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ABSTRACT 

Rolling element bearings (REBs) are key components in most rotating machinery. Large, slow-

rotating REBs found in heavy industrial applications like offshore drilling equipment, steel- and 

paper mills and wind turbines are the topic of this paper. In such applications, bearings are normally 

non-redundant components, meaning bearing failure will cause system downtime. Execution of 

unplanned, on-site maintenance may be costly, time-consuming and difficult or even impossible. 

Implementation of condition-based maintenance strategies is a means to reduce total lifecycle costs 

by improving utilization of component lifetime while maintaining system availability. Condition 

monitoring systems capable of early, reliable detection and diagnosis of incipient faults is necessary 

for the planning of maintenance actions in due time. In this paper, novel and established condition 

monitoring methods are surveyed for this purpose. Prominent challenges are speed variations, non-

stationary behavior, and low signal-to-noise ratio. Advanced signal processing methods, including 

order tracking and resampling from time to angular domain, higher order statistics, and cyclic 

spectral analysis are presented. Methods for data acquisition and maintenance decision making are 

also discussed. A discussion of the surveyed methods and suggestions for future research concludes 

the paper. 
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1. INTRODUCTION 

Roller Element Bearing (REB)s are essential mechanical components, used in virtually all types of rotating 

machinery. The range of types, variants and sizes match the diversity of applications. This paper aims to 

provide insight into condition monitoring (CM) methods suitable for large, slow-rotating bearings, typically 

found in paper and steel mills, offshore drilling equipment, wind turbines and similar heavy industries. It is 

difficult to define strict limits with regards to size and speed. However, other similarities can be defined. 

Replacement and maintenance is expensive, time-consuming, and in many cases not possible on site. 

Combined with operational non-redundancy, this motivates CM for increased control of machine health. 

The ability to utilize more of the component lifetime while reducing the risk of unexpected failure 

potentially reduces lifecycle costs.   

A survey presented at the Noble Analyst Day 2012 mapped causes of downtime on drilling rigs in the 

period 2011-December 2012 [1]. Looking at downtime by equipment on all rig types, top drive failure is the 

second largest contributor, with a total of 13 %.  Further analysis shows that bearing failure is the main 

overall cause of downtime in top drives, despite variations between manufacturers and types. In top drives, 

a large tapered roller thrust bearing supports the weight of the drill string. With an outer diameter of up to 

750mm and a rotational speed of 240 rpm (4 Hz), top drive main bearings qualify as both large and slow-

rotating. The statistics show a potential for improved CM of large, slow-rotating bearings in the offshore 

industry. 
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2. CONDITION BASED MAINTENANCE STRATEGIES 

Most systems require maintenance to a certain extent. The approach to maintenance is influenced by factors 

such as consequences of failure, maintenance cost, and failure rates. Development in technology has 

enabled more advanced maintenance strategies beyond corrective and preventive maintenance strategies. 

Lee et.al [2] reviewed the field of Prognostics and Health Management (PHM) for rotating machinery, 

presenting a generalized methodology for selection and implementation of a maintenance strategy. A 

maintenance transformation map is proposed as a guideline for maintenance strategy selection based on 

system complexity and uncertainty. Typically, condition monitoring of bearings falls in the Condition-

Based Maintenance (CBM) category. However, as bearings get larger, maintenance is more complicated. 

External factors like long spare part lead times, complicated maintenance procedures and limited 

maintenance opportunities add complexity, justifying strategies like PHM. Common for both CBM and 

PHM is the need for reliable health assessments for the equipment. Jardine et.al [3] reviews generalized 

diagnostics and prognostics methods for successful implementation of Condition Based Maintenance 

(CBM), identifying data acquisition, data processing and maintenance decision-making as the three main 

steps. The influence of bearing size and speed on these steps is discussed in the next section.    

3. CHALLENGES OF LARGE, SLOW BEARINGS 

Large and slow-rotating bearings pose challenges for conventional condition monitoring methods. 

Compared to smaller bearings operating at higher speeds, prominent challenges include low vibration 

energy, sensitivity to speed fluctuations and a need for accurate localization in the frequency domain to 

isolate fault frequencies.  

It is commonly accepted that discrete faults in bearings cause impulse-like impacts when the fault interacts 

with another rolling surface. This impact triggers a transient response at resonance frequencies in the 

bearing, surrounding structure and transducer. As acceleration is the second derivative of displacement, a 

reduction in rotational speed leads to significant reduction in acceleration levels. For slow-rotating 

bearings, fundamental fault frequencies will also be relatively close in the frequency domain, increasing the 

risk of interference. Bechhoefer recommends a minimum of 10, preferably 30, frequency bins between fault 

frequencies [4]. Frequency resolution is the inverse of acquisition time, which makes the measurement 

more prone to capture speed fluctuations, leading to smearing of the frequency spectrum. Larger size also 

means increased distance between fault and transducer. All these factors contribute to a lower signal to 

noise ratio (SNR).  

4. MODELLING BEARING FAULTS 

The periodic nature of impacts can be modeled mathematically. Time between impacts is governed by a 

combination of shaft speed, bearing geometry and localization of the fault. For REBs, faults can be 

associated with the characteristic fault frequencies of the bearing components, Ball Pass Frequency Inner 

race (BPFI), Ball Pass Frequency Outer race (BPFO), Cage Pass Frequency (CPF) and Ball Spin Frequency 

(BSF) [5]. Normalizing by shaft frequency transforms frequencies to shaft order domain for easier 

comparison across operating speeds. 

Characteristic fault frequencies assume ideal operating condition, including perfect rolling motion between 

rolling elements and races. In reality, rolling elements experience some random slip, causing variation in 

the time between impacts. Additionally, the impact response amplitude can be periodically modulated with 

smaller random variations. Antoni includes this randomness in a more realistic model for a bearing 

vibration signal, given in equation (1) [6]. The vibration signal is x(t), where h(t) is the response to a single 

impact, q(t) = q(t + P) is periodic modulation caused by load distribution of period P, and T represents the 

time between the arrival of two consecutive impacts. The random jitter in arrival time and amplitude is 

handled by τi and Ai respectively.  
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This randomness in arrival times causes smearing in the frequency spectrum, but allows separation of the 

bearing signal from deterministic frequency components from gears and shafts [5].  

4.1. Cyclostationarity 

Processes that shows cyclic behavior is said to exhibit cyclostationarity [6]. Cyclostationary theory provides 

a generalized framework for describing a wide range of stationary and non-stationary processes [7]. In the 

context of cyclostationarity, a periodic component at a frequency α is referred to as the cyclic frequency. 

The period of α is termed cycle. These terms are used to avoid confusion with spectral frequency f and its 

period T. Figure 1 shows a time signal, highlighting the difference by indicating the cycle of α and period of 

f. 

 

Figure 1. The difference between cyclic frequency and spectral frequency [7]. 

A signal can exhibit cyclostationarity at different orders. As an example, a periodic signal masked with 

additive white noise will have a periodic mean value and thus exhibit first-order cyclostationarity. Consider 

a signal of amplitude-modulated white noise only. As the mean value is constant, no periodic first-order 

components exist. Squaring the signal, a second-order transformation, reveals periodic components and 

consequently second-order cyclostationarity in the signal. A second order transformation is normally 

enough to reveal bearing diagnostics information. Interested readers can consult the works of Randall [5], 

[8], [9] and Antoni [6], [7], [10] in particular for further information on the topic and its applications. 

Cyclic spectral analysis, based on cyclostationary theory, is introduced in section 5.5.  

5. CONDITION MONITORING METHODS 

This section is divided in three, discussing methods for data acquisition, data processing and maintenance 

decision-making; identified by Jardine et.al [11] as the three main steps in CBM. Here, signal enhancement 

is included as  data processing.   

5.1. Data Acquisition 

Choosing a measurement technique capable of observing the symptoms of failure is critical. Tandon and 

Choudhury [12] identifies four main categories for bearing fault detection methods; vibration 

measurements, acoustic measurements, lubrication analysis and temperature measurements. 

5.1.1. Vibration Measurements 

Vibration monitoring using accelerometers is widely used in the industry, and has been researched actively 

since the 1980s [12]. Traditional vibration analysis faces some challenges when applied to large, slow 

bearings, as discussed in section 451. Displacement measurements can also be used for monitoring 

vibration. Measuring displacement directly instead of acceleration makes it suitable for slow applications 

with low acceleration levels. Shakya et.al [13] investigated the use of proximity probe as a standalone 
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method for bearing fault detection and in combination with an accelerometer, and showed improved 

detectability for inner race defects. 

5.1.2. Acoustic Measurements  

Acoustic measurements refer to vibrations from 20 kHz and upwards, including both ultrasonic and 

Acoustic Emission (AE) measurements. An increase in AE activity could be an early indication of oil 

degradation. AE activity in bearings can be related to metal-to-metal contact, indicating a broken oil film. 

Yoshioka and Fujiwara [14], [15] showed in early research that AE could detect faults before vibration 

methods. Further research successfully used AE for detection of subsurface cracks [16], which Tan [17] 

concluded could be useful for detection of pitting. Chacon et. al [18] presented a method for incipient fault 

detection in REBs using AE measurements for envelope analysis. Jamaludin and Mba review monitoring of 

extremely slow REBs [19], [20], using AE measurements to detect faults at very low speeds. 

5.1.3. Lubrication Analysis  

Many bearing failure modes can be related to insufficient lubrication; fatigue, wear, corrosion, deformation, 

and fracture. Examples of condition indicators from lubrication analysis are accumulated particle mass, 

water content, viscosity, conductivity and debris analysis. Dempsey [21] compared oil debris analysis and 

vibration based CIs for detection of pitting. All CIs increased when pitting occurred. However the article 

highlighted the need for improved threshold setting and combination of CIs for improved reliability. 

Bechhoefer et.al [22] compared lubricant, vibration and temperature data from wind turbine bearings. 

Lubrication analysis indicated a fault in one damaged bearing but also gave one false alarm. In combination 

with vibration analysis better accuracy was achieved. 

5.1.4. Temperature Measurements 

The use of temperature as a CI alone is not likely sufficient, especially in offshore equipment where 

ambient temperature will vary. Load variations will also affect bearing temperature, and lower rotational 

speed will generate less heat than in high-speed bearings. This combination makes temperature 

measurements less suitable for condition monitoring. In a comparative study of vibration, lubricant analysis 

and temperature for condition monitoring [22], temperature failed to indicate failure on a large, slow-

rotating wind turbine bearing. 

5.2. Signal Enhancement 

In cases where information carried in the signal is severely masked, pre-processing techniques can be 

applied to separate, enhance or in other ways improve the signal of interest. The methods do not provide 

any diagnostics information on their own, but facilitate the use of other CM methods.  

5.2.1. Correcting for Speed Variation 

Variations in shaft rate during sampling will distribute frequency content across more bins in the spectra. 

As discussed, characteristic fault frequencies are close for large, slow-rotating bearings, which makes low-

speed applications sensitive to variations in shaft speed. Order tracking corrects for shaft speed variations 

by using shaft angle as a reference instead of time. In addition to the original measurement, shaft angle is 

recorded simultaneously. Measured data is then resampled to angular domain, which effectively 

manipulates the sampling frequency. Bechhoefer et. al [4] recorded speed variations in the range of 2% on a 

wind turbine, which caused smearing of frequency content. Order tracking effectively removed these 

variations, resulting in a sharper spectrum. Resampling vibration data using improved the detection and 

diagnosis [23]–[25]. 

5.2.2. Isolating the Bearing Signal 

Shafts and gears can interfere heavily with the bearing signature, particularly in slow-rotating applications 

where the SNR of fault signatures is low. Linear prediction, adaptive and self-adaptive noise cancellation, 

Discrete/random separation and Time Synchronous Averaging (TSA) for use in bearing diagnostics are 
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presented by Randall and Antoni in [5]. Borghesani et.al [26] demonstrated a cepstrum based pre-whitening 

method for extraction of the bearing signature. Common for all methods is that the bearing signature can be 

isolated from discrete frequency components by exploiting the randomness of bearing vibration as opposed 

to deterministic gear and shaft signatures. 

5.3. Established CM Methods 

In the context of bearing condition monitoring, analysis of time waveform data from vibration, acoustic and 

ultrasonic is the established industry standard, with notable work by Tandon, Nakra and Choudhury [12], 

[27], Kim et.al [28], Ho [29] and Randall [8], [30]. Fourier Analysis is fundamental CM, particularly using 

the Discrete Fourier Transform (DFT). However, diagnostics information often lies in the periodic 

modulation of a given carrier frequency. Thus, Fourier analysis of the raw signal alone might not be able to 

detect or diagnose faults. Envelope analysis is perhaps the best example, widely regarded as a benchmark 

for bearing fault detection [5]. Here, Fourier analysis is preceded by bandpass filtering around an assumed 

carrier frequency before the signal envelope is calculated. A challenge is to choose the correct bandpass 

filter. In digital signal processing, envelope extraction of a signal is often done by taking the absolute value 

of its Hilbert transform [5]. Then, Fourier analysis is performed on the envelope to reveal frequency 

component corresponding to the fault frequencies from section 4. Envelope analysis and applications have 

been thoroughly examined in [8], [12], [27], [29]–[31]. 

 

Other methods can be applied directly in time domain, such as Root-Mean-Square (RMS) and Crest Factor 

(CF). Kim et. Al [28] compared vibration and ultrasonic measurements for bearing fault detection across a 

range of low speeds. RMS was shown to decrease almost linearly with shaft speed. However, healthy 

bearings have shown big variance in RMS values, indicating RMS change is a better CI than predefined 

threshold values. CF, the ratio of peak amplitude to RMS value, will increase immediately when a fault first 

appears. Williams et.al [32] recorded the CF in bearing run-to-failure experiments, and reported an increase 

followed by a decrease as the fault developed. This indicates fault detection capabilities, but limitations as a 

trendable parameter for diagnostics purposes. 

5.4. Advanced CM Methods 

Traditional CM methods are often insufficient for reliable fault detection in large, slow-rotating bearings. 

This section presents a selection of advanced and novel CM methods available to overcome the challenges. 

5.4.1. Higher Statistical Moments  

For nominal bearings, the acceleration Probability Density Function (PDF) can be assumed to have a 

Gaussian distribution. Thus, any changes in the shape of the PDF can indicate failure [12]. Statistical 

moments of first and second order, mean (µ) and standard deviation (σ) respectively, are well known. For 

CM purposes, moments of a higher order k, calculated as in equation (2). Mainly skewness (k=3) and 

kurtosis (k=4), are used as CIs.  
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Skewness describes the asymmetry of a distribution, i.e. the relative energy above and below the mean. 

Nguyen et.al [33] identified skewness as one of three optimal features for reliable fault detection in low-

speed bearings, but skewness is not consistently reported as a reliable CI. Kurtosis is as a measure of 

tailedness, i.e. the presence of tail extremities in a dataset [34]. A Gaussian distribution always has a 

kurtosis of 3. High amplitude accelerations from impacts yield a heavy-tailed distribution and high kurtosis. 

This makes kurtosis suitable as a standalone CI, requiring no prior knowledge to quantify the condition.  

5.4.2. Spectral Kurtosis and the Kurtogram  

Spectral Kurtosis (SK) identifies non-Gaussian components in signals along with their location in the 

frequency spectrum. The method was proposed in 1983 by Dwyer [35]. Wang, Y et. al [36] and Wang, P. 

et. Al [37] published a review on the use of SK for fault detection, diagnostics, and prognostics for 

bearings. SK has also been shown to aid optimal selection of frequency band for envelope analysis [38]. 
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The kurtogram was proposed by Antoni in [39], mapping SK as a function of center frequency and filter 

bandwidth. Wang, P. et. al [37] similarly utilized SK for frequency band selection, but proposed an 

enhanced kurtogram based on kurtosis of the power spectrum.  

5.4.3. Wavelets  

A wavelet is a waveform with a limited duration that integrates to zero and can be scaled and shifted in 

time. The Wavelet Transform (WT) provides a time-scale representation of the signal, where scale is 

qualitatively comparable to frequency. An important advantage is the good time resolution at high 

frequencies and high frequency resolution at low frequencies. Klepka presented a wavelet-based 

demodulation technique [40], which combined the use of the continuous and discrete-time WT for filtering, 

envelope estimation and fault detection on synthetic bearing data. Gelman et. al [41] proposed an improved 

method, using SK for optimal selection of frequency band while maintaining the advantages of wavelet 

demodulation compared to Fourier analysis.  

5.4.4. Empirical Mode Decomposition  

Empirical Mode Decomposition (EMD), also known as the Hilbert-Huang Transform, obtains instantaneous 

frequency information of an oscillatory signal by separating it into several Intrinsic Mode Functions (IMFs) 

which can be amplitude- and frequency-modulated non-linearly. EMD is the data-driven and adaptive, as 

IMFs are based on the sampled signal only. Lei et.al [42] reviews the application of EMD to fault diagnosis 

of rotating machinery. Žvokelj et. al [43] demonstrated fault detection on large, slow rotating bearings using 

EMD and Principal Component Analysis (PCA). 

5.4.5. Cepstrum Analysis  

The (real) cepstrum, defined in equation (3), identifies repeating “echoes” of a signal, which can be used for 

detection of periodic signatures. Bechhoefer et.al [4] tested cepstrum analysis for fault detection on wind 

turbine main bearings, and observed indications of an outer race fault. Cepstrum RMS and kurtosis were 

tested as possible CIs, but were not able to give actionable results alone. Further study was recommended. 

   xFTIFTcepstrum ln  (3) 

5.5. Cyclic Spectral Analysis 

Cyclic spectral analysis relies on the concept of cyclostationarity from section 4.1. Here, two approaches 

for detecting cyclostationarity in signals will be introduced. The first extracts periodic components of the 

instantaneous power, while the second is based on the autocorrelation function. An operator P{•} is 

presented in [7]. The operator is implemented as an estimator, shown in equation (4), where n is the sample 

number and Ts is the sample period. The estimator extracts Fourier coefficients at cyclic frequencies α in set 

A, from a given discrete data sequence {•}.  
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5.5.1. Power Decomposition and Instantaneous Autocorrelation 

Cyclostationary behavior can be detected by decomposition of signal power to periodic components. 

Consider a signal x[n] with power Px. Estimation of mean instantaneous power Px[n] is done by applying 

 ̂  to the signal power |x[n]|2. A Fourier series expansion of Px[n] then gives the cyclic powers Px
α. The 

quantities mean instantaneous power spectrum and cyclic modulation spectrum are obtained by a time 

frequency decomposition and Fourier series expansion respectively, further elaborated in [7]. 

The presence of periodicity in a signal creates a correlation of spectral components at the cyclic frequency. 

Antoni describes in [6], [7] how the instantaneous autocorrelation function can be utilized to detect 

cyclostationary behavior. Given a signal x(t), the instantaneous autocorrelation Rx(t,τ) is defined as applying 

P{•} to the symmetric autocorrelation function, shown in equation (5). 

       22,   txtxtRx  (5) 
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The Fourier series expansion of the instantaneous autocorrelation function expressed is called the cyclic 

autocorrelation function Rx
α(τ). Applying a Fourier transform to Rx

α(τ) yields the spectral correlation density 

SCx
α(f), a frequency-frequency representation of x(t). Note that cyclic frequency α is the frequency 

counterpart of time, and spectral frequency f is the dual of shift τ. The spectral correlation (SC) is non-zero 

if a frequency component f is periodic with cyclic frequency α. These connections and the relationship to 

the Wigner-Ville spectrum, classical autocorrelation function, and the PSD are examined in [7]. 

5.6. Maintenance Decision-making 

A condition monitoring system should be able to make or aid in maintenance decisions. However, a single 

CIs may be insufficient to provide reliable decisions. Fusion of data of different types, both on sensor and 

feature level can be utilized for improved diagnostics and prognostics of bearings [2]. Dempsey and Loutas 

[21], [44] investigates a combination of on-line oil analysis, AE and vibration as a way of improving CI 

performance. Bechhoefer et. al [45] presents a method for optimal threshold setting, by fusing several CIs in 

a Health Index (HI), which quantifies bearing damage without the need for user interpretation. The HI is 

constructed from the norm of n Gaussian CIs, and can be shown to form a Nakagami-distributed PDF. This 

method allows for setting a desired Probability of False Alarm (PFA) and normalizing the HI to be 1 when 

this probability is reached. The method is successfully demonstrated on data from three large, slow wind 

turbine bearings [4], where the faulty bearing was shown to have a HI well above one.  

6. CONCLUSION 

This paper presents an overview of relevant CM methods for large, slow-rotating bearings. The combined 

requirement of cost reduction and uptime facilitates the emergence of more advanced condition monitoring 

systems. Main challenges of condition monitoring of large, slow-rotating bearings can be summarized by a 

low energy impacts, large distance from fault to transducer, comprehensive background noise and speed 

variations, resulting in  a low SNR. Detection capabilities of traditional CM methods, especially envelope 

analysis, can be improved by longer acquisition times, order tracking and separation of random and discrete 

components. SK aided bandpass filtering before envelope extraction further improves performance. Other 

data acquisition methods can also be used. AE signals carries similar diagnostics information as vibration, 

but in a frequency band less subjected to noise. 

Another development in bearing condition monitoring is the transition from a stationarity assumption 

implicated by the Fourier transform to a more realistic, non-stationary or cyclostationary approach. Time-

frequency and cyclostationary analysis tools takes this into account. In cases where cyclic behavior is 

heavily masked in non-stationary signals, CS analysis appears to be a powerful tool. 

It seems unlikely to find a single CI, data acquisition or signal processing method that solves all challenges 

for CM of large, slow-rotating REBs. Hence, combining CM data from different sources seems more 

reasonable. The concept of a PFA-controlled HI is attractive from an operator point of view, and can 

preferably be utilized in systems for automated fault detection and diagnostics. Finding good CIs and 

methods for fusing them should be a priority in future work. 

 

ACKNOWLEDGEMENT 

The research presented in this paper has received funding from the Norwegian Research Council, SFI 

Offshore Mechatronics, project number 237896. 

 

 



COMADEM 2017 University of Central Lancashire, UK. 

 

 

 

 

457 

REFERENCES 

[1] L. Jeffrey, “Noble 2012 Analyst & Investor Day presentation.” 2012. 

[2] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, “Prognostics and health management design for rotary 

machinery systems—Reviews, methodology and applications,” Mech. Syst. Signal Process., vol. 42, no. 1–2, pp. 314–334, 

2014. 

[3] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-

based maintenance,” Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483–1510, 2006. 

[4] E. Bechhoefer, R. Schlanbusch, and T. I. Waag, “Techniques for Large, Slow Bearing Fault Detection,” Int. J. Progn. Heal. 

Manag., vol. 7, no. 1, pp. 1–12, 2016. 

[5] R. B. Randall and J. Antoni, “Rolling element bearing diagnostics-A tutorial,” Mech. Syst. Signal Process., vol. 25, no. 2, 

pp. 485–520, 2011. 

[6] J. Antoni, “Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions,” J. Sound Vib., vol. 304, no. 3–5, 

pp. 497–529, 2007. 

[7] J. Antoni, “Cyclostationarity by examples,” Mechanical Systems and Signal Processing, vol. 23, no. 4. pp. 987–1036, 

2009. 

[8] R. B. Randall, “State of the Art in Monitoring Rotating Machinery – Part 2,” J. Sound Vib., vol. 38, no. 5, pp. 10–17, 2004. 

[9] R. B. Randall, J. Antoni, and S. Chobsaard, “The Relationship Between Spectral Correlation and Envelope Analysis in the 

Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals,” Mech. Syst. Signal Process., vol. 15, no. 5, pp. 

945–962, 2001. 

[10] J. Antoni, “Cyclic spectral analysis in practice,” Mech. Syst. Signal Process., vol. 21, pp. 597–630, 2007. 

[11] A. H. C. Tsang, W. K. Yeung, A. K. S. Jardine, and B. P. K. Leung, “Data management for CBM optimization Data 

management for CBM optimization,” J. Qual. Maint. Eng., vol. 12, no. 1, pp. 37–51, 2006. 

[12] N. Tandon and A. Choudhury, “A review of vibration and acoustic measurement methods for the detection of defects in 

rolling element bearings,” Tribol. Int., vol. 32, pp. 469–480, 1999. 

[13] P. Shakya, A. K. Darpe, and M. S. Kulkarni, “Bearing diagnosis using proximity probe and accelerometer,” Meas. J. Int. 

Meas. Confed., vol. 80, pp. 190–200, 2016. 

[14] T. Yoshioka and T. Fujiwara, “Application of acoustic emission technique to detection of rolling bearing failure,” Am. Soc. 

Mech. Eng., vol. 14, no. 1, pp. 55–76, 1984. 

[15] T. Yoshioka and T. Fujiwara, “A new acoustic emission source locating system for the study of rolling contact fatigue,” 

Wear, vol. 81, no. 1, pp. 183–186, 1982. 

[16] T. Yoshioka, “Detection of rolling contact sub-surface fatigue cracks using acoustic emission technique,” Lubr. Eng., vol. 

4, no. 1, 1993. 

[17] C. K. Tan and D. Mba, “Identification of the acoustic emission source during a comparative study on diagnosis of a spur 

gearbox,” Tribol. Int., vol. 38, no. 5, pp. 469–480, 2005. 

[18] J. L. Ferrando Chacon, V. Kappatos, W. Balachandran, and T.-H. Gan, “A novel approach for incipient defect detection in 

rolling bearings using acoustic emission technique,” Appl. Acoust., vol. 89, pp. 88–100, 2015. 

[19] N. Jamaludin and D. Mba, “Monitoring extremely slow rolling element bearings: Part I,” NDT E Int., vol. 35, no. 6, pp. 

349–358, 2002. 

[20] N. Jamaludin and D. Mba, “Monitoring extremely slow rolling element bearings: Part II,” NDT E Int., vol. 35, no. 6, pp. 

359–366, 2002. 

[21] P. J. Dempsey, “A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage,” 

2000. 

[22] E. Bechhoefer, R. Schlanbusch, and T. I. Waag, “Fault Detection on Large Slow Bearings,” in PHME 2016, 2016, vol. 7, 

pp. 1–8. 

[23] S. Priya, M. R. Ramesh, and V. Naidu, “Bearing Health Condition Monitoring: Frequency Domain Analysis Multi-sensor 

Data Fusion,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng. (An ISO Certif. Organ., vol. 3, no. 5, pp. 260–268, 2014. 

[24] L. Renaudin, F. Bonnardot, O. Musy, J. B. Doray, and D. Rémond, “Natural roller bearing fault detection by angular 

measurement of true instantaneous angular speed,” in Mechanical Systems and Signal Processing, 2010, vol. 24, no. 7, pp. 

1998–2011. 

[25] E. Bechhoefer and M. Kingsley, “A review of time synchronous average algorithms,” in Annual Conference of the 

Prognostics and Health Management Society, 2009, pp. 24–33. 

[26] P. Borghesani, P. Pennacchi, R. Ricci, and S. Chatterton, “Testing second order cyclostationarity in the squared envelope 

spectrum of non-white vibration signals,” Mech. Syst. Signal Process., vol. 40, no. 1, pp. 38–55, 2013. 

[27] N. Tandon and B. C. Nakra, “Comparison of vibration and acoustic measurement techniques for the condition monitoring 

of rolling element bearings,” Tribol. Int., vol. 25, no. 3, pp. 205–212, 1992. 

[28] E. Y. Kim, A. C. C. Tan, J. Mathew, and B. S. Yang, “Condition monitoring of low speed bearings: A comparative study of 

the ultrasound technique versus vibration measurements,” in Australian Journal of Mech. Engineering, 2008, vol. 5, no. 2, 

pp. 177–189. 

[29] D. Ho and R. B. Randall, “Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault 

Signal,” Mech. Syst. Signal Process., vol. 14, no. 5, pp. 763–788, 2000. 

[30] R. B. Randall, “State of the Art in Monitoring Rotating Machinery – Part 1,” J. Sound Vib., vol. 38, no. 5, pp. 14–21, 2004. 

[31] D. Hochmann and E. Bechhoefer, “Envelope bearing analysis: Theory and practice,” in IEEE Aerospace Conference 

Proceedings, 2005, pp. 3658–3666. 

[32] T. Williams, X. Ribadeneira, S. Billington, and T. Kurfess, “Rolling Element Bearing Diagnostics In Run-To-Failure 

Lifetime Testing,” Mech. Syst. Signal Process., vol. 15, no. 5, pp. 979–993, 2001. 

[33] P. Nguyen, M. Kang, J. Kim, and K. Jong-Myon, “Reliable Fault Diagnosis of Low-Speed Bearing Defects Using a Genetic 



COMADEM 2017 University of Central Lancashire, UK. 

 

 

 

 

458 

Algorithm,” in PRICAI 2014: Trends in Artificial Intelligence 2014, 2014, pp. 248–255. 

[34] P. H. Westfall, “Kurtosis as Peakedness, 1905–2014. R.I.P.,” Am. Stat., vol. 68, no. December, pp. 191–195, 2014. 

[35] R. Dwyer, “Detection of non-Gaussian signals by frequency domain Kurtosis estimation,” ICASSP ’83. IEEE Int. Conf. 

Acoust. Speech, Signal Process., vol. 8, pp. 607–610, 1983. 

[36] Y. Wang, J. Xiang, R. Markert, and M. Liang, “Spectral kurtosis for fault detection, diagnosis and prognostics of rotating 

machines: A review with applications,” Mech. Syst. Signal Process., vol. 66–67, pp. 679–698, 2016. 

[37] D. Wang, P. W. Tse, and K. L. Tsui, “An enhanced Kurtogram method for fault diagnosis of rolling element bearings,” 

Mech. Syst. Signal Process., vol. 35, no. 1–2, pp. 176–199, 2013. 

[38] E. Bechhoefer, M. Kingsley, and P. Menon, “Bearing envelope analysis window selection using spectral kurtosis 

techniques,” in 2011 IEEE International Conference on Prognostics and Health Management, PHM 2011 - Conference 

Proceedings, 2011, pp. 1–6. 

[39] J. Antoni and R. B. Randall, “The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating 

machines,” Mech. Syst. Signal Process., vol. 20, pp. 308–331, 2006. 

[40] A. Klepka, “Wavelet Based Signal Demodulation Technique for Bearing Fault Detection,” Mech. Mech. Eng., vol. 15, no. 

4, pp. 63–71, 2011. 

[41] L. Gelman, T. H. Patel, G. Persin, B. Murray, and A. Thomson, “Novel Technology Based on the Spectral Kurtosis and 

Wavelet Transform for Rolling Bearing Diagnosis,” Int. J. Progn. Heal. Manag., vol. 4, no. 2, pp. 1–7, 2013. 

[42] Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” 

Mech. Syst. Signal Process., vol. 35, no. 1–2, pp. 108–126, 2013. 

[43] M. Žvokelj, S. Zupan, and I. Prebil, “Multivariate and multiscale monitoring of large-size low-speed bearings using 

Ensemble Empirical Mode Decomposition method combined with Principal Component Analysis,” Mech. Syst. Signal 

Process., vol. 24, no. 4, pp. 1049–1067, 2010. 

[44] T. H. Loutas, D. Roulias, E. Pauly, and V. Kostopoulos, “The combined use of vibration, acoustic emission and oil debris 

on-line monitoring towards a more effective condition monitoring of rotating machinery,” Mech. Syst. Signal Process., vol. 

25, no. 4, pp. 1339–1352, 2011. 

[45] E. Bechhoefer and A. P. F. Bernhard, “A generalized process for optimal threshold setting in HUMS,” in IEEE Aerospace 

Conference Proceedings, 2007, pp. 1–9. 


