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A state-space approach to mathematical modeling and parameters identification of vehicle
frontal crash

Bernard B. Munyazikwiye, Kjell G. Robbersmyr and Hamid Reza Karimi∗

Department of Engineering, University of Agder, 4879 Grimstad, Norway

(Received 19 November 2013; final version received 9 January 2014 )

In this paper a state-space estimation procedure that relies on the time-domain analysis of input and output signals is used
for mathematical modeling of vehicle frontal crash. The model is a double-spring–mass–damper system, whereby the front
mass and real mass represent the chassis and the passenger compartment, respectively. It is observed that the dynamic crash
of the model is closer to the dynamic crash from experimental when the mass of the chassis is greater than the mass of the
passenger compartment. The dynamic crash depends on pole placement and the estimated parameters. It is noted that when
the poles of the model are closer to zero, the dynamic crash of the model is far from the dynamic crash from the experimental
data. The stiffness and damping coefficients play an important role in the dynamic crash.

Keywords: modeling; vehicle frontal crash; parameter identification; state-space representation

1. Introduction
The car crash test is usually performed in order to ensure
safe design standards in crashworthiness, the ability of
a vehicle to be plastically deformed and yet maintain a
sufficient survival space for its occupants during crash
scenario. Nowadays, due to advanced research in com-
puter simulation software, simulated crash tests can be
performed beforehand the full-scale crash test. Therefore,
cost associated with real crash test can be reduced.

Vehicle crashworthiness can be evaluated in four dis-
tinct modes: frontal, side, rear and rollover crashes.

System identification concerns the construction and val-
idation of mathematical models of dynamical systems from
experimental input/output data. In experiments the system
reveals information about itself in terms of input and out-
put measurements. System identification is routinely used
in industry as a tool for plant modeling.

There are available solutions for the identification of
mathematical models based on experimental test proce-
dures. One of the most convenient and accessible solution
is to use the system identification toolbox (Mathworks,
R2013b).

In addition to the general use, the system identifica-
tion toolbox is also commonly used for creating models of
vibrating mechanical systems (Skullestad & Hallingstad,
1998; Weber & Feltrin, 2010). The system identification
toolbox is largely based on the work of Ljung (1999) and
implements common techniques used in system identifica-
tion. There is substantial literature on system identification
(Ljung & Glad, 1994). The toolbox aids the user to fit both

∗Corresponding author. Email: hamid.r.karimi@uia.no

linear and nonlinear models to measured data sets known as
black box modeling (Marzbanrad & Pahlavani, 2011b). The
system identification problem is to determine the unknown
system characteristics such as mass, stiffness and damping
parameters using system responses. In the work of Khattab
(2010), an investigation of an adaptable crash energy man-
agement system to enhance vehicle crashworthiness was
carried out. The author performed a system identification
algorithm for vehicle lumped parameter model in crash
analysis using a genetic algorithm procedure, an effective
procedure for optimizing errors between experimental data
and calculated data obtained analytically. Also a systematic
investigation of vehicle frontal crash was conducted using
the lumped-parameter model by Pawlus, Nielsen, Karimi,
and Robbersmyr (2011). Pawlus, Robbersmyr, and Karimi
(2011) proposed a mathematical model to estimate the max-
imum occupant deceleration, which is one of the main tasks
in the area of crashworthiness study by a Kelvin model
which contains a mass together with a spring and damper
connected in parallel. An application of physical models
composed of springs, dampers and masses joined together
in various arrangements for simulating a real car collision
with a rigid pole was presented by Pawlus, Karimi, and
Robbersmyr (2011).

Marzbanrad and Pahlavani (2011a) presented an
overview of the kinematic and dynamic relationships of a
vehicle in a collision, whereby the work was to identify the
parameters of the vehicle crash model using experimental
data set. Munyazikwiye, Karimi, and Robbersmyr (2013)
estimated the physical parameters of a frontal car crash
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using the eigensystem realization algorithm and curve-
fitting approaches. Marzbanrad and Pahlavani (2011c)
investigated and analyzed a lumped-parameter modeling
in frontal crash in five degrees of freedom, and the response
of occupant during the impact was investigated.

The types of available models are low-order process
models, transfer functions, state-space models, linear mod-
els with static nonlinearities, nonlinear autoregressive mod-
els, etc. The identification tasks are divided into separate
parts. After creating an identification and validation data
set, the data are pre-processed. Identification is initialized by
selecting and setting up the proper model type. Finally, the
models can be validated using numerous techniques such
as comparing model response with measurement data, step
response and a pole-zero plot.

The aim of the identification process is to identify the
contents of matrices A, B and C given the input and output
data set. The Matlab system identification toolbox offers
two estimation methods for state-space models:

• Subspace identification
• Iterative prediction-error minimization method

The matrix A ∈ Rn×n is called the (dynamical) sys-
tem matrix. It describes the dynamics of the system (as
completely characterized by its eigenvalues). B ∈ Rn×m is
the input matrix which represents the linear transforma-
tion by which the deterministic inputs influence the next
state, C ∈ Rl×n is the output matrix which describes how the
internal state is transferred to the outside world in the mea-
surements yk . The term with the matrix D ∈ Rl×m is called
the direct feedthrough term. In continuous time systems this
term is most often 0.

In this paper, the state-space of the model under study
was obtained and the physical parameters (stiffness and
damping coefficients) were extracted from the dynamical

system matrix A. The model was finally validated by the
experimental data. The results from the model are much
closer to the real crash scenario. The results show that a
vehicle with the chassis heavier than the passenger com-
partment experiences less dynamic crash. Therefore, care
should be taken by car designer as far as the ratios (with
respect to the total mass of the car) of the chassis and
passenger compartment are concerned.

The novelty of the approach used in this paper is that
it is less computational as compared with the previous
approaches, like eigensystem realization and curve-fitting
techniques, in the literature and the simulation results are
much closer to the experimental results.

2. Vehicle crash experimental test
The real vehicle crash experiment was conducted on a typ-
ical mid-speed vehicle to pole collision. Its elaboration
was the initiative of Robbersmyr (2004). A test vehicle
was subjected to impact with a vertical and rigid cylin-
der. The acceleration field was 100 m long and had two
anchored parallel pipelines. The vehicle was steered using
those pipelines that were bolted to the concrete runaway.
The setup scheme is shown in Figure 1. During the test,
the acceleration was measured in three directions (x – lon-
gitudinal, y – lateral and z – vertical) together with the
yaw rate from the center of gravity of the car. Using nor-
mal speed and high-speed video cameras, the behavior of
the safety barrier and the test vehicle during the collision
was recorded. The initial velocity of the car was 35 km/h,
and the mass of the vehicle (together with the measuring
equipment and dummy) was 873 kg. The obstruction was
constructed with two steel components – a pipe filled with
concrete and a baseplate mounted with bolts on a foun-
dation. The car undergoing the deformation is shown in
Figure 2. The accelerometer is located at the mass center of

Figure 1. Vehicle crash experimental setup (Robbersmyr, 2004).
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Figure 2. Vehicle undergoing deformation (Robbersmyr, 2004).

gravity of the vehicle in the passenger compartment. Since
we are interested in the frontal crash, only the measured
acceleration in the longitudinal direction is considered in
this study. The acceleration data are imported and processed
in Matlab for analysis. The deformation of the vehicle is
obtained by integrating twice the acceleration signal.

3. Mathematical modeling
The experimental data were first imported in the Matlab
workspace and processed for being suitable for the identifi-
cation of the model. The measured acceleration was twice
integrated to obtain the measured displacement signal. The
processed data were further imported into a system identifi-
cation toolbox. A transfer function model and a state-space
canonica form were thereafter obtained.

Figure 3 shows the measured input–output signals and
simulated output. The transfer function from the experimen-
tal data is as follows:

Te(s) = −0.0139s + 0.5942
s4 + 97s3 + 3810s2 + 87170s + 35718

. (1)

Figure 3. Measured and estimated outputs.

The estimated state-space model of order 4 is as follows:

Ae =

⎡
⎢⎢⎣

−97 −3810 −87170 −35718
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Be =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Ce = [

0 0 −0.0139 0.5942
]

,

De = [
0
]

. (2)

Mathematical models describe the dynamic behavior of a
system as a function of time. During frontal crash, the vehi-
cle is subjected to an impulsive force caused by the obstacle.
The model for vehicle crash simulates a rigid barrier impact
of a vehicle where m1 and m2 represent the frame rail
(chassis) and passenger compartment masses, respectively.

Parameters to be estimated are springs k1 and k2,
dampers c1 and c2, as shown in Figure 4. When the vehicle
impacts on a rigid barrier, the two masses will experience
an impulsive force during collision. The method for solving
the impact responses of the two masses is adapted from the
method used in the free vibration analysis of a two degrees
of freedom damped system (Huang, 2002).

The dynamic equations of the double mass–spring–
damper model are shown in Equation (3).

m1ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − c2ẋ2 − k2x2 = u,

m2ẍ2 − c2ẋ1 + c2ẋ2 + k2x2 − k2x1 = 0 (3)

or

[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
k1 + k2 −k2
−k2 k2

] [
x1
x2

]

+
[

c1 + c2 −c2
−c2 c2

] [
ẋ1
ẋ2

]
=

[
u
0

]
. (4)

From Equation (4) a transfer function between u(t) and
x2(t) is derived and given in Equation (5).

Tmodel(s) = Num(s)
Den(s)

, (5)

with

Num(s) = c2s + k2,

Den(s) = m1m2s4 − (m1c2 + m2(c1 + c2))s3

+ (m1k2 + m2(k1 + k2) + c1c2)s2

+ (c1k2 + c2k1)s + k1k2.
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Figure 4. A double-spring–mass–damper model.

Table 1. Parameters estimation.

Estimated Parameters

Cases Solution no. k1(N/m) k2(N/m) c1(N s/m) c2(N s/m)

Case1:m1 = 1/3 mt 1 3498.37 640,808 22,989 9440
m2 = 2/3 mt 2 15,324.66 6293.37 5247 96,1212.45

Case2:m1 = 2/3 mt 1 7720.9 440,070 33,306.4 13,746.15
m2 = 1/3 mt 2 11,102.14 33,162.72 458,205 1,320,210

Case3:m1 = 1/4 mt 1 475.68 606,207.28 20,541.68 8419.68
m2 = 3/4 mt 2 15,406.26 6314.76 634.24 808,276.38

Case4:m1 = 3/4 mt 1 6734.92 337,670.38 36,588.11 15,115.54
m2 = 1/4 mt 2 9147 3778.88 26,939.66 1,350,681.54

The state-space canonical form representation from this
transfer function is

Am =

⎡
⎢⎢⎣

−a3 −a2 −a1 −a0
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

b3 b2 b1 b0
]

,

De = [
0
]

, (6)

with

a0 = − (k1k2)

m1m2
, a1 = − (c1k2 + c2k1)

m1m2
,

a2 = − (m1k2 + m2(k1 + k2) + c1c2)

m1m2
,

a3 = − (m1c2 + m2(c1 + c2))

m1m2
,

b0 = − k2

m1m2
, b1 = − c2

m1m2
, b2 = 0, b3 = 0.

The physical parameters are embedded in the state
matrix. Therefore by inspection, the identified parameters
are obtained by comparing the two state matrices Ae in
Equation (2) and Am in Equation (6), which are summarized

in the following:

m1c2 + m2c1 + m2c2 = m1m2 × 97,

m1k2 + m2k1 + m2k2 = m1m2 × 3810,

c1k2 + c2k1 = m1m2 × 87170,

k1k2 = m1m2 × 35718.

(7)

A summary of estimated parameters considering dif-
ferent cases is shown in Table 1. Only real values are
considered.

4. Simulation results
Four different cases were considered for simulation of vehi-
cle frontal crash. The solution of Equation (7) is not unique.
Four solutions for each parameter were found, two real
and two complex conjugate solutions. For the physical sys-
tem, only real values have meaning. Therefore the complex
solutions were neglected in the development of the model.
A summary of estimated real valued parameters is shown
in Table 1.

Case 1: (m1 < m2). One has that m1 = 1
3 mt and

m2 = 2
3 mt .

Solution of Equation (7) is as follows:

c1 = {22987, 524756, 2524649 ∓ 2884882i, 298807

∓ 2884882i},
k1 = {3498.37, 15324.66, 1992.02 ± 19232.54i, 16830.99

± 19232.54i},
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c2 = {9440.06, 961212.45, 67992.08 ∓ 747581.32i,

1094.86 ∓ 1203.81i},
k2 = {640808.30, 6293.37, 729.91 ± 8025.41i, 45328.05

± 498387.54i}.
Taking c1 = 22987 N s/m; k1 = 3498.37 N/m; c2 =

9770.06 N s/m; k2 = 640808.03 N/m; the state-space
canonical form is

Am =

⎡
⎢⎢⎣

−1281 −4597 −669 −13238
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 0.0557 3.784
]

,

Dm = [
0
]

and

Poles = {−63.7936 ± 22.7051i, −0.0329 ± 1.6987i};
Zeros = {−67.8822}.

From Figure 5, the dynamic crash of m2 is 66.55 cm
which is the displacement of the passenger compartment.
Therefore this model cannot represent the vehicle crash sce-
nario. It is observed that the time for dynamic crash is longer
than that for the real crash (i.e. 0.14 s instead of 0.078 s).
The dynamic crash of the chassis represented by m1 is more

or less equal to that of the passenger compartment – a dif-
ference of 0.43 cm is observed and the time of crash is
larger compared with that from the real crash and that from
the passenger compartment (i.e. 0.17 s). The model where
the chassis is a third of the car cannot represent the crash
scenario.

Taking c1 = 5247.56 N s/m; k1 = 15324.66 N/m; c2 =
961212.45 N s/m; k2 = 6293.37 N/m

Am =

⎡
⎢⎢⎣

−49652 −2989196 −873128 −5686
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 55.66 0.371
]

,

Dm = [
0
]

and

Poles = {−4966.7, −3 ± 2.9i, −0};
Zeros = {−0.0065}.

From Figure 6 the value of dynamic crash of the pas-
senger compartment as represented by mass m2 is very high
and cannot be observed from the response graph, i.e. tends
to ∞, resulting in a critically stable system because of a pole
at zero. Therefore, this model cannot represent the vehicle
crash scenario because the deformation of the car cannot
tend to ∞. The time of crash is not observed because the
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Figure 5. Comparative analysis between vehicle crash test and model results for m1 = 1
3 mt .
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Figure 6. Comparative analysis between vehicle crash test and model results for m2 = 1
3 mt .

velocity never crosses zero as an indication of maximum
time of crash. Therefore, the physical parameters obtained
for this model are not of much interest.

Case 2: (m1 > m2). One has that m1 = 2
3 mt and

m2 = 1
3 mt .

Solution of Equation (7) is as follows:

c1 = {33306.41, 23162.72, 44523.48 ± 31912.62i,

11945.65 ∓ 31991.26i},
k1 = {7720.91, 11102.14, 3981.88 ∓ 106337.54i,

14841.16 ± 106337.54i},
c2 = {13746.16, 1320210.06, 437015.59 ± 1204203.36i,

483269 ∓ 13316.56i},
k2 = {440070.02, 4582.05, 1610.89 ∓ 4438.85i,

145671.86 ± 401401.12i}.
Taking c1 = 33306.4 N s/m; k1 = 7720.9 N/m; c2 =

13746.16 N s/m; k2 = 440070.02 N/m; the state-space
canonical form is

Am =

⎡
⎢⎢⎣

−1279 −298196 −873128 −20063
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 0.081 2.598
]

,

Dm = [
0
]

and

Poles = {−63.8 ± 29.3i, −0.16 ± 2i};
Zeros = {−32}.

From Figure 7, the dynamic crash of the passenger
compartment is 52.92 cm and the time for dynamic crash
decreases as compared with the previous case, that is,
from 0.14 to 0.11 s. The dynamic crash of the chassis is
51.05 cm and occurs after 0.16 s. Therefore for this case,
the model can represent the vehicle crash scenario because
the dynamic crash is much closer to that obtained from the
experimental data.

Taking c1 = 33162.72 N s/m; k1 = 11102.14 N/m;
c2 = 1320210 N s/m; k2 = 458205 N/m

Am =

⎡
⎢⎢⎣

−6861 −26081 −8731228 −88745
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 7.79 2.71
]

, Dm = [
0
]

and

Poles = {−63.8 ± 29.3i, −0.16 ± 2i};
Zeros = {−32}.
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Figure 7. Comparative analysis between vehicle crash test and model results for m1 = 1
4 mt .
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4 mt .

From Figure 8, the dynamic crash of the passenger
compartment is 50.16 cm and the time for dynamic crash
increases as compared with the previous case, that is,
from 0.14 to 0.16 s. The dynamic crash of the chassis is
49.82 cm and occurs after 0.16 s. Therefore for this case,
the model can represent the vehicle crash scenario because
the dynamic crash is much closer to that obtained from the
experimental data.

Case 3: (m1 < m2). One has that m1 = 1
4 mt and

m2 = 3
4 mt .

Solution of Equation (7) is as follows:

c1 = {20541.68, 634.24, 20494.51 ∓ 6561.71i, 681.41

∓ 26561.71i},
k1 = {475.68, 15406.26, 511.06 ± 19921.28i, 15370.88

± 19921.28i},
c2 = {8419.68, 808276.38, 7329.54 ∓ 613913.15i, 132.33

∓ 11083.75i},
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k2 = {606207.29, 6314.76, 99.25 ± 8312.81i, 5497.15

± 460434.86i}.

Taking c1 = 20541.68 N s/m; k1 = 47.68 N/m; c2 =
8419.68 N s/m; k2 = 606207.29 N/m; the state-space
canonical form is

Am =

⎡
⎢⎢⎣

−145.5 −4916 −96.4 −2018.2
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 0.059 4.24
]

, Dm = [
0
]

and

Poles = {−92.31, −53.23, −0.0037 ± 0.6408i};
Zeros = {−71.99}.

From Figure 9, the dynamic crash of m2 is 73.07 cm
which is the displacement of the passenger compartment.
Therefore, this model cannot represent the vehicle crash
scenario. It is observed that the time for dynamic crash is
longer than that for the real crash (i.e. 0.17 s instead of
0.078 s). The dynamic crash of the chassis represented by m1
is more or less equal to that of the passenger compartment
– a difference of 0.62 cm is observed and the time of crash
is same as that of passenger compartment and larger as
compared with that from the real crash (i.e. 0.17 s). The

model where the mass of the chassis is a quarter of that of
the car cannot represent the crash scenario.

Taking c1 = 634.24 N s/m; k1 = 15406.26 N/m; c2 =
808276.38 N s/m; k2 = 6314.76 N/m; the state-space
canonical form is

Am =

⎡
⎢⎢⎣

−4940.5 −7515.7 −87193.8 −68082.6
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 5.66 4.42
]

, Dm = [
0
]

and

Poles = {−4939.3, −0.4 ± 4.1i, −0.8};
Zeros = {−0.7813}.

The dynamic crash and time of crash represented in
Figure 10 are similar to those in Figure 7. The value of
dynamic crash of the passenger compartment as represented
by mass m2 is very high and cannot be observed from
the response graph, i.e. tends to ∞. Therefore, this model
cannot represent the vehicle crash scenario.

Case 4: (m1 > m2). One has that m1 = 3
4 mt and

m2 = 1
4 mt .

Solution of Equation (7) is as follows:

c1 = {36588.11, 26939.66, 49693.65 ± 311586.52i,

138334.12 ± 31586.52i},
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Figure 9. Comparative analysis between vehicle crash test and model results for m2 = 1
4 mt .
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Figure 10. Comparative analysis between the vehicle crash test and model results for m2 = 1
4 mt .

k1 = {6734.92, 9147.03, 3458.53 ∓ 7896.63i, 12423.41

∓ 7896.63i},
c2 = {15115.55, 1350681.54, 558910.44 ± 1310635.28i,

5620.72 ∓ 13180.49i},
k2 = {337670.38, 3778.88, 1405.18 ∓ 3295.12i,

139727.61 ∓ 327658.82i}.
Taking c1 = 36588.11 N s/m; k1 = 6734.92 N/m; c2 =
15115.55 N s/m; k2 = 337670.38 N/m; the state-space
canonical form is

Am =

⎡
⎢⎢⎣

−148.2 −5943.3 −2436.7 −15913.2
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 0.11 2.36
]

, Dm = [
0
]

and

Poles = {−73.94 ± 20.55, −0.173 ± 1.6347i};
Zeros = {−22.34}.

From Figure 11, the dynamic crash of the passenger
compartment is 50.48 cm and the time for dynamic crash
decreases as compared with the previous case, that is,
from 0.14 to 0.11 s. The dynamic crash of the chassis is
48.14 cm and occurs after 0.16 s. Therefore for this case,

the model can represent the vehicle crash scenario because
the dynamic crash is much closer to that obtained from the
experimental data.

Taking c1 = 26939.66 N s/m; k1 = 9147.03 N/m; c2 =
1350681.54 N s/m; k2 = 3778.88 N/m; the state-space
canonical form is

Am =

⎡
⎢⎢⎣

−8292.5 −184674.6 −8817.3 −24.19
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

Bm =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , Cm = [

0 0 9.45 0.026
]

, Dm = [
0
]

and

Poles = {−8261.9, −30.8, −0, −0};
Zeros = {−0.0028}.

From Figure 12 the dynamic crash of the passenger com-
partment m2 is 60.24 cm and the time for dynamic crash
is 0.24 s. The dynamic crash and time of crash of chas-
sis are same as those of the passenger compartment. This
case cannot represent the vehicle crash scenario because
the dynamic crash is much diverging from the real vehicle
crash.

A summary of main results is shown in Table 2. The
parameter values depend on the value of mass m2 taken
into consideration.

The stiffness coefficients which result in a closer vehi-
cle crash reconstruction are found to be k1 = 74681 N/m,
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Figure 11. Comparative analysis between the vehicle crash test and model results for m2 = 1
4 mt .

Figure 12. Comparative analysis between vehicle crash test and model results for m2 = 1
4 mt .

Table 2. Dynamic crash and time of crash comparison.

CmExp (cm) Tm − Exp (s) Solution no.1 Masses Cm (cm) Tm (s) Solution no.2 Masses Cm (cm) Tm (s)

50.63 0.075 Case1:m1 = 1/3 mt m2 66.55 0.14 Case1:m1 = 1/3 mt m2 ∞ –
m2 = 2/3 mt m1 66.13 0.19 m2 = 2/3 mt m1 ∞ –

Case2:m1 = 2/3 mt m2 52.92 0.11 Case2:m1 = 2/3 mt m2 50.16 0.16
m2 = 1/3 mt m1 51.05 0.16 m2 = 1/3 mt m1 49.82 0.15

Case3:m1 = 1/4 mt m2 73.07 0.17 Case3:m1 = 1/4 mt m2 ∞ –
m2 = 3/4 mt m1 72.45 0.17 m2 = 3/4 mt m1 ∞ –

Case4:m1 = 3/4 mt m2 50.48 0.11 Case4:m1 = 3/4 mt m2 60.24 0.24
m2 = 1/4 mt m1 48.14 0.16 m2 = 1/4 mt m1 60.24 0.24
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k2 = 45821 N/m and the damping coefficients are: c1 =
18176 N s/m, c2 = 11196 N s/m in case 4, where the
dynamic crash of the passenger compartment is equal
to 49.8 cm and occurs after 0.11s (see Figures 8, 9
and 12).

When the mass of the chassis is greater than that of
the passenger compartment, the results from the model are
closer to the expected values. For example,

• When m1 = 3
4 mt and m2 = 1

4 mt , the identified param-
eters are: k1 = 6734.92 N/m, k2 = 337670.38 N/m,
c1 = 36588.11 N s/m and c2 = 15115.54 N s/m.
The dynamic crash of the chassis is 48.14 and the
dynamic crash of the passenger compartment is
50.48 cm which is closer to 50.68 cm (the dynamic
crash from the real vehicle crash).

• When m1 = 2
3 mt and m2 = 1

3 mt , the identified param-
eters are: k1 = 11102.14 N/m, k2 = 33162.72 N/m,
c1 = 4558205 N s/m and c2 = 1320410 N s/m. The
dynamic crash of the chassis is 49.82 and the dynamic
crash of the passenger compartment is 50.16 cm
which is closer to 50.68 cm (the dynamic crash from
the real vehicle crash).

Remark 1 It is noted that optimal values for stiffness and
damping coefficients are not fixed as shown in Table 1. They
are dependent on the mass of the passenger compartment
taken into consideration.

Remark 2 The effectiveness of the obtained results show-
ing the effect of mass of the chassis and passenger com-
partment can be clearly seen from Figures 5–12 and
Table 2.

5. Conclusion
It is observed that the dynamic crash of the model is closer
to the dynamic crash from experimental when the mass of
the chassis is greater than the mass of the passenger com-
partment. Figures 8, 9 and 12 are the estimated models that
reconstruct the vehicle crash with small errors in terms of
dynamic crash. But the time of crash in the three cases is
still larger than the time of crash from the experimental
data. It is noticed that when the poles of the model are
closer to zero, the dynamic crash of the model is far from
the dynamic crash from experimental data. The stiffness and
damping coefficients play an important role in the dynamic

crash. The smaller the stiffness and damping coefficients,
the higher the dynamic crash.
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