
Paper C: Mathematical Model for Vehicle-Occupant Frontal Crash using 
Genetic Algorithm

Abstract — In this paper, a mathematical model for vehicle - occupant 
frontal crash is developed. The developed model is represented as a double-
spring-mass-damper system, whereby the front mass and the rear mass rep-
resent the vehicle chassis and the occupant, respectively. The springs and 
dampers in the model are nonlinear piecewise functions of displacements and 
velocities respectively. More specifically, a genetic algorithm (GA) approach is 
proposed for estimating the parameters of vehicle front structure and restraint 
system. Finally, it is shown that the obtained model can accurately reproduce 
the real crash test data taken from the National Highway Traffic Safety and 
Administration (NHTSA). The maximum dynamic crash of the vehicle model 
is 0.05% less than that in the real crash test. The displacement of the occupant 
is 0.09% larger than that from the crash test. Improvement of the model accu-
racy is also observed from the time at maximum displacement and the rebound 
velocities for both the vehicle and occupant.

Keywords— Modeling; vehicle-occupant; frontal crash; parameters estimation; 
genetic algorithm;

C.1 Introduction

Car accidents are one of the major causes of mortality in modern society. While it 
is desirable to maintain the crashworthiness, car manufacturers perform crash tests 
on a sample of vehicles for monitoring the effect of the occupant in different crash 
scenarios. Car crash tests are usually performed to ensure safe design standards in 
crashworthiness (the ability of a vehicle to be plastically deformed and yet maintains 
a sufficient survival space for its occupants during the crash scenario). However, this 
process requires a lot of time, sophisticated infrastructure and trained personnel to 
conduct such a test and data analysis. Therefore, to reduce the cost associated with 
the real crash test, it is worthy to adopt the simulation of a vehicle crash and validate 
the model results with the actual crash test. Nowadays, due to advanced research in 
simulation tools, simulated crash tests can be performed beforehand the full-scale 
crash test. Therefore, the cost associated with the real crash test can be reduced. 
Finite element method (FEM) models and lumped parameter models (LPM) are 
typically used to model the vehicle crash phenomena. Vehicle crashworthiness can 
be evaluated in four distinct modes: frontal, side, rear and rollover crashes. Several 
types of research have been carried out in this field, which resulted in several novel 
computational models of vehicle collisions in literature, and a brief review is given
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in this paper.

C.2 Literature survey and limitations of current tech-
niques

An application of physical models composed of springs, dampers and masses joined 
in various arrangements for simulating a real car collision with a rigid pole was 
presented in [1]. In [2], a 5-DOFs lumped parameter modeling for the frontal crash 
was investigated to analyze the response of occupant during the impact. Ofochebe et 
al. in [3] studied the performance of vehicle front structure using a 4-DOFs lumped 
mass-spring model composed of body, engine, the cross-member and suspension 
and the bumper masses.

In [4] and [5], an optimization procedure to assist multi-body vehicle model de-
velopment and validation was proposed. In the work of [6], the authors proposed an 
approach to control the seat belt restraint system force during a frontal crash to re-
duce thoracic injury. Klausen et al. [7] used firefly optimization method to estimate 
parameters of vehicle crash test based on single-mass. To reconstruct the crash 
event, Tørdal et al. [8] extracted the motion of a bus in an oblique crash and the 
kinematics of a Ford Fiesta in a pole crash from a high frame rate video. Tso-Liang 
et al. in [9] examined the dynamic response of the human body in a crash event and 
assessed the injuries sustained to the occupant’s head, chest and pelvic regions.To 
reduce the occupant injury risks in vehicle frontal crashes, mathematical models that 
optimize the vehicle deceleration have been developed in [10, 11]. Apart from the 
commonly used approaches, recently intelligent approaches have been used in the 
area of vehicle crash modeling. The most commonly used are Fuzzy logic in [12], 
Neuro-fuzzy in [13], firefly algorithm in [7] and genetic algorithm. A genetic algo-
rithm has been used in [14] for calculating the optimized parameters of a 12-DOFs 
model for two vehicle types in two different frontal crashes. In [15, 16], the author 
used Genetic Algorithms to optimize the performance of PID, Fuzzy and Neuro-
fuzzy controllers on various systems. The main challenge in accident reconstruction 
is the system identification described as the process of constructing mathematical 
models of dynamical systems using measured input-output data. In the case of a ve-
hicle crash, system identification algorithm consists of retrieving the unknown pa-
rameters such as the spring stiffness and damping coefficient. A possible approach 
is to identify these parameters directly from experimental data. From literature, Sys-
tem Identification Algorithms (SIA) have been developed for different applications.
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Among others, we can state-space identification, eigensystem realization algorithm
and data-based regressive model approaches. Typical examples where these SIA
have been used can be found in [17–19].

In this paper, based on the previous research work [7], we develop a mathemat-
ical model for a double-spring-mass-damper system which reconstructs a vehicle-
occupant frontal crash scenario and estimates structural parameters of the vehicle’s
front structure and the restraint system. The structural parameters estimated are
spring and damping coefficients. To estimate the physical parameters of the model,
a genetic algorithm is proposed. It is observed that the predicted results fit the ex-
perimental data very well.

C.3 The newly proposed method

The main objective of this section is to represent a dynamic model to capture the
vehicle frontal crash phenomena. During the frontal crash, the vehicle is subjected
to an impulsive force caused by the obstacle. The model for vehicle crash simu-
lates a rigid barrier impact of the car, where m1 and m2, as shown in Figure C.1
represent the frame rail (chassis) and occupant masses, respectively. In this model,
the parameters to be estimated are spring stiffness constants kl, knl and k2, damp-
ing constants cl, cnl and c2. When the vehicle crashes into a rigid barrier, the two
masses will experience an impulsive force during the collision. The real crash phe-
nomenon is shown in Figure C.2 and it is observed that the value for the maximum
dynamic crash of the vehicle is 72.69 cm, the time of the crash is 0.0894 s and the
rebound velocity is −3.75 m/s. At the time of crash, the occupant experiences a
forward movement of 30.3 cm making a total displacement of 103 cm. The rebound
velocity of the occupant is −13.1 m/s.

In line of the model development to capture the values as mentioned earlier
during the crash scenario, the 2-DOF dynamical model proposed in [20] for the free
vibration analysis is adopted for solving the impact responses of the two masses.
Then, the genetic algorithm is used to estimate the 2-DOF model parameters.

C.3.1 Model 1: Combination of linear and nonlinear springs
and dampers

In model 1 the deforming spring and damping forces, developed at time of crash, are 
nonlinear cubic functions in x and ẋ respectively. The spring stiffness and damper
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Figure C.1: A double spring-mass-damper model

constants are defined as follows:

k1 = kl + knl (C.1)

c1 = cl + cnl (C.2)

The dynamic equations of the double-mass-spring-damper model are shown in
the following:

Fstr = klx1 + knlx
3
1 + clẋ1 + cnlẋ

3
1 (C.3)

Frest = k2(x2 − x1) + c2(ẋ2 − ẋ1) (C.4)

ẍ1 = (Frest − Fstr)/m1 (C.5)

ẍ2 = (Frest)/m2 (C.6)

where Fstr and Frest are the deformation force of the vehicle frontal structure 
and the restraint system respectively.
kl and knl, are linear and nonlinear springs cl and cnl, are linear and nonlinear 
dampers of the front vehicle structure respectively. k2 and c2 are spring stiffness
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Figure C.2: Crash test data

   m1 

x1 

c2(𝑥2)

k2(𝑥2)

x2 

m2 

c1( 1x ) 

k1(x1) 

Figure C.3: The Model 2

and damper coefficients for the restraint system respectively.
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Figure C.4: Stiffness and damper characteristics of vehicle frontal structure

C.3.2 Model 2: Piecewise functions of springs and dampers

Figure C.3 represents the vehicle- occupant model with non-linear spring and dampers,
which crashes into a fixed barrier. Based on the nonlinear characteristics of veloc-
ity and displacement of the vehicle and forward movement of the occupant shown
in Figure C.2, the springs and dampers that simulate such characteristics must also
be nonlinear as predefined in Figure C.4. The dynamic equation of the model is
defined by:

Fstr = k1x1 + c1ẋ1 (C.7)

Frest, ẍ1 and ẍ2 are identical to Eqs.(4) - (6). The piecewise functions for stiffness
and dampers in the front structure of the vehicle and restrain system are defined as
follows:

ki(xi) =


ki1 + ki2−ki1

xi1
xi xi ≤ xi1

ki2 + ki3−ki2
Ci−xi1 (xi − xi1) xi1 ≤ xi ≤ Ci

(C.8)

ci(ẋi) =


ci1 − ci1−ci2

ẋi1
ẋi ẋi ≤ vi−th

ci2 − ci2−cv3
v0−ẋi1 (ẋi − vi−th) vi−th ≤ ẋi ≤ v0

(C.9)
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Figure C.5: Stiffness and damper characteristics of the restraint system

where the index i = 1, 2 stand for 1st and 2nd mass respectively. Ci is the dy-
namic crash of the vehicle or occupant. v0 is the initial impact velocity. vi−th is the
threshold velocity of i mass.

At the maximum crash, the spring stiffness is assumed to be high, but the damper
coefficient is small for maintaining the shape of displacements and velocities of
vehicle and occupant respectively. To get better results, the model in Figure C.4 can
be modified by introducing two break point on the predefined shapes of springs and
dampers as shown in Figure C.5 and defined in Eqs.(C.10) - (C.11).

ki(xi) =



ki1 + ki2−ki1
xi1

xi xi ≤ xi1

ki2 + ki3−ki2
xi2−xi1 (xi − xi1) xi1 ≤ xi ≤ xi2

ki3 + ki4−ki3
Ci−xi2 (xi − xi2) xi2 ≤ xi ≤ Ci

(C.10)
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ci(ẋi) =



ci1 − ci1−ci2
ẋi1

ẋi ẋi ≤ ẋi1

ci2 − ci2−ci3
ẋi2−ẋi1 (ẋi − ẋi1) ẋi1 ≤ ẋi ≤ ẋi2

ci3 − ci3−ci4
v0−ẋi2 (ẋi − ẋi2) ẋi2 ≤ ẋi ≤ v0

(C.11)

C.3.3 Optimization algorithm

The proposed algorithm seeks to find the minimum function between several vari-
ables as can be stated in a general form minf(p), where ‘p′ denotes the unknown
variables, which are the damping and stiffness constants in the model. The cost
function f(p) is the objective function which should be optimized. The cost func-
tion to be minimized is the norm of the absolute error between the displacement of
the simulated cash and the experimental crash data and is defined as

[Error] = sum(|Est − Exp|T × |Est − Exp) (C.12)

where Est and Exp are the model and experimental variables (displacements, veloc-

ity and acceleration) respectively. All parameters defined in Eqs.(C.8) -(C.11) are 
embedded in Est .

The GA method is used here for optimization of the cost function. The GA-type 
of search schemes is function-value comparison-based, with no derivative compu-
tation. It attempts to move points through a series of generations, each being com-
posed of a population which has a set number of individuals, where individuals 
represent parameters to be estimated. The population size depends on the number 
of parameters to be estimated for a given model. For example, the Model1 has six 
individuals, Model 2 for a one break point piecewise function, in Figure (C.4), has 
eighteen individuals and twenty-four individuals for a two break points piecewise 
function, in Figure (C.5). Each individual is a point in the parameter space (in 
our case, the displacement of experimental data). The schemes that are applied to 
the evolution of generations have some analogy to the natural genetic evolution of 
species, hence the term genetic.

G.A. is an adaptive heuristic search algorithm based on the evolutionary ideas of 
nature selection and genetics. It represents an intelligent exploitation of a random 
search used to solve optimization problems and consists of five operators: Initial-
ization, Selection, crossover, mutation and replacement. Initialization is used to
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Figure C.6: GA flowchart

seed initial population randomly while selection is used to select the fittest from the 
population. Crossover is used to explore the search space. Mutation is used to re-
move the problem like genetic drift (some individuals may leave behind a few more 
off-springs than other individuals), and replacement is used to progress generation 
wise population [21]. Figure C.6 shows a general flowchart of a genetic algorithm.
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Figure C.7: Comparison between vehicle model and vehicle experimental data - Nonlinear 
Model1

C.4 Results and discussion

Comparisons between the model results and the experimental data are shown in Fig-
ures C.7 - C.9, where the stapled lines and continuous lines represent the simulation 
results and the experimental data respectively. The symbols s-Ex-Veh, v-Ex-Veh, 
a-Ex-Veh, s-Ex-Occ, v-Ex-Occ, a-Ex-Occ, s-Mod-Veh, v-Mod-Veh, a-Mod-Veh, 
s-Mod-Occ, v-Mod-Occ, a-Mod-Occ, on the legends stand for displacement (s), 
velocity(v) and acceleration(a) of the vehicle(Veh) and occupant(Occ) respectively. 
Ex and Mod stand for Experimental and Model, respectively.

It is noted from Figure C.7 that the maximum displacements of the vehicle and 
occupant models are 9.2% and 9.5% less those from the experimental data respec-
tively. The time of the dynamic crush is far from the experimental data. The max-
imum crash of the vehicle is 0.089 s while that from the model is 0.098 s. This is 
also observed on the occupant time at maximum displacement; that is 0.146 s in-
stead of 0.12 s from data. The rebound velocity of −2.3m/s for the vehicle model 
is slightly less than that in the real crash (i.e. −3.75m/s), but the occupant rebound 
velocity of −13.5m/s is almost closer to the real crash data (i.e.−13.1m/s). This

10



Paper C: Mathematical Model for Vehicle-Occupant Frontal Crash using
Genetic Algorithm

Table C.1: Parameters estimation Model1

Parameter Value Unit 

kl 6.4270e+04 N/m 

knl 30.3830 N/m3

cl 6.2029e+04 Ns/m 

cnl 246.2119 Ns3/m3

k2 4.3159e+04 N/m 

c2 2.0797e+03 Ns/m 

Table C.2: Parameters estimation Model2- one break point piecewise function

Parameter Value Unit Parameter Value Unit 

k11 6.3993e+04 N/m k21 6.2502e+03 N/m 

k12 3.5743e+04 N/m k22 3.8618e+04 N/m 

k13 6.3669e+04 N/m k23 7.5718e+04 N/m 

x11 0.3034 m x21 0.0529 m 

c11 8.3497e+04 Ns/m c21 3.1340e+03 Ns/m 

c12 3.2983e+03 Ns/m c22 3.0876e+03 Ns/m 

c13 1.9725e+05 Ns/m c23 3.1159 Ns/m 

v1-th 15.5035 m/s v2-th 0.1013 m/s 

shows that the model presented in Figure C.1, with combined linear and nonlinear
force elements cannot accurately reconstruct the vehicle occupant crash scenario.
The estimated parameters, linear and nonlinear springs and dampers: kl, knl, cl, cnl,
k2 and c2 , are shown in Table C.1.

An improvement is noted in Figure C.8 where the stiffness and dampers in the
model are piecewise functions with one break point shown in Figure C.4. The
maximum dynamic crush of the vehicle model is 0.3% less than that in the real crash
test. The displacement of the occupant is 0.4% larger than that from the crash test.
Improvement of the model accuracy is also observed from the time at maximum
displacement and the rebound velocities for both the vehicle and occupant. The
estimated parameters are shown in Table C.2.

From Figure C.9, the model accuracy is obtained by using force elements with
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Figure C.8: Comparison between vehicle model and vehicle experimental data - piecewise
function with 1 break point

Table C.3: A summary of kinematics results from the models

Model type Cm [cm] Tm [s] vreb [m/s] 

Model1:  Mixed  of linear and  nonlinear springs 

/ dampers 

Vehicle 65.93 0.0978 -2.26

Occupant 93.22 0.09473 -13.58

Model2:1 break point piecewise function Vehicle 72.48 0.1085 -1.15

Occupant 103.4 0.08617 -13.1

Model2: 2 break points piecewise functions Vehicle 72.65 0.093 -2.43

Occupant 103.2 0.0863 -12.68

two break point piecewise functions as shown in Figure C.5. The maximum dy-
namic crash of the vehicle model is 0.05% less than that in the real crash test. The 
displacement of the occupant is 0.09% larger than that from the crash test. Improve-
ment of the model accuracy is also observed from the time at maximum displace-
ment and the rebound velocities for both the vehicle and occupant. A summary 
of kinematics results from the models is tabulated in Table C.3 and the optimized 
estimated parameters are shown in Table C.4. The deformation force and loading 
characteristics of the vehicle front structure and restraint system are shown in Fig-
ure C.10. A maximum force of 1, 352, 000N is observed at the time of collision and
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Figure C.9: Comparison between vehicle model and vehicle experimental data - piecewise
function with 2 break points

Table C.4: Parameters estimation Model2- two break points piecewise function

Parameter Value Unit Parameter Value Unit 

k11 7.6665e+04 N/m k21 6.8536e+03 N/m 

k12 7.9498e+04 N/m k22 2.5529e+04 N/m 

k13 9.6887e+03 N/m k23 9.9998e+04 N/m 

k14 9.9998e+04 N/m k24 7.2212e+04 N/m 

x11 0.5533 m x21 3.3735e-05 m 

x12 0.6711 m x22 0.7498 m 

c11 8.4895e+04 Ns/m c21 4.8212e+03 Ns/m 

c12 2.8460e+03 Ns/m c22 1.3677e+03 Ns/m 

c13 3.3299e+03 Ns/m c23 3.2491e+03 Ns/m 

c14 1.4046e+04 Ns/m c24 2.2323e+03 Ns/m 

𝑥11 10.4951 m/s 𝑥21 7.8176 m/s 

𝑥12 14.6044 m/s 𝑥22 15.6884 m/s 

decreases up to −36, 680N . The restraint system reaches the maximum force of 
57, 590N at 0.054s. Spring and damper characteristics are shown in Figure C.11 
and Figure C.12 respectively.
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C.5 Conclusion and future work

In this paper, a mathematical-based method is presented to estimate the parameters 
of a double-spring-mass-damper model of a vehicle-occupant frontal crash. It is
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observed that the model results in responses are closer to the experimental crash
test. Therefore, the overall behavior of the model matches the real vehicle’s crush
well. Two of the main parameters characterizing the collision are the maximum
dynamic crush - which describes the highest car’s deformation and the time at which
it occurs- tm. They are pertinent to the occupant crashworthiness since they help to
assess the maximum intrusion into the passenger’s compartment.

The model with combined linear and nonlinear force elements showed results
with a significant error. It is noted that the stepwise nonlinear springs and dampers
model 2, gives better results than the model 1. Introducing more break points on the
piecewise functions increases the accuracy of the model. The force due to structure
deformation decreases, and the loading due to the restraint system increases and
become maximum at the time of crash. These forces are almost zero after rebound
phase.
The authors will extend the work by including other parts of the vehicle such as an
engine in the model. Further investigations of the proposed approach to vehicle-to-
vehicle crash scenario is also under study.

Acknowledgment

Thanks to The Dynamic Research Group members, at the University of Agder, for
their constructive comments and criticisms. The inspiration for this paper is a result
of regular meetings of the group.

REFERENCES

[1] W. Pawlus, J. E. Nielsen, H. R. Karimi, and K. G. Robbersmyr. Application of
viscoelastic hybrid models to vehicle crash simulation. International Journal

of Crashworthiness, 55:369 – 378, 2011.

[2] J. Marzbanrad and M. Pahlavani. Calculation of vehicle-lumped model param-
eters considering occupant deceleration in frontal crash. International Journal

of Crashwothiness, 16(4):439 – 455., 2011.

[3] S. M. Ofochebe, C. G. Ozoegwu, and S. O. Enibe. Performance evaluation of
vehicle front structure in crash energy management using lumped mass spring
system. Advanced Modeling and Simulation in Engineering, 2(2):1–18, April
01 2015.

15



REFERENCES

[4] L. Sousa, P.Verssimo, and J. Ambrsio. Development of generic multibody
road vehicle models for crashworthiness. Multibody Syst Dyn, 19:133 – 158,
2008.

[5] M. Carvalho, J. Ambrsio, and P. Eberhard. Identification of validated multi-
body vehicle models for crash analysis using a hybrid optimization procedure.
Struct Multidisc Optim, 44:85 – 97, 2011.

[6] A.A. Alnaqi and A.S. Yigit. Dynamic analysis and control of automotive oc-
cupant restraint systems. Jordan Journal of Mechanical and Industrial Engi-

neering, 5(1):39 – 46, 2011.

[7] A. Klausen, S. S. Tørdal, H. R. Karimi, K. G. Robbersmyr, M. Jecmenica,
and O. Melteig. Firefly optimization and mathematical modeling of a vehicle
crash test based on single-mass. Journal of Applied Mathematics, pages 1 –
10, 2014.

[8] S. S. Tørdall, A. Klausen, H. R. Karimi, K. G. Robbersmyr, M. Jecmenica,
and O. Melteig. An application of image processing in vehicle crash mo-
tion detection from high frame rate video. international Journal of Innovative

Computing, Informationand Control, 11(5):1667 – 1680, 2015.

[9] T.L. Teng, F.A. Chang, Y.S. Liu, and C.P. Peng. Analysis of dynamic response
of vehicle occupant in frontal crash using multibody dynamics method. Math-

ematical and Computer Modelling, 48:1724 – 1736, 2008.

[10] K. Mizuno, T. Itakura, S. Hirabayashi, E. Tanaka, and D. Ito. Optimization of
vehicle deceleration to reduce occupant injury risks in frontal impact. Traffic

Injury Prevention, 15:48 – 55, 2014.

[11] D. Ito, Y. Yokoi, and K. Mizuno. Crash pulse optimization for occupant pro-
tection at various impact velocities. Traffic Injury Prevention, 16:260 – 267,
2015.

[12] L. Zhao, H. R. Karimi W. Pawlus, and K. G. Robbersmyr. Data-based mod-
eling of vehicle crash using adaptive neural-fuzzy inference system. IEEE /

ASME Transactions on mechatronics, 19(2):684 – 696, April 2014.

[13] W. Pawlus, H. R. Karimi, and K. G. Robbersmyr. A fuzzy logic approach
to modeling a vehicle crash test. Central European Journal of Engineering,
pages 1 – 13, 2012.

16



Paper C: Mathematical Model for Vehicle-Occupant Frontal Crash using
Genetic Algorithm

[14] M. Pahlavani and J. Marzbanrad. Crashworthiness study of a full vehicle-
lumped model using parameters optimization. International Journal of Crash-

worthiness, 20(6):573 – 591, 2015.

[15] D. Pelusi. Genetic-neuro-fuzzy controllers for second order control systems.
In 2011 UKSim 5th European Symposium on Computer Modeling and Simu-

lation, pages 12 – 17, 2011.

[16] D. Pelusi. Optimization of a fuzzy logic controller using genetic algorithms. In
2011 Third International Conference on Intelligent Human-Machine Systems

and Cybernetics, pages 143 – 146, 2011.

[17] B. B. Munyazikwiye, K. G. Robbersmyr, and H. R. Karimi. A state-space
approach to mathematical modeling and parameters identification of vehicle
frontal crash. Systems Science and Control Engineering, 2:351 – 361, 2014.

[18] B. B. Munyazikwiye, H. R. Karimi, and K. G. Robbersmyr. Mathematical
modeling and parameters estimation of car crash using eigensystem realiza-
tion algorithm and curve-fitting approaches. Mathematical Problems in Engi-

neering, pages 1 – 13, 2013.

[19] W. Pawlus, K.G. Robbersmyr, and H. R. Karimi. Mathematical modeling
and parameters estimation of a car crash using data-based regressive model
approach. Applied Mathematical Modelling, 35:5091 – 5107, 2011.

[20] M. Huang. Vehicle Crash Mechanics. CRC PRESS, Boca Raton London New
York Washington, 2002.

[21] R. Kumar, G. Gopal, and R. Kumar. Novel crossover operator for genetic
algorithm for permutation problems. International Journal of Soft Computing

and Engineering (IJSCE), 3(2):252–258, May 2013.

17




