 sev-
eral times, but it only creates a sequence of languages
and not a loop (a language defining itself) as needed
for the bootstrap. For the creation of the bootstrap
situation, we first look at how a bootstrap process is
done in LanguageLab and MPS individually in order
to construct a process for LanguageLab in MPS.

LanguageLab has two features to allow a boot-
strapping process. The first feature is that Language-
Lab is interpreted, that is the language description
(file) is used as it is. This can be exploited by sim-
ply changing the dependency in the language descrip-
tion file (i.e. outside the LanguageLab platform) in or-
der to establish the bootstrapping situation. A second
helpful feature of LanguageLab is that each language
use is connected to its language definition via an in-
terface, where the actual language can be exchanged
when the instance is loaded. This means that there is
no direct connection between language use and lan-
guage definition. With these interfaces, bootstrapping
is even possible within the platform itself.



Figure 5: Situation before bootstrap.

MPS is a generated platform, where the language
description is translated into Java code, see also Fig-
ure 2. MPS features a very strong connection between
nodes and their concepts, such that it is essentially
impossible to change the concept of a node. This im-
plies that the bootstrap process can only happen by
influencing the generated code, which was done for
the MPS bootstrap.

For LanguageLab in MPS, we therefore have to
generate the same Java code for the concept declara-
tions of the bootstrapped LanguageLab structure lan-
guage as we have already generated for the initial
LanguageLab structure language. In MPS, two con-
cept declarations are generated to the same code when
they have the same name, the same concept ID and are
in the same language4. We achieve the last point by
collecting all the initial and bootstrapped concepts in
one language. In this combined LanguageLab struc-
ture language the two versions of the language have
different names to begin with.

For the generation of the concept IDs in MPS, the
node ID of the concept definition is used as default.
This can be changed to the node ID of the initial Lan-
guageLab definition.

Based on these general considerations, the boot-
strap process for the structure language has three
stages: prepare, bootstrap, and beautify.

4.2.1 Preparation

In the first stage, the source is changed, but the gen-
erated code is left untouched. This allows running the
old code. There are three steps as follows.

Source code control Put the generated code into
source code control (SCC). Normally, only the
language description is put into SCC. However,
for the bootstrap it is important to keep the gener-
ated code, as this is used to load the languages.
Without the generated code, it is impossible to
load the bootstrapped language, because the code

4In MPS, languages are defined in so-called modules.

is used in loading and it cannot be generated with-
out the code itself.

ID handling Insert the initial concept IDs for the
generation of the bootstrapped concepts includ-
ing IDs for the attributes, references and children.
This step relates to the identifying property for
concepts consisting of name, ID, and language.

Remove initial Change the names of the boot-
strapped concepts to be the same as the initial con-
cepts. Remove the initial concepts and related ed-
itor and generator. This is safe to do as the gener-
ated code and the loaded code are still available.
Both of them will be replaced by the newly gen-
erated code from the bootstrapped concepts in the
next step.

4.2.2 Bootstrapping

In the second stage, the generated code is changed.
This will invalidate some of the definitions, which
have to be fixed. It involves the following four steps.
Regenerate In this step, the old generated code is re-

moved and new code is generated. The newly gen-
erated code for the bootstrapped concepts is more
or less a copy of the old generated code for the
initial concepts.

Fix meta-language references This step is related
to the type of the references between meta-
languages. The editor and the generator meta-
languages reference structure concepts that used
to be defined by the initial concepts. After boot-
strap, they are defined by the bootstrapped con-
cepts, and therefore the two languages have to be
adapted. Due to the structural equivalence of the
initial and the bootstrapped concepts, this is a sim-
ple mechanical replacement and also the gener-
ated code is almost the same as before.

Fix language descriptions After we have changed
the editor and generator languages, we also need
to adapt the LanguageLab editor and generator
definitions, which is again a simple mechanical
replacement.



Regenerate again Finally, LanguageLab is gener-
ated by LanguageLab. This completes the boot-
strapping process and establishes the correct boot-
strap situation for the structure meta-language.

4.2.3 Beautifying

Although we have achieved the bootstrap situation,
we still have a special ID handling in place. This is
removed in the third stage as follows.

Nice IDs Change the concept IDs of the bootstrapped
concepts to the IDs of the initial concepts (that are
now deleted).

Regenerate and finish Finally, the bootstrap process
is finished and we can rerun it as often as needed,
even with changes in the definitions. We are back
to the standard handling in MPS.

The process worked out exactly as planned. Af-
ter aligning the Petrinet language definitions to the
new LanguageLab, also the tests with the Petrinet lan-
guage still worked out. All the code can be found in
the LanguageLab git repository (LanguageLab, 2018)
and the project is built on the JetBrains build server
(JetBrains, 2018).

4.3 Bootstrapping the Editor

After the central part of bootstrapping the structure
language is done, the remaining languages are easy
to add. To test this, a bootstrapped editor language is
created using the following steps.

Defining the editor structure The LanguageLab
structure is used to define the structure of the
LanguageLab editor language.

Defining the editor generator The generator for the
editor language is defined using the LanguageLab
generator language.

Generating Code for the editor language is gener-
ated such that the language is usable.

Defining new editors for structure and editor
New definitions of the editors for the structure
language and the editor language are defined.

Regenerate The bootstrap is more complete with
this regeneration as now we have a bootstrap of
both structure and editor.

A similar process works also for the generator lan-
guage, completing the bootstrap for all three Lan-
guageLab meta-languages. The success of the project
shows that MPS is able to facilitate bootstrapping of
another language workbench.

5 Needed Technology

Based on the project, we extract general conclusions
about bootstrapping for meta-model-based language
workbenches. In particular, we look into the elements
needed for a bootstrap to work in the two parts: boot-
strap situation and bootstrap process. Moreover, we
consider a general process of porting a bootstrap to
another workbench.

5.1 Bootstrap Situation

When we have created a bootstrap situation, we can
continue using it as is or change elements of the boot-
strapped language.

Keeping the cycle means that the language work-
bench is able to express the cyclic dependency of
the bootstrap situation.

Changes A change in the bootstrap situation can be
a problem because the definition could be invali-
dated by the changes. This is about using the old
definition in order to create the new one having a
distinct point where the change is taken.

Keeping a bootstrap situation is easy for language
workbenches, as the connection between language
definition and language use is the core of a language
workbench. One way to make it work is to have two
different representations of the language: as a lan-
guage description for the definition role and as code
for the use role, as in MPS and EMF/Xtext. Alterna-
tively, the language can be loaded twice for these two
roles, as in LanguageLab.

For handling changes, in case of MPS and
EMF/Xtext, the point of change of the language is
when the new code is generated. In LanguageLab, the
point of change is when reloading the definition. In
both cases, the language definition is used in a read-
only mode thus allowing changes to the new defini-
tion using the old definition.

5.2 Creating Bootstrap

Creating a bootstrap situation requires the ability to
construct a type-instance loop.

Circularity There needs to be a way to change the
association between type and instance for the
bootstrapped languages.

In normal operation, it is impossible to create cir-
cular definitions, as a language workbench would re-
quire a concept to be existing in order to create an
instance of it. This way, ’concept’ cannot easily be
an instance of ’concept’. The creation of the circular
definitions is the core of the bootstrapping process.



In MPS (and EMF), there are three versions of any
language: first, the language description as instances
of the meta-languages. Second, this description is
generated to Java. Third, the compiled Java code can
be loaded (and thereby activated) in MPS. The two
first versions are available as files and can be stored
in a SCC, while the last one is transient. This means
in order to create the cycle it is most easy to work on
the generated code as we have done here.

The situation in LanguageLab is slightly different,
given by its interpretative nature. The language de-
scription is loaded directly, and without an interme-
diate compilation step. Still, the defining language is
loaded read-only and before its instances. Changes to
this language are not done until the next load of the
language. This way, in order to create a cycle the def-
inition file can be changed.

In order to make a language workbench ready for
bootstrap, it is important to provide an operation to
build an ”empty” circular definition, which can then
be extended at will. Such a definition eases the boot-
strap process considerably.

5.3 Porting Bootstrap

Collecting the experiences from our project, we rec-
ommend the following steps for the porting.

1. Before jumping into the circularity, the first
step of the porting is the creation of the meta-
languages without the circularity using the meta-
languages of the available language workbench.

2. Define a second set of meta-languages which are
similar, but now defined on the first set. Still, the
meta-languages are not circular.

3. As described before, the most critical part of the
bootstrap port is the handling of the define-use cir-
cularity. Sort out the circularity by either adapting
the code generation or by creating a loop in the
workbench if that is possible. This will solve the
internal circularity of the structure meta-language.

4. Circularities that involve define, use, and refer-
ence links can now be established stepwise. The
editor and the generator can first be defined non-
circular in order to get the structure loop working.
Then they can be re-defined in a circular way and
replace their previous definitions.

6 Discussion

In this chapter, we discuss two issues we encountered
during bootstrapping.

6.1 Complete Bootstrap

The bootstrap in LanguageLab is complete in the
sense that only the language descriptions are used,
and the rest is given in the MPS platform. The sit-
uation is different for the MPS platform itself, which
has all its meta-languages defined in MPS and gen-
erated down to Java, but in addition some extensions
to the underlying IntelliJ IDEA platform (Fields and
Saunders, 2006).

In the earlier LanguageLab, the bootstrap was also
given by a set of languages together with a platform.
In general, any bootstrap situation has to rely on a
platform, and the question is merely how much of
the platform has to be adapted to make the bootstrap
work. Because of the power of the MPS platform,
the LanguageLab bootstrap on MPS did not need any
extra code.

6.2 Forward Loop

Currently, the bootstrap is created by wrapping the
loop backwards, i.e. the IDs of the bootstrapped con-
cepts are changed to fit the IDs of the initial concepts.
Alternatively, we could work the other way around.
We could change the IDs of initial concepts such that
they fit with the bootstrapped concepts.

In general, these two possibilities look very simi-
lar and they have the same effect. In practice, a for-
ward loop changes the initial concepts. This inval-
idates all their instances. This means all these in-
stances have to be recreated. In addition, there is a
risk that the changed initial concept IDs crash with
the existing bootstrapped IDs. In order to reduce the
risk and to keep some sort of stability, the decision
was taken to wrap the loop backwards.

7 Conclusion

In this paper, we have shown how LanguageLab can
be bootstrapped in MPS. The experiences have been
generalized to requirements that have to be in place
for a bootstrap to work.

We have bootstrapped the LanguageLab structure
language including its internal definition-use cycle.
On the base of the structure language, also the Lan-
guageLab editor language was bootstrapped. The
languageLab transformation language has not been
bootstrapped, but is still partly based on MPS meta-
languages. As it does not introduce new references to
the bootstrap, we expect that it can be added with the
same ease as the editor language.



Apart form the general possibility of porting the
LanguageLab bootstrap to MPS, several technical
tricks had to be used to make LanguageLab fit into
MPS. This is mostly due to the different philosophy
behind the two language workbenches, in particular
their differing views on language aspects.

For making a bootstrap work in general, a lan-
guage workbench needs to be able to use the same
language as defining and defined specification, which
is a special case of the standard language workbench
functionality. Moreover, it has to keep the used lan-
guage stable and to allow changing the type of an in-
stance for introducing a loop. MPS, Xtext and Lan-
guageLab fulfill all these requirements.

Acknowledgements

We thank the reviewers for their helpful comments.

REFERENCES

Atkinson, C. and Kühne, T. (2003). Model-driven de-
velopment: a metamodeling foundation. IEEE
Software, 20(5):36–41.

Campagne, F. (2014). The MPS Language Work-
bench: Volume I. Fabien Campagne.

Erdweg, S., Storm, T. v. d., Völter, M., Boersma,
M., Bosman, R., Cook, W. R., Gerritsen, A.,
Hulshout, A., Kelly, S., Loh, A., Konat, G.
D. P., Molina, P. J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu,
V. A., Visser, E., Vlist, K. v. d., Wachsmuth,
G. H., and Woning, J. v. d. (2013). The state
of the art in language workbenches. In Erwig,
M., Paige, R. F., and Wyk, E. V., editors, Soft-
ware Language Engineering, number 8225 in
Lecture Notes in Computer Science, pages 197–
217. Springer International Publishing.

Fields, D. and Saunders, S. (2006). IntelliJ Idea In
Action. Dreamtech Press.

Fowler, M. (2005). Language workbenches:
The killer-app for domain specific languages?
http://www.martinfowler.com/articles/language
Workbench.html.

Gjøsæter, T. and Prinz, A. (2011). Teaching Com-
puter Language Handling - From Compiler The-
ory to Meta-modelling, pages 446–460. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Gjøsæter, T. and Prinz, A. (2013). Languagelab 1.1
user manual. Technical report, University of
Agder.

Gonzalez-Perez, C. and Henderson-Sellers, B.
(2008). Metamodelling for Software Engineer-
ing. Wiley Publishing.

JetBrains (2018). Languagelab build server.
https://teamcity.jetbrains.com/viewType.html?
buildTypeId=MPS LanguageLab LlAll.

LanguageLab (2018). Languagelab git repository.
https://tools.uia.no/stash/scm/projects 2015/
mps-languagelab.git.

Nytun, J. P., Prinz, A., and Tveit, M. S. (2006). Auto-
matic generation of modelling tools. In Rensink,
A. and Warmer, J., editors, Model Driven Ar-
chitecture Foundations and Applications, num-
ber 4066 in Lecture Notes in Computer Science,
pages 268–283. Springer Berlin Heidelberg.

Pech, V., Shatalin, A., and Völter, M. (2013). Jet-
Brains MPS as a tool for extending java. In
Proceedings of the 2013 International Confer-
ence on Principles and Practices of Program-
ming on the Java Platform: Virtual Machines,
Languages, and Tools, PPPJ ’13, pages 165–
168. ACM.

Stoffel, R. (2010). Comparing language work-
benches. In MSE-seminar: Program Analysis
and Transformation, pages 18–24.

Szabó, T., Voelter, M., Kolb, B., Ratiu, D., and
Schaetz, B. (2014). Mbeddr: Extensible lan-
guages for embedded software development. In
Proceedings of the 2014 ACM SIGAda Annual
Conference on High Integrity Language Tech-
nology, HILT ’14, pages 13–16, New York, NY,
USA. ACM.

Völter, M. (2014). Generic tools, specific languages.
PhD thesis, TU Delft, Delft University of Tech-
nology.

Völter, M., Siegmund, J., Berger, T., and Kolb, B.
(2014). Towards user-friendly projectional ed-
itors. In Combemale, B., Pearce, D. J., Barais,
O., and Vinju, J. J., editors, Software Language
Engineering, volume 8706 of Lecture Notes in
Computer Science, pages 41–61. Springer Inter-
national Publishing.

Ward, M. P. (1994). Language oriented programming.
Software-Concepts and Tools, 15(4):147–161.


