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Summary

In all industrial production plants, well-functioning machines and systems are required

for sustained and safe operation. However, asset performance degrades over time and

may lead to reduced efficiency, poor product quality, secondary damage to other assets or

even complete failure and unplanned downtime of critical systems. Besides the potential

safety hazards from machine failure, the economic consequences are large, particularly in

offshore applications where repairs are difficult. This thesis focuses on large, low-speed

rolling element bearings, concretized by the main swivel bearing of an offshore drilling ma-

chine. Surveys have shown that bearing failure in drilling machines is a major cause of rig

downtime. Bearings have a finite lifetime, which can be estimated using formulas supplied

by the bearing manufacturer. Premature failure may still occur as a result of irregular-

ities in operating conditions and use, lubrication, mounting, contamination, or external

environmental factors. On the contrary, a bearing may also exceed the expected lifetime.

Compared to smaller bearings, historical failure data from large, low-speed machinery is

rare. Due to the high cost of maintenance and repairs, the preferred maintenance ar-

rangement is often condition based. Vibration measurements with accelerometers is the

most common data acquisition technique. However, vibration based condition monitoring

of large, low-speed bearings is challenging, due to non-stationary operating conditions,

low kinetic energy and increased distance from fault to transducer. On the sensor side,

this project has also investigated the usage of acoustic emission sensors for condition

monitoring purposes.

Roller end damage is identified as a failure mode of interest in tapered axial bear-

ings. Early stage abrasive wear has been observed on bearings in drilling machines. The

failure mode is currently only detectable upon visual inspection and potentially through

wear debris in the bearing lubricant. In this thesis, multiple machine learning algorithms

are developed and applied to handle the challenges of fault detection in large, low-speed

bearings with little or no historical data and unknown fault signatures. The feasibil-

ity of transfer learning is demonstrated, as an approach to speed up implementation of

automated fault detection systems when historical failure data is available. Variational

autoencoders are proposed as a method for unsupervised dimensionality reduction and
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feature extraction, being useful for obtaining a health indicator with a statistical anomaly

detection threshold. Data is collected from numerous experiments throughout the project.

Most notably, a test was performed on a real offshore drilling machine with roller end wear

in the bearing. To replicate this failure mode and aid development of condition monitor-

ing methods, an axial bearing test rig has been designed and built as a part of the project.

An overview of all experiments, methods and results are given in the thesis, with details

covered in the appended papers.
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Chapter 1

Introduction

1.1 Background

The bearing is a fundamental component in all types of rotating machinery. Bearings

constrain degrees of freedom, transfer load and reduce friction of moving parts in a system.

Beyond this, the variety of applications has sparked the development of a great number

of bearing types and sizes. Grouped by principle of operation, plain bearings, rolling

element bearings (REBs), fluid bearings and magnetic bearings are some of the most

common types. This thesis considers rotary REBs, which use rolling elements (REs) to

reduce the friction between a shaft and a housing in relative rotation. A generic bearing

consists of four main parts: Outer race (OR), cage, inner race (IR) and REs. A ball

bearing with an OR fault is shown in Fig. 1.1, together with the RE diameter d, pitch

diameter D and RE contact angle ϕ.

Figure 1.1: Diagram of ball bearing with rotating IR and a single-point OR fault. 1) OR,

2) Cage, 3) IR, 4) RE, 5) OR fault

1



     

Load is transferred from one race to another through the REs. The REs are kept

evenly separated by a cage, which is not a load-bearing component. A lubricant is used

to form an elastohydrodynamic fluid film between the moving parts, which further reduces

friction and wear by preventing metal-to-metal contact. REBs are broadly characterized

by the RE shape, and the direction of load that can be accommodated. Ball bearings

use spherical rollers, which have a point-like, elliptical contact area with the bearing

races. Roller bearings have a line-like, rectangular contact area. Line contact provides a

better load distribution and load capacity as compared to ball bearings. However, this

increases friction and reduces the ability to handle high rotational speeds. Loads acting

on the bearing can be decomposed to radial and axial directions. Depending on the main

direction of intended load, bearings are also classified as radial or axial. In practice, many

bearing types can accommodate combined loads. Tapered roller bearings have the same

main components, as shown in Fig. 1.2. OR and IR may also be named cup and cone.

Due to the tapered roller shape, a retaining rib on the OR is required to keep the REs in

place. In the rib-roller contact area, shown in red, mating surfaces are sliding rather than

rolling. The bearing shown is of type ISB 29230, and has been used in the experimental

work of this project to investigate condition monitoring (CM) methods for roller end wear

detection.

Figure 1.2: Cross-sectional diagram of axial roller bearing type ISB 29230. Rib-roller

contact area in red. 1) Outer race (cup), 2) Cage, 3) Roller, 4) Inner race (cone)

Even with static external loads, the internal material stress is cyclic due to load trans-

ferring through the moving REs. Under otherwise nominal operating conditions, the cyclic

loading will induce fatigue cracks in the material and eventually cause particles to break

off from the contact surfaces. This phenomenon is called spalling. The basic rating life,





 

L10, is defined in ISO 281:2007 [1] and is calculated based on basic dynamic load rating

C, equivalent dynamic bearing load P and an exponent k = 3 for ball bearing and k = 10
3

for roller bearings as given in Eq. (1.1).

L10 =

(
C

P

)k
(1.1)

This means that in a larger population of identical bearings, 10 % are expected to fail

before L10 life. The remaining 90 % are expected to exceed the basic rating life. For any

individual bearing, the actual lifetime may be both longer and shorter than the rating

life. Manufacturers also provide models to correct factors like variable speed and load,

contamination, lubricant condition and required reliability. In reality, the parameters

for lifetime calculation are hard to determine exactly, adding more uncertainty to the

estimate. Beyond fatigue, failure can have a wide range of other root causes. Table 1.1

lists major failure modes with sub-types, as defined in ISO 15243 [2]. In addition to failure

modes, the standard comprises fault characteristics, terminology and failure root causes.

Other failure modes also result in localized surface damage. This thesis refers to such

damage as single-point faults, as they exhibit the same periodic fault signature.

Table 1.1: Common bearing failure modes

Failure mode Sub-type

Fatigue Surface initiated fatigue

Sub-surface initiated fatigue

Wear Abrasive wear

Adhesive wear

Corrosion Moisture corrosion

Frictional corrosion

Electrical erosion Excessive voltage

Current leakage

Plastic deformation Overload deformation

Debris indentation

Handling indentation

Fracture and cracking Forced fracture

Fatigue fracture

Thermal cracking

As the bearings in rotating machinery will degrade over time, some maintenance is





     

eventually required to fulfil performance requirements. Typical maintenance actions in-

clude relubrication, shaft alignment, modification of mounting, fit or clearance, and bear-

ing replacement. However, maintenance comes at a cost. Machinery and production must

be stopped, parts must be repaired or replaced, and skilled manpower must be employed.

This cost, combined with the consequence of failure and available knowledge of machine

condition, determines when maintenance is performed. A corrective maintenance strategy

does not attempt to avoid failure, and maintenance is carried out when the system no

longer functions as required. This approach is applicable when the consequence of failure

is acceptable compared to maintenance cost. A preventive maintenance strategy aims

to avoid failure by performing maintenance actions after a given time (calendar based),

number of operating hours or other experience-based measures. No strategy considers

machine health, and maintenance is performed either too early or not early enough. A

more advanced approach is to estimate the machine condition, and perform maintenance

when required. Condition based maintenance (CBM), predictive maintenance (PdM),

and prognostics and health management (PHM) are all maintenance regimes that include

CM to reduce unplanned downtime and extend component lifetime. Ideally, a damage

is detected at an early stage, allowing time for planning and execution of maintenance.

Therefore, CM methods to determine bearing health are of value for the industry. The

work presented in this thesis focuses on single-point surface damages from fatigue and

abrasive wear in axial bearings.

Damage on internal surfaces will interact with other bearing parts during operation.

Given enough energy through load and speed, the interaction will excite transient struc-

tural resonance in the support structure. In single-point faults, the damage is localized

at a small area, causing the transients to occur periodically and the interaction becomes

impact-like. The impact rate is a function of shaft frequency fr, bearing geometry and

fault location. Identifying the presence of these frequencies in a time series is the key

to diagnose a single-point bearing fault [3]. Transients are produced at ball pass fre-

quency outer race (BPFO), ball pass frequency inner race (BPFI) and ball spin frequency

(BSF), describing faults in the OR, IR and RE, respectively. The fundamental train fre-

quency (FTF) describes the rotational frequency of the cage, which mainly appears as

an amplitude modulation frequency in RE faults. The calculation of characteristic fault

frequencies inn ball and cylindrical roller bearings is shown in Eq. (1.2) - (1.5), where nr

is the number of rollers.

BPFO =
nrfr

2

(
1− d

D
cosϕ

)
(1.2)

BPFI =
nrfr

2

(
1 +

d

D
cosϕ

)
(1.3)





 

BSF =
Dfr
2d

(
1−

(
d

D
cosϕ

)2
)

(1.4)

FTF =
fr
2

(
1− d

D
cosϕ

)
(1.5)

Single-point damage can occur in all types of REBs, whereas roller end abrasive wear

only occurs in roller bearings, an example being the spherical tapered roller bearing shown

in Fig. 1.2. This thesis considers abrasive wear, which is characterized by material removal

from a surface inflicted by another body with greater hardness. In REBs, this can occur

from external particle contamination or existing wear debris combined with insufficient

lubrication. Abrasive wear on roller ends has been observed in top drive main bearings,

being an unusual and less researched failure mode than fatigue damages.

This thesis considers large, low-speed machinery, defined as having an operating speed

below 600 rpm (10 Hz) [4, 5, 6]. However, there is no unified definition of neither low-speed

nor large size. Large, low-speed bearings are of particular interest, as both aspects render

additional challenges to bearing CM. Signal-to-noise ratio (SNR) describes the ratio of

power between the fault-induced signal of interest and background noise. Considering a

single-point damage as in Fig. 1.1, the RE impacts the fault as it rolls over. At low speed,

there is less kinetic energy in the system. Thus, the impact energy is lower, which leads

to a lower amplitude structural resonance. Background noise independent of speed can

then camouflage the signal of interest. Large size also means that the oscillation has to

propagate a larger distance from the fault to the transducer. As the support structure

has some inherent damping, vibrations will be attenuated before reaching the transducer.

Characteristic fault frequencies are proportional to shaft rate, and thus both lower and

closer in the frequency domain at low speed. Separation of low frequency components

requires longer time series data, as spectral resolution is inversely proportional to acquisi-

tion time. However, this increases the risk of non-stationary operating conditions during

measurements [5]. For example, wind turbines experience speed fluctuations under opera-

tions due to wind shear and tower wind shadow [7]. A single-point fault may therefore be

less detectable, as frequency content from the same fault is then spread between several

bins in the spectrum, making it more difficult to identify peaks.

In tapered roller bearings, the lubricant has to form a fluid film between rib and roller

end to avoid wear. Subject to the wear, the internal clearances in a bearing will be altered,

which may lead to a catastrophic failure [8]. Low speed and high load result in a thinner

oil film, increasing the risk of boundary lubrication conditions [9]. Unlike single-point

surface damages, the wear does not necessarily generate periodic impacts. Therefore, CM

techniques that are suitable for single-point surface damage may not be applicable to





     

detect the roller end wear. A better understanding of the failure mode is important for

both academia and industry, as discussed in Section 3.1, Papers B and C.

1.2 Motivation for Top Drive Study

Top drives are mainly used for handling and supplying torque to the drill string on oil

and gas (O&G) drilling rigs. A top drive generally has a maximum speed below 300

rpm (5 Hz), but the actual drilling speed varies. During drilling, the weight of the drill

string is supported by a large axial bearing. These bearings have an outer diameter up

to around 750 mm, depending on the capacity of the top drive. Top drives are in the

critical path of drilling operations, where a failure results in non-productive time on the

rig and loss of income. Together with rotary tables and associated equipment, top drives

contribute to 60 % of total maintenance costs of drilling rigs, with a cost of over 165,000

USD per incident [10]. Another survey showed that top drives were responsible for 13 %

of rig downtime, only surpassed by subsea blow out preventers (BOPs), as shown in Table

1.2 [11]. The same survey showed that bearing failures were the most common causes of

downtime.

Table 1.2: Drilling rig downtime grouped by equipment failure

Equipent Downtime

Subsea BOP 46 %

All other 16 %

Top Drive 13 %

Riser 10 %

Mud System 6 %

Surface BOP 5 %

Thruster 4 %

A combination of reactive and calendar-based preventive maintenance has been the

standard in the O&G standard for years. Upon routine visual inspection, the roller end

wear has been observed in top drive main bearings. The statistics show that unexpected

failure still occurs, and there is also a clear trend in the industry towards a condition

based and predictive maintenance regime. Improved methods for CM of top drive bear-

ings can contribute to large economic gains. However, online, non-intrusive methods for

roller end wear detection have not been developed or missing in literature. Similar large,

slow-rotating REBs are also found in other heavy industrial equipment such as paper and





 

steel mills, wind turbines and cranes. Thus, any research on roller end wear detection is

significant for CBM in industry beyond the O&G sector.

1.3 State of the Art

This section introduces state-of-the-art methods for obtaining, processing and evaluating

CM data for large, low-speed bearings with single-point faults or roller end wear.

Detection and diagnosis of either fault type require CM data, which refers to any

measurable quantity that contains machine health information, being extracted as a con-

dition indicator (CI). Given the challenges of low SNR and speed fluctuation discussed

in Section 1.2, both CM data type and processing methods are crucial to detect and di-

agnose faults. For bearings, lubricant, temperature, vibration, ultrasound and acoustic

measurements are the main categories of CM data [12, 4, 3]. Mechanical vibration is

commonly measured using accelerometers, but displacement sensors are also effective for

low-speed applications [13, 14]. Acoustic emissions (AE) are high frequency stress waves

from rapid releases of energy in a material, such as sub-surface crack growths [15] or wear

[16]. It was shown early that AE could detect faults before vibration methods [17, 18],

and this technology is particularly efficient at low speed [13, 19, 20, 21, 22, 23, 24]. AE

measurements have also been shown to reveal particle contamination in fluid film bearings

[25] and wear detection in tribological systems [26, 27]. The main drawback of using AE

equipment is the high cost as compared to other solutions.

Lubricant analysis is an alternative to acceleration and AE measurements for wear

detection. Offline analysis of periodical oil samples are still the industry standard, but

are still reactive or routine maintenance. The on-line oil monitoring is relatively new and

requires additional sensors and equipment [28, 29, 30]. Therefore, a study of using both

acceleration and AE measurements for top drive wear detection is very useful to determine

the best sensor or data options for the fault diagnosis of large, low-speed bearings.

Fault detection can be achieved by CI values, where a change in the CI values indicates

a fault. RMS of vibration measurements is widely used as a CI, and velocity RMS limits

for different types of industrial rotating machinery are defined in ISO 10816-3 [31]. Peak-

to-peak and kurtosis (the 4th statistical moment) are also commonly used. Moreover,

further processing techniques may be necessary to perform diagnosis, i.e. determining

not only the presence, but also the type of fault. For diagnosis of single-point defects, the

envelope analysis has proven effective for decades [32]. Digital demodulation is efficiently

done using fast Fourier transform (FFT) in the calculation of the Hilbert envelope [33].

Demodulation of a frequency band instead of the full signal will isolate the fault-induced





     

vibration and thus improve diagnosis capability by increasing SNR. Spectral kurtosis (SK)

is used for identifying a suitable frequency bands for demodulation by identifying bands

with high kurtosis [34]. A fault-induced impact creates more extreme values compared to

healthy (HE) operation, giving a higher kurtosis value. The fast kurtogram [35], autogram

[36] and adaptive kurtogram [37] are proposed as improvements of the kurtogram. The

Hilbert-Huang transform [38, 39, 40] and wavelet denoising [41, 42] are also successfully

applied to low-speed bearing fault detection, and more useful for non-stationary signals.

In top drives and other complex mechanical systems, measured vibrations are cor-

rupted by noises from other sources, such as gears and motors. This type of vibration is

directly linked to shaft rotation whereas REB vibrations from a localized surface dam-

age are essentially random due to slip of the RE and cage [43]. Cyclostationary signal

processing methods have also proven very effective for uncovering periodicities in low-

speed applications [44, 7, 45]. Vibration from this type of REB damage can be modeled

as second order cyclostationary signal, while noise from gears are first order cyclosta-

tionary [46, 3, 47]. The distinction between discrete shaft-locked and random vibration

component allows isolating the bearing vibration signal using self-adaptive noise cancel-

lation (SANC), time synchronous averaging (TSA) [48, 6], cepstral editing [49, 50] or

other methods [51]. The problem of non-stationary operation can be addressed by order

tracking, i.e. recording the shaft position and resampling the signal from time domain

to angular domain [52, 3, 53]. If an encoder or tachometer is not available, an estimate

of shaft rotation can be obtained through analytic signal phase demodulation or ridge

detection in time-frequency domain [54]. While the aforementioned methods are able to

detect and diagnose many bearing faults that occur in industry, including some large,

low-speed applications, there are still aspects to be addressed. The majority of methods

rely on the assumption that a fault results in periodic transients that can be detected

and used to diagnose a bearing fault. The results of this thesis suggest that this is not

the case for roller end wear. Additionally, implementing a CM system that requires a

lot of human interaction in the analysis of a large amount of data, increases the financial

investment. Instead, automated systems provided by model-based, data-driven or hybrid

algorithms [55, 56, 57], reduce the time consumption on analysis and requirements to

trained personnel. However, both rule-based decision systems and physical models are

very hard to obtain in real, complex systems. Data-driven statistical or machine learning

(ML) algorithms are therefore attractive as automatic CM systems [58]. The transition

to industry 4.0, with more sensors and available data [59], combined with rapid increases

in computer hardware performance, data storage capacity and availability of high-level

programming languages, makes ML more accessible and encourages the development of

data-driven CM methods.





 

This project has mainly focused on two areas within ML, namely supervised classifi-

cation and feature learning for anomaly detection. In supervised classification, the goal

is to assign the correct class to an observation based on experience from previous, labeled

observations. Support vector machine (SVM) [60, 61, 62, 63, 64], decision tree (DT)

[65, 66, 67], k-nearest neighbor (k-NN) [68, 69] have all been shown effective in supervised

bearing fault classification. Normally, a set of features are extracted from the raw data

as input to the classification algorithm. Proper selection or design of features requires

expert domain knowledge and experience. Transfer learning (TL) is an ML approach

that remedies this by utilizing previous experience from one problem and transferring it

to another. With TL, one avoids starting from scratch in every new problem, and is in

theory not limited to problems in the same domain [70]. TL has been applied to bearing

fault diagnostics, where it has been used to transfer knowledge across different feature

domains [71], operating conditions [72] and across different machines [73]. However, the

considered knowledge transfer in the existing works are still within the same field. A

study on feature transfer to bearing fault detection from another field is missing in litera-

ture. Further, limited or restricted available data from HE and damaged faulty bearings

is a pervasive problem for development of CM methods [7]. Acquiring data through real

machinery measurements or laboratory test rigs is therefore very important in developing

methods that are less reliant on historic data.

Deep learning based approaches such as autoencoders [74], convolutional neural net-

works (CNN) [75, 76, 77, 78, 79], deep belief networks (DBN) [80, 81, 82, 83], self-

organizing maps (SOMs) [84], and various other deep network architectures [85, 72, 86,

87, 88] can also be used to either learn new features from raw data, or perform dimension-

ality reduction of existing features before classification. In bearing CM, raw data consists

of sequences, each containing thousands to millions of data points. Temporal order and

distance matters, and it may be necessary to consider long term dependencies, such as

periodic transients from single-point faults. CNNs can solve this with multiple stacked

convolutional and pooling layers with large kernels. This quickly becomes computation-

ally demanding, and reduces temporal resolution. Text, speech and translation problems

have successfully applied recurrent neural networks (RNN), which are able to retain in-

formation through a sequence. However, the ability is reduced with distance. Efforts to

counteract this, such as long short-term memory (LSTM) networks [89], attention mech-

anisms [90, 91] and dilated hierarchical architectures have been applied [92] to capture

long term dependencies in sequences. Despite some of the feature learning algorithms

are classified as unsupervised, representative training data from a faulty condition is still

required to perform classification. Feature learning on simulated raw vibration data with

long term dependencies may replace actual fault data in the training phase, but such a





     

piece of work is hard to find in literature.

Proper selection and effective usage of the aforementioned ML algorithms requires

expert knowledge in the development phase. If detection of a fault is more important than

diagnosis, methods that allow identification of anomalous data can be applied. Detecting

incipient faults in bearings does not necessarily mean that the bearing needs an immediate

replacement. As an extension of fault detection, it is desirable to establish methods

that allow health estimation and threshold setting for measurement values with control

of statistical confidence level. Methods for threshold setting based on CIs with known

probability distribution under HE condition have been proposed and applied to low-

speed bearings [93, 7], utilizing statistical hypothesis testing. This approach for threshold

setting allows a probability of false alarm control, but is limited to CIs with known, well-

defined distributions. A generalization to arbitrarily distributed CIs is therefore valuable

for detection of anomalous behaviour. This can be achieved through generative models,

which is an ML approach aimed at learning unknown relations between observed data

and an underlying, well-defined probability distribution. Generative adversarial networks

(GANs) [94], variational autoencoders (VAEs) [95] and adversarial autoencoders [96] are

all generative models that are successful in image and sequence generation. The VAE

has also been used [97] for dimensionality reduction and feature learning an subsequent

supervised classification of bearing fault diagnostics. However, using VAEs to quantify

anomalies and calculate a HI has not been found in the recent research on bearing fault

diagnostics.

As seen from the literature review, several shortcomings in CM of large, low-speed

bearings are identified and addressed in this thesis. The contributions are further de-

scribed in the following section.

1.4 Contributions

Over the course of the project, 6 papers have been published, accepted for publication or

submitted to scientific conferences and journals. The content of these papers are the basis

of this thesis. Contributions are focused towards the challenges of current CM methods

for large, low-speed bearings identified in Section 1.3.

An initial literature review in Paper A identified CM methods aimed at large, low-

speed bearings. The review also revealed that the vast majority of methods are aimed at

failure modes producing weak, periodic transients in a time series, using advanced signal

processing to enhance and isolate the signal of interest. The roller end wear failure mode

has received little attention in research so far, and after performing testing on a top drive

with a worn main bearing in Paper B, it was concluded that the fault signature from





 

roller end wear was not likely to exhibit periodic behaviour. A better understanding of

this failure mode was deemed necessary for development of online detection and diagnosis

methods. Therefore, a test rig for axial bearings was purpose-built at the University of

Agder, designed to apply roller end damage during operation. The test rig is further

described in Paper C. As it was established that conventional CM methods are not aimed

at roller end wear detection, the remaining work was to utilize the feature extraction and

classification capabilities of ML to develop automated CM methods suitable for single-

point as well as roller end damage.

Paper D demonstrates that a CNN pretrained on images is capable of directly ex-

tracting features for binary classification of bearings in HE and damaged conditions.

This results in a fast and simple implementation of a supervised, data-driven classifier.

This study uses vibration data from single-point damage and AE data from roller end

scratching in the test rig. As available data from large, low-speed applications is very

limited, Paper E presents an approach to identify anomalous behavior and calculate a HI

without requiring historic fault data. Autoregressive (AR) model coefficients of top drive

acceleration measurements and test rig AE measurements were used as input features. As

the AR coefficients did not have well-defined distributions, a VAE was trained to infer the

relation between observed data and underlying Gaussian latent variables, which are as-

sumed to generate the observed data. A HI was then calculated from the latent variables.

Paper F also addresses the issue of limited historic fault data, but considers single-point

damages alone. Instead of using historic data, a vibration model is developed to generate

simulated signals. A deep 1D CNN architecture with dilated convolutions, designed to

capture long-term dependencies in raw vibration data, learns general features to classify

the faults.

1.4.1 Paper A: A Review of Methods for Condition Monitoring

of Large, Slow-rotating Bearings

Summary: The paper is a brief introduction to state-of-the-art methods for bearing

vibration modeling, data acquisition, processing and decision-making for large and low-

speed applications. Top drive downtime and maintenance optimization are introduced as

a motivation for research. Challenges with regards to speed and size are discussed, based

on the assumption of single-point damage.

Contributions: The paper provides a review of CM methods in the context of large

and low-speed bearings.





     

This paper has been published as:

Martin Hemmer, Tor I. Waag and Kjell G. Robbersmyr. A Review of Methods for Con-

dition Monitoring of Large, Slow-rotating Bearings. Presented at: 30th Conference on

Condition Monitoring and Diagnostic Engineering Management. University of Central

Lancashire, Preston, UK

1.4.2 Paper B: A Comparison of Acoustic Emission and Vibra-

tion Measurements for Condition Monitoring of an Off-

shore Drilling Machine

Summary: A top drive, that was taken out of operation for maintenance, showed arc-

shaped scoring on the roller ends. The purpose of the experiments was to investigate

the applicability of acceleration and AE-based measurement systems to this failure mode.

The bearing was subject to an additional damage on the roller ends and then run with

less lubricant. For reference, the worn bearing was then replaced with a HE one. For

each level of damage, measurements were taken at different speeds. It was expected to

observe one or more of the bearing fault frequencies, but this was not successful. The AE

system was able to detect an increase in RMS, but without a characteristic frequency, the

diagnosis was not possible by using signal processing. Similar results were obtained using

vibration measurements, but with an inconsistent RMS increase. The process of replacing

the worn bearing also changed the vibration characteristics of the machine, which actually

led to an increase in acceleration RMS after overhaul. The characteristics of roller end

wear are presented as an explanation for the lack of fault frequency components. The

paper highlights the need of a better understanding of the failure mode characteristics.

Contributions: Online detection and diagnosis of roller end wear is challenging for

current CM methods that rely on the detection of characteristic fault frequencies. An

explanation for this behavior is proposed on the basis of observed roller end wear.

This paper has been published as:

Martin Hemmer and Tor I. Waag. A Comparison of Acoustic Emission and Vibration

Measurements for Condition Monitoring of an Offshore Drilling Machine. Proceedings of

the Annual Conference of the Prognostics and Health Management Society 2017, 278-285,

2017. ISBN 978-1-936263-26-4.





 

1.4.3 Paper C: Rib-Roller Wear in Tapered Rolling Element

Bearings: Analysis and Development of Test Rig for Con-

dition Monitoring

Summary: A model describing arc-shaped roller end scoring is proposed, based on the

assumption that roller end wear is created by particles caught between the roller end and

retaining rib in tapered axial bearings. The paper documents the functionality of a test

rig developed to investigate CM methods for roller end wear in low-speed axial bearings.

The test rig can accommodate bearings up to 240 mm in outer diameter. A permanent

magnet motor with encoder allows a precise control of shaft rotation. The main feature

of the test rig is that roller end scratches can be generated in a controlled environment

during operation. It was also developed with oscillating motion testing in mind.

Contributions: This work studies how particles in the rib-roller contact area can create

the characteristic arc-shaped scoring that has been observed on roller ends. A test rig for

replicating the scoring is developed.

This paper has been published as:

Martin Hemmer, Kjell G. Robbersmyr, Tor I. Waag, Rolf Albrigtsen, Torfinn Pedersen,

Thomas J. J. Meyer and Chloë Vercammen. Rib-Roller Wear in Tapered Rolling Element

Bearings: Analysis and Development of Test Rig for Condition Monitoring. Engineering

Assets and Public Infrastructures in the Age of Digitalization. Springer, in press. Pre-

sented at: 13th World Congress on Engineering Asset Management. Stavanger, Norway

1.4.4 Paper D: Fault Classification of Axial and Radial Roller

Bearings using Transfer Learning Approach

Summary: AE data from scratch formation in an axial tapered roller bearing and vi-

bration data from OR and RE damage in a radial roller bearing was collected from two

different test rigs. Wavelet-based spectrograms of waveform segments were calculated and

stored as images. A pretrained version of the AlexNet CNN architecture was evaluated

for use as a feature extractor and binary classifier of faulty and HE spectrograms. Three

approaches were evaluated: extracted features used directly to train an SVM, dimension-

ality reduction of the feature using a sparse autoencoder before training an SVM, and

fine-tuning of the AlexNet architecture to perform classification. The is an advantage

as compared to building and training classifiers from scratch. The method requires less

feature knowledge than conventional signal processing-based analysis. It also reduces the





     

need for skilled analysts and speeds up implementation and analysis time.

Contributions: Within this work, a pre-trained neural network can effectively extract

features from spectrograms for fault detection in bearings subject to single-point faults

and roller end scratch formation.

This paper has been published as:

Martin Hemmer, Huynh V. Khang, Kjell G. Robbersmyr, Tor I . Waag and Thomas J.

J. Meyer. Fault Classification of Axial and Radial Roller Bearings Using Transfer Learn-

ing through a Pretrained Convolutional Neural Network. Designs, 2(4), 56, 2018. doi:

10.3390/designs2040056.

1.4.5 Paper E: Health Indicator for Low-speed Axial Bearings

using Variational Autoencoders

Summary: Vibration data from a top drive and AE data from an axial bearing test

rig was collected under degrading machine health conditions. Both datasets contain HE

data and several stages of roller end wear. An AR model was fitted to segments of the

data, and the coefficients were used as features for training a variational autoencoders

(VAEs). In a VAE, an encoder network infers parameters of a latent generative random

process from the observed training data, where the target latent distribution is assumed

to be zero-mean multivariate Gaussian with identity covariance matrix. The approxi-

mately Gaussian distribution of the latent variables is proposed to calculate a HI with

probability of false alarm control. Further, conditional VAEs (CVAEs) are used to train

a single model conditioned on the mode of operation or different speeds in this case.

Contributions: VAEs is applied for unsupervised learning of a low-dimensional latent

vector from observed data, which again is used for calculating a machine HI. The HI was

shown to react to roller end wear and poor lubrication using data from a real top drive

and artificial roller end wear from a test rig.

This paper has been submitted as:

Martin Hemmer, Andreas Klausen, Huynh V. Khang, Kjell G. Robbersmyr and Tor I .

Waag. Health Indicator for Low-speed Axial Bearings using Variational Autoencoders.

Under review at: IEEE Access.



http://dx.doi.org/10.3390/designs2040056
http://dx.doi.org/10.3390/designs2040056


 

1.4.6 Paper F: Simulation-driven Deep Classification of Bearing

Faults from Raw Vibration Data

Summary: A deep 1-D CNN was trained to detect bearing faults using simulated fault

data for training. A cyclostationary bearing vibration model is used to generate the

faulty bearing signals, based on bearing specifications under some assumptions about the

mechanical system. By using a hierarchical dilated architecture, high resolution raw vi-

bration data can be analysed without preprocessing. The method is tested on a seeded

fault dataset, and two run-to-failure datasets, including a low-speed test at 250 rpm. The

network results in 100 % fault diagnostic accuracy for OR and IR faults, but misclassifies

all RE faults as IR. In run-to failure tests, faults detection performance is similar to ref-

erences in the literature, but the fault type was not consistent.

Contributions: This work proposes a deep 1-D CNN architecture capable of diagnosing

bearing faults from raw, simulated vibration data. The use of generated training samples

extends the applicability of ML to classification problems, where historic fault data is not

available for training.

This paper has been published as:

Martin Hemmer, Andreas Klausen, Huynh van Khang, Kjell G. Robbersmyr, and Tor I.

Waag. Simulation-driven Deep Classification of Bearing Faults from Raw Vibration Data.

Accepted for publication in: International Journal of Prognostics and Health Management

(IJPHM). Accepted date: 15.08.2019.

1.5 Outline

The rest of this thesis is structured as follows. Chapter 2 summarizes experiments per-

formed as a part of the study, with reference to relevant papers. Other datasets obtained

from other sources utilized in the thesis are also briefly described. In chapter 3, the de-

veloped methods and associated results are outlined. Section 3.1 describes the roller end

wear failure mode, while CM methods for roller end wear and single-point defects are

covered in Sections 3.2 and 3.3, respectively. Chapter 4 draws overall conclusions and

suggests further work.







Chapter 2

Experiments and Datasets

This chapter outlines the experiments performed under the course of this project, in addi-

tion to experiments performed by others, which were utilized in the publications. Further

details are given in the respective papers. Table 2.1 summarizes which experiments are

used in the different papers.

Table 2.1: Overview of datasets used in papers.

Paper Experiment

A -

B 1

C 1

D 2, 3A

E 1, 3B

F 4, 5, 6

Experiment 1 was performed on a top drive, which is the foundation of Paper B, de-

scribed in Section 2.1. Section 2.2 describes experiment 2, containing localized damage in

a radial bearing that was acquired using a test rig at RWTH Aachen University. Devel-

opment of an in-house axial bearing test rig is covered in Section 2.3, which is based on

Paper C. This test rig has been used to acquire two datasets, described in Section 2.3.1

and 2.3.2. Experiments 4-6, used in Paper F, are not performed as part of this project.

Experiments 4 and 5 are publicly available, being useful for benchmarking the developed

methods. Experiment 6 is an accelerated lifetime test performed on an existing in-house

ball bearing test rig . This type of test was not possible on the developed axial bearing

test rig within the project timeframe.
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2.1 Experiment 1: Top Drive Test

Tests were performed on a top drive that was taken out of operation for maintenance. A

similar top drive is shown in Fig. 2.1 [98], alongside a schematic drawing of the test setup,

highlighting the main components. Measurements were taken in the axial direction of the

main bearing. As the measurements were taken in a workshop, only the shaft self weight

was applied.

Figure 2.1: a) MHWirth top drive, similar to the one used in tests b) Schematic drawing

of top drive test setup. 1: Main bearing, 2: Circulating pump, 3: Encoder, 4: Flexible

coupling, 5: Axial sensor location, 6: Radial sensor location, 7: Hydraulic motor, 8: Drive

gear, 9: Shaft.

The bearing has visible wear on the roller ends, which were discovered during visual

inspection of the bearing as shown in Fig. 2.2. The wear has a characteristic arc-shape,

being further described in Paper B and C.

After recording data from the worn bearing, artificial indentations were made using a

chisel-like device with a carbide tip while the bearing was mounted inside the top drive.

Boroscope images of the bearing before and after the artificial damage are shown in Fig

2.3. The lubricant was then drained below the indicated minimum level before repeating

the measurement. Finally, the worn bearing was replaced with a new one, giving the HE





   

Figure 2.2: Damaged top drive bearing with arc-shaped scratches on the roller end.

reference. The machine was mounted in a temporary fixture with approximately 10 kN

axial load from the shaft self weight. Data was collected from 50 rpm to 250 rpm in 50

rpm intervals.

Figure 2.3: Artifically damaged top drive bearing. a) Boroscope image of roller end

scratches on top drive main bearing. b) Boroscope image of artificially damaged bearing.

Paper B and E did not use the same data, therefore the naming is inconsistent. Table

2.2 gives an overview of naming used in the papers. The term Damage level (DL) will be

used for the remaining of the thesis.

Vibration and AE measurements were performed in radial and axial directions to

evaluate the measurement systems and technologies. The AE system used an analog

demodulation circuit before digital sampling to reduce data volume [99].





     

Table 2.2: Experiment 1 naming matrix.

Document Healthy Worn Damaged Damaged + Poor lubrication

Thesis DL0 DL1 DL2 DL3

Paper A HL0 HL1 HL2

Paper D DL1 DL2 DL3

2.2 Experiment 2: Radial Bearing Test

Experiment 2 was carried out at the Institute for Machine Elements at the RWTH Aachen

University, using the test setup shown in Fig. 2.4a. Data from this experiment is used in

Paper D. The test bearing is a purely radial roller bearing of type NU220 ECP.

Triaxial accelerometers are mounted on the test bearings inner and outer housing.

Sampled data was also collected with the AE system as in dataset 1. Shaft rotation,

torque, temperature and cage rotation were also recorded, but have not been used in

papers. The test rig is further described in Paper D. The test bearing is shown in Fig 2.4,

with the temperature sensor, AE sensor and accelerometer locations.

Figure 2.4: Test setup used in experiment 2. a) Test unit with bearing mounted. b) Test

bearing in internal housing. 1: Temperature sensor, 2: AE transducer, 3: NU220 ECP

test bearing, 4: Triaxial accelerometer

Two different fault types were tested: A very severe OR fault, and a smaller RE fault.





   

The faults were seeded using an abrasive tip tool. Both damages are shown in Fig 2.5.

Each bearing was run at a range of loads and speeds, as described in Table 2.3.

Figure 2.5: Faults in NU220 ECP bearing used in experiment 2. a) OR fault. b) IR

fault.

Table 2.3: Dataset 2 test conditions.

Load [kN] Damage type speed [rpm]

1, 3 RE 100, 200, 300, 400, 500, 750, 1000

5, 10, 15, 20 OR, RE 100, 200, 300, 400, 500, 750, 1000

2.3 Experiment 3: Axial Bearing Test Rig

Based on the experience from the top drive test described in Section 2.1, it was decided

to develop an axial bearing test rig to study wear on roller ends. An overview of the test

rig and the bearing test unit is shown in Fig 2.6. The test rig is based on a hydraulic

workshop press, where an axial load is applied to the bearings by a manually controlled

hydraulic cylinder. An axial load of 50 kN was used in all experiments. A permanent

magnet motor drives the shaft, connected with a claw coupling. The location of the AE

sensor is also shown. Section 2.3.1 further describes the bearing test unit.





     

Figure 2.6: a) Axial bearing test rig overview. 1: Load cylinder, 2: Bearing test unit, 3:

Permanent magnet motor b) Bearing test unit. 4: AE sensor

2.3.1 Experiment 3A: Artificial Scratch Test

Inside the test unit shown in Fig 2.7, a test bearing (ISB 29230) and a load bearing (ISB

29336) are mounted on the same shaft. Lip seals are used to separate lubricants for the

test and load bearing. The test bearing is mounted with a stationary IR to give the

damaging mechanism access to the rib roller contact area. Load is applied to the piston

and test bearing, transferred through the shaft and load bearing back to the support

structure. As shown in Fig. 2.7b, a needle (yellow) is passed through a hole in the OR to

scratch the roller end. Movement of the needle is controlled manually by an adjustment

screw (white) and a return spring. The damager needle is stationary while the rollers

pass over, emulating a particle. Data from this experiment is used in Paper D.

The damaging mechanism was designed to imitate the formation of roller-end scratches

on the load bearing as if a particle was caught between the retaining rib and roller end. A

hole in the IR of the test bearing allows a hardened needle to damage the roller end during

operation. Due to the brittleness of the needle, the scratch formation tests were conducted

at 1 rpm. Experiments were aimed at detecting the formation of single scratches, not

damage accumulation. Paper D utilizes AE from a sensor mounted on the load piston,

recording raw data at 1 MHz. The resulting scratches on the roller end are shown in Fig

2.8.





   

Figure 2.7: Bearing test unit. a) Test unit cross section. 1: Load cell, 2: Piston, 3:

Damager needle, 4: Damager adjuster, 5: Test bearing, 6: Lip seal, 7: Load bearing, 8:

Shaft. b) Roller end damager.

Figure 2.8: Roller end scratches created by the damaging mechanism in experiment 3A.

2.3.2 Experiment 3B: Artificial Abrasive Wear Test

In the second test, the roller ends of the test bearing were ground using sandpaper to

emulate increasing levels of abrasive wear as the damaging mechanism was not durable

enough to accumulate damage. Sandpapers with ISO/FEPA grit grades P400 to P80

were used. The terms heavy and very heavy refer to increasing severities with the same

sandpaper grade. The roller ends before testing are shown in Fig 2.9. AE data was

recorded using a measurement system that collected raw waveforms at 1 MHz with the

bearing running at 30 and 60 rpm. Data from 30 rpm was recorded before 60 rpm, which

is assumed to have an influence on the recorded data as the surface may be smoothened





     

during operation. This is supported by the results of Paper E.

Figure 2.9: Increasing levels of the artificial roller end wear. a) DL1: P400, b) DL2:

P400 (heavy), c) DL3: P320, d) DL4: P220, e) DL5: P220 (heavy), f) DL6: P80, g)

DL7: P80 (heavy), h) DL8: P80 (very heavy)

2.4 Experiment 4: Constant Speed Seeded Fault Test

Case Western Reserve University (CWRU) provides a publicly available dataset of bear-

ings with seeded faults [100]. The test setup consists of an induction motor and a dy-

namometer mounted face-to-face, being connected with a torque transducer and an en-

coder. The motor contains the test bearings, while the dynamometer acts as an external

load. The dataset includes data records of separate seeded OR, IR and RE faults in the

drive end, and fan end of a motor, with defect sizes from 0.17 mm to 1.02 mm in diameter.

Shaft loads can be varied between zero and four hp. The shaft rate drops from 1797 rpm

at no load to 1730 rpm at the maximum load. Data from this experiment is used in Paper

F. The data utilized is from the smallest fault size in the drive end of the motor, running

at 1797 rpm under a no-load condition with a sample rate of 48 kHz.





   

Figure 2.10: CWRU test rig [100]. 1: Fan end bearing, 2: Drive end bearing, 3: Torque

sensor, 4: Dynamometer

2.5 Experiment 5: Constant Speed Lifetime Test

Dataset 5 is collected by the NSF I/UCR Center for Intelligent Maintenance Systems

(IMS) on behalf of NASA Ames Prognostics Data Repository [101], including three run-

to-failure datasets from a four-bearing test setup. A schematic drawing of the test setup

is shown in Fig 2.11. The bearings were tested at a constant speed of 2000 rpm and a

load of ' 26700 N until failure. Further details can be found in a reference paper written

by the researchers that performed the measurements [102]. Vibration signals from each

bearing were sampled for one second at 20480 Hz with five to ten minute intervals. Data

from tests 1 and 2 are used in Paper F.

2.6 Experiment 6: Low-speed Bearing Lifetime Test

An in-house test rig has been developed at the University of Agder for accelerated lifetime

tests of a 6008 type bearing under low and variable speed conditions. The shaft speed is

controlled by a permanent magnet synchronous motor, while electromechanical actuators

apply up to 12 kN radial and axial load separately. An accelerometer is mounted perpen-

dicularly to the load zone. Measurements from a temperature probe and an eddy current

proximity sensor are also available, in addition to encoder data. The test setup is shown

in Fig. 2.12. Vibration data from a bearing running at 250 rpm with a combined radial

and axial load is used in Paper F. A thorough description of the test rig is given in [103].





     

Figure 2.11: Schematic drawing of IMS test rig [101].

Figure 2.12: In-house test rig for low-speed lifetime testing [103]. 1: Test bearing, 2:

Radial load cylinder, 3: Axial load cylinder, 4: Motor





Chapter 3

Methodology and Results

This chapter gives a summary of the results from this study, based on the appended

papers. Section 3.1 describes the failure mode that was observed in the top drive test,

setting the direction for the remainder of the study. In Section 3.2, TL is applied to

detect the formation of roller-end scratches in the axial bearing test rig. A method for

unsupervised learning of a HI for anomaly detection and threshold setting is proposed.

The method is evaluated on data from the top drive test and an artificially worn axial

tapered roller bearing. Section 3.3 focuses on single-point defects, applying TL for fault

detection. In addition, a method for simulation-driven fault classification from raw time

series data is proposed.

3.1 Roller End Wear in Tapered Roller Bearings

The majority of existing studies on bearing fault detection and diagnosis consider single-

point surface defects in either bearing races or REs. In the top drive test described in

Paper B, abrasive wear with a characteristic arc-shape was observed, distributed on the

roller ends of an axial bearing. This section gives a description of the failure mode and

provides an explanation for the characteristic shape of the scratches. An example of such

scratches was shown in Fig. 2.2.

As described in Section 2.1 and Paper B, a series of tests were performed with the aim

of identifying and comparing potential CIs using AE and acceleration measurements. As

the damage was prominent on roller ends, it was expected to observe frequency compo-

nents at the BSF, possibly with harmonics and shaft frequency sidebands due to amplitude

modulation. Several forcing frequencies were more easily identified in the system using

AE than acceleration, but none could be tied to the roller end scratches. An additional

artificial damage was applied by creating indentations in a roller end, and the amount

of lubricant was reduced to amplify this effect. Data was recorded using three different

27



     

systems, as described in Table 3.1. System B1 and B2 are identical, but were mounted

at two different locations. Plots of the RMS levels at different speeds and DLs are shown

in Fig. 3.1. Note that DL2 was not used in Paper B. Refer to Table 2.2 for naming

of DLs. Baseline measurements with a HE bearing were performed, however, the accel-

eration RMS was actually higher than for the HE bearing than the damaged in some

acceleration measurements. This can be due to both bearing run-in and differences in

assembly, such as shaft alignment. Due to the low axial load, it is unlikely that any

new scratches were formed during the experiments and that the main increase is due to

insufficient lubrication. In the AE measurements, increasing DL results in an increased

RMS level that is more consistent, particularly in the axial direction.

Table 3.1: Dataset 1 instrumentation

Feature System A System B1/B2 System C

Transducer Acceleration Acceleration AE

Frequency 2 Hz -10 kHz 2 Hz -10 kHz 50-400 kHz

Sensitivity 10 mV/ms−2 1.0 µA/ms−2 69 dB (peak)

Sample rate 102.4 kHz 10 kHz 50 kHz

Recording 100 rev 60 s 120 s

This result led to a closer investigation of the failure mode. Tapered roller bearings

can accommodate high axial or combined loads. The tapered shape creates a common

apex point for roller rotational axes. However, it also requires a seating force to act on

the roller end. This is achieved by a retaining rib on the outer race. Under rotation, there

is a relative sliding motion between the roller end and the retaining rib. The combination

of load and sliding motion makes this area sensitive to wear. Poor lubrication and con-

tamination can create a metal-to-metal contact between the mating surfaces. The force

balance of a single roller is shown in Fig. 3.2.

Neglecting friction, the seating force Fseat and normal force Fnorm per roller are a

function of taper angle β, the axial force Fax and number of rollers nr as in Eq. (3.1) and

Eq. (3.2).

Fseat =
Fax
nr

sin(β) (3.1)

Fnorm =
Fax
nr

cos(β) (3.2)

Considering a simplified tapered roller bearing, as shown in Fig. 3.3. Fig. 3.4 shows

an ”unwrapped”, 2-D representation of the rib roller contact area. The roller end can be
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Figure 3.1: Top drive RMS trend in the axial and radial directions, presented as relative

change from HE. a) vibration system A, b) vibration system B1, c) vibration system B2,

d) AE system C.

Figure 3.2: Axial tapered roller bearing forces. a) Axial tapered roller bearing with an

axial load, b) Free body diagram of a single roller.





     

described as a smaller circle A, rolling on a larger circle with center B which represents

the outer race. Let the circles have radius a and b, respectively. The OR retaining rib is

shown in blue. Now consider a particle P between the roller end and the retaining rib.

Given that the scratches are visible on the roller end only, the particle is assumed to be

stationary with respect to the OR during scratch formation. The drawing is illustrative,

and hence RE and OR diameter are not to scale.

Figure 3.3: 3-D illustration of the model in Fig. 3.4.

Figure 3.4: Simplified 2-D scratch model. Trace of particle P caught between retaining

rib and roller end as A rolls on the perimeter of B.





   

Angle ψ between rBA and rBP is a function of roller rotation and particle position

vector rBP. |rBP| is a constant scalar in the roller coordinate frame. For simplification,

let γ represent the following relation: γ = (a + b)/b. The particle position rAP in the

roller coordinate system can modeled as an epitrochoid, being given in Eq. (3.3).

rAP =

[
Px

Py

]
=

[
cosψ − cos γψ

sinψ − sin γψ

][
bγ

|rBP|

]
(3.3)

The modeled trace resembles the observed failure mode, which supports the assump-

tion of abrasive wear on roller ends originating from particles. As scratch formation was

distributed on all rollers, the fault signature can not be expected to exhibit the periodicity

of single-point faults. A particle may be trapped between roller and rib at arbitrary time.

Thus, analysis methods that seek to identify characteristic fault frequencies were deemed

unsuitable for this particular failure mode. Instead, the attention is focused towards ML

for feature extraction, fault detection and classification.

3.2 Detection of Roller End Scratches and Wear

As discussed in Section 3.1, the top drive test did not result in identification of good CIs

for roller end wear. To gather more knowledge of the failure mode and develop applicable

CM techniques, a purpose-built test rig was developed to recreate the roller end scratches

during operation. Test rig functionality and design are the topic of Paper C and Section

2.3. This section presents the data processing and analysis results. Two main aspects of

roller end wear detection are considered in this section:

1. Detection of scratch formation during operation

2. Detecting a change in machine operational characteristics as a consequence of wear

The axial bearing test rig allows collecting labeled AE time-waveforms with and with-

out scratches. The scratch detection is therefore considered a binary classification prob-

lem, determining whether a scratch is present in the time series or not. With access to

the labeled data, the problem is reduced to a supervised classification.

3.2.1 Roller End Scratch Detection with Transfer Learning

In the context of ML, TL refers to the concept of taking knowledge acquired from one

or more source tasks, and utilizing it to improve performance in another target task [70].

The approach has had some success in bearing fault detection by transferring knowledge

of one fault type to another fault severity and operating conditions [72].





     

Using a CNN to categorize images is probably the most used example of supervised

classification. CNNs extract information by convolving the data with a set of kernels,

which act as feature extractors. By applying averaging and pooling operations combined

with several convolutional layers, the network can learn features on different scales. Based

on a large number of labeled images from a set of classes, a CNN learns to extract features

and correctly classify unseen images from the same set of classes.

Designing a classifier requires several choices about hyperparameters such as layer

type, filter size, number of layers and activation functions. In addition, training a deep

neural network is time-consuming, requiring thousands to millions of training examples

for multi-class problems. Learning a pre-trained network to classify a new class requires

less training data. Hence, utilizing a pre-trained network has several advantages over

building a classifier from scratch. In Paper D, it is therefore proposed to use a CNN

pre-trained on image to classify spectrograms obtained from time series of HE and faulty

bearings. In Paper D, three approaches to utilize the inherent knowledge in a pretrained

network were investigated:

1. Replace the final classification layer and fine-tune the network weights to perform

a new classification task.

2. Maintain network weights, and extract intermediate layer features that are used to

train a separate SVM classifier.

3. Extract intermediate layer features. Train a sparse autoencoder (SAE) for dimen-

sionality reduction of the features, then use the compressed representation to train

a separate SVM classifier. This is denoted SAE-SVM.

With approach 1, the learned weights are fine-tuned and associated with a new class.

In approaches 2 and 3, the idea is that CNN features become more specialized towards

the network output, thus it may be beneficial to extract features from earlier layers when

using TL and use them to train a separate classifier, such as SVM.

The AlexNet architecture was chosen for this application [104]. The overall architec-

ture and classifier data flow for the three approaches are shown in Fig. 3.5. This network

configuration was the winner of the 2012 ImageNet Large Scale Visual Recognition Chal-

lenge, which is a competition of classifying images from 1000 different classes. It has five

convolutional and three fully-connected (fc) layers, and was considered deep at that time.

The network was one of the first to train on GPUs, which is nowadays the de facto stan-

dard for training CNNs. Using a network trained on 1000 classes may be an exaggeration

for a binary classification problem. However, the network has never seen bearing data

during training and relies on utilizing already learned features to the new problem. The





   

AlexNet was therefore assumed to have a suitable balance between classification power

and network complexity. The outputs of fully connected layers fc6 and fc7, as shown in

Fig. 3.5, were used in Paper D. An advantage of using SVM is that the objective function

is a quadratic optimization problem, unlike the gradient-descent based training of a CNN,

which results in a faster training with a guaranteed optimal solution. The idea of training

a SAE on the extracted features before a SVM is to obtain a compressed representation

that best captures the information in the extracted features.

Input data
227 x 227 x 3

Convolution + ReLU

Cross-channel 
normalization

Max pooling

Convolution + ReLU

Cross-channel 
normalization

Max pooling

Convolution + ReLU

Convolution + ReLU

Convolution + ReLU

Max pooling

Fully-connected
fc6

ReLU

Dropout

Fully-connected
fc7

ReLU

Dropout

Fully-connected
fc8

Softmax

CNN 
Classifier output

SAE

SVM

SAE-SVM 
Classifier output

SAE

SVM

SAE-SVM 
Classifier output

SVM 
Classifier output

SVM

SVM

SVM Classifier 
output

Figure 3.5: AlexNet architecture with branches showing feature extraction after layer fc6

and fc7, followed by the evaluated classifiers. Grey: Pretrained AlexNet architecture.

Red: Fine-tuned CNN output layer. Blue: SVM classifier. Green: SAE-SVM classifier.

An important limitation of using pretrained networks is the data input format. Recorded





     

AE data are time series recorded at 1 MHz, while the AlexNet accepts 227x227x3 RGB

images. First, the signal was split in 1-second segments and normalized to unit RMS. The

transformation from 1-D time series to a 2-D image was then done by calculating a time-

frequency representation of the signal, using the continuous wavelet transform (CWT)

function in Matlab with a Morse mother wavelet [105]. The resulting image was resized

to the required size.

The network was trained using 75 %, 50 % and 25 % hold out during training to

test robustness against little training data. Results are averaged to obtain mean values

for accuracy, probability of false alarm (PFA) and probability of detection (PD) for the

different test cases. Results are given in Table 3.2. Overall, a SVM trained on features

from a pretrained network was judged the best combination of performance and ease of

implementation.

Table 3.2: Validation accuracy: Dataset 3.

CNN SVM fc6 SVM fc7 SAE-SVM fc6 SAE-SVM fc7

Accuracy 96.9% 97.8% 97.0% 94.9% 73.2%

PFA 2.0% 1.0% 2.33% 0.67% 33.3%

PD 96.0% 98.7% 99.3% 88.7% 22.7%

The presented results suggest that TL with a pretrained CNN is a fast way to imple-

ment ML-based fault detection. However, representative training data for all classes are

required, limiting industrial applicability where historic data is often non-existent. Since

detection of scratches is only the first step, a measurement for damage accumulation or

severity is also required to make health assessment. The same TL approach is applied to

fault detection of single-point faults, described in Section 3.3.

3.2.2 Health Indicator with Variational Autoencoder

This work represents the second approach to wear detection that is listed in Section 3.2,

based on the contents of Paper E. Rather than detecting the formation of scratches, the

goal is to detect a deviation from normal operating conditions that can be quantified in a

single variable - a HI - and evaluated using statistical hypothesis testing. The concept of

a HI is appealing, as it enables an asset owner or operator to easily evaluate and compare

the current state of a machine. With measurements from HE operation, one can establish

a baseline for normal condition and define a threshold based on that. The methodology





   

is demonstrated on gears and bearings using handpicked CIs and a whitening transform

[93, 106, 7], as CIs are often correlated. Given variables with well-defined distributions,

this process is efficient to perform hypothesis testing with a predefined significance level

α. Let Y be a random variable which is a function of CIs. Further, let Y0 be a subset

of Y , calculated from CIs at HE operation only, with a defined cumulative distribution

function (FY0(·)). The HI is obtained by normalizing a new observation y from Y with

the inverse CDF at the desired significance α, as shown in Eq. (3.4)

HI =
y

F−1Y0
(1− α)

(3.4)

The probability of observing a HI larger than 1 when the system in nominal condition

(HI0), can then be interpreted as the PFA, as given in Eq. (3.5),

P (HI ≥ 1) = PFA (3.5)

In an industrial application, such as the top drive, a false positive may initiate a very

costly maintenance operation, so the PFA is required to be low. Additionally, online

monitoring systems enable the equipment owner to perform measurements more often.

The family-wise error rate (FWER), as defined in Eq. (3.6), is the probability of having

one or more false alarms in q tests with a given threshold α.

FWER = 1− (1− α)q (3.6)

Consider a toy example of a CM system using only two sensors that perform mea-

surements every 10 minutes. In 24 hours, that equals 288 tests. Using a threshold of

three standard deviations, i.e. α ' 0.003, will result in a FWER = 58 %, meaning that

it is more likely than not to have at least one false alarm every day. It is clear that the

threshold must be set significantly lower. In the paper, a threshold of 10−6 is used. In

the toy example, this results in a FWER = 0.02 %.

Some CIs, such as RMS, are approximately Gaussian for HE bearings. Other CIs may

have arbitrary distributions. It is therefore proposed to utilize the framework of VAEs to

map arbitrarily distributed CIs to a smaller set of latent variables that follow a Gaussian

distribution. Given observable data x, the assumption is that observations are generated

from a set of an underlying latent variables z ∼ p (z) and the conditional distribution

pθ(x|z) with parameters θ. The distribution of observed data x ∼ pd (x) is then given as

in Eq. (3.7).

pd(x) =

∫
z

p(z)pθ(x|z)dz (3.7)





     

However, these distributions are generally not known, thus the integral is intractable.

VAEs allow us to approximate p (z) ' q (z) under the assumption that p (z) has a par-

ticular form, in this case, being a multivariate Gaussian with identity covariance matrix.

The aggregated distribution q (z) given input x ∼ pd (x) is then defined as in Eq. (3.8)

[96].

q(z) =

∫
x

qφ(z|x)pd(x)dx (3.8)

The approximation is done by an autoencoder. The autoencoder is a neural network

structure that consists of an encoder and a decoder network, which learn the parameters

of conditional distributions qφ(z|x) and pθ(x|z), respectively. The autoencoder takes data

x as input, and uses the encoder to compress x into a latent vector, z. The decoder then

attempts to reconstruct the input, denoted x̂. The latent space is of lower dimension than

the data space, so the encoder is forced to learn features that capture the most information

in z. This is done by minimizing reconstruction loss LR, which is implemented as shown

in Eq. (3.9), for a batch x of size M with N features per datapoint in the batch.

LR =
1

M

M∑
i=1

N∑
j=1

(xi,j − x̂i,j)
2 (3.9)

VAEs, proposed in [95], also have an encoder-decoder structure. However, VAEs are

generative models that provide an efficient way to approximate variational parameters

of a model when closed-form integrals are intractable or sampling-based approaches, e.g.

Monte Carlo simulation, is considered too computationally expensive[95]. To control the

latent distribution q (z), Kulback–Leibler (KL) divergence (DKL) between the encoder

output and the target distribution are added as a loss (LKL) for regularization. In prac-

tice, the encoder outputs parameters of a distribution µ and log(σ2), each of length J ,

which is the latent variable dimension. Minimizing the DKL is equivalent to maximizing

the evidence lower bound (ELBO) of the marginal probability of a data point [95]. If the

target distribution is a Gaussian p (z) ∼ N (0, I), the LKL for a batch is as given in Eq.

(3.10).

LKL =
1

M

M∑
i=1

DKL (q(z)||p(z))) =
1

2M

M∑
i=1

J∑
j=1

(
1 + log

(
σ2
i,j

)
− µ2

i,j − σ2
i,j

)
(3.10)

As gradients can not flow through stochastic nodes, the ”reparameterization trick” is

applied by introducing an auxiliary random variable ε [95]. This allows us to train VAEs

using backpropagation. Given an output µ and log(σ2) from the encoder, the latent





   

vector z is calculated as in Eq. (3.11).

z = µ+ exp{0.5 log(σ2)}ε (3.11)

An overview of the network architecture alongside a more detailed network configura-

tion is shown in Fig. 3.6. Only a single hidden layer was used in the experiments, as it

was found that more layers did not improve performance, but instead caused convergence

to be more unstable.

Figure 3.6: a) Overview of the VAE architecture. b) VAE layer configuration. Colors

indicate network architecture affiliation.

As a standard VAE is trained to reconstruct the input while maintaining a Gaussian

latent space, one network must be trained for each operating condition. If given mul-

tiple classes, the network will cluster similar samples within the Gaussian, and the HI

calculation is not valid. The CVAE is an extension to the VAE, where the network is

conditioned on an auxiliary variable. In this case, input data and latent vector are con-

catenated with a one-hot encoded label vector representing different speeds. Experiment

2 contains data from 5 different speeds (50, 100, 150, 200 and 250 rpm), thus 100 and 250

rpm datapoints will be concatenated with a conditioning vector c100 = [0, 1, 0, 0, 0] and

c250 = [0, 0, 0, 0, 1], respectively. This allows a single network to learn representations of

all available operating conditions with shared weights, exploiting similarities between two





     

speeds while maintaining a Gaussian latent space for HE data. The larger dataset will

reduce the risk of overfitting at the cost of lower learning capacity, as the same number

of weights must learn more than one category of data.

In Paper E, both VAEs and CVAEs were trained on data from the top drive test (ex-

periment 1), and artificial abrasive roller end wear test (experiment 3B) as described in

2.1 and 2.3.2, respectively. In both cases, input data to the model are the coefficients of

an AR model of order p, AR(p), fitted to waveform data. Data from experiment 1 showed

periodicity in the acceleration autocorrelation function, and was therefore stationarized

by differentiation before fitting the AR model. By differentiating, the signal is effectively

transformed from acceleration to jerk, enhancing high frequency components. The appro-

priate model order, i.e. number of coefficients, was determined by calculating the partial

autocorrelation function (PACF). The PACF at lag p + 1 describes the autocorrelation,

which is not accounted for by the previous p lags [107]. Model order is considered sufficient

when PACF is 0 with 95 % confidence level, calculated as in Eq. (3.12). The number of

datapoints in the time series is denoted N .

PACF ≤ ±1.96√
N

(3.12)

For each record in the dataset, AR model order p was determined based on the PACF.

Table 3.3 shows the statistics and selected value for p. In the CVAE, input data was

zero-padded to accommodate different values of p in a single network.

Table 3.3: AR model order and statistics.

DS1-50 DS1-100 DS1-150 DS1-200 DS1-250 DS2-30 DS2-60

Mean (p) 32 12 20 16 15 14 25

STD 9 9 13 9 10 10 11

Median 29 5 23 9 9 7 17

In the VAE loss function, LR measures how well the input data is reconstructed.

However, LKL does not show directly how well the aggregated distribution, i.e. sampled

values of z, approximates the desired Gaussian prior. To validate this, DKL between a

batch of M z’s, q(zM) and p(z), as given in Eq. (3.13). ΣM is the covariance matrix of

zM and tr(·) is the matrix trace operator.

DKL (q(zM)||p(z))) =
1

2

(
tr(ΣM) + µTMµM − J + loge

(
1

|ΣM |

))
(3.13)

Table 3.4 compares the loss functions and aggregated KL divergence values at the end

of VAE training. Reconstruction loss, LR, has positive correlation with model order p





   

Table 3.4: Final loss values after training of the VAEs.

LR LKL DKL

train val test train val test train val test

DS1-50 20.668 23.130 0.000 3.484 3.266 2.106 0.033 0.017 0.025

DS1-100 4.432 5.375 0.000 2.765 2.550 1.950 0.033 0.033 0.050

DS1-150 9.814 10.397 0.000 3.205 2.991 2.085 0.038 0.044 0.021

DS1-200 6.987 8.778 5.400 3.001 2.853 2.071 0.028 0.091 0.112

DS1-250 5.328 6.090 6.215 3.178 2.739 1.838 0.020 0.067 0.054

DS2-30 5.255 5.670 6.215 2.844 2.803 2.099 0.050 0.010 0.007

DS2-60 7.418 7.658 7.236 3.586 3.452 1.943 0.041 0.019 0.017

Table 3.5: Final loss values after training of the CVAE.

LR LKL DKL

train val test train val test train val test

DS1 14.453 14.080 13.977 2.910 2.825 1.988 0.068 0.007 0.008

DS2 5.302 6.303 8.389 2.702 3.015 2.748 0.038 0.005 0.020

in both datasets. This is expected, as the formulation of LR sums square error over the

features in a datapoint. LKL, is relatively stable for all datasets and does not appear

to be related to LR. This is reflected in DKL, which is close to 0 for all datasets. This

confirms that z approximates the target Gaussian distribution.

Loss values for the CVAEs, shown in Table 3.5, align well with losses with the VAE.

Reconstruction loss is higher than the average of the individual VAE losses, indicating

that reconstruction per dataset is not as good. LKL and DKL are also in the same range.

For a given level of LKL, lower reconstruction loss means that the latent variables are

able to capture more of the information in the data.

It was selected to calculate the HI based on the norm of the latent vector, y = ‖z‖. For

z of dimension J, Y0 is χ-distributed with J degrees of freedom. The HI is then calculated

as shown in Eq. (3.4).

Fig. 3.7 shows the HI for the different test cases in dataset 1, calculated using both

separate VAEs for each rpm (left column) and a single CVAE for all rpms. As seen in the

box plots, the variance of the predicted HI increases with the value. Whiskers are set to

2.5th and 97.5th percentile. In the following discussion, HI value refers to the median in

each DL, marked as the orange horizontal line inside the boxes. The alarm level is set to

HI = 1, and an alarm level at HI = 0.75 There is a consistent HI increase for all DLs

at all rpms. DL2 indicates a warning for all rpms except for 150. The alarm threshold

of 1 is exceeded at DL 3 in all rpms. HI calculated using CVAE shows the same overall





     

pattern, with some minor variations. There is no clear relationship between HI and VAE

or CVAE at different speeds. All HI values are shown in Table 3.6.
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Figure 3.7: HI for top drive data. Left column is calculated using a normal VAE, and

right column with a CVAE. a-b) 50 rpm, c-d) 100 rpm, e-f) 150 rpm, g-h) 200 rpm,

i-j) 250 rpm.

Data from experiment 3B shows a less consistent HI trend. At 30 rpm, DL2 and

upward has a HI well above the alarm threshold, as shown in Fig. 3.8. Except being

consistently above alarm limit, there is little correlation between DL and HI. Results for

60 rpm data shows an overall similar trend, but at a lower HI value. Table 3.7 lists HI

values for all rpms and DLs in experiment 3B.

Several factors may have contributed to this behavior. Firstly, the machine and bearing





   

DS1-50 DS1-100 DS1-150 DS1-200 DS1-250

DL VAE CVAE VAE CVAE VAE CVAE VAE CVAE VAE CVAE

DL1 0.28 0.28 0.28 0.25 0.28 0.28 0.25 0.27 0.27 0.26

DL2 - - 1.51 0.66 0.63 0.82 0.82 0.68 0.98 0.72

DL3 2.50 1.49 2.54 2.76 2.23 1.55 3.07 2.79 2.03 2.48

Table 3.6: HI values for experiment 1
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Figure 3.8: HI for axial test rig data. Left column is calculated using a normal VAE, and

right column with a CVAE. a-b) 30 rpm, c-d) 60 rpm.

had to be disassembled to inflict damage on the roller ends. As experienced in Paper A,

disassembly can have a large impact on recorded data, even though AE appeared more

resistant in that particular case. Secondly, damage is inflicted manually using sandpaper

on the roller ends. This may cause inconsistent severity, even if increasingly coarse grit

grades were used. Finally, the artificial wear on roller ends may have been smoothened

by operating during data collection. Data from 60 rpm was recorded after 30 rpm, which

can explain the lower level but similar trend of the HI.

The results show that using VAEs for anomaly detection in large, axial bearings is

feasible. Coefficients from AR models using both AE and (differentiated) acceleration

data are shown to be capable of capturing differences in operating characteristics, and

the inflicted damage resulted in a HI above the alarm level of 1 in both datasets. Further,

conditioning on speed generalizes the methodology to more operating conditions in the

same network while maintaining a similar HI level.





     

DS1-30 DS1-60

DL VAE CVAE VAE CVAE

DL0 0.28 0.27 0.27 0.29

DL1 0.17 0.20 0.21 0.26

DL2 1.24 1.17 0.41 0.49

DL3 1.51 1.57 0.71 0.79

DL4 1.47 1.45 0.84 0.97

DL5 1.64 1.62 1.03 1.16

DL6 1.29 1.30 0.59 0.68

DL7 1.06 1.11 0.51 0.56

DL8 1.65 1.57 0.65 0.69

Table 3.7: HI values for experiment 3B

3.3 Detection and Diagnosis of Single-point Defects

3.3.1 Single-point Fault Detection with Transfer Learning

In Paper D, the TL methodology described in Section 3.2.1 was applied to single-point

surface defects as well as roller end scratches. Data from experiment 2, described in

Section 2.2, was used in testing. The same binary classification setup was used, using

both OR and RE fault as the damaged state. In this experiment, the actual faulty signal

was corrupted with additive noise, yielding SNR levels of 0 dB, -3 dB and -10 dB relative

to the uncorrupted signal. As in Section 3.2.1, training was done using 75 %, 50 % and

25 % of the total dataset as training data. A -10 dB SNR level was the only to show

a clear drop in performance, particularly for RE fault. This was expected, as this fault

was much less severe. Less training data did not have a consistent effect on performance,

presumably due to a homogenous dataset. Table 3.8 and 3.9 gives the classifier accuracy,

PFA and PD for OR and RE damage respectively, averaged for all SNR levels and training

data holdout. Training on all three classes simultaneously was not tested, but should be

considered for further work.

Table 3.8: Validation accuracy: Dataset 2, OR damage.

CNN SVM fc6 SVM fc7 SAE-SVM fc6 SAE-SVM fc7

Accuracy 98,05 % 99,11 % 98,87 % 97,43 % 97,62 %

PFA 1,19 % 0,79 % 0,87 % 2,22 % 2,22 %

PD 95,71 % 98,81 % 98,10 % 96,19 % 97,14 %





   

Table 3.9: Validation accuracy: Dataset 2, RE damage.

CNN SVM fc6 SVM fc7 SAE-SVM fc6 SAE-SVM fc7

Accuracy 94,11 % 94,35 % 92,86 % 90,60 % 91,31 %

PFA 1,98 % 2,54 % 3,81 % 4,92 % 4,52 %

PD 82,38 % 85,00 % 82,86 % 77,14 % 78,81 %

TL showed promising results for fast and simple implementation of supervised clas-

sification of bearing faults. Despite this, the approach was not pursued further in this

project. This decision was based on multiple issues with the approach:

1. Supervised classification requires training data for all relevant fault types, which is

often not available in an industrial application.

2. Restrictions on input data dimension result in loss of detail for high-resolution time

series. This could limit further performance improvements.

3. Spectrogram calculation is computationally demanding for long time series with

high time and frequency resolution.

3.3.2 Simulation-driven Single-point Fault Diagnosis

This section is based on Paper F, which addresses the previously issue of utilizing deep

learning when representative fault data is not available. Given the bearing specification, it

is possible to generate simulated vibration signals. A simple vibration model for the fault

signal was developed. A fault signal xF is modeled as amplitude modulated bandpass-

filtered noise wbp. The modulation function was obtained by convolving an exponentially

decaying function h of duration th with an impulse train p. The impulse period corre-

sponded to the characteristic fault frequency. Random jitter in time between impacts

and impulse amplitude is also included in p, to obtain a pseudo-cyclostationary signal [3].

Amplitude modulation function m1 was added to model the fault transition through the

load zone with fs and FTF for IR and RE faults respectively. Modulating function m2

models the alternating IR and OR impacts for RE damage. The fault signal equation is

shown in Eq. (3.14).

xF = ((m1 +m2)p ∗ h)wbp (3.14)

Any parameter that is not known is modeled as a random variable instead of a fixed

value. The assumption is that by defining the distributions wide enough, a subset of the

simulated signals will approximate the real faults.





     

3.3.3 Data Preprocessing

Each dataset consists of N records with duration tr. In paper F, some records are used

directly and some are split in multiple parts using a rectangular rolling window with

duration tw < tr and a stride of ts. The simulated training data is a combination of a

real, HE part and a simulated, faulty part. Because of this combination, it is necessary

to know which records are actually HE when simulating the training dataset. This infor-

mation is readily available in data from experiment 4, where faults are seeded artificially.

In run-to-failure datasets 5 and 6, the first NHE records are assumed to be HE. This

assessment is done based on results from reference publication utilizing the datasets. In a

real application, one would collect baseline records when the machine is new or recently

overhauled.

Data preprocessing is slightly different depending on the dataset. First, HE data xHE

is augmented with white noise w, and normalized to unit RMS. Healthy data to be used

in simulation is drawn with replacement from the complete set of HE data. Then each

record of simulated faulty data xF is normalized with a factor λRMS{xF}, where λ is a

random variable that controls the power ratio between HE and simulated data.

For dataset 4, the sum is denoted x′S, as shown in Eq. (3.15). x′S is then normalized

again to unit RMS, denoted xS as in Eq. (3.16).

x′S =
xHE +w

RMS{xHE +w}
+

xF
λRMS{xF}

(3.15)

xS =
x′S

RMS{x′S}
(3.16)

The idea behind this normalization is to ensure that training and test data is on a

similar scale. As the severity of seeded faults have a stepwise increase, it is hard to predict

power of the real faulty signal. Normalizing all data to unit RMS ensures that the signal

magnitude at test time is not too different from the simulated training data.

In run-to-failure tests, the situation is different. Here, the increase in RMS is assumed

to be more gradual, and may be utilized by the network to perform classification. Again,

xHE is augmented with additive white noise w and normalized to the RMS of the original

segment xHE. The simulated faulty data xF is also normalized with the same factor

λRMS{xF}. This time, the signals are simply added to obtain the simulated signal, as

shown in Eq. (3.17).

xS =
(xHE +w) RMS{xHE}

RMS{xHE +w}
+

xF
λRMS{xF}

(3.17)

While this model captures classical characteristics of a faulty bearing vibration signal,

there are several unknown parameters. By treating parameters as random variables, sig-





   

nals with vastly different properties can be generated based on previous experience and

less assumptions about system properties. When simulating a time series, distributions

are sampled to obtain a set of model parameters. Fig. 3.9 shows the components of a

simulated RE fault signal.

��
�
�

��

��
�
�

��

��
�
�

��

��
�
�

��

��
�
�

��

��
�
�

��

���� ���� ���� ���� ���� ����

��
�
�

��

�
�����	

�
��
�

�

�
��

�

�
��

��

��

Figure 3.9: Components of generated RE fault compared to actual fault signal. a) Healthy

signal xHE. b) Band-pass filtered noise wbp. c) Modulating envelope m1 + m2. d)

Generated fault impacts xp. e) Additive noise w. f) Generated fault signal xs. g)

Actual fault signal.

The simulated vibration signal were used to train an ensemble of classifiers, each based

on stacked blocks of 1D convolutions with ReLU activation and max pooling layers. Two





     

low-level feature extraction blocks are followed by eight blocks with increasing dilation

rates. This approach allows the classifier to maintain a wide receptive field on high-

resolution data with relatively few layers. The principle of dilated 1D convolutions is

shown in Fig 3.10. Global average pooling is applied in the final layer before classification

output. A complete overview of the network structure is given in Table 3.10. Separate

classifiers were trained for each channel. The models were fitted to training data over 10

epochs with batch size 32, except for experiment 6 which had to reduce batch size to 16

due to memory constraints. The Adam optimizer with learning rate 10−4 was used in all

cases.

Dilation 1

Dilation 2

Dilation 4

Output

Input

Figure 3.10: Dilated convolutional structure

The ability to classify single point fault types were evaluated by testing on high-

resolution accelerometer data, sampled at 48 kHz, from experiment 4 in Section 2.4. As

the dataset contains a single record of each fault type, this time series is split into 1 second

segments with 0.02 s stride to obtain approximately 200 records per fault type for testing.

The confusion matrix is shown in Fig. 3.11. The classifier successfully diagnose 100 % of

the IR and OR faults. However, RE faults are misdiagnosed as IR damage as well. This

fault type was not diagnosable in the baseline study, and was reported to not show typical

characteristics of bearing failure [108]. As the simulated signal is designed to replicate

a typical bearing fault, it is likely that none of the training data was representative of

the actual RE fault. This illustrates a disadvantage of simulation-driven training of deep

learning classifiers.

A similar approach was used on three run-to-failure tests from experiment 5 and 6.

Vibration measurements sampled throughout the tests were either used directly (exper-

iment 5) or split in shorter segments (experiment 6). In experiment 6, each classifier

in the ensemble have an internal plurality vote over the separate windows in a record.

This process is omitted with data from experiment 5, as the complete signal was used





   

Table 3.10: Network parameters

No. Type Filters Size Stride Padding Dilation Activation

0 Input

1 Conv1D 32 11 1 valid 1 ReLU

2 MaxPooling1D 3 2

3 BatchNormalization

4 Conv1D 32 5 1 valid 1 ReLU

5 MaxPooling1D 3 2

6 BatchNormalization

7 Conv1D 8 5 1 same 1 ReLU

8 Conv1D 8 5 1 same 2 ReLU

9 Conv1D 8 5 1 same 4 ReLU

10 Conv1D 8 5 1 same 8 ReLU

11 Conv1D 8 5 1 same 16 ReLU

12 Conv1D 8 5 1 same 32 ReLU

13 Conv1D 8 5 1 same 64 ReLU

14 Conv1D 8 5 1 valid 128 ReLU

15 GlobalAveragePooling1D

16 Dense 4 Softmax
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Figure 3.11: Dataset 4 confusion matrix

in training and testing. The ensemble then has another plurality vote to determine final

diagnosis output. It is impossible to verify exactly when a fault occurs in the run to
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Figure 3.12: Plot of RMS and kurtosis for the faulty bearings in experiment 5. a) Test

1, bearing 3. b) Test 1, bearing 4. c) Test 2, bearing 1.

failure test. For reference, the RMS and kurtosis plots for experiment 5, shown in Fig.

3.12, are examined to estimate the damage initiation. This can not be used for diagnosis

alone, but combined with the observed damage at the end of life, it gives an indication

of when faults occur, and what fault type is expected. In experiment 5, test 1, kurtosis

increase in bearing 4 around record 1435, followed by a larger increase at record 1610. In

bearing 3, kurtosis increases from record 1800. In test 2, an increase starting from record

530 is observed in bearing 1.

Classifier output from test 1 until failure is shown in Fig. 3.13. Inspections after

failure revealed IR damage in bearing 3 and RE damage in bearing 4. The classifier

briefly diagnoses bearing 4 correctly as RE at record 1525, 90 records after an increase

in kurtosis. Then, the classifier switches to IR diagnosis output at record 1554. Towards

the end of life, the classifier alternates between IR and RE output, with the majority of

records being misclassified as IR. The first fault detected in bearing 3 is misclassified as

RE damage. Around record 2000, the classifier changes to the correct IR fault diagnosis,

before switching to an OR diagnosis towards the end of life. Upon inspection, the IR was

severely spalled, which can make the fault signal less impulsive. The simulated training

data does not take larger distributed spalls into account, and may not diagnose it correctly.

As bearing 4 appears to fail before bearing 3, it is also possible that vibration from the

faulty bearings interfere, contributing to misclassification.

Figure 3.14 shows diagnosis output for test 2 in experiment 5. An OR fault in bearing

1 is indicated at record 530, which corresponds very well with the RMS and kurtosis

increase shown in Fig. 3.12. The diagnosis is stable towards end of life, before briefly
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Figure 3.13: Classifier output for experiment 5, test 1. Classification by majority vot-

ing. At the end of testing, bearing B3 and B4 were found to have IR and RE damage

respectively.

returning to HE output. At this point, the bearing is severely damaged, which may cause

less transient impulses masked in high levels of noise. The other bearings are also classified

as faulty at the end of testing, but were not actually damaged. Again, it is possible that

vibration from the damaged bearing 1 is picked up by the sensors on the other bearings.
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Figure 3.14: Classifier output for experiment 5, test 2. Classification by majority voting.

At the end of testing, bearing B1 was found to have OR damage.

Experiment 6 contains a run-to-failure test at 250 rpm. In [103], the bearing was

reported to have damage in IR, RE and OR at the end of life. The authors found that

indications of RE damage were present from record 171. The proposed classifier output, as

shown in Fig. 3.15, also indicate initial RE damage occurring at record 171. The diagnosis

changes to HE, before returning to RE damage. As all fault types were present at the end

of life, it is not possible to determine a correct initial diagnosis with absolute certainty.

The presence of multiple faults is also a likely explanation for the HE classification after





     

first diagnosing a RE damage.
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Figure 3.15: Classifier output for dataset 6. Classification by majority voting. At the

end of testing, the bearing was found to have RE, OR and IR damage. RE damage is

asusmed to occur first.

Simulation-driven classification shows good diagnostics performance on seeded single-

point faults, but misclassifies new records if the observed damage differs too much from

the simulated training data. The classifier is able to detect faults in more realistic run-to-

failure, although the detection is later that the observed kurtosis increase in experiment

5, test 1. In this test, the classifier also tend to misclassify the faults. In the remaining

experiments, faults are indicated at the same time or slightly later than in reference papers.

It is assumed that multiple fault types and severe damage tend to cause misclassification.





Chapter 4

Concluding Remarks

4.1 Conclusions

This project focuses on developing methods for CM of large rolling element bearings

operating at low speed, motivated by unplanned downtimes in offshore drilling rigs caused

by top drive bearing failure. A review of CM methods for large, low-speed bearings is

presented in Paper A, showing state-of-the-art CM methods under an assumption that

faults result in the presence of fundamental frequencies of signals associated with the

bearing faults. In Paper B, a used top drive with visible scratches distributed on the

roller ends was tested in a workshop. Assuming such roller end wear would also result in

harmonic components at the roller frequency, the machine was equipped with acceleration

and AE measurement systems that recorded data at different speeds in the operating

range. Despite thorough analysis, no fault-related harmonic component was observed in

the test data. It was concluded that fault diagnosis methods that rely on the presence of

fundamental fault frequency are not effective for diagnosis of such scratches. Other reliable

CIs were not discovered, though AE RMS showed some increases with increasing DLs.

However, the study provided a better understanding of the failure mode and limitations

of state-of-the-art CM methods’ ability to detect and diagnose it. In addition to roller

end wear, CM methods for single-point surface damage are also considered throughout

the study.

To address the lack of reliable CIs for roller end wear, the research focus was shifted to-

wards ML algorithms for feature extraction and classification. A test rig for axial tapered

roller bearings was then developed, as described in Paper C. It was specifically designed to

imitate roller end scratches by means of a mechanism that allows scratch formation during

operation. In Paper D, a pre-trained CNN was used to extract features for supervised

binary classification of scratches as well as single-point faults based on spectrograms.

This TL approach is proposed as a simple implementation of automated bearing fault

51



     

detection in case fault data is available, but manual analysis is still time-consuming and

requires skilled personnel. Several variations of feature extraction and classification were

tested, and a support vector machine trained on directly extracted features was judged to

have the best balance of accuracy, robustness, ease of implementation and computational

burden.

Like all supervised classification, TL also requires labeled training data representative

for all problem classes. In this study, the test rig was used to obtain training data, but it

is acknowledged that historic fault data is often not available in industrial applications.

Papers E and F propose two different approaches to tackle this issue. In Paper E, deviation

from HE operational characteristics is quantified by using variational autoencoders to infer

latent Gaussian variables from the observed data. This approach allows setting statistical

thresholds on arbitrarily distributed features. In critical equipment such as top drives, the

ability to control a false alarm rate is a valuable tool to avoid unnecessary downtime for

maintenance. The method was applied to both data from the axial bearing test rig and

top drive test data. In both cases, the HI gave higher readings, including warnings and

alarms, at increasing levels of damage. The methodology is general, and can be applied

to any kind of data, but it was demonstrated that it is also efficient for bearing health

estimation.

Paper F considers single-point defects, being a different scenario than roller end wear.

The fault characteristics are relatively well known, and several models exist to simulate a

defect bearing using vibration signals. The scope of the proposed method is twofold. The

first part considers obtaining sufficiently realistic fault signals from a model with unknown

or uncertain parameters. This is done by treating model parameters as distributions that

are sampled for signal generation. The second part is the use of 1-D dilated convolutions

to extract features from raw, high-resolution data with less layers and smaller filter size.

Unlike the spectrograms used in Paper D, the proposed network structure is better suited

to capture features on fine and coarse timescales simultaneously. By making the model

parameter distributions wide enough, the network was able to learn more general features

that successfully classified seeded OR and IR faults in unseen time series, while RE

damage was misdiagnosed as IR. In run-to-failure tests at both high and low speed,

classification performance was more unstable with regards to fault type. However, if

diagnosis is disregarded and instead treating all fault types as a single faulty class, the

detection capability was comparable to reference methods from the literature.

Overall, the project has resulted in methods for feature extraction, fault detection and

diagnostics of bearings. The proposed methods have been tested on data from high-speed

and low-speed bearings. The unsupervised HI was shown effective on actual top drive

vibration signals, while the remaining methods were tested on data from in-house test





  

rigs and publicly available datasets.

4.2 Limitations

The TL approach presented in Section 3.2.1 requires that the new data can be represented

in the same format as the training data. In Paper D, the network was initially trained

on RGB images sized 227x227x3. As vibration and AE time series are 1D, data was split

in segments, transformed to time-frequency representations (spectrograms) and resized

to the same input size. This clearly limits the time and frequency resolution of the

spectrograms. Only a binary classification was done, so the diagnosis performance is not

evaluated. The method also requires that representative training data is available, which

may be hard to obtain in a production environment.

The VAE and CVAE approach to HI calculation in Paper E reduces the requirements

on feature engineering and selection, but some of the features have to actually carry

information that can be used to indicate a machine health. A change can occur over time

but still not be an indication of degrading health. The AR model coefficients were capable

of capturing changes in time series characteristics, but the HI calculation does not provide

a direct physical interpretation of the change. With VAEs, a separate classifier must be

trained for each operating condition. This is somewhat remedied by the conditioning in

CVAEs, but one-hot encoding of the conditioning vector limits the capability of classifying

unseen operating conditions.

The classifier trained on simulated fault signals was in general capable of fault detec-

tion. There was no missed detection of seeded single-point defects, i.e. damaged data

classified as HE. However, RE faults in the test dataset did not exhibit the typical fault

signature as expected, thus they were consistently misclassified as IR faults. This also

reflects on classifier performance in more realistic run-to-failure experiments. Tests with

multiple faults present simultaneously and with faulty bearings nearby, reduced classifier

diagnosis performance. These results emphasize that the simulation-driven classification

is limited by the model’s ability to mimic the actual fault signal. In all cases, the proposed

methods were tested on data from test rigs or in the top drive case, without using an axial

load. Thus, the methodologies have not been validated in a production environment.

4.3 Further Work

The effectiveness of applying an image classification network to a bearing fault detection

task, shows that knowledge can be utilized across domains despite some limitations. In

the experiments, only a binary classification was tested. However, the ability to separate





     

different faulty classes should also be investigated. Also, instead of transferring knowledge

from very separate domains, the TL methodology can be used on a network trained on

large amounts of labeled data from different machines. With enough data, the network

could be able to separate ”style” from ”content”, i.e. ”machine specific signature” from

”fault information”. In that sense, knowledge of faults in some machines is transferred to

classification of new datasets. Developing such a pretrained network on bearing vibration

data could have large industrial benefits.

In the VAE, one network was trained for each operating speed. This is time consuming

and might reduce generality. The CVAE approach is an improvement, which allowed a

single network to be conditioned on a finite set of operating speeds. A further improvement

would be to replace one-hot encoding of continuous variables like speed and load with

a floating point number scaled from 0 to 1. This can also be seen as a form of TL,

where artificial faulty signals can be generated for a specific machine condition based on

similar experiences from other machines. This could be used to train a machine-specific

classifier as in Paper F. Other formats for input data and encoder/decoder structure

should be investigated for use in VAEs, such as the 1-D CNN and recurrent layers for

input sequences.

The proposed methods are developed and tested on fault detection and diagnosis

problems. Using features from TL for a HI should be considered for RUL estimation. It

should also be a priority to validate the proposed methods on actual data from industrial

equipment in operation.
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Abstract – Rolling element bearings (REBs) are key components in most rotating

machinery. Large, slow-rotating REBs found in heavy industrial applications like offshore

drilling equipment, steel- and paper mills and wind turbines are the topic of this paper.

In such applications, bearings are normally non-redundant components, meaning bearing

failure will cause system downtime. Execution of unplanned, on-site maintenance may

be costly, time-consuming and difficult or even impossible. Implementation of condition-

based maintenance strategies is a means to reduce total lifecycle costs by improving utiliza-

tion of component lifetime while maintaining system availability. Condition monitoring

systems capable of early, reliable detection and diagnosis of incipient faults is necessary

for the planning of maintenance actions in due time. In this paper, novel and established

condition monitoring methods are surveyed for this purpose. Prominent challenges are

speed variations, non-stationary behavior, and low signal-to-noise ratio. Advanced sig-

nal processing methods, including order tracking and resampling from time to angular

domain, higher order statistics, and cyclic spectral analysis are presented. Methods for

data acquisition and maintenance decision making are also discussed. A discussion of the

surveyed methods and suggestions for future research concludes the paper.

A.1 Introduction

Roller Element Bearing (REB)s are essential mechanical components, used in virtually all

types of rotating machinery. The range of types, variants and sizes match the diversity of

applications. This paper aims to provide insight into condition monitoring (CM) meth-

ods suitable for large, slow-rotating bearings, typically found in paper and steel mills,

offshore drilling equipment, wind turbines and similar heavy industries. It is difficult to

define strict limits with regards to size and speed. However, other similarities can be

defined. Replacement and maintenance is expensive, time-consuming, and in many cases
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not possible on site. Combined with operational non-redundancy, this motivates CM for

increased control of machine health. The ability to utilize more of the component lifetime

while reducing the risk of unexpected failure potentially reduces lifecycle costs.

A survey presented at the Noble Analyst Day 2012 mapped causes of downtime on

drilling rigs in the period 2011-December 2012 [1]. Looking at downtime by equipment

on all rig types, top drive failure is the second largest contributor, with a total of 13 %.

Further analysis shows that bearing failure is the main overall cause of downtime in top

drives, despite variations between manufacturers and types. In top drives, a large tapered

roller thrust bearing supports the weight of the drill string. With an outer diameter of up

to 750mm and a rotational speed of 240 rpm (4 Hz), top drive main bearings qualify as

both large and slow-rotating. The statistics show a potential for improved CM of large,

slow-rotating bearings in the offshore industry.

A.2 Condition Based Maintenance Strategies

Most systems require maintenance to a certain extent. The approach to maintenance is

influenced by factors such as consequences of failure, maintenance cost, and failure rates.

Development in technology has enabled more advanced maintenance strategies beyond

corrective and preventive maintenance strategies. Lee et.al [2] reviewed the field of Prog-

nostics and Health Management (PHM) for rotating machinery, presenting a generalized

methodology for selection and implementation of a maintenance strategy. A maintenance

transformation map is proposed as a guideline for maintenance strategy selection based

on system complexity and uncertainty. Typically, condition monitoring of bearings falls

in the Condition-Based Maintenance (CBM) category. However, as bearings get larger,

maintenance is more complicated. External factors like long spare part lead times, com-

plicated maintenance procedures and limited maintenance opportunities add complexity,

justifying strategies like PHM. Common for both CBM and PHM is the need for reliable

health assessments for the equipment. Jardine et.al [3] reviews generalized diagnostics

and prognostics methods for successful implementation of CBM, identifying data acqui-

sition, data processing and maintenance decision-making as the three main steps. The

influence of bearing size and speed on these steps is discussed in the next section.

A.3 Challenges of Large, Slow Bearings

Large and slow-rotating bearings pose challenges for conventional condition monitoring

methods. Compared to smaller bearings operating at higher speeds, prominent challenges

include low vibration energy, sensitivity to speed fluctuations and a need for accurate





          


localization in the frequency domain to isolate fault frequencies.

It is commonly accepted that discrete faults in bearings cause impulse-like impacts

when the fault interacts with another rolling surface. This impact triggers a transient

response at resonance frequencies in the bearing, surrounding structure and transducer.

As acceleration is the second derivative of displacement, a reduction in rotational speed

leads to significant reduction in acceleration levels. For slow-rotating bearings, fundamen-

tal fault frequencies will also be relatively close in the frequency domain, increasing the

risk of interference. Bechhoefer recommends a minimum of 10, preferably 30, frequency

bins between fault frequencies [4]. Frequency resolution is the inverse of acquisition time,

which makes the measurement more prone to capture speed fluctuations, leading to smear-

ing of the frequency spectrum. Larger size also means increased distance between fault

and transducer. All these factors contribute to a lower signal to noise ratio (SNR).

A.4 Modeling Bearing Faults

The periodic nature of impacts can be modeled mathematically. Time between impacts is

governed by a combination of shaft speed, bearing geometry and localization of the fault.

For REBs, faults can be associated with the characteristic fault frequencies of the bearing

components, Ball Pass Frequency Inner race (BPFI), Ball Pass Frequency Outer race

(BPFO), Cage Pass Frequency (CPF) and Ball Spin Frequency (BSF) [5]. Normalizing

by shaft frequency transforms frequencies to shaft order domain for easier comparison

across operating speeds.

Characteristic fault frequencies assume ideal operating condition, including perfect

rolling motion between rolling elements and races. In reality, rolling elements experience

some random slip, causing variation in the time between impacts. Additionally, the impact

response amplitude can be periodically modulated with smaller random variations. Antoni

includes this randomness in a more realistic model for a bearing vibration signal, given in

Eq. (A.1) [6]. The vibration signal is x(t), where h(t) is the response to a single impact,

q(t) = q(t + P ) is periodic modulation caused by load distribution of period P , and T

represents the time between the arrival of two consecutive impacts. The random jitter in

arrival time and amplitude is handled by τi and Ai respectively.

x(t) =
i=∞∑
i=− inf

h(t− iT − τi)q(iT )Ai + n(t) (A.1)

This randomness in arrival times causes smearing in the frequency spectrum, but

allows separation of the bearing signal from deterministic frequency components from

gears and shafts [5].





     

A.4.1 Cyclostationarity

Processes that shows cyclic behavior is said to exhibit cyclostationarity [6]. Cyclostation-

ary theory provides a generalized framework for describing a wide range of stationary and

non-stationary processes [7]. In the context of cyclostationarity, a periodic component at

a frequency α is referred to as the cyclic frequency. The period of α is termed cycle. These

terms are used to avoid confusion with spectral frequency f and its period T . Figure 1

shows a time signal, highlighting the difference by indicating the cycle of α and period of

f .

Figure A.1: The difference between cyclic frequency and spectral frequency [7]

A signal can exhibit cyclostationarity at different orders. As an example, a periodic

signal masked with additive white noise will have a periodic mean value and thus ex-

hibit first-order cyclostationarity. Consider a signal of amplitude-modulated white noise

only. As the mean value is constant, no periodic first-order components exist. Squaring

the signal, a second-order transformation, reveals periodic components and consequently

second-order cyclostationarity in the signal. A second order transformation is normally

enough to reveal bearing diagnostics information. Interested readers can consult the works

of Randall [5], [8], [9] and Antoni [6], [7], [10] in particular for further information on the

topic and its applications. Cyclic spectral analysis, based on cyclostationary theory, is

introduced in Section A.4.1.

A.5 Condition Monitoring Methods

This section is divided in three, discussing methods for data acquisition, data processing

and maintenance decision-making; identified by Jardine et.al [11] as the three main steps

in CBM. Here, signal enhancement is included as data processing.

A.5.1 Data Acquisition

Choosing a measurement technique capable of observing the symptoms of failure is criti-

cal. Tandon and Choudhury [12] identifies four main categories for bearing fault detection





          


methods; vibration measurements, acoustic measurements, lubrication analysis and tem-

perature measurements.

A.5.1.1 Vibration Measurements

Vibration monitoring using accelerometers is widely used in the industry, and has been

researched actively since the 1980s [12]. Traditional vibration analysis faces some chal-

lenges when applied to large, slow bearings, as discussed in Section A.2. Displacement

measurements can also be used for monitoring vibration. Measuring displacement directly

instead of acceleration makes it suitable for slow applications with low acceleration lev-

els. Shakya et.al [13] investigated the use of proximity probe as a standalone method for

bearing fault detection and in combination with an accelerometer, and showed improved

detectability for inner race defects.

A.5.1.2 Acoustic Measurements

Acoustic measurements refer to vibrations from 20 kHz and upwards, including both

ultrasonic and Acoustic Emission (AE) measurements. An increase in AE activity could

be an early indication of oil degradation. AE activity in bearings can be related to metal-

to-metal contact, indicating a broken oil film. Yoshioka and Fujiwara [14], [15] showed

in early research that AE could detect faults before vibration methods. Further research

successfully used AE for detection of subsurface cracks [16], which Tan [17] concluded

could be useful for detection of pitting. Chacon et. al [18] presented a method for incipient

fault detection in REBs using AE measurements for envelope analysis. Jamaludin and

Mba review monitoring of extremely slow REBs [19, 20], using AE measurements to detect

faults at very low speeds.

A.5.1.3 Lubrication Analysis

Many bearing failure modes can be related to insufficient lubrication; fatigue, wear, cor-

rosion, deformation, and fracture. Examples of condition indicators from lubrication

analysis are accumulated particle mass, water content, viscosity, conductivity and debris

analysis. Dempsey [21] compared oil debris analysis and vibration based CIs for detection

of pitting. All CIs increased when pitting occurred. However the article highlighted the

need for improved threshold setting and combination of CIs for improved reliability. Bech-

hoefer et.al [22] compared lubricant, vibration and temperature data from wind turbine

bearings. Lubrication analysis indicated a fault in one damaged bearing but also gave

one false alarm. In combination with vibration analysis better accuracy was achieved.





     

A.5.1.4 Temperature Measurements

The use of temperature as a CI alone is not likely sufficient, especially in offshore equip-

ment where ambient temperature will vary. Load variations will also affect bearing tem-

perature, and lower rotational speed will generate less heat than in high-speed bearings.

This combination makes temperature measurements less suitable for condition monitor-

ing. In a comparative study of vibration, lubricant analysis and temperature for condition

monitoring [22], temperature failed to indicate failure on a large, slow-rotating wind tur-

bine bearing.

A.5.2 Signal Enhancement

In cases where information carried in the signal is severely masked, pre-processing tech-

niques can be applied to separate, enhance or in other ways improve the signal of interest.

The methods do not provide any diagnostics information on their own, but facilitate the

use of other CM methods.

A.5.2.1 Correcting for Speed Variation

Variations in shaft rate during sampling will distribute frequency content across more

bins in the spectra. As discussed, characteristic fault frequencies are close for large, slow-

rotating bearings, which makes low-speed applications sensitive to variations in shaft

speed. Order tracking corrects for shaft speed variations by using shaft angle as a ref-

erence instead of time. In addition to the original measurement, shaft angle is recorded

simultaneously. Measured data is then resampled to angular domain, which effectively

manipulates the sampling frequency. Bechhoefer et. al [4] recorded speed variations in

the range of 2 % on a wind turbine, which caused smearing of frequency content. Order

tracking effectively removed these variations, resulting in a sharper spectrum. Resampling

vibration data improved the detection and diagnosis [23, 24, 25].

A.5.2.2 Isolating the Bearing Signal

Shafts and gears can interfere heavily with the bearing signature, particularly in slow-

rotating applications where the SNR of fault signatures is low. Linear prediction, adaptive

and self-adaptive noise cancellation, Discrete/random separation and Time Synchronous

Averaging (TSA) for use in bearing diagnostics are presented by Randall and Antoni in [5].

Borghesani et.al [26] demonstrated a cepstrum based pre-whitening method for extraction

of the bearing signature. Common for all methods is that the bearing signature can be

isolated from discrete frequency components by exploiting the randomness of bearing

vibration as opposed to deterministic gear and shaft signatures.





          


A.5.3 Established CM methods

In the context of bearing condition monitoring, analysis of time waveform data from

vibration, acoustic and ultrasonic is the established industry standard, with notable work

by Tandon, Nakra and Choudhury [12, 27], Kim et.al [28], Ho [29] and Randall [8], [30].

Fourier analysis is a fundamental CM method, particularly using the Discrete Fourier

Transform (DFT). However, diagnostics information often lies in the periodic modulation

of a given carrier frequency. Thus, Fourier analysis of the raw signal alone might not

be able to detect or diagnose faults. Envelope analysis is perhaps the best example,

widely regarded as a benchmark for bearing fault detection [5]. Here, Fourier analysis

is preceded by bandpass filtering around an assumed carrier frequency before the signal

envelope is calculated. A challenge is to choose the correct bandpass filter. In digital signal

processing, envelope extraction of a signal is often done by taking the absolute value of

its Hilbert transform [5]. Then, Fourier analysis is performed on the envelope to reveal

frequency component corresponding to the fault frequencies from Section A.4. Envelope

analysis and applications have been thoroughly examined in [8], [12], [27], [29, 30, 31].

Other methods can be applied directly in time domain, such as Root-Mean-Square

(RMS) and Crest Factor (CF). Kim et. Al [28] compared vibration and ultrasonic mea-

surements for bearing fault detection across a range of low speeds. RMS was shown to

decrease almost linearly with shaft speed. However, healthy bearings have shown big

variance in RMS values, indicating RMS change is a better CI than predefined thresh-

old values. CF, the ratio of peak amplitude to RMS value, will increase immediately

when a fault first appears. Williams et.al [32] recorded the CF in bearing run-to-failure

experiments, and reported an increase followed by a decrease as the fault developed.

This indicates fault detection capabilities, but limitations as a trendable parameter for

diagnostics purposes.

A.5.4 Advanced CM methods

Traditional CM methods are often insufficient for reliable fault detection in large, slow-

rotating bearings. This section presents a selection of advanced and novel CM methods

available to overcome the challenges.

A.5.4.1 Higher Statistical Moments

For nominal bearings, the acceleration Probability Density Function (PDF) can be as-

sumed to have a Gaussian distribution. Thus, any changes in the shape of the PDF can

indicate failure [12]. Statistical moments of first and second order, mean (µ) and standard

deviation (σ) respectively, are well known. For CM purposes, moments of a higher order





     

k, calculated as in Eq. (A.2). Mainly skewness (k = 3) and kurtosis (k = 4), are used as

CIs.

1

N

N∑
n=1

(
x[n]− µ

σ

)
(A.2)

Skewness describes the asymmetry of a distribution, i.e. the relative energy above

and below the mean. Nguyen et.al [33] identified skewness as one of three optimal fea-

tures for reliable fault detection in low-speed bearings, but skewness is not consistently

reported as a reliable CI. Kurtosis is as a measure of tailedness, i.e. the presence of tail

extremities in a dataset [34]. A Gaussian distribution always has a kurtosis of 3. High

amplitude accelerations from impacts yield a heavy-tailed distribution and high kurtosis.

This makes kurtosis suitable as a standalone CI, requiring no prior knowledge to quantify

the condition.

A.5.4.2 Spectral Kurtosis and the Kurtogram

Spectral Kurtosis (SK) identifies non-Gaussian components in signals along with their

location in the frequency spectrum. The method was proposed in 1983 by Dwyer [35].

Wang, Y et. al [36] and Wang, P. et. Al [37] published a review on the use of SK for

fault detection, diagnostics, and prognostics for bearings. SK has also been shown to

aid optimal selection of frequency band for envelope analysis [38]. The kurtogram was

proposed by Antoni in [39], mapping SK as a function of center frequency and filter

bandwidth. Wang, P. et. al [37] similarly utilized SK for frequency band selection, but

proposed an enhanced kurtogram based on kurtosis of the power spectrum.

A.5.4.3 Wavelets

A wavelet is a waveform with a limited duration that integrates to zero and can be scaled

and shifted in time. The Wavelet transform (WT) provides a time-scale representation of

the signal, where scale is qualitatively comparable to frequency. An important advantage

is the good time resolution at high frequencies and high frequency resolution at low fre-

quencies. Klepka presented a wavelet-based demodulation technique [40], which combined

the use of the continuous and discrete-time WT for filtering, envelope estimation and fault

detection on synthetic bearing data. Gelman et. al [41] proposed an improved method,

using SK for optimal selection of frequency band while maintaining the advantages of

wavelet demodulation compared to Fourier analysis.





          


A.5.4.4 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD), also known as the Hilbert-Huang Transform, ob-

tains instantaneous frequency information of an oscillatory signal by separating it into sev-

eral Intrinsic Mode Functions (IMFs) which can be amplitude- and frequency-modulated

non-linearly. EMD is the data-driven and adaptive, as IMFs are based on the sampled

signal only. Lei et.al [42] reviews the application of EMD to fault diagnosis of rotat-

ing machinery. Žvokelj et. al [43] demonstrated fault detection on large, slow rotating

bearings using EMD and Principal Component Analysis (PCA).

A.5.4.5 Cepstrum Analysis

The (real) cepstrum, defined in Eq. (A.3), identifies repeating “echoes” of a signal, which

can be used for detection of periodic signatures. Bechhoefer et.al [4] tested cepstrum

analysis for fault detection on wind turbine main bearings, and observed indications of

an outer race fault. Cepstrum RMS and kurtosis were tested as possible CIs, but were

not able to give actionable results alone. Further study was recommended.

cepstrum = IFT{ln |FT{x}|} (A.3)

A.5.5 Cyclic Spectral Analysis

Cyclic spectral analysis relies on the concept of cyclostationarity from Section A.4.1.

Here, two approaches for detecting cyclostationarity in signals will be introduced. The

first extracts periodic components of the instantaneous power, while the second is based

on the autocorrelation function. An operator P{·} is presented in [7]. The operator is

implemented as an estimator, shown in Eq. (A.4), where n is the sample number and Ts

is the sample period. The estimator extracts Fourier coefficients at cyclic frequencies α

in set A, from a given discrete data sequence {·}.

P̂{·}
∑
α∈A

DFTα{·}ej2παnT (A.4)

A.5.5.1 Power Decomposition and Instantaneous Autocorrelation

Cyclostationary behavior can be detected by decomposition of signal power to periodic

components. Consider a signal x[n] with power Px. Estimation of mean instantaneous

power Px[n] is done by applying P̂{·} to the signal power |x[n]|2. A Fourier series expan-

sion of Px[n] then gives the cyclic powers Pα
x . The quantities mean instantaneous power





     

spectrum and cyclic modulation spectrum are obtained by a time frequency decomposi-

tion and Fourier series expansion respectively, further elaborated in [7]. The presence of

periodicity in a signal creates a correlation of spectral components at the cyclic frequency.

Antoni describes in [6], [7] how the instantaneous autocorrelation function can be utilized

to detect cyclostationary behavior. Given a signal x(t), the instantaneous autocorrelation

Rx(t, τ) is defined as applying P{·} to the symmetric autocorrelation function, shown in

Eq. (A.5).

Rx(t, τ) = P{x(t− τ/2)x(t− τ/2)} (A.5)

The Fourier series expansion of the instantaneous autocorrelation function expressed is

called the cyclic autocorrelation function Rα
x(τ). Applying a Fourier transform to Rα

x(τ)

yields the spectral correlation density SCα
x (f), a frequency-frequency representation of

x(t). Note that cyclic frequency α is the frequency counterpart of time, and spectral

frequency f is the dual of shift τ . The spectral correlation (SC) is non-zero if a frequency

component f is periodic with cyclic frequency α. These connections and the relationship to

the Wigner-Ville spectrum, classical autocorrelation function, and the PSD are examined

in [7].

A.5.6 Maintenance Decision-making

A condition monitoring system should be able to make or aid in maintenance decisions.

However, a single CIs may be insufficient to provide reliable decisions. Fusion of data of

different types, both on sensor and feature level can be utilized for improved diagnostics

and prognostics of bearings [2]. Dempsey and Loutas [21], [44] investigates a combination

of on-line oil analysis, AE and vibration as a way of improving CI performance. Bechhoefer

et. al [45] presents a method for optimal threshold setting, by fusing several CIs in a Health

Index (HI), which quantifies bearing damage without the need for user interpretation.

The HI is constructed from the norm of n Gaussian CIs, and can be shown to form a

Nakagami-distributed PDF. This method allows for setting a desired Probability of False

Alarm (PFA) and normalizing the HI to be 1 when this probability is reached. The

method is successfully demonstrated on data from three large, slow wind turbine bearings

[4], where the faulty bearing was shown to have a HI well above one.

A.6 Conclusions

This paper presents an overview of relevant CM methods for large, slow-rotating bearings.

The combined requirement of cost reduction and uptime facilitates the emergence of more





          


advanced condition monitoring systems. Main challenges of condition monitoring of large,

slow-rotating bearings can be summarized by a low energy impacts, large distance from

fault to transducer, comprehensive background noise and speed variations, resulting in a

low SNR. Detection capabilities of traditional CM methods, especially envelope analysis,

can be improved by longer acquisition times, order tracking and separation of random

and discrete components. SK aided bandpass filtering before envelope extraction further

improves performance. Other data acquisition methods can also be used. AE signals

carries similar diagnostics information as vibration, but in a frequency band less subjected

to noise.

Another development in bearing condition monitoring is the transition from a station-

arity assumption implicated by the Fourier transform to a more realistic, non-stationary

or cyclostationary approach. Time-frequency and cyclostationary analysis tools takes this

into account. In cases where cyclic behavior is heavily masked in non-stationary signals,

cyclostationary analysis appears to be a powerful tool.

It seems unlikely to find a single CI, data acquisition or signal processing method

that solves all challenges for CM of large, slow-rotating REBs. Hence, combining CM

data from different sources seems more reasonable. The concept of a PFA-controlled HI

is attractive from an operator point of view, and can preferably be utilized in systems

for automated fault detection and diagnostics. Finding good CIs and methods for fusing

them should be a priority in future work.
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Abstract – This paper investigates the application of heterodyned Acoustic Emission

(AE) compared to more conventional vibration measurements for Condition Monitoring

(CM) of an offshore drilling machine, with a particular focus on the large, axial tapered

roller bearing supporting the drill string weight in a top drive. The focus on cost reduction

and operational uptime in the oil and gas industry motivates research on improved CM

methods for fault detection, identification and ultimately prediction. However, bearing

failure on this type of machines are currently responsible for a significant share of opera-

tional downtime on drilling rigs. In the experiment, a previously used and replaced bearing

is compared to a new, healthy bearing with the purpose of identifying possible condition

indicators (CI) from the vibration and AE measurements. AE root-mean-square values

(RMS) was identified as a CI, being more consistent with the expected bearing health

than vibration measurements and also less affected by operating speed. The AE measure-

ments also show complementary forced frequency identification capabilities compared to

the vibration measurements. The particular failure mode with bearing roller end damage

is described and seen in conjunction with the results.

B.1 Introduction

The Rolling Element Bearing (REB) is a component found in basically all rotating ma-

chinery. It is also a common cause of premature machine failure. As bearings get larger,

the consequence of failure typically increases in terms of unplanned downtime cost and

potential safety hazards. Simultaneously, maintenance actions are time-consuming, ex-

pensive and sometimes impossible to do on-site. The oil and gas industry is moving

towards condition based maintenance strategies which require reliable CM methods. For

the case of drilling machines, CM of the main bearing has proven to be difficult. A study
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of downtime causes on drilling rigs, the drilling machine was shown to be responsible

for 13 % of downtime, with the bearing as the largest cause of failure [1]. The current

industry standard is mainly a combination of visual inspection, periodic offline vibration

measurements, and lubricant analysis. The statistics show an obvious potential for im-

provement, motivating the development of methods suitable for online CM of the bearing.

This experiment is a rare opportunity to do measurements on a real drilling machine with

a known damage to the bearing. The goal is to identify condition indicators for the main

bearing and compare vibration measurements with AE measurements with regards to

fault detection and identification.

Vibration analysis using accelerometers is the current industry standard for bearing

CM, and has been researched for decades. Piezoelectric transducers are common for

bearing CM, but MEMS-type accelerometers are also in use [2]. Likewise, the application

of AE for bearing fault detection is not new in the field of CM of REBs, with early work

done by [3, 4]. Heterodyning of the AE signal before sampling can be done to reduce

the amount of stored and analyzed data for AE measurements, but maintain diagnostics

information [5]. This reduction in data volume makes the technology more accessible for

the industry, and is utilized in the experiment. AE measurements has also been combined

with self-learning neural networks [6], which can further automate the analysis process.

The majority of research on bearing CM focus on signal processing methods for analysis

of the time-waveform output by transducers. An extensive, categorized review of methods

for bearing fault detection was presented by [7]. A recent advance is the development of

cyclic spectral analysis, with notable work by [8, 9]. Cyclic spectral analysis can be applied

to AE as well as vibration signals [10].

Detection and diagnostics of discrete bearing faults are typically done by detecting

the presence of one or more fundamental fault frequency; Ball Pass Frequency Inner Race

(BPFI), Ball Pass Frequency Outer Race (BPFO), Cage Pass Frequency (CPF) and Ball

Spin Frequency (BSF). However, to the authors’ knowledge, CM methods specific for the

failure mode described in this paper has not been thoroughly researched, opening new

possibilities for future work in the field.

B.2 Methods

This section describes the experimental setup, data acquisition systems, and data pro-

cessing methods used to obtain the presented results.





         
     

B.2.1 Experimental Setup

Tests were performed on a large drilling machine taken out of operation for onshore

maintenance. The main point of interest is the axial bearing, which normally supports the

weight of the drillstring. The idea was to apply different systems to a relevant industrial

application to compare performance. The machine already has measurement points for

the radial and axial direction of the shaft, as shown in /ure B.1. In this experiment, the

only axial load on the bearing is caused by the shaft self-weight. The rotating motion is

powered by a single hydraulic motor, connected to the shaft by a spur gear with a 8:1

ratio. Normally the machine uses up to four motors, but as the torsional load is low, only

one motor was installed for this experiment. A pump for lubricant circulation is mounted

to the side of the machine.

Figure B.1: Experimental setup

B.2.2 Test Parameters

The experiment had two variable parameters; rotational speed and three stages of declin-

ing bearing condition. The three stages of declining bearing condition are termed Health

Level (HL), with an index from 0 to 2. First, the machine was tested using a new, healthy

bearing. This is referred to as HL0. HL1 refers to a previously used bearing, which was

replaced due to observed roller end damage, described in Section B.3. The same bearing

was subject to artificially created indentations on a roller end and run under poorer lu-

brication conditions to produce HL2. Basic test parameters including the main bearing

fault frequencies is shown in Table B.1. The fault frequencies are given in orders, with





     

the main shaft as 1X. For each health level, the machine was tested at 5 rotational speeds

ranging from 50 rpm (0.83 Hz) to 250 rpm (4.17 Hz). The main bearing was not subject

to external axial load except shaft self-weight. The bearing load of 9.83 kN is significantly

less than typical load under operation, further complicating fault detection.

Table B.1: Bearing operating information

Test Information

Bearing diameter 650 mm

Bearing load 9.83 kN

Test speeds, [rpm] {50− 100− 150− 200− 250}
Test speeds, [Hz] {0.83− 1.67− 2.5− 3.34− 4.17}
Main shaft speed 1X

Motor shaft speed 8X

BPFI 8.68X

BPFO 8.32X

BSF 6.75X

CPF 0.49X

B.2.3 Sensor Placement

The drilling machine is equipped with measurement points for routine CM. However, to

accommodate several transducers logging simultaneously, an adapter plate was made from

a 20mm steel plate. The sensors were placed on a circle centered on the mounting flange

to make the signal transmission path as equal as possible.

B.2.4 Instrumentation

Data acquisition was done using 3 different systems, two of which utilizes acceleration

transducers while the third one uses an AE transducer. The benchmark for acquisition

time was a frequency resolution of 10-30 bins between fault frequencies, as recommended

in [2]. System A recorded for 100 revolutions regardless of rotational speed while the

other systems sampled fixed length time series. Key specifications are given in Table B.2.

B.2.4.1 System A

System A consists of a piezoelectric accelerometer with a sensitivity of 100 mV/g and

linear range of 2 Hz to 10 kHz. However, with a sampling rate of 102.4 kHz, the signal is





         
     

Figure B.2: Sensor placement on adapter plate

Feature System A System B System C

Transducer Acceleration Acceleration AE

Frequency 2 Hz -10 kHz 2 Hz -10 kHz 50-400 kHz

Sensitivity 10 mV/ms−2 1.0 µA/ms−2 69 dB (peak)

Sample rate 102.4 kHz 10 kHz 50 kHz

Recording 100 rev 60 s 120 s

Table B.2: Instrumentation

oversampled compared to the linear range. This was done to capture encoder data, which

was logged simultaneously on the same system to allow rpm calculation and order tracking.

B.2.4.2 System B

System B is part of a commercially available CM system, using an Integrated Electronics

Piezoelectric Accelerometer with a current output sensitivity of 1.0 µA/ms−2. For the

purpose of this paper, the time-waveform is extracted and analyzed to ensure control

of signal processing methods used. Sampling is limited to 10 kHz for 60 seconds. The

system is installed at two locations, named B1 and B2 for distinction, shown in Figure

B.2. System B2 is mounted directly over the connection flange, where the accelerometer

is normally mounted, to serve as a reference measurement.





     

B.2.4.3 System C

System C uses an AE transducer glued to the measurement surface. The frequency range

is 50 to 400 kHz. However, the signal is heterodyned and demodulated by an analog

circuit before sampling, which allows the sampling frequency of 50 kHz. The preprocess-

ing method applied to AE signals was presented in [11]. The high frequency heterodyne

product is filtered out, and the low frequency is phase-shifted by π
2
, which effectively is the

complex part of the Hilbert transform of the signal. Sampling both the original signal and

the phase-shifted version allows demodulation simply by calculating the absolute value of

the two.

B.3 Failure Mode

The bearing is a pure axial tapered roller bearing, supporting the drillstring. The rollers

are tapered to maintain rolling line contact between roller and races during rotation. A

retaining flange is necessary to keep the rollers in place due to the wedge effect of the

tapered roller. Simplified, the forces acting on the roller is shown in Figure B.3. The axial

load FA is decomposed in two components; FN normal to the tapered bearing raceway,

and FC acting on the roller end towards the roller apex point. The relative magnitude

of FN and FC depends on the cone angle β. Due to the inevitable sliding contact at the

roller end, this area is exposed to surface wear. This corresponds well with the observed

damage on the worn bearing in the drilling machine, which initiated the maintenance

action.

Arc-shaped scratches with varying radius are observed across the roller end surface,

as shown in Figure B.4. Generation of such damage can be explained by observing the

trace of a particle stuck on the retaining flange, which is passed by a roller. Figure B.5

shows this trace for 3 particles at different distances from the rolling surface.

The distribution of scratches appears to be relatively even between rollers. As it is

not a clear, discrete fault, an assumption of periodic behavior may be invalid, which

makes traditional frequency analysis tools less useful. Generation of scratches implies

permanent changes in the metallic structure, which will generate an AE transient. Also,

as the number of scratches increases, the accumulated amount of particles in the lubricant

should grow at an increasing rate, leading to a similar growth in scratch formation and

AE activity.





         
     

Figure B.3: Internal bearing forces

B.4 Results

The presented results highlight observed differences between the vibration and AE mea-

surement system for overall value trending and feature detection in the frequency domain.

B.4.1 RMS Trending

A change in signal RMS values can be used to indicate a change in condition. In this

experiment, there was a known change component health, which was expected to cause an

increase in RMS. Measurements from system B2 show an increase in RMS with rpm for all

HLs, shown in Figure B.6. However, from HL0 to HL1, the RMS decrease unexpectedly,

and remains low at HL2. The same trend occurs in data from systems A and B1, shown

in Table B.3. The levels for system B2 are generally higher than for B1 in the axial

direction and lower in radial direction. Sensor placement is the only difference between

systems B1 and B2, indicating that the adapter plate transfer function has an effect on

the measurements. System B2 has the shortest signal transmission path and the stiffest





     

Figure B.4: Characteristic roller end damage

connection, which should produce the most accurate results.

Interestingly, results from the AE measurements (system C) show a different trend.

As shown in Figure B.7 and Table B.3, there is an increase in AE RMS at HL1 and HL2.

At HL1, radial RMS values increase with a factor of 1.5-2.2, whereas axial RMS increase

by a maximum factor of 1.2 at 250 rpm. At HL2 the increase is distinct in both directions,

with a relative increase from HL0 of 5.1 and 4.2 for radial and axial RMS respectively.

The radial measurement point, shown in Figure B.1, is located closer to the bearing. The

longer signal transmission path can explain the higher AE RMS levels, assuming that

the bearing is a source of AE activity. The AE RMS increases with rpm, but less than

the corresponding vibration measurements. For an increase in rpm from 50 to 250 rpm,

System A and B RMS increase by a factor in the range from 2.6 to 12.9, while for system

C the range is 1.6 to 2.3.





         
     

Figure B.5: Trace of particles on a roller end

The power spectrum of the AE signal is shown for 150 rpm in Figure B.8. The reveals

an overall, broadband increase in activity. The power spectrum P (f) is calculated as

shown in Equation B.1, simply by applying the Fast Fourier Transform, denoted FFT{·}
to the squared signal. Peaks in the spectrum can not be related to the bearing fault

frequencies, but is addressed in Section B.4.2.

P (f) = FFT{|x(t)|2)} (B.1)





     

Acceleration RMS-value [10−3 g]

Axial Radial

rpm 50 100 150 200 250 50 100 150 200 250

System A

HL 0 11.5 30.9 40.0 59.9 85.7 15.7 32.5 46.8 44.6 99.8

HL 1 12.2 17.1 28.0 36.0 46.0 8.0 13.0 19.8 31.7 41.5

HL 2 11.6 15.3 23.6 29.3 39.0 9.9 14.1 17.9 33.0 33.7

System B1

HL 0 96.6 256.7 352.8 764.1 819.3 83.2 216.9 278.7 479.5 1069.3

HL 1 74.8 136.4 183.9 316.7 390.7 81.0 156.9 237.0 461.7 521.0

HL 2 94.8 146.6 212.4 416.6 438.2 111.1 159.8 207.4 364.3 541.0

System B2

HL 0 266.9 466.0 584.8 973.0 1094.5 45.6 106.5 142.1 195.1 311.7

HL 1 219.5 325.7 413.2 570.1 780.6 33.8 59.7 85.1 158.9 183.5

HL 2 293.6 312.5 425.4 558.1 752.6 45.4 54.1 74.1 140.6 171.3

AE RMS-value [10−3 V]

System C

HL 0 59,9 64,2 71,9 87,0 113,3 94,5 93,6 104,2 134,0 168,1

HL 1 61,4 66,1 72,6 85,9 135,0 203,9 201,2 174,2 196,4 327,4

HL 2 167,8 266,2 197,4 211,6 337,4 261,2 479,2 313,7 356,2 589,8

Table B.3: RMS Values

Figure B.6: RMS trend for system B2 Figure B.7: RMS trend for system C





         
     

Figure B.8: System C power spectrums at 150 rpm

B.4.2 Forcing Frequency Identification

The processing of recorded data did not reveal any clear indications of faults on component

level. Still, the systems show differences in the ability to identify forcing frequencies.

Figure B.9 and B.10 show the envelope power spectrum from HL2 at 150 rpm, using data

from system A and C, respectively. 1X and 8X harmonics with 1X sidebands dominates

the spectrum from vibration measurements, shown in Figure B.9. However, one particular,

non-synchronous feature was detected in 14 of 15 AE measurements. Table B.4 shows the

peak frequency at the different operating speeds and health levels.

Health Level 0 1 2

rpm Observed Frequency [Hz]

50 17.24 16.71 18.91

100 17.30 16.78 16.9

150 17.34 17.04 18.87

200 17.38 17.19 18.76

250 17.47 - 17.1

Table B.4: Identified pump frequencies





     

The peak appeared at similar frequencies regardless of operating speed. The source

of this frequency is assumed to be a small lubrication pump located on the side of the

machine, shown in Figure B.1, approximately 1 meter from the measurement point. Com-

pletely uncoupled from the main shaft, it was identified as the only component rotating

in the detected frequency range.

Figure B.9: System A envelope power spec-

trum

Figure B.10: System C envelope power spec-

trum

Computation of the fast kurtogram, as described in [12], was used to identify frequency

bands with elevated kurtosis. However, no clear improvement in forcing frequency iden-

tification was observed. The results shown in table B.4 are calculated for the top level of

the kurtogram, which corresponds to low-pass filtering up to the Nyquist frequency before

calculating the envelope. For the vibration measurements, the envelope power spectrum

is calculated from the square of time-waveform x. The envelope is then the absolute value

of the analytic signal, computed using the Hilbert transform, denoted H{·}, as shown in

Equation B.2.

Envelope = |x(t)2 + jH{x(t)2}| (B.2)

For the AE measurements, an approximation of the analytic signal is created by analog

pre-processing as described in Section B.2.4.

B.5 Discussion and Conclusion

In this paper, 3 different CM systems utilizing accelerometer and AE transducers have

been applied to an offshore drilling machine. A healthy bearing was used as reference for

a worn bearing, which then was tested at two stages of declining health.

Despite low utilization of the axial load capacity, it was possible to detect an increase

in RMS of the AE signal that corresponds to the change in bearing health. The fact that





         
     

vibration measurement systems gave higher RMS values for the healthy bearing simply

highlights the need for comparable operating conditions when trending. The process of

replacing the healthy bearings with the used one, implied complete disassembly of the

machine, effectively changing the basis of comparison. The consistent increase in AE

RMS makes this CI more promising. AE RMS measurements were also less affected by

rotational speed, which is an advantage for machines under varying operating conditions.

AE measurements also showed an ability to detect some modulation frequencies not vis-

ible in the acceleration spectrum. In particular, a frequency which is assumed to be a

lubrication pump was detected, in spite of a long signal transmission path. In the authors’

opinion, this illustrates that measurement systems using AE transducers can complement

vibration based systems.

The observed failure mode lacks a dominant localized fault, which results in a lack of

periodic impacts. Hence, methods based on detection of bearing fundamental frequencies

were ineffective. Artificially induced indentations were applied to a roller end, but a roller

fault could not be identified from the measurements. Due to low utilization of bearing

load capacity, the bearing is less prone to breakage of the oil film on the roller ends, which

is a requirement for detection of roller end damage. While the overall increase in AE

activity still corresponded to declining bearing health, it is unlikely that the increase is

due to formation of new scratches. The results support AE as a CM technology for axial

tapered roller bearings in drilling machines and other rotating machinery. The shown fault

frequency identification capabilities combined with possible detection of scratch formation

on roller ends motivates further research on the topic, in particular to capture and identify

the failure mode propagation.
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Abstract – Rolling Element Bearings (REBs) are present in virtually all machines

with moving or rotating parts, and are vital for proper performance and safe operation.

Condition Monitoring (CM) of bearings often receive particular interest, as this compo-

nent group rarely reach design lifetime and hence is responsible for unplanned machine

downtime. Unplanned maintenance can represent a large cost which motivates develop-

ment of improved CM methods for implementation of advanced maintenance regimes.

Based on observations of a used bearing from an offshore drilling machine, wear on roller

ends in the ribroller contact area was identified as an area of interest for future research.

A test rig for creating and observing accelerated roller end damage is developed, intended

for use with vibration and Acoustic Emission (AE) sensors. In addition to normal con-

tinuous rotation of the bearing, the test rig is also designed with performing oscillation

motion tests in mind. This mode of operation is of interest to manufacturers and end

users of cranes and winches with heave compensation. Plans and challenges for future

work are also discussed, in conjunction with the experimental setup.
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C.1 Introduction

Dynamic mechanical systems of all types depend on bearings; a basic machine element

that both allows and constrains movement by transferring loads to support structure

while minimizing friction for the desired rotation or translation. As the diversity of

applications is great, so is the number of bearing types and sizes. Given the widespread

use and importance, bearing failure is also a large contributor to reduced asset availability.

Under nominal operating conditions, fatigue will be the main failure mode of bearings.

However, degradation and contamination of the lubricant can create wear that changes

the internal geometry of the bearing [1], leading to premature failure and unplanned

maintenance. This paper focuses on roller end wear in tapered REBs under axial load,

rooted in a previous case study of an offshore drilling machine. The machine was taken

out of operation for maintenance, and available for testing using both new and worn

bearings. A schematic drawing of an axial spherical tapered roller bearing is seen in

Figure . Because of the tapered roller design, a rib is necessary to keep the rollers in

place, applying a seating force to the roller end. The rib-roller contact area is separated

by an oil film, and the mating surfaces are sliding relative to each other. A thorough

dynamic analysis of tapered REBs is given by [2].

Figure C.1: Schematic drawing of an axial spherical tapered roller bearing

Tapered REBs are sensitive to proper lubrication of the rib-roller contact area, and

lubrication starvation is a root cause of failure for bearing wear. In extreme cases, wear can

lead to bearing seizure and catastrophic failure [3]. Ideally, online lubricant monitoring

systems could detect wear particles at an early stage and prevent breakdowns. While

such systems exist [4, 5] this approach has not replaced periodic sampling and analysis

of the lubricant. Due to the inherent lag in this process, damage can occur and progress

unnoticed. Alternative methods for online detection of wear will reduce the interval

between detectable wear and maintenance action. Research of such methods is the main

motivation for the development of this test rig.

Vibration monitoring using accelerometers is the current industry practice, and a

range of well-established methods exists for fault detection [6] and health assessment





         
     

[7]. However, these methods are more suitable for detection of repetitive transients from

localized damage. Roller end wear differs from localized faults in the load path, as scratch

formation is not assumed to be related to the shaft frequency. This indicates that CM

methods based on detection of repetitive transients at bearing defect frequencies will be

ineffective.

It is known that AE has potential for monitoring of wear and sliding friction [8].

Investigation of AE activity in sliding friction has shown a proportional relation between

sliding speed and amplitude, and frictional work and energy. Additionally, the frequency

components associated with sliding was not present in the noise, which could simplify wear

detection [9]. In the early stages of degradation, formation of scratches should therefore

result in acoustic activity. AE has also been used for detection of wear in metal cutting

tools [10]. As wear progresses, local changes in internal geometry and clearance can lead

to increased mechanical vibration detectable by accelerometers.

C.2 Roller End Wear

In a previous study by the authors [11], one new and one previously used main bearing

from an offshore drilling machine was run in a controlled environment. Scoring, a type

of abrasive wear, was observed on all roller ends during visual inspection of the bearing,

as seen in Figure C.2. However, any formation of new scratches could be not detected

in the collected data. It is assumed that each scratch originates from a particle in the

lubricant which enters the rib-roller contact area, then sliding across the roller surface,

stationary with respect to the rib. If the particle size is greater than the oil film thickness,

mechanical contact occurs, and a scratch is formed. The abrasion then contributes to

further contamination of the oil. As this process is not expected to be periodic, any

detection method based on detecting the presence of bearing fault frequencies will not be

effective. Instead, an event-based approach is assumed to be more effective. If one can

successfully detect the formation of new scratches, both the total number of events and

changes in mean time between events are potential measures of bearing health and fault

propagation. Tapered REBs are also sensitive to scuffing, a form of adhesive wear. As

scuffing can be caused by excessive surface roughness, it is a possibility that the roller

end scoring develops to scuffing.

C.2.1 Roller End Scoring Model

The scoring occurs as distinctly shaped arcs with varying radius. A simplified 2D visu-

alization is given in Figure C.3. Let A be a circle of radius a, representing a roller end

with a reference coordinate system centred on the roller end, while circle B of radius b





     

Figure C.2: Scoring on roller end of tapered roller bearing

represents a path of rolling contact with the bearing race. Then, consider B rolling on

the circumference of A with a particle in point P , fixed at a distance h from the centre

of B. The parameter θ is defined as the angle between the x-axis and the line between

circle centres.

Figure C.3: Trajectory of P on A forms an epitrochoid.

Let γ represent the following relation:

γ =
a+ b

b
(C.1)

The position vector of P as a function of θ is given in Equation C.3:[
x

y

]
=

[
cos θ − cos γθ

sin θ − sin γθ

][
bγ

h

]
(C.2)

If θ is a function of time, the instantaneous velocity vector of P , indicated by an arrow,

is given in Equation 3:





         
     

[
ẋ

ẏ

]
=

[
− sin θ sin γθ

cos θ − cos γθ

][
bγθ̇

hγθ̇

]
(C.3)

Note that the sliding velocity is a harmonic function of θ, resulting in variable slid-

ing velocity for a constant rpm. In a similar application, monitoring piston seals in a

combustion engine, AE activity showed a linear relationship to sliding velocity [12]. As

seen by this simplified model, the same behaviour could be utilized in establishing a fault

signature for roller end wear detection in bearings. With a known fault signature, it is

possible to determine the presence of a fault in recorded data through hypothesis testing,

providing decision support for scheduling of maintenance.

C.3 Test Rig

To the authors’ knowledge, no test equipment for emulating roller end damage in a con-

trolled environment during operation exists, motivating the development. Figure C.4

shows a sketch of the test rig (left) and the bearing test unit (right).

Figure C.4: Bearing test rig sketch (left), Bearing test unit (right)

The test bearing (designation 29230) is contained inside the bearing test unit, attached

to the motor through a flexible coupling. Axial load is applied by a hydraulic load cylinder.

A second, higher capacity bearing (designation 29336) transfers the load to the support

structure, removing any axial load from the motor shaft. The test bearing is attached

using an adapter, allowing for easy replacement and testing of other bearing types and

sizes, up to 240 mm outer diameter. The load bearing and test bearing runs in two

separate chambers, allowing different lubricants and preventing cross-contamination. The

lubricant can also be circulated for monitoring purposes. The test rig is developed with

two main test types in mind: artificial roller end damage and oscillating motion testing,

described more in detail below.





     

C.3.1 Artificial Roller End Damage Test

The goal of artificial roller end damage end testing is to identify any characteristics of the

failure mode. What separates this test rig from most other machines, is the capability to

create damage while the bearing is running in the machine, emulating a particle in the

lubricant. This allows control of when the scratch is made, as opposed to having loose

particles in the lubricant. Figure C.5 shows the mechanism for applying the damage. A

hardened needle is inserted through a predrilled hole to scratch the roller. By varying the

hole location and shape of the tip, analogous to changing the distance h in Figure C.5,

the scratch location on the roller can be modified.

Figure C.5: Cross-section of artificial damage mechanism

C.3.2 Oscillating Motion Test

Heave-compensating winches is an example of equipment experiencing oscillating motion

in parts of the operating cycle. Oscillating motion results in uneven distribution of stress

on the bearing components, which is known to reduce fatigue lifetime [13]. Oscillating

motion is also known to cause fretting corrosion. Degradation of high loaded oscillating

bearings was investigated by [14]. For the context of this paper, oscillation implies that

the rolling elements perform incomplete revolution before changing direction. The motor

is a synchronous permanent magnet AC (PMAC) motor, capable of precise control of

shaft torque and rotation at low speed.

C.3.3 Instrumentation

The test rig is prepared for accommodating a range of sensors. It is currently equipped

with an axial load transducer, accelerometers and AE transducers. Additionally, the

motor has an integrated encoder, making position, velocity, acceleration available from





         
     

Table C.1: System overview

Drive System Loading System Acquisition System

PMAC Motor Hydraulic NI 9232 - 2 x 3 ch., 24 bit AI

Direct drive 50 ton load capacity NI 9205 - 16 ch, 16 bit AI

48 Nm rated torque Manual control NI 9401 - 8 ch, DI/O

3000 rpm limit Force measurement VFD Ethernet communication

MISTRAS PCI-2 (AE specific)

Table C.2: Sensor specification

Sensor Type Model

Accelerometer TE Connectivity 805M1-0020-01

AE sensor Physical Acoustics R15a

Force transducer TECSIS F6210 500 kN

the Variable Frequency Drive (VFD) over Ethernet. Data is recorded using a National

Instruments compactDAQ equipped with Analog Input (AI) and Digital Input/Output

(DI/O) cards. An overview of the drive system, loading system and acquisition system is

give in Table 1.

Table 2 gives an overview of the sensors currently in use on the machine.

Table 2 gives an overview of the sensors currently in use on the machine.

C.4 Discussion

This paper discusses roller end wear, in particular scoring on roller ends. The characteris-

tic scoring shape is described mathematically, and a test rig is designed for replicating this

failure mode through artificial roller end damage testing and oscillating motion testing.

Through these tests, it may be possible to identify fault signatures for use in online con-

dition monitoring systems. A data-driven approach allows the use of statistical tools for

detection algorithms and bearing health assessment, providing decision-making assistance

for maintenance actions. Compared to offline lubricant analysis, this gives more time to

plan and execute maintenance.

Further, experiments with different needle shapes, speeds, lubricants and loads are

possible. With minor modifications, the test rig can also accommodate different test bear-

ings. While the test rig is prepared for vibration and AE measurements, other transducers

can be retrofitted, including but not limited to motor current sensors, online lubrication





     

monitoring and electrical methods for metal-to-metal contact detection.
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Abstract – Detecting bearing faults is very important in preventing non-scheduled

shutdowns, catastrophic failures, and production losses. Localized faults on bearings are

normally detected based on characteristic frequencies associated with faults in time and

frequency spectra. However, missing such characteristic frequency harmonics in a spec-

trum does not guarantee that a bearing is healthy, or noise might produce harmonics at

characteristic frequencies in the healthy case. Further, some defects on roller bearings

could not produce characteristic frequencies. To avoid misclassification, bearing defects

can be detected via machine learning algorithms, namely convolutional neural network

(CNN), support vector machine (SVM), and sparse autoencoder-based SVM (SAE-SVM).

Within this framework, three fault classifiers based on CNN, SVM, and SAE-SVM uti-

lizing transfer learning are proposed. Transfer of knowledge is achieved by extracting

features from a CNN pretrained on data from the imageNet database to classify faults

in roller bearings. The effectiveness of the proposed method is investigated based on

vibration and acoustic emission signal datasets from roller bearings with artificial dam-

age. Finally, the accuracy and robustness of the fault classifiers are evaluated at different

amounts of noise and training data.
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D.1 Introduction

Failure on rolling bearings is one of the most frequent system failures, resulting in huge

losses of productivity in drivetrains installed in remote and harsh environment areas.

Defects on bearings contribute to over 40% of faults in rotating machinery [1]. If a bearing

fault is well predicted, the risk of long-term system breakdown can be prevented, and a

replacement of the faulty bearing will be done at the right time. Faulty bearings can be

detected by analyzing current, vibration, or acoustic emission signals. Current signature

analysis can be useful to detect limited faults on bearings, which need to be connected to

a shaft driven by an electric motor. Vibration analysis is preferred to monitor conditions

of bearings in most mechanical systems, where accelerometers are usually installed in

place. In critical applications, acoustic emission signals can be used to detect bearing

faults at an early stage due to its higher sensitivity and convenient installation without

being involved in the system.

Processing data and understanding faulty features in vibration and acoustic emission

analysis need skilled manpower with advanced knowledge of bearing faults [2]. Vibration

signals associated with faults typically originates from high-frequency resonance in the

housing structure excited by low-frequency impacts related to the contact between a fault

and other bearing components. The accelerometers installed on the bearing housing are

very sensitive to any forces generated in a system. This makes collected signals from the

accelerometers very complicated due to the interference of noise. The complexity of the

output signals from the collected acoustic emission sensors can be even worse due to its

higher sensitivity and is worse in highly disturbed environments.

To predict bearing faults based on the mentioned signals, common processing, i.e., fast

Fourier transform (FFT), short-time Fourier transform (STFT), and continuous Wavelet

transform (CWT) in [3], and wavelet transform (WT) with kurtosis [4], could be used to

detect signals associated with the faults. Such a signal processing technique is useful to

observe characteristic frequencies in time and frequency representations. However, missing

a harmonic in a spectrum or the appearance of harmonics at characteristic frequencies

due to noise might cause misclassification. Further, the effectiveness of this conventional

approach strongly depends on manpower skill, training, and relevant experience.

Unlike conventional bearing faults such as spalling on races or rolling elements, roller-

end wear in axial roller bearings might not produce periodic harmonic components associ-

ated with faults. In a previous study by the authors [5], scratches on an axial bearing were

observed on roller ends of a tapered axial roller bearing in an offshore drilling machine, but

no particular bearing frequency was steadily detected in the spectrum. However, acoustic

emission data showed an energy increase with higher damage severities. Detecting bearing

defects without a characteristic frequency or predefined knowledge of the fault signature





          
    

is a big challenge in fault diagnosis.

To address the mentioned challenges, an automatic system for fault detection and

classification applicable to both vibration and acoustic emission signals can reduce the

manpower dependence and time consumption for condition monitoring of the roller bear-

ing in industry. As argued in [6], increasing the performance of the detection system might

be more important than looking for highly reliable features. Model-based, data-driven, or

hybrid algorithms are common in automatic fault diagnosis [7, 8, 9, 10]. The model-based

diagnosis needs both a detailed physical model of the system and its accurate parameters,

which are very hard to obtain in reality. Without a physical model [11], the data-driven

approach using statistical or machine learning algorithms is attractive for an automatic

diagnosis system. To enhance the accuracy of fault detection, statistics methods should

be based on the frequency spectrum to reduce false and missing alarms [12]. Alternatively,

machine learning methods, namely support vector machine (SVM) [13, 14], decision tree

(DT) [15], and various neural network architectures [16, 17] combined with advanced sig-

nal processing can be used to find the complex relations on the feature space by using

predefined time-frequency features, being based on fault characteristic frequencies. How-

ever, without the characteristic frequencies, the mentioned methods have great difficulty

in classifying bearing faults [18].

This work focuses on developing a simple automatic fault diagnosis method for roller

bearings, requiring less human intervention or domain knowledge of features. Using trans-

fer learning (TL) allows us to reduce the time and complexity of generating features for

fault classification. Further, TL is very helpful for a bearing fault diagnosis if the avail-

able data for training and validation are limited in industry [16]. Within this work, a

pretrained version of the well-known AlexNet convolutional neural network (CNN) archi-

tecture [19] is applied to CWT spectrograms of vibration and acoustic emission signals.

Then, the CNN is either fine-tuned to perform classification directly or to extract features

used to train and validate two classifiers using SVM and sparse autoencoder-based SVM

(SAE-SVM). The robustness of the proposed method is tested at different signal-to-noise

ratio (SNR) levels.

The remainder of the article is organized as follows. In Section D.2, the proposed

methods are detailed. In Section D.3, the experimental setup and preprocessing are pre-

sented. In Section D.4, the results of the fault detection and classification are presented.

Further, the discussion of the presented results is detailed in Section D.5. Finally, the

paper is concluded in Section D.6.





     

D.2 The Proposed Method

A diagram of the proposed fault classification is shown in Figure D.1. The vibration

signals need to be converted to images as pixels or a matrix (227 × 227 × 3, height by

width by depth) before feeding them to the AlexNet architecture. Within this process,

images or spectrograms of vibration signals are formed by three channels (red, green,

and blue (RGB)), resulting in a depth of three. The spectrograms go though several

convolutional layers, acting as learnable filters to detect the presence of specific features

from the input, and produce matrices (M × M × L) with M < N and L-size filters.

This work utilizes a pretrained version of the AlexNet architecture [19], obtained from

the Berkeley Vision and Learning Center caffe repository on GitHub [20], through the

MATLAB Deep Learning Toolbox. AlexNet consists of five convolutional (conv1–conv5)

and three fully-connected (fc6–fc8) layers, as illustrated in Figure D.2, in which numbers

outside the boxes illustrate the dimension in each layer and numbers inside the boxes

indicate the filter sizes of the convolutions. The architecture uses rectified linear units

(ReLU) as activation functions and dropout layers to prevent overfitting. Three classifiers

will be described in this section: CNN, SVM, and SAE-SVM. For the two latter, features

from the pretrained network will be extracted at both layer fc6 and fc7 and used to train

two instances of the classifiers.

Figure D.1: Methodology visualization. SAE, sparse autoencoder.





          
    

Figure D.2: Simplified illustration of the AlexNet architecture.

D.2.1 Convolutional Neural Network-based Fault Classifiers or

Retrained CNN

Given the performance of CNNs in image classification, they can be fully trained to clas-

sify patterns or spectrograms generated by CWT correctly [21]. However, training a

network from scratch is very time consuming, requiring GPU programming, tuning of

hyperparameters, etc. The first classifier uses transfer learning through fine-tuning of a

pretrained CNN, e.g., the AlexNet architecture, to reduce the complexity of the training

process. Instead of retraining the complete network from scratch, only the final classifi-

cation layer is replaced, which maintains most of the already gathered information from

the training on the imageNet database. To make sure most of the pretrained weights are

maintained, the learning rate for the classification layer fc8 is increased to 20-times the

overall learning rate. After replacing fc8 with a fully-connected layer of size 2 (equal to

the number of classes), the network has approximately 60 million trainable parameters.

Because of pre-training, fine-tuning the CNN to classify new data can then be done by

using a smaller dataset of CWT spectrograms. This adaptation of a pretrained network is

time-saving and very helpful for inexperienced users. Table D.1 describes the parameter

setting for the CNN-classifier.

Table D.1: CNN settings.

Solver Stochastic Gradient Descent with Momentum (SGDM)

Training epochs 50

Initial learning Rate, overall 10−3

Initial learning Rate, fc8 0.02

Learning Rate Drop Factor 0.2

Learning Rate Drop Period 10





     

D.2.2 Support Vector Machine-based Fault Classifier

Support vector machines are supervised learning models for data classification. Given a

set of training data of dimension K, the algorithm finds the hyperplane, a subset of the

feature space of dimension K − 1, which provides the best separation between classes in

the training data [14]. This is a quadratic optimization problem, which also removes the

local minima being present in neural networks [22]. Each input image generates a set of

features at each layer throughout the network. Instead of retraining the final classification

layers like in Section D.2.1, this classifier extracts the features directly at a higher level.

This method is built on on the assumption that filters in the convolutional layers are

trained to detect features that are also suited to discriminate features associated with the

bearing faults.

The generated feature space from AlexNet has dimension N = 4096 for both layer fc6

and fc7. The objective of using data at fc6 or fc7 is to study whether the extra ReLU,

dropout, and fully-connected layer from TL affects the accuracy of SVM classifications or

not. By using the pretrained network to generate features, it is not necessary to design

any features tailor-made to the application. Instead, the SVM is trained as set in Table

D.2.2.

Table D.2: SVM settings.

Feature Layers fc6 and fc7

Kernel Linear

Standardization Unit mean and variance

Solver Iterative Single Data Algorithm (ISDA)

Outlier fraction 0.0

D.2.3 Sparse Autoencoder Combined with SVM Classifier

The autoencoder is designed to replicate its input at its output in an unsupervised fashion,

which can be used for both unsupervised feature extraction and image denoising [23].

An autoencoder is basically a single fully-connected layer of size P , referred to as the

hidden layer, that is trained to reconstruct its input by minimizing error over the training

dataset. Labels are not considered during training. One could assume that not all these

features are equally important or necessary in order to perform classification. However,

computational burden is a product of feature space dimension, N , and hidden layer size,

P . By using the features from fc6 or fc7 instead of the input image, N is reduced from

154,587 to 4096, dramatically reducing the computational burden. Denoising AEs and





          
    

sparse AEs are commonly used in literature. The denoising AEs are to partially corrupt

input data and capture the original data removing noise, while the sparse AEs are to learn

the features and structures within the input data. With a hidden layer size of P = 100,

the SAE is used in this paper with a sparsity proportion of 0.05 to identify features from

fc6 or fc7. The identified individual features are classified by SVM as described in Section

D.2.2. Detailed settings of the SAE parameters are given in Table D.3.

Table D.3: SAE settings.

Hidden layer size 100

Training algorithm Scaled conjugate gradient descent

Training epochs 2500

Encoder transfer function Logistic sigmoid function

Decoder transfer function Logistic sigmoid function

L2 Weight Regularization 0.001

Loss function Mean squared error with L2 and sparsity regularization

Sparsity proportion 0.05

D.3 Experimental Setups and Datasets

The proposed method is evaluated using two separate datasets, consisting of time-waveform

signals from two different bearing test rigs:

� Dataset 1: Vibration data from the NU220 ECP radial bearing with seeded faults.

� Dataset 2: Acoustic emission signals from an artificial roller end scratch generation

from an in-house test setup for axial tapered roller bearings.

The two datasets represent the two different situations discussed in Section D.1.

Dataset 1 contains periodic transients at bearing fault frequencies, while Dataset 2 con-

tains aperiodic bursts of acoustic energy from scratch formation on the roller end.

D.3.1 Dataset 1: Radial Roller Bearing Test Rig

The radial bearing tests were conducted using a radial bearing test rig at the Institute

for Machine Elements and Systems Engineering at RWTH Aachen University. A triaxial

accelerometer was mounted on the bearing housing, giving two radial channels and one

axial channel. The location is shown in Figure D.3. For this paper, the two radial channels

were used in the analysis.





     

Figure D.3: Radial bearing test rig.

The test bearing, a radial bearing of type NU 220 ECP, was tested with two different

fault types. Fault Type 1 (FT1) is a severe outer race (OR) fault, while Fault Type 2

(FT2) is a smaller rolling element (RE) fault. Data were classified as either healthy (HE)

or damaged with subcategories of OR and RE faults. However, each bearing only had

one type of damage or a single fault under test; thus, detecting faults in each bearing is

a binary classification problem. The seeded OR and RE damages in the bearing can be

seen in Figure D.4.

Figure D.4: Faults in the test bearings: (a) outer race (OR) fault and (b) rolling element

(RE) fault.

Impact energy is reduced as the load decreases, making fault detection more challeng-

ing. According to the recommendation of the bearing manufacturer, the minimum radial

load for the test bearing is 2.09 kN at 1000 rpm. Data chosen for analysis were collected





          
    

with a constant radial load of 5 kN to test the proposed method under the most difficult

conditions while complying with the bearing operating specification. The test operating

conditions are described in Table D.4, from which 560 CWT spectrograms were produced:

25% belonged to the damaged case, while 75% were in the healthy case. Twenty five per-

cent of the dataset was reserved for validation of the algorithms, and the remaining 75%

was used for training. Further, as shown in Table D.5, the proposed algorithms were also

trained with 25% and 50% data.

Table D.4: Radial test data.

rpm 100 200 300 400 500 750 1000
Total

Load (kN) 5 5 5 5 5 5 5

No. of HE 60 60 60 60 60 60 60 420

No. of RE 10 10 10 10 10 10 10 70

No. of OR 10 10 10 10 10 10 10 70

Total 80 80 80 80 80 80 80 560

Table D.5: Radial training/validation data distribution.

Training Validation

Label Number of Images 75% 50% 25% 25%

Healthy 420 315 210 105 105

Damage 140 105 70 35 35

Total 560 420 280 140 140

D.3.2 Dataset 2: Axial Roller Bearing Test Rig

The axial bearing test rig was designed and built at the University of Agder. A schematic

drawing and picture of the test setup are shown in Figure D.5. This testbed was built

based on an observations from an offshore drilling machine. It was found that wear

occurred in the rib-roller area of a large, tapered rolling element bearing with a charac-

teristic arc-shape. The developed test rig was to investigate the fault signature of such

scratches occurring during operation. A spherical tapered rolling element bearing was

placed inside an enclosed test unit containing a lubricant. The bearing was loaded us-

ing a hydraulic cylinder and rotated using a direct-drive permanent magnet synchronous

motor. A damage mechanism allowed the roller to be scratched during operation.

The rib-roller contact area is prone to wear due to the relative sliding motion. Consider

a simplified example where a particle large enough to break the oil film is stuck between

the rib and roller end, stationary with respect to the rib. It can be shown that the trace





     

Figure D.5: (a) Schematic drawing of the in-house axial bearing test rig. (b) Acoustic

emission sensor placement.

of the particle on the roller will resemble a segment of an epitrochoid as the roller passes,

which complies with the observations from the offshore drilling machine. This type of

damage differs from localized damages such as spalling. In the experiments on the axial

bearing test rig, we were able to replicate this damage using a hardened needle, as shown

in Figure D.6. To detect faults on the rolling element bearing, one channel of acoustic

emission data, shown in Figure D.5, was used to collect time-series data (Dataset 2) for

analysis.

Figure D.6: (a) Schematic drawing of the damage mechanism. (b) Scratches on the axial

bearing roller end.

Dataset 2 contains two labels: healthy (HE) and scratch (SC). A total of 600 images

were generated, of which 200 were from the damaged class. Again, 25% of the data was





          
    

reserved for validation and the rest used for training. Table D.6 shows the number of

images used for training and validation in the different cases. This dataset was collected

at a very low speed of 1 rpm, as the current test setup did not allow consistent scratching

at higher rotational speeds due to possible breakage of the needle. Axial load was kept

constant at 50 kN during the tests.

Table D.6: Axial training data.

Training Validation

Label Number of Images 75% 50% 25% 25%

Healthy 400 300 200 100 100

Damage 200 150 100 50 50

Total 600 450 300 150 150

D.3.3 Preprocessing

Collected vibration data are in time domain. If supplying the time domain signal directly

to the CNN, the CNN pattern recognition is constrained by the 1-dimensional convolution

[24]. To detect signals associated with faults in both the time and frequency domains,

input data of the CNN should be converted to 2D spectrograms with 2D convolution. The

AlexNet architecture deals with the 2D convolution, being fed with 227 × 227 × 3 RGB

images. Continuous wavelet transform (CWT) is used in the preprocessing to convert the

collected vibration signals to time-frequency representations or spectrograms. Short-time

Fourier transform (STFT) can be an alternative method, but requires an extra parameter.

Selecting the best method to produce proper spectrograms is out of scope of this work.

CWT is applied to both Datasets 1 and 2 in the following sections. To study the effect of

training data on the performance of the proposed fault classifiers, namely CNN, SVM, and

SAE-SVM, the training data were reduced by steps of 25% from 75%–25% while keeping

the same amount of validation data of 25%, as shown in Tables D.5 and D.6. Analysis

results on the datasets, from two different test setups of radial and one axial bearings will

be described in more detail in Sections D.3.1 and D.3.2 below.

The data in Dataset 1 were collected in the time domain under different operating

conditions, with the speed ranging from 100 rpm–1000 rpm. Normalization of root mean

square (RMS) was performed to make time series more comparable. To increase the

amount of training data, each time series was split into segments of two revolutions. This

transforms the signal from the time domain to the order domain. The number of samples

per revolution forder was calculated as the sample frequency fsample divided by the shaft





     

frequency fshaft, as written in Equation (D.1). To test the robustness of the proposed

method against noise, white Gaussian noise (WGN) was added to the time-waveforms in

Dataset 1. The raw signal (SNR1) was considered as a reference for WGN power at other

SNR levels.

forder =
fsample
fshaft

(D.1)

The number of samples in each segment Nseg was then calculated as in Equation

(D.2), where nrev is the number of revolutions to be included in the segment. nrev = 2

was used in this work. The modification of the time scale for each segment is effectively

a transformation to the order domain, which allows the spacing between transients to

be kept constant at different speeds. Figure D.7 shows the difference in time and time-

frequency representations between two speeds of 100 and 1000 rpm in the case of the

outer-race fault in Test Setup 1. While the transient peaks were more or less equally

spaced, they showed up as lines at 100 rpm, but more like “blobs” at 1000 rpm.

Nseg = nrev · forder (D.2)

(a) (b)

Figure D.7: Comparison of the time-waveform and CWT at (a) 100 rpm and (b) 1000

rpm.

Noise was added to original vibration signals of Dataset 1 to test the robustness of fault

classifiers based on CNN, SVM, and SAE-SVM. Table D.7 summarizes the SNR levels

added to the vibration signals. Figure D.8 shows the exemplary original and vibration





          
    

signals under different SNRs specified by 0, −3 and −10 dB. Impacts due to outer race

defects could be easily observed in the original signals (top figure). Increasing noise to

the signal causes the fault impacts to be mixed with the noise, resulting in a big challenge

of fault detection if using signal processing techniques alone. Figure D.9 shows a detailed

flowchart of preprocessing for Dataset 1 with an outer race defect on the axial roller

bearing. After the rms normalization, the original signal and signal under noise were

subdivided into segments of two revolutions, which were converted to spectrograms by

using CWT.

Table D.7: SNR levels.

SNR1 Reference (no added noise)

SNR2 0 dB

SRN3 −3 dB

SNR4 −10 dB

Figure D.8: Fault Type 1 vibration signal with an outer race fault at 4 increasing SNR

levels.

Dataset 2 consists of 10-s acoustic emission waveforms, which were recorded at a

sampling frequency fsample = 1 MHz. Unlike Dataset 1, no noise was added to the acoustic

emission data. Bursts collected in acoustic emission data occurred with inconsistent

amplitudes throughout time; thus, adding white noise would cause a large share of the

bursts to be undetectable. Order normalization is also not necessary, as all data were

collected at the same low speed. Each 10-s of data was then subdivided into segments

of 1 s, which were converted to spectrograms by CWT. Figure D.10 shows the process





     

Figure D.9: Dataset 1 preprocessing.

of converting time series data to spectrograms in the case of scratches in the bearing, in

which Segment 3 (2–3 s) and Segment 9 (8–9 s) are shown as exemplary spectrograms.

Weak vertical lines are visible, corresponding to bursts of acoustic emission energy.

Figure D.10: Acoustic emission signal during damage and CWT spectrograms of Segments

3 and 9.





          
    

D.4 Results of Roller Bearing Fault Classifications

This section first presents the results of preprocessing, converting time-series signals to

images or spectrograms for CNN algorithm. Further, the process of including noise in

the original vibration signals is described. The fault classification results from the radial

bearing test rig are presented in Section D.4.1 and the fault diagnosis or scratch detection

in the axial tapered bearing in Section D.4.2.

D.4.1 Fault Classification for the Radial Bearing Based on Vi-

bration Signals

In this section, the performance of classifiers, namely CNN, SVM, and SAE-SVM, is

evaluated based on their accuracy of classifying faults in a radial bearing. Features fc6

and fc7 generated from AlexNet using Dataset 1 were fed into three fault classifiers. The

dataset included two fault types (FT): outer race (OR) and rolling element (RE). Four

SNR levels were investigated in each fault type, in which SNR1 was without noise, while

other SNRs are shown in Table D.7. The classification results at 75%, 50%, and 25%

training data are summarized in Table D.8. The CNN classifier was a fine-tuned version

of the pretrained network, while the SVM and SEA-SVM classifiers were implemented on

both fc6 and fc7 features, as mentioned in Figure D.1, resulting in CNN, SVM fc6, SVM

fc7, SAE-SVM fc6, and SAE-SVM fc7 in Table D.8.

We can see from Table D.8 that the overall trend is that the accuracy dropped with the

decrease in SNR and the reduction in training data. As shown in the confusion matrices

in Figure D.11, the misclassification was not consistent. Healthy (HE) was considered as

a negative class, while damaged was considered as a positive class. Target class refers to

the ground truth, while output class was the classifier output. At low noise levels, the

algorithms tended to give more false alarms than missed detections. For Fault Type 2, RE

damage, this pattern changed between SNR3 and SNR4. The number of misclassifications

increased more than false alarms.

D.4.2 Fault Classification for the Axial Roller Bearing Based on

Acoustic Emission Signals

Validation accuracy for the axial data, shown in Table D.9, was in general above 95%,

except for SAE-SVM at fc7. These results are shown in more detail in Figure D.12. The

confusion matrices show that for 75 and 25% training data, the classifier was not able to

separate classes and labeled all data as healthy. In the 50% case, all healthy data were

misclassified as damaged. Additionally, some damaged cases were misclassified as healthy,





     

Table D.8: Validation accuracy: Dataset 1. FT, fault type.

FT1-OR FT2-RE

Training

Data

SNR1 SNR2 SNR3 SNR4 SNR1 SNR2 SNR3 SNR4

75%

CNN 99.3% 100.0% 100.0% 97.9% 100.0% 98.6% 92.9% 89.3%

SVM fc6 100.0% 100.0% 100.0% 96.4% 100.0% 97.9% 94.3% 87.1%

SVM fc7 100.0% 100.0% 100.0% 95.7% 99.3% 97.1% 95.0% 82.1%

SAE-SVM fc6 100.0% 98.6% 100.0% 93.6% 100.0% 85.7% 95.0% 82.1%

SAE-SVM fc7 100.0% 100.0% 100.0% 90.0% 99.3% 95.7% 93.6% 85.0%

50%

CNN 100.0% 100.0% 100.0% 95.7% 99.3% 97.1% 97.1% 85.0%

SVM fc6 100.0% 100.0% 100.0% 97.1% 98.6% 97.1% 95.0% 86.4%

SVM fc7 100.0% 100.0% 100.0% 95.7% 98.6% 95.0% 92.1% 80.0%

SAE-SVM fc6 100.0% 100.0% 100.0% 95.0% 99.3% 95.0% 94.3% 78.6%

SAE-SVM fc7 100.0% 100.0% 100.0% 95.0% 99.3% 92.9% 90.0% 79.3%

25%

CNN 98.7% 100.0% 98.6% 86.4% 100.0% 91.4% 92.1% 86.4%

SVM fc6 100.0% 100.0% 100.0% 95.7% 99.3% 96.4% 95.0% 85.0%

SVM fc7 100.0% 100.0% 100.0% 95.0% 98.6% 96.4% 94.3% 85.7%

SAE-SVM fc6 100.0% 100.0% 99.9% 82.1% 98.6% 97.1% 92.1% 69.3%

SAE-SVM fc7 100.0% 100.0% 99.3% 87.1% 97.9% 93.6% 90.7% 78.6%

dropping the overall accuracy to only 22.7%.

Table D.9: Validation accuracy: Dataset 2.

Training Data CNN SVM fc6 SVM fc7 SAE-SVM fc6 SAE-SVM fc7

75 97.3% 98.7% 98.7% 97.3% 66.7%

50 98.7% 100.0% 99.3% 94.7% 22.7%

25 97.3% 98.0% 96.7% 95.3% 66.7%

D.5 Discussions

Table D.10 shows accuracy averaged across SNR levels and results for different amounts

of test data, the overall accuracy in both datasets. The SVM classifier had the highest

accuracy, followed by CNN and SAE-SVM, respectively. The SAE-SVM score was heavily

affected by poor performance in analyzing features fc7 in Dataset 2.

While accuracy is an indicator of classifier performance, detection rate and of false

alarm rate will further justify performance evaluation. Table D.11 shows the probability





          
    

Figure D.11: Confusion matrices for Dataset 1, 75% training data, Fault Type 2 at SNR3

and SNR4. (a) CNN classifier, (b) SVM classifier at fc6, and (c) SAE-SVM classifier at

fc6.

Figure D.12: Confusion matrices for Dataset 2 with (a) 75%, (b) 50%, and (c) 25%

training data.

Table D.10: Mean accuracy for each classifier.

Accuracy

CNN 96.93%

SVM fc6 97.81%

SVM fc7 97.04%

SAE-SVM fc6 94.89%

SAE-SVM fc7 73.23%

of false alarm (PFA) and probability of detection (POD) averaged across SNR level and

training data size. Additionally, the mean value across both datasets is included. These





     

metrics are summarized and color coded using dark green (best), light green, yellow, light

red, and dark red (worst) for each dataset. Ideally, a classifier has a high POD combined

with a low PFA.

Table D.11: Mean probability of false alarm (PFA) and probability of detection (POD)

across SNR and training data size.

PFA POD

Radial

FT1

Radial

FT2

Axial Mean Radial

FT1

Radial

FT2

Axial Mean

CNN 1.19% 1.98% 2.00% 1.72% 95.71% 82.38% 96.00% 91.36%

SVM fc6 0.79% 2.54% 1.00% 1.44% 98.81% 85.00% 98.67% 94.16%

SVM fc7 0.87% 3.81% 2.33% 2.34% 98.10% 82.86% 99.33% 93.43%

SAE-SVM fc6 2.22% 4.92% 0.67% 2.60% 96.19% 77.14% 88.67% 87.33%

SAE-SVM fc7 2.22% 4.52% 33.33% 13.36% 97.14% 78.81% 22.67% 66.21%

Evaluation of the classifiers was done qualitatively with respect to classification perfor-

mance, robustness, ease of implementation, and computational demand. When ranking

performance between classifiers, the notation of X/5 was used, as five different variations

have been tested where Xis the ranking of the performance, e.g., X = 1 indicates the

best performance.

D.5.1 CNN Classifier

As seen in Table D.10, the CNN classifier had an overall accuracy of 96.93%, which

was ranked 3/5 of the tested cases. Closer examination of Tables D.8 and D.12 reveals

that accuracy with 25% training data in Dataset 1 had the most negative impact on

overall score. Its PFA ranked 2/5, while its POD 3/5. Its POD ranked 5/5 for Dataset

1, FT1, but still over 95%. The implementation was easy, but required training the

network. The performance with 25% training data suggests that more training data are

required compared to other classifiers. The CNN classifier also scaled well to multi-class

classification problems by simply increasing the number of neurons in the final layers.

D.5.2 SVM Classifier

The SVM classifier was the easiest to implement. Filters and weights from the pretrained

network were not modified, and the features input to the SVM were available without

any fine-tuning of the network. The major tuning parameter was from which layer to

extract the features. In this paper, features at layers fc6 and fc7 were used, but fc6





          
    

showed a better accuracy, lower PFA, and higher POD for all datasets except POD for

Dataset 2. Additionally, both mean accuracy, PFA, and POD ranked 1/5 overall. Tuning

of SVM parameters and different kernels will affect performance, but training the SVM

is less computationally heavy than training the CNN or autoencoders. Overall, the SVM

classifier on features fc6 had the best performance among the tested classifiers.

D.5.3 SAE-SVM Classifier

The sparse autoencoder added to the SVM classifier became an SEA-SVM classifier.

While unsupervised extraction of important parameters seems favorable, the methods

showed no consistent advantage over the SVM classifier in terms of classification perfor-

mance. As illustrated by the results in Dataset 2, the autoencoder might even fail to

extract useful features for discriminating between classes where the SVM classifier suc-

ceeds. Extracting features at fc7 ranked 5/5 in accuracy, PFA, and POD, mainly due

to performance on the axial roller bearing dataset. In contrast, the SAE-SVM using fc6

was ranked 1/5 in PFA in fault classification for the axial roller bearing, but this result

was accompanied by a 4/5 rank in POD. Introducing the autoencoder in addition to the

SVM adds complexity in terms of tuning parameters and requires time and computa-

tional power to train. Combined with the results, this method is not recommended for

classifying faults in roller bearings if using simple transfer learning.

Table D.12 gives a comparative evaluation of the proposed fault classifiers for roller

bearings, where + and ++ indicate good and very good relative performance, while −
and −− are the negative equivalents.

Table D.12: Classifier evaluation.

Accuracy Robustness Implementation Computational Burden

CNN + + + −
SVM + + ++ +

SAE-SVM − − − −−

D.5.4 Comparison with Envelope Analysis

Envelope analysis has been commonly used in detecting bearing faults in industry. The

performance of the proposed algorithms using machine learning was compared to those

of using envelope analysis. In Dataset 1, the roller element fault (FT2) was more difficult

to detect than the outer race fault; thus, we provide an example where FT2 at the

lowest speed (100 rpm) was analyzed using envelope analysis. In the proposed classifiers,

segments of two revolutions were used. To improve resolution in the envelope spectrum,





     

five segments were combined so that total segment length was extended to 10 revolutions.

As shown in Figure D.13, even though transients were visible in the time domain waveform,

no clear peak was visible in the envelope spectrum without further processing. However,

the proposed method, here illustrated by the CNN classifier, can predict the correct

class with above 99% probability. Envelope analysis would in this case require a certain

expertise to perform further analysis.

Figure D.13: (a) Time domain signal and the envelope spectrum for the faulty roller

element at 100 rpm. (b) Classification of the corresponding spectrograms using the CNN

classifier.

D.6 Conclusions

A transfer learning approach to bearing fault classification using a pretrained convolution

neural network (CNN) was proposed in this work. It was shown that the pretrained

network can be fine tuned, or used to generate features for detecting bearing faults by

other machine learning-based classifiers. Three classifiers based on CNN, support vector

machine (SVM) and combined sparse autoencoder (SAE) and SVM algorithms were used

to classify faults in axial and radial roller bearings using both vibration and acoustic

emission signals.

The performance and robustness of the proposed method were investigated under

different fault types, operating speed, and noise levels. The investigation shows that ex-

tracting features from the pretrained CNN directly, then using the SVM for classification,

is the best option to detect faults in roller bearings in terms of robustness, easy imple-

mentation, and computational burden. Fine-tuning of the CNN scales well to multiclass





          
    

classification problems, but yields lower accuracy than the SVM classifier. Combined with

increased computational burden and more tunable hyperparameters, the CNN-based clas-

sifier is ranked as the second best option. Unsupervised dimensionality reduction using

SEA to the extracted features from the pretrained CNN increases the computational bur-

den and complexity of the SAE-SVM classifier for this application. It also has a negative

effect on robustness and thus the accuracy of the classification.
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Abstract – This paper proposes a method for calculating a health indicator (HI) for

low-speed axial rolling element bearing (REB) health assessment by utilizing the latent

representation obtained by variational inference using Variational Autoencoders (VAEs),

trained on each speed in the dataset. Further, versatility is added by conditioning on the

speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds

in a single model. Within the framework, the coefficients of autoregressive (AR) models

are used as features. The dimensionality reduction inherent in the proposed method

lowers the need of expert knowledge to design good condition indicators. Moreover, the

suggested methodology allows for setting the probability of false alarms when encoding

new data points to the latent variable space using the trained model. The effectiveness

of the proposed method is validated based on two different datasets: from a workshop

test of an offshore drilling machine and from an in-house test rig for axial bearings. In

both datasets, the HI is exceeding the warning and alarm levels with a probability of false

alarm (PFA) of 10−6, and the method is most effective at lower shaft speeds.

E.1 Introduction

Rolling element bearings (REBs) are widely used in heavy industrial machinery such as

offshore drilling machines, wind turbines, and paper mills. A defect in such bearings might

result in a catastrophic failure in the industrial system. Therefore, condition monitoring

(CM) for REBs is important to avoid unplanned downtime and production loss in heavy

industry. The majority of bearing condition monitoring techniques focus on detecting the
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presence and development of localized damage in bearing raceways or rolling elements [1,

2, 3]. CM of low-speed machinery, with a shaft speed below 10 Hz [4], is more challenging.

The energy associated with faults is then smaller, resulting in a low signal-to-noise ratio

(SNR). This requires more sensitive sensors and development of advanced signal processing

methods to extract fault signatures. Operating conditions tend to be less stationary at

lower speeds [4], thus resampling to angular domain is necessary in low-speed applications

[5, 6]. Health conditions of large bearings at low speed are usually observed via acoustic

emission or vibration measurements [7, 8, 5, 9, 10, 11]. Cyclostationary methods [12, 13,

14], wavelet denoising and filtering [15, 16], and empirical mode decomposition (EMD) [17]

have all been successful in low-speed bearing fault detection. Data-driven fault diagnosis

methods based on machine learning have also been intensively developed in recent years

[18]. Fault classifiers based on decision trees (DT) [19, 20], support vector machine (SVM)

[21, 22], k-nearest neighbor (k-NN) [23, 24], convolutional neural network (CNN) [25, 26,

27] and deep belief networks (DBN) [28, 29] are well applied to deal with bearing fault

detection. All mentioned machine learning based methods require historical failure data

for training, which is hard to obtain in industry. In addition, the authors could not

identify previous research dealing with faults on axial bearings, where a characteristic

fault frequency might not exist or is inconsistent in spectra. This work aims to develop

an anomaly detection method without using historical failure data. Tapered axial roller

bearings, e.g. in drilling machines from the offshore industry, have relative sliding motion

in the rib-roller contact area. Low speed makes this area particularly susceptible to wear.

In [30], wear on the roller ends was observed in a tapered axial bearing, as shown in Fig.

E.1.

Figure E.1: Wear on roller end of offshore drilling machine bearing.

However, no characteristic frequency component associated with defects, i.e. roller





        


frequency, was observed on the axial bearing during tests. This suggests that diagnosis

methods based on detection of defect characteristic frequencies alone are ineffective in

detecting wear in large and slow axial bearings. Identifying this defect on the axial

bearings is currently relying on offline monitoring methods such as lubricant analysis and

visual inspection combined with precautionary maintenance actions [30, 25]. This practice

requires interruptions of production and may allow failure to progress inconspicuously

between inspections. Therefore, development of online, non-intrusive monitoring methods

is very important to facilitate condition based maintenance (CBM) for large axial bearings

in heavy industry.

Since data from a healthy state is easier to obtain than in a damaged state, a procedure

of determining whether or not the observed bearing is normal based on prior knowledge

of healthy behavior of the machine, would be very useful to avoid using failure data.

References [31, 32] proposed a method for health threshold setting based on healthy op-

erating characteristics, allowing controlling probability of false alarm (PFA). A whitening

transformation was applied to a set of correlated condition indicators (CIs) with Gaussian

or Rayleigh distributions. These CIs were then used to calculate a health indicator (HI)

with a known probability density function (PDF) and cumulative distribution function

(CDF). The HI is normalized by the inverse CDF evaluated at (1−PFA), and optionally

multiplied with a warning factor w < 1. In this case, let HI0 denote an observation from

a healthy machine. The probability of observing HI0 above the warning factor is then

equal to the PFA, as shown in (E.1). The consequences of failures and false alarms must

be considered when setting the PFA threshold. Additionally, the number of inferences to

be done must be considered. Multiple testing increases the risk of false positive samples

simply by chance [33].

P (HI0 > 1) = PFA (E.1)

However, the method in [31] is only effective if CIs are well selected with known probability

distributions. The overall goal of conventional approaches is to perform health assessment

with a statistical foundation, based on a potentially large set of observed variables. Due

to the curse of dimensionality, also known as Hughes’ phenomenon [34], a single indicator

might “drown” in high dimensional feature space, which reduces accuracy of the model.

Thus, a method for dimensionality reduction of the features and maintaining most of the

information is required. To implement the HI threshold setting, features are also required

to be independent variables. Principal Component Analysis (PCA) can transform a set

of variables to linearly uncorrelated features with decreasing contribution to the variance,

but it does not account for non-linear dependencies. Machine learning (ML) algorithms

can be an alternative solution since they can capture complex dependencies among the

observed variables.





     

Autoencoders are successfully used for dimensionality reduction in fault detection

and classification of rotating machinery [35, 36, 37, 38], but lack a probabilistic latent

representation. Generative models are capable of estimating complicated PDFs of given

data, and can generate new samples, which follow the same distribution as the training

data. In [39], it was shown that sequential training of restricted Boltzmann machines could

discover hidden dependencies between observed variables and a sparse representation.

However, training such networks typically requires an additional statistic method, e.g.

Markov Chain-Monte Carlo (MCMC) methods, resulting in computational burden.

To achieve dimensionality reduction and reduce computational burden, this work uses

a combination of a Variational Autoencoder (VAE) [40] and a Generative Adversarial Net-

works (GAN) [41], which is similar to the Adversarial Autoencoder (AAE) [42]. The VAE

performs inference of variational parameters using neural networks in an encoder-decoder

structure by minimizing the reconstruction error and the Kullback-Leibler Divergence

(DKL) [43] between an encoded sample and a Gaussian standard distribution, which is

equivalent to maximizing the evidence lower bound (ELBO). This objective can be op-

timized with gradient descent algorithms through the ”reparameterization trick” [40].

These generative models allow imposing a distribution on the latent variables. In [42],

the latent distribution in AAEs seems to follow the target distribution closer, which is

desirable for the purpose of a HI. However, the adversarial training in GANs and AAEs

is often unstable [44]. This problem was also observed in experiments with AAEs while

devloping the proposed method. VAEs have been used in ball bearing fault classification

by using the latent variables for each data point as input to a classifier [45]. The proposed

approach instead utilizes the aggregated distribution of healthy conditions in the latent

space of a VAE to calculate a HI for new observations.

The remaining of the paper is organized as follows: In section E.2, the network ar-

chitecture, training procedure and HI calculation are described. Section E.3 details the

data acquisition and pre-processing. Results from two different datasets are presented in

section E.4. Section E.5 provides conclusions and discussions.

E.2 Methodology

This section presents the approach for calculating a bearing health indicator, utilizing

the latent variables in a VAE. The calculation of a HI limits the selection of CIs to those

following known distributions as described in [31] for Gaussian and Rayleigh distributions.

It also requires the user to pre-select suitable CIs based on domain knowledge. The

proposed method performs unsupervised dimensionality reduction from a set of input

features, while simultaneously imposing a Gaussian distribution on the latent variables.





        


This section provides a review of the network components, the loss functions and training

algorithm. The model was implemented in Python using TensorFlow r1.12 [46].

E.2.1 Network Architecture and Losses

The network architecture is shown in Fig. E.2. An encoder (red) and a decoder (green)

are connected by the latent representation (yellow).

Figure E.2: a) VAE architecture overview, b) Detailed architecture.

Let x be the feature input vector and z be the latent variable vector. The encoder

consists of a fully connected layer of size 1024 with weights, biases, an exponential linear

unit (ELU) activation function, and 50 % dropout. In this work, the coefficients of an

autoregressive model are used as features. The output includes two vectors, containing

the parameters of the latent representation for each data point. Let J be the dimension

of the latent space. The latent variables are constrained to have a Gaussian distribution

with diagonal covariance matrix, so the encoder outputs a vector containing the means,

µ, and log of the variances, log(σ2), each of length J . Note that these parameters are

for the individual data points, not the aggregated latent distribution q(z). Utilizing

the reparameterization trick from [40], samples from a white noise vector ε are used to

obtain a random sample z from the latent representation while still allowing gradients

to flow through the network. The decoder has the same architecture as the encoder,





     

with a fully connected hidden layer, ELU activation, and 50 % dropout. Weights and

biases are denoted φ. The desired output is a reconstruction of the input, like a normal

autoencoder. Combining these parts of the network results in the VAE. Originally, the

VAE was developed as a generative model for producing reconstructions similar to the

input by sampling from a given prior distribution p(z). The connection between data

and p(z) is in general not known, and must be approximated. Let the training data

distribution be x ∼ pd(x), and VAE output x̂ ∼ p(x). Further, qφ(z|x) and pθ(x|z) are

the encoding and decoding distributions of the encoder and decoder networks. Subscript φ

and θ are the encoder and decoder variables. Thus, the aggregated posterior distribution

of the latent variable, z ∼ q(z), is defined as in (E.2). To be utilized in the HI calculation,

q(z) must approximate the desired prior p(z).

q(z) =

∫
x

qφ(z|x)pd(x)dx (E.2)

To ensure that the latent representation contains useful information about the input data,

the encoder and decoder are trained to minimize the reconstruction loss function LR, as

in (E.3). LR is the mean square error between each feature xi,j and its reconstruction x̂i,j

over a minibatch, xM , of size M . The number of features per datapoint is denoted N .

LR(φ,θ; xM , ε) =
1

M

M∑
i=1

N∑
j=1

(xi,j − x̂i,j)
2 (E.3)

This encourages similar input data to cluster in latent space, while dissimilar data are

separated. Note that the square error is summed over a datapoint and averaged over

the minibatch. This gives more weight to reconstruction error, which helps avoid mode

collapse, i.e. the latent vector converges to a Gaussian that does not carry information.

While reducing LR provides a good reconstruction, the aggregated latent distributions

will not take a Gaussian distribution. To make the latent distribution approximate the

desired prior, KL divergence is introduced as a regularization on the encoder variables

φ. Given the assumption of diagonal covariance matrix, and Gaussian prior, the KL

divergence for a data point can be calculated in a closed form. The combined KL loss

over a minibatch is then calculated as in (E.4).

LKL(φ; xM) =
1

2M

M∑
i=1

J∑
j=1

( 1 + log(σ2
i,j)

−µ2
i,j − σ2

i,j

) (E.4)

The objective function to be minimized is the sum of LR and LKL, as given in (E.5).

LV AE(φ,θ; xM , ε) = LR + LKL (E.5)





        


Algorithm 1 Training algorithm.

φ, θ ← x Initialize parameters

repeat

Shuffle training dataset

repeat

xM ← Get minibatch from the training dataset

g← ∇LV AE(φ,θ; xM , ε) Calculate gradients

θ, φ← Update encoder/decoder parameters

until Epoch is completed

until Total number of epochs is completed

return φ, θ

Pseudo-code for the training procedure is given in Algorithm 1. Parameter updates

are performed using the Adam optimizer with cosine decay of the learning rate. Hyperpa-

rameters used in the experiments are given in Table E.1. Training was repeated 5 times

with different random seeds for weight initialization and shuffling. As suggested in [40],

the network parameters are set as M = 100 and L = 1.

Table E.1: Training Parameters

Parameter Value

Optimizer Adam

Learning rate schedule Cosine decay

Inital learning rate 1e-4

Final learning rate 1e-6

Minibatch size (M) 100

Hidden layer size 1024

Dropout 50 %

Activation ELU

Latent dimension (J) 3

Epochs, Dataset 1 30 000

Epochs, Dataset 2 15 000

E.2.2 Conditional Variational Autoencoder

With the described approach, it is required to train a separate VAE for each speed. For

machines with multiple operating conditions, this is impractical. Therefore, a conditional





     

VAE (CVAE) is trained for each dataset. CVAEs utilize the same network structure

and loss function LV AE as VAEs, but can be conditioned on additional information, such

as speed. For each datapoint, the speed information is a categorical variable, one-hot

encoded into a conditioning vector c. For example, the speed of 100 rpm in dataset 1

is encoded to c100 = [0, 1, 0, 0, 0] while the speed of 60 rpm in dataset 2 is encoded to

c60 = [0, 1]. As the model order is different for rpms, x is zero-padded to the largest

model order p. VAE training datasets consist of data from a single spped, while the

CVAE uses data from all speeds. Except for these differences, VAEs and CVAEs follow

an identical training procedure.

E.2.3 Health Indicator

A methodology for threshold setting given CIs with Rayleigh or Gaussian distributions is

proposed in [31]. In this work, a Gaussian distribution is chosen for the latent variables.

To verify that q(z) approximates the standard normal distribution N (0, I), the Kullback-

Leibler Divergence (DKL) was calculated as given in (E.6) for the aggregated posterior.

Σ is the covariance matrix of z, µ is a vector containing the mean values of z and J is

the number of latent variables.

DKL =
1

2

(
tr (Σ) + µTµ− J + loge

(
1

det Σ

))
(E.6)

The norm of J Gaussian variables follows a χ distribution with v degrees of freedom. Let

F (·) denote the CDF of a χ-distribution. The HI is normalized with a factor that is a

function of the PFA. The HI is calculated as shown in (E.7).

HI =

(
J∑
j=1

|zj|2
) 1

2 (
F−1(1− PFA)

)−1
(E.7)

E.3 Experimental Setup

The proposed algorithm is tested on data from two experiments: Vibration data from a

workshop test of an offshore drilling machine, and acoustic emission (AE) data from an

in-house test rig for axial bearings. A further description of the experimental setup is

given in the following sections.

E.3.1 Dataset 1: Offshore Drilling Machine Workshop Test

Dataset 1 (DS1) was collected from an offshore drilling machine taken out of operation

for maintenance as described in [30]. A schematic drawing of the setup is shown in Fig.

E.3.





        


Figure E.3: Conceptual drawing of an offshore drilling machine. a) Side view b) Top view.

1: Encoder 2: Flexible coupling 3: Axial sensor placement 4: Radial sensor placement, 5:

Motor, 6: Axial bearing, 7: Gear, 8: Shaft, 9: Pinion.

Data is collected from an accelerometer mounted in the axial location. Data was

sampled at 102.4 kHz and decimated to 81.92 kHz. The axial bearing showed signs of

roller end wear as shown in Fig. E.1. Data was first recorded using a healthy bearing,

being denoted damage level (DL 0). Then, reassembling the machine with a slightly

damaged bearing results in a change of the vibration characteristics and a reduction in

root mean square (RMS) [30]. Distinguishing this change from any fault induced change





     

is not possible. Thus, the slightly damaged condition is selected as the baseline condition

(DL 1) for training data. Additional damages in the form of indentations from a carbide

tip tool were applied to one of the roller end, producing data at DL 2. For data at DL 3,

the bearing was further damaged and also run under poor lubricating conditions. Data

was recorded at 50, 100, 150, 200 and 250 rpm. At 50 rpm, only data from DL 1 and

DL 3 was recorded. The machine was running unloaded, subject to the gravity by its

own weight. A quantitative measurement of damage is not available, but a degradation

resulting in a measurable change is expected. However, previous analysis of the vibration

signal was not successful in detecting any clear indication of the damage [30]. Damage

to a roller was expected to cause amplitude modulation at the roller frequency, but as

shown in Fig. E.4, no peak was observed at either one or two times the roller frequency

in the envelope spectrum.
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Figure E.4: Envelope spectrum for a healthy bearing (damage level 0) and at damage

level 3.

Segments corresponding to approximately 1 revolution are used for calculating the

features. To increase the number of data points, an overlap of 75 % is applied. The

autocorrelation function (ACF) is examined on a healthy dataset to determine if the

signal is stationary or not. If the ACF reduces quickly, the signal is considered stationary

[47], otherwise the signal is considered non-stationary. The ACF of a vibration signal

acquired at 50 rpm is shown in Fig. E.5 a). The ACF is slowly decreasing, and has a

cyclic trend, and the signal is therefore considered stationary. To mitigate trends and

cyclic signal components, the signal is differentiated once. Effectively, the jerk (m/s3) is

calculated with this differentiation, and low-frequency components from shaft and gearbox

are mitigated, while high-frequency components are enhanced. The resulting ACF after

differentiation is shown in Fig. E.5 b), showing that the ACF is now decreasing fast, and

only varies randomly after 100 lags. Given this result, the vibration signal acquired on

this test rig is differentiated once to make the signal more stationary.
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Figure E.5: Autocorrelation function of vibration data captured in Dataset 1. a) Raw

data b) After differentiation.

E.3.2 Dataset 2: Axial Roller Bearing Test Rig

Dataset 2 (DS2) consists of AE data from an in-house test rig, shown in Fig. E.6. The

test bearing was of type 29230 M from manufacturer ISB, subject to an axial load of 50

kN. Data was recorded at 30 and 60 rpm, in that order. AE data was collected at 1 MHz

sampling rate for 10 seconds. Data was then split into constant length segments of 50 000

samples.

To emulate the distributed abrasive wear shown in Fig. E.1, the rollers were removed,

and roller ends were ground with sandpaper of grit size from ISO/FEPA grit grade P400

(finest), P320, P220 and P80 (coarsest), as shown in Fig. E.7. “Heavy” and “Very Heavy”

refer to relative degrees of damage using the same sandpaper grade.

The ACFs of the acoustic emission dataset before and after differentiation are shown

in Figs. E.8. a) and b), respectively. The ACF of the raw signal in Fig. E.8 a) decreases

rapidly, and differentiating the signal has little effect on the ACF as observed in Fig.

E.8 b). Therefore, the acoustic emission signal is considered stationary and requires no

further differentiation.





     

Figure E.6: a) Drawing of in-house axial bearing test rig. b) Assembled bearing test unit.

1: Load cylinder, 2: AE sensor location, 3: Bearing test unit, 4: Motor.

Figure E.7: Damage on roller ends in dataset 2. DL 1: P400, DL 2: P400 Heavy, DL 3:

P320, DL 4: P220, DL 5: P220 Heavy, DL 6: P80, DL 7: P8 Heavy, DL 8: P80 Very

Heavy

E.3.3 Feature Extraction and Preprocessing

The input x to the autoencoder network is a feature calculated from the vibration and

AE data. In the previous work, vibration energy was not significantly increased when the

damage level on an axial bearing was escalated [30]. In addition, energies at specific char-

acteristic frequencies do not increase either. However, the bearing condition degradation

is expected to produce a change in frequency content of the associated signal. Therefore,

features, which are sensitive to changes in the measured signal, are required to be used
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Figure E.8: Autocorrelation function of vibration data captured in Dataset 2. a) Raw

data b) After differentiation.

as input to the autoencoder. An autoregressive (AR) model of order p can predict the

next signal sample based on a linear combination of p previous samples, assuming that

the signal s is stationary.

Moved and revised: Thus, changes in the AR model parameters should reflect that

the vibration signal has changed. The AR coefficients may have arbitrary distributions,

which makes it challenging to quantify a change. It is therefore easier to threshold in

latent space, where the distribution of healthy latent vectors approximates a Gaussian

distribution.

The AR model is depicted as

si = νi +

p∑
j=1

ajsi−j (E.8)

where si is the signal at i’th time step, ν is the model residual and aj is the j’th model

parameter. The Yule-Walker equations [48, 49] are solved for an input signal s to obtain

the AR model parameters.

The order p is determined by calculating the partial autocorrelation function (PACF)

[50] for an increasing number of lags. The model order p of a time series with N samples

is considered sufficient where PACF at lag p is zero with a 5 % significance level [47], as





     

given in (E.9) [51].

PACF ≤ ±1.96√
N

(E.9)

The smallest lag p, which results in a PACF below the 5 % significance level, is determined

for each healthy segment. As an example, the PACF of a differentiated vibration signal

acquired at 50 rpm using test rig 1 is shown in Fig. E.9.
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Figure E.9: Absolute value of the partial autocorrelation function of differentiated vibra-

tion data acquired using test rig 1. The graph is crossing beneath the confidence interval

at lag 29.

At lag 29, the PACF is beneath the 5% significance level. This procedure is repeated

for all signal segments, and statistics between all segments within each speed range are

calculated afterwards and shown in Table E.2. As seen in the table, the mean value is

selected as model order p. Standard deviation (STD) and median are also given for each

dataset and speed.

Table E.2: Statistics for calculated model order p.

DS1-50 DS1-100 DS1-150 DS1-200 DS1-250 DS2-30 DS2-60

Mean (p) 32 12 20 16 15 14 25

STD 9 9 13 9 10 10 11

Median 29 5 23 9 9 7 17

All input data was afterwards standardized using the mean and standard deviation of

the remaining training data. Outliers in training data are removed if one AR coefficient

differed from the mean value by more than five standard deviations. Baseline data (DL0)

was shuffled and split in training (50 %), validation (25 %) and test (25 %) subsets.

The remaining DLs were used for testing only. Table E.3 shows sample rate, number of

samples in the raw data, and size of the datasets at each DL.





        


Table E.3: Dataset details.

DS1-50 DS1-100 DS1-150 DS1-200 DS1-250 DS2-30 DS2-60

Sample rate 81.92 kHz 81.92 kHz 81.92 kHz 81.92 kHz 81.92 kHz 1 MHz 1 MHz

Samples 98304 49152 32768 24576 19661 50000 50000

DL0 size 988 568 596 328 312 2099 2098

DL1 size - 536 480 280 372 420 420

DL2 size 964 496 388 304 280 420 420

DL3-8 size - - - - - 420 420

E.4 Results

This section presents the results of the experiments, evaluating the calculated HI using

both VAE and CVAE. The validity of the required assumptions of a Gaussian-distributed

latent variable is also discussed. The presented results are the aggregate of the 5 models

trained with different random initialization.

E.4.1 Health Indicator Evaluation

In the first dataset, DS1, an increase in HI with damage level is observed at all speeds.

The alarm level (HI=1) is calculated with PFA = 10−6. Boxplots of the calculated HI

from VAEs and a CVAE are shown in Fig. E.10. Whiskers are set to 2.5th and 97.5th

percentile. In the following discussion, the median (orange line inside boxes) is considered

as the HI value. In dataset 1, HI at DL2 exceeds the warning level 0.75 in all speeds except

at 150 rpm for VAE (HI=0.63) and 200 rpm for CVAE (HI=0.69). Data for DL2 was

not recorded at 50 rpm. At DL2, the HI exceeds alarm value of 1 at all speeds. Results

from VAE and CVAE differ more as damage level increases, but the overall results are

well aligned with an increase in HI with damage level at all rpms.

The HI calculated for dataset 2 with VAE and CVAE is shown in Fig. E.11. At 30

rpm, the HI is above the alarm level from DL2. However, there is no monotonic increase

in HI level with damage level. Still, this result should be considered as a clear indication

of anomalous behaviour. HI for 60 rpm follow a similar trend, but the HI values are lower,

exceeding the warning level in DL3-5 only. As in DS1, the HI values calculated using the

standard VAE and CVAE are very similar.

Compared to dataset 1, there is less consistency in the HI with increasing HI, and larger

differences between speeds. The inconsistency between damage levels may be caused by

removing the bearing for applying damage. This procedure introduces differences in the

mechanical assembly that may affect the results. Also, the damage was applied manually,
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Figure E.10: HI for dataset 1. Left column: Standard VAE. Right column: Conditional

VAE. a-b) 50 rpm, c-d) 100 rpm, e-f) 150 rpm, g-h) 200 rpm, i-j) 250 rpm. Whiskers

are set to 2.5th and 97.5th percentile.

which gives room for more variations between damage levels. Finally, data for increasing

speeds were recorded consecutively. The seeded damage may therefore be smoothed over

time during acquisition. This is a possible explanation for the differences between 30 rpm

and 60 rpm. If the smoothing effect differs with damage severity, this will also contribute

to the HI inconsistency between damage levels. Further, higher speed may generate high

energy frequency components, which dominate the AR coefficients but are not associated

with the bearing damage.
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Figure E.11: HI for dataset 2. Left column: standard VAE. Right column: Conditional

VAE. a-b) 30 rpm, c-d) 60 rpm. Whiskers are set to 2.5th and 97.5th percentile.

E.4.2 Model Properties

A summary of final training, validation and test losses for the VAE are shown in Table

E.4, including the median values for the 5 models. The ability of latent representations

carrying useful information is measured by the reconstruction loss LR. Examining LR in

Table E.4 reveals that the value is correlated with model order p, which is expected from

the square error summation per datapoint in (E.3). The reconstructed AR coefficients for

DS1-100 are shown in Fig. E.12. This speed has the lowest number of features (p = 12) in

the dataset, and also the lowest reconstruction loss. Still, we observe that reconstructions

of coefficient 8 and 9 are skewed. It is likely that further tuning of hyperparameters

such as hidden layer size, number of hidden layers and latent dimension can improve

reconstruction, but a systematic investigation of parameters search was not performed

due to the associated computational cost of training.

The statistical properties of the HI assumes that q(z) approximates a multivariate

standard Gaussian distribution p(z) ∼ N (0, I). The Gaussian latent space is imposed by

LKL, which takes values between 1.838 (DS1-250) and 2.106 (DS1-50) in the test dataset.

The loss values are more stable than LR, as the latent dimension J is constant.

However, LKL describes the mean KL divergence of each datapoint rather than the ag-

gregated distribution of q(z). Therefore, the KL divergence DKL between the aggregated

distribution (after sampling) and p(z) are calculated as in (E.6). The value is bounded

to DKL ≥ 0, and a value of zero means that q(z) and p(z) are identical distributions.

In the test datasets, DKL takes values between 0.007 (DS2-30) and 0.112 (DS2-30). Fig.





     

Table E.4: Final loss values after training of the VAEs.

LR LKL KLD

train val test train val test train val test

DS1-50 20.668 23.130 22.607 3.484 3.266 2.106 0.033 0.017 0.025

DS1-100 4.432 5.375 5.400 2.765 2.550 1.950 0.033 0.033 0.050

DS1-150 9.814 10.397 11.623 3.205 2.991 2.085 0.038 0.044 0.021

DS1-200 6.987 8.778 9.189 3.001 2.853 2.071 0.028 0.091 0.112

DS1-250 5.328 6.090 6.215 3.178 2.739 1.838 0.020 0.067 0.054

DS2-30 5.255 5.670 5.569 2.844 2.803 2.099 0.050 0.010 0.007

DS2-60 7.418 7.658 7.236 3.586 3.452 1.943 0.041 0.019 0.017

Table E.5: Final loss values after training of the CVAE.

LR LKL KLD

train val test train val test train val test

DS1 14.453 14.080 13.977 2.910 2.825 1.988 0.068 0.007 0.008

DS2 5.302 6.303 8.389 2.702 3.015 2.748 0.038 0.005 0.020
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Figure E.12: Histogram of test data x and reconstructions x̂ for the 12 coefficients in

DS1-100.





        


E.13 shows histograms of each dimension of z for DS1-100, which has DKL = 0.05. A

qualitative evaluation confirms that it approximates a Gaussian distribution.
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Figure E.13: Histogram of the aggregated posterior z = [z1, z2, z3] for the test data of

DS1-100.

Table E.5 lists LR, LKL and KLD from the network trained as CVAEs, where all

speeds in the dataset are used simultaneously in training. LR in the test datasets is

higher than the average for the separate speeds in Table E.4. This is reasonable, as the

same number of neurons in the network must learn to reconstruct data from 5 and 2 rpms

in DS1 and DS2 respectively, instead of just one. However, we see that values for LKL
and KLD are similar to the VAE. This indicates that the assumption of a Gaussian latent

space is valid for the CVAE as well.

E.5 Conclusions

This paper proposes a method for unsupervised learning of a Health Indicator (HI), aiming

to detect defects in large, slow-rotating axial bearings, by performing variational inference

using a variational autoencoder (VAE) and a conditional variational autoencoder (CVAE).

Within the framework, coefficients from autoregressive (AR) models were used for both

vibration and acoustic emission measurements. The proposed method is proven to be

effective using both vibration and acoustic emission (AE) measurements. Using vibration

measurements, as opposed to acoustic emission data, allows the proposed method to be

cost-effective. In contrast, the previous work of dataset 1 was not able to reveal any

degradation of the bearing using vibration measurements. The HI calculated from AE

data in dataset 2 was less consistent with the applied damage. However, the experimental

design may have had an impact on the calulated HI, in particular at 60 rpm. In both

datasets, the proposed method was able to uncover and quantify a significant change in

machine operation through the HI. The possibility to calibrate the HI to a desired level





     

of Probability of False Alarm (PFA) allows the alarm setting to adapt to the criticality

of the equipment.

Challenges of detecting defects on axial, large bearings at low speeds were discussed

in this study. The effectiveness of the proposed method for axial bearing fault detection

at low speeds is validated by data from 2 test rigs. As the proposed method does not rely

on detection of fault frequencies, changes in machine operation can be detected regardless

of failure mode and fault location. In future studies, the methodology can be extended to

include other types of feature input, such as time series data. Other target distributions

can also be investigated, in conjunction with tuning of hyperparameters for improving

reconstruction while maintaining the desired distribution. The HI is capable of capturing

changes in the condition of the axial bearing, so a logical next step is to incorporate it in

prognostics and remaining useful life estimation.
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Abstract – The industry is moving towards maintenance strategies that consider

component health, which require extensive collection and analysis of data. Condition

monitoring methods that require manual feature extraction and analysis, become infea-

sible on an industrial scale. Machine learning algorithms can be used to automatically

detect and classify faults, however, obtaining sufficient data for training is required for

deep learning and other data-driven classification approaches. Data from healthy ma-

chine operation is generally available in abundance, while data from representative fault-

and operating conditions is limited. This limits both development and deployment of

deep learning-based CM systems on an industrial scale. This paper addresses both the

challenges of automated analysis and lack of training data. A deep learning classifier ar-

chitecture utilizing 1-dimensional dilated convolutions is proposed. Dilation of the convo-

lution kernel allows for analysis of raw vibration signals while simultaneously maintaining

the receptive field of the classifier enough to capture temporal patterns. The proposed

method performs classification in time domain on signal segments of 1 second or shorter.

With knowledge of the bearing specification, artificial vibration signals with similar char-

acteristics as an actual bearing fault can be created. In this work, generated fault signals

are combined with healthy operational data to obtain training data for a deep classifier.

Parameters of the vibration model is chosen as distributions rather than fixed values. By

using a range parameters in the vibration model, the classifier learns to recognize tempo-

ral features from the training data that generalize to unseen data. The effectiveness of the

proposed method is demonstrated by training classifiers on generated data and testing

on real signals from faulty bearings at both low and high speed. One dataset containing
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seeded faults and three run-to-failure tests are used for the demonstration.

F.1 Introduction

Rolling element bearings (REBs) play a fundamental part in most types of rotating ma-

chinery by reducing friction, transferring forces and constraining motion. Even under

operation within design specification, REBs have a finite lifetime due to fatigue induced

by cyclic loading from the moving rolling elements. Expected fatigue lifetime can be esti-

mated accurately for large populations of bearings under identical operating conditions.

However, the lifetime of a single bearing might be shorter or longer than the estimated

value. Therefore, performing maintenance based on elapsed time or operating hours is not

optimal. Shorter maintenance intervals do not utilize component lifetime, while longer in-

tervals may result in unexpected failures and downtime. This motivates the development

of condition monitoring (CM) methods that are able to diagnose and evaluate component

health. Condition based maintenance (CBM) and prognostics and health management

(PHM) maintenance regimes aim to utilize the knowledge of machine health to perform

maintenance when required.

While time domain features such as root mean square (RMS), peak-to-peak and kur-

tosis are useful for fault detection through trending, they cannot be used for diagnosing

fault types. Single-point surface defects in bearings can be modeled as periodic excitation

of the system resonance frequency [1]. Amplitude demodulation is effective for detecting

such defects, and a fast implementation is possible using the Hilbert envelope [2]. To

improve the effectiveness of envelope analysis, the signal should be preprocessed. The

fast Kurtogram [3] utilizes spectral kurtosis to identify a frequency band for demodula-

tion [4], and order tracking reduce the amount of spectral leakage due to speed variations

[5, 3]. Bearing vibration is random in nature [6], and is thus separable from other vibra-

tion sources using time synchronous averaging (TSA) [7, 6], cepstral editing [8, 50] and

other methods [9]. While these tools are effective for bearing fault diagnosis at any speed,

diagnosis of low speed applications is more challenging. There is less energy in the system

and the fault signature is easily masked in noise. Characteristic fault frequencies are also

closer in absolute frequency, requiring longer acquisition time to achieve a spectral reso-

lution where faults are distinguishable [10]. In any case, a skilled data analyst is required

to process data and diagnose the bearing.

With the emergence of industry 4.0, the amount of available sensor data is increasing

rapidly [11]. Proper usage of the aforementioned tools requires feature engineering and





         


skilled manpower, which leaves manual analysis infeasible on a large scale and motivates

a more data-driven, automated approach. Deep learning has proven to be well suited to

data-driven feature extraction, classification and prognostics for rotating machinery [12].

Autoencoders [13], deep neural networks [14], support vector machines [15], deep belief

networks [16, 82], self-organizing maps [17] and convolutional neural networks (CNNs) [18,

76, 77] are all applied to bearing fault detection and diagnostics. Time series analysis using

deep learning has applications in speech recognition and modeling [19], translation [20],

and audio recognition and generation [21]. In high resolution time series, it is necessary to

consider dependencies that are further apart than the kernel size. One strategy is to use

larger kernels and add more convolutional and pooling layers, but this is computationally

heavy, and the weight training may be difficult due to vanishing gradients. Long short-

term memory recurrent networks are also commonly applied in analysis and modeling

of speech and audio [22]. The memory of previous states in recurrent network has to

propagate through the entire time series, which is a limitation for retaining long-term

memory.

However, a common problem is the need for representative fault data during training.

To counteract this, it has been proposed to use simulated bearing faults for training clas-

sifiers [23, 24, 25]. A wide range of analytical and FEM-based dynamic models for bear-

ing faults exist, taking clearances, elastohydrodynamic lubrication effects, race waviness,

defect size and several other parameters into consideration [15]. However, the results pre-

sented in this paper show that modeling the impulse responses and pseudo-cyclostationary

behavior [26, 3] is sufficient to capture the characteristics of a real vibration signal.

This paper proposes to train a deep convolutional neural network on vibration time

series data based on combinations of healthy and simulated fault data. The architecture

is based on hierarchically dilated 1D convolutions. A dilated architecture was applied to

bearing fault detection in [27]. However, the proposed method in this paper includes low-

level feature extraction without dilation, and a global average pooling layer to replace fully

connected layers. Additionally, training in [27] was done on actual fault data as opposed

to simulated data in this paper. Varying the parameters of the simulation model allows

the classifier to learn features that are generalized enough to detect and diagnose actual

bearing faults. The approach reduces the need for manual feature extraction and allows

the analysts to focus the attention on detected faults for closer evaluation. The proposed

method is applied to shorter signal segments of raw vibration data. This is particularly

beneficial for low speed bearings that require longer acquisition time for spectral resolu-

tion. The proposed method reduces the need for data processing, storage and transfer by

performing classification in time domain.





     

The remaining of the paper is organized as follows: Section F.2 describes the generation

and processing of data that leads to the classification. The datasets used in analysis are

presented in Section F.3. Analysis results and discussion are provided in Section F.4.

Final conclusions are given in Section F.5.

F.2 Methodology

It is assumed that single-point surface defects excite transient pulses of amplitude modu-

lated resonance frequencies of the support structure when internal bearing parts roll over

a fault. Modelling a signal requires several assumptions of unknown or uncertain vari-

ables. The proposed approach acknowledges this, and generates data from parameters in

a range rather than fixed values. Section F.2.1 defines how these uncertainties are used

to generate the fault signal.

F.2.1 Bearing Vibration Model

Faults in outer race (OR), inner race (IR) and rolling element (RE), result in periodic

impacts with ball pass frequency outer race (BPFO), inner race (BPFI) and ball spin fre-

quency (BSF), respectively. The fundamental train frequency (FTF) is mainly presented

as a modulating frequency for rolling element (RE) faults. The nominal period T is the

inverse of the characteristic fault frequency of the fault type and is denoted TOR, TIR,

TFTF and TRE. Formulas for calculating the periods are provided in Eqs. (F.1) through

(F.4). The number of rolling elements is denoted by nr, d and D are the roller and pitch

diameter, respectively, and φ is the contact angle.

TOR = BPFO−1 =

(
frnr

2

(
1− d

D
cosφ

))−1
(F.1)

TIR = BPFI−1 =

(
frnr

2

(
1 +

d

D
cosφ

))−1
(F.2)

TFTF = FTF−1 =

(
fr
2

(
1− d

D
cosφ

))−1
(F.3)

TRE = BSF−1 =

(
frD

2d

(
1−

(
d

D
cosφ

)2
))−1

(F.4)

In reality, the impact period is slightly random due to slip, typically around have 1-2 %

[28]. By considering slip as a random process without memory, the bearing signal becomes

pseudo-cyclostationary. The slip is accounted for by modeling time between impacts as





         


a random variable ε ∼ N (0, σ2
T ), where 3σT = 0.02 [29]. This keeps the impact periods

within approximately ±2% of the nominal period. Thus, the k-th impact period is simply

calculated as in Eq. (F.5).

Tk = T (1 + ε) (F.5)

In a discrete time series, the sample number of the K-th impact, nK , is calculated as

the cumulative sum of previous impact periods multiplied by the sample frequency, and

rounded to the nearest integer with the nint (·) operator. The location of the first impact

n0 is determined by sampling a uniform distribution for the first impact time T0, where

T0 ∼ U (0, T ). Then, the nearest corresponding sample is calculated as n0 = nint{FsT0},
where Fs is the sample frequency.

nk = n0 + nint{Fsfr
K−1∑
k=1

Tk} (F.6)

The pulse amplitude is also considered a random variable, where the randomness is mod-

eled by ξ ∼ N
(
0, σ2

p

)
. The discrete pulse train p[n] is created by setting p[nk] = 1 + ξ for

k ∈ [0, K) pulses and 0 elsewhere. IR and RE faults have additional amplitude modulation

as the fault passes through the load zone. This phenomenon is modeled by multiplying

a periodic function with the pulse train. As the modulation index m1 is unknown, it is

sampled from an interval for generation of each time series. Rolling element faults typi-

cally appear at 2 ·BSF , as the fault strike both the inner and outer per roller revolution.

This also creates additional amplitude modulation at BSF with modulation factor m2.

The impulse response is modeled as bandpass-filtered white Gaussian noise wbp[n], with

center frequency fc and bandwidth bw. A Butterworth filter of order 5 is used to make

the band-pass filter. The impulse response modulation function for a time series is ob-

tained by convolving the pulse train with a window function h[l] where l ∈ [0, L), where

the pulse is given in Eq. (F.7). The number of samples L are determined by sampling

L = nint(Fsth), where th ∼ U(0.5 ms, 5 ms) is a uniformly distributed variable to model

different pulse durations.

h[l] = e−5l/L (F.7)

The resulting generated fault signal xF is given as in Eq. (F.8).

xF = ((m1 +m2) p ∗ h)wbp (F.8)

F.2.2 Data Preprocessing

The following section describes how the generated fault signal xF and healthy signal xHE

are processed before used for training and testing. Each dataset consists of N records





     

with duration tr. In this paper, the records are either used directly, or segmented using a

rectangular rolling window with duration tw and a stride of ts. Depending on the available

data, either complete samples or shorter segments can be extracted. Because the simulated

data is combined with real, healthy data, it is necessary to know which records are healthy.

In seeded fault datasets this information is available, but in run-to-failure tests, true

condition is not known. This is solved by using the first NHE records as a reference

for healthy condition. As this paper utilizes data that has also been analyzed by other

researchers, it is possible to choose NHE small enough to be confident that the bearing is

actually healthy. All records selected as healthy are normalized to unit RMS. From the

normalized healthy data, the desired number of samples are drawn with replacement for

used in training. As the fault data is simulated, it is possible to generate an arbitrary

amount of training data. Table F.1 shows the number of generated samples for each

dataset. Healthy data use for fault simulation was drawn randomly with replacement.

CWRU IMS UiA

HE Real 967 256 920

HE Simulated 2048 2048 2048

IR Simulated 2048 2048 2048

RE Simulated 2048 2048 2048

OR Simulated 2048 2048 2048

Table F.1: Number of training records

In the seeded fault datasets, all training and test data was normalized to unit RMS

to let the network learn patterns from data in a predictable range. First, the simulated

faulty data xF is normalized with a factor λRMS{xF} to model differences in damage

severity. Each segment, xHE, is augmented with additive white noise w ∼ N (0, 0.052)

and normalized to unit RMS. The sum of these signals is denoted x′S, as shown in Eq.

(F.9). This signal is again normalized to unit RMS, as shown in Eq. (F.10).

x′S =
xHE + w

RMS{xHE + w}
+

xF
λRMS{xF}

(F.9)

xS =
x′S

RMS{x′S}
(F.10)

In run-to-failure datasets, all records are normalized with the mean RMS of the NHE

reference records. Again, each healthy segment, xHE, is augmented with additive white

noise w ∼ N (0, 0.052) and normalized to the RMS of the original segment. The simulated

faulty data xF is also normalized with the same factor λRMS{xF}. This time, the two

parts are summed directly to obtained the simulated signal xS, as shown in Eq. (F.11).





         


This approach also lets the classifier associate higher RMS with a fault, and was included

to help the classifier discriminate noise originating from increasingly severe faults and

background noise in healthy records. Figure F.1 shows the components of a generated

rolling element fault and an actual fault signal.

xS =
(xHE + w) RMS{xHE}

RMS{xHE + w}
+

xF
λRMS{xF}

(F.11)
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Figure F.1: Components of generated rolling element fault compared to actual fault

signal. a) Healthy signal xHE. b) Band-pass filtered noise wbp. c) Modulating envelope.

d) Generated fault impacts xp. e) Additive noise w. f) Generated fault signal xs. g)

Actual fault signal.





     

F.2.3 Classification Network

The classifier is aimed at raw vibration time series input from one or more channels. In

this section, we consider single-channel measurements for simplicity. The network consists

of three main parts: A low-level feature extraction part, an intermediate feature extrac-

tion part with dilated convolutions for capturing long term feature dependencies. Finally,

a classification part weights the features and predicts an output. This hierarchical config-

uration allows the network to first learn long-term relationships with less computational

demand. The network configuration and parameters used in this paper are given in Table

3.10. Development was done in Keras with Tensorflow backend [30], therefore Keras layer

names are used in the table.

No. Type Filters Size Stride Padding Dilation Activation

0 Input

1 Conv1D 32 11 1 valid 1 ReLU

2 MaxPooling1D 3 2

3 BatchNormalization

4 Conv1D 32 5 1 valid 1 ReLU

5 MaxPooling1D 3 2

6 BatchNormalization

7 Conv1D 8 5 1 same 1 ReLU

8 Conv1D 8 5 1 same 2 ReLU

9 Conv1D 8 5 1 same 4 ReLU

10 Conv1D 8 5 1 same 8 ReLU

11 Conv1D 8 5 1 same 16 ReLU

12 Conv1D 8 5 1 same 32 ReLU

13 Conv1D 8 5 1 same 64 ReLU

14 Conv1D 8 5 1 valid 128 ReLU

15 GlobalAveragePooling1D

16 Dense 4 Softmax

Table F.2: Network parameters

The low-level feature extraction part consists of two blocks with same structure, as

shown in Figure F.2, each containing a 1D convolutional layer, a max pooling layer and a

batch normalization layer. This layer extracts features that are close in time by convolving

the signal with a kernel that is small compared to the input. Rectified linear unit (ReLU)

activation functions [31] are used throughout the network, except for final class output.

Max pooling is used to reduce the dimension while maintaining the most prominent

features. Batch normalization speeds up training by reducing internal covariate shift

[32]. In this paper, separate classifiers were trained for all channels. Principally, the





         


network structure can also handle multiple data channels simultaneously, but this was

not investigated in the experiments.

-4 1 6 2 4-4 1 6 2 4

⅓ ⅓ ⅓ 

-4 1 6 2

-1 1 3 4

Convolution kernel

0 2 3 4
ReLU activation

Max pooling
3 4

4

2

2

Input batch

Features

Batch Normalization

Figure F.2: Low-level feature extraction: Input data points (green) are convolved with

1D kernel (yellow), followed by a ReLU activation function and max pooling layer. The

batch normalization is applied to the output of the max pooling.

Dilated convolutions is an efficient way to increase the receptive field of the network.

By dilating the convolution kernel, smaller filter sizes can capture long-term dependencies

in the data with relatively few layers. The approach has been successful in modeling of

high resolution time series [21]. The concept is shown in Figure F.3. Input data is shown

in green, active intermediate features in blue, and the output feature in red. By doubling

the dilation rate for each new layer, the receptive field grows exponentially.

Dilation 1

Dilation 2

Dilation 4

Output

Input

Figure F.3: Intermediate level feature extraction: The receptive field (green) and interme-

diate features (blue) for computing feature output (pink). Dilation allows a wide receptive

field with few layers.

One-dimensional global average pooling is applied to the output of each filter after





     

all convolutions. This is in contrast to the fully connected layers, which were typically

found in the final layers of a CNN. Global average pooling reduces overfitting and makes

classification less sensitive to the temporal translation that is introduced by windowing the

time series [33]. The output is then fed directly to the final, fully connected classification

layer with softmax activation. The objection function to be optimized is categorical

crossentropy loss between predicted and true label. The networks were trained for 10

epochs with batch size of 32, using an Adam optimizer with learning rate 1e−4, except

dataset 2 which used a batch size of 16 due to GPU memory constraints.

There is randomness involved in multiple stages of the training process. Network

weights are initialized randomly, so two identical models with different random seeds may

yield different results. Random shuffling of training data may also affect results. To

improve generalization and reduce the effect of randomness, five folds are created from

the available data. Each fold contains all the data, but the distribution of data in training,

validation and testing splits are different. Each fold is used to train a separate model,

resulting in an ensemble of five classifiers. In cases where a record is split in multiple

segments, each classifier outputs a decision per record based on a plurality voting scheme.

If the record consists of a single segment, there is no voting in this step. The final ensemble

classification is also determined through a plurality vote over the individual decisions.

F.3 Experimental Data

Vibration data from three datasets have been used in this study. Dataset 1 contains

healthy (HE) and seeded fault data from IR, RE and OR, used to verify that the method-

ology is capable of detecting and diagnosing the different fault types. The other datasets

contain run-to failure data. The following sections give a brief description of the test rigs

and data that are utilized in this paper. Results from reference publications are used as

a baseline for evaluating classifier performance.

F.3.1 Dataset 1: Case Western Reserve University (CWRU)

Dataset 1 is provided by the Case Western Reserve University (CWRU) and includes

vibration records at the drive end, fan end and foundation of a motor. Both the drive

end and fan end bearing were seeded separately with OR, IR and RE faults. Data from

four loads and four damage severities are available, with a sample frequency of 12 kHz.

Additionally, data sampled at 48 kHz are available for drive end faults only. The CWRU

test setup is shown in Figure F.4. The test motor (left) is connected to a dynamometer

(right) through an encoder and torque sensor (center) [34].





         


Figure F.4: Case Western Reserve University test rig, used for dataset 1.

In a reference paper for analysis [35], authors applied three fault diagnosis metohds to

the data: Envelope analysis of the raw signal, cepstrum prewhitening forllowed by enve-

lope analysis, and envelope analysis of a bandpass filtered signal, where spectral kurtosis

was used to calculate the optimal passband. Faults in OR and IR were successfully diag-

nosed using one or more of the methods. However, the RE faults were not diagnosable.

Numerous papers using CWRU data report better performance than the reference paper.

A review of deep learning algorithms trained on the CWRU datset show that the majority

of research papers report 95-100 % accuracy [36]. However, supervised classification algo-

rithms displaying such high accuracy may be a sign of overfitting and poor generalization

performance [35].

This paper uses data from the drive end bearing, running with unloaded motor, sam-

pled at 48 kHz. This was chosen to allow the classifier to capture higher frequency

amplitude modulation. The smallest fault size, measuring 0.18 mm in diameter and 0.28

mm in depth, was used for all fault types. Healthy data in only available sampled at 12

kHz for 20 seconds. This record is upsampled by a factor of 4 to obtain 48 kHz healthy

data. Faulty bearing records are otherwise 5 seconds long. To obtain more training data,

a window of 1 second with a stride of 0.02 seconds is applied to the original record. The

files used are listed in table F.3.

HE IR RE OR

File number 97 109 122 135

Table F.3: Files from CWRU dataset used in this paper.





     

F.3.2 Dataset 2: Center for Intelligent Maintenance Systems

(IMS)

Dataset 2 consists of run-to-failure test data, provided by NSF I/UCR Center for Intelli-

gent Maintenance Systems (IMS). A diagram of the test rig is shown in Figure F.5. The

test setup is further described in the reference paper [37]. In this paper, data from test 1

and 2 is used. Test 1 had 8 available channels, however only one channel per bearing was

used (channel 1, 3, 5 and 7). Test two was recorded using only one channel per bearing.

Data was sampled at 20480 Hz for one second. In both cases, the first 256 records were

assumed healthy and used in training. As the available records were only on second, no

windowing was performed on this dataset. In test 1, an IR fault was found in bearing

Figure F.5: Schematic drawing of IMS test rig used to collect dataset 2.

3, and an RE fault in bearing 4. An OR fault occurred in bearing 1 in test 2. In both

datasets , an increase in RMS and kurtosis is observed towards the end, as shown in Figure

F.6. This increase is interpreted as an indication of damage occurrence and progression.

In test 1, bearing 4 shows slightly raised kurtosis around record 1435, followed by a large

increase from record 1610. Bearing 3 kurtosis increases from record 1800. In test 2, an

increase is seen from record 530.

F.3.3 Dataset 3: The In-house Test at University of Agder

(UiA)

Dataset 3 was collected using an in-house test rig from the University of Agder as shown

in Figure F.7. The test rig was made for run-to-failure tests at low and variable speed

conditions under combined radial and axial load. The design and functionality thoroughly

described in [38]. Vibration data was collected from an accelerometer perpendicular to
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Figure F.6: Plot of RMS and kurtosis for the faulty bearings in dataset 2. a) Test 1,

bearing 3. b) Test 1, bearing 4. c) Test 2, bearing 1.

the load zone, sampled at 51200 Hz. Each record contains 100 revolutions. A 2-second

window with 1 second stride was applied, resulting in 23 windows per record. 192 records

from the last 5 days of testing was used in this paper. Signs of faults were observed from

record 163 and onward. Recordings from the first day, 40 records in total, were used for

training.

The reference paper [39] reports a pit in the OR, two damaged rollers and a heavily

spalled IR at the end of the test. The authors report to observe signs of RE damage first,

starting at 29 recordings from the end of life. Later, indications of OR and IR damage

were also observed, in that order.

Bearing type and fault frequencies for the datasets are listed in Table F.4.

CWRU IMS UiA Unit

Make SKF Rexnord SKF

Model 6205-2RSJEM ZA-2115 6008-2RS1

BPFO 107.37 236.38 21.32 Hz

BPFI 162.18 296.90 28.57 Hz

BSF 141.18 139.92 13.86 Hz

FTF 11.92 14.77 1.77 Hz

Table F.4: Bearing specifications for the test datasets





     

Figure F.7: Test rig used in dataset 3.

F.3.4 Vibration Model Parameters

Fault simulation requires selection of model parameters described in Section F.2.1. Sample

frequency Fs, record duration tr and shaft rate fs are known system parameters, while

window duration tw and stride ts are user-defined, limited by sample frequency and the

length of available data. For the remaining parameters, optimal values are not known.

Therefore, instead of attempting to determine the optimal values, the parameters are

defined as either uniform or Gaussian distributions. This papers aims to demonstrate

that by defining the distributions wide enough to encompass the assumed true values, a

subset of the simulated datapoints will approximate the true faulty condition. Thus, the

network is able to classify real, unseen data.

Window duration should be set long enough to capture periodicity from the impacts.

The lowest frequency component of interest is typically the FTF, so tw should at least

exceed 1/FTF . Window length tw should be set sufficiently long to capture at least a few

shaft revolutions, as one would if signal processing were done in the frequency domain.

However, it is assumed that longer windows will improve classifier performance. There is

no upper limit of tw, but computational load increase with segment length.

As the test rig in dataset 2 operates at low speed, the window is longer than for the

high-speed datasets. Window stride ts is of less importance, but affects the total number

of unique windows. As a rule of thumb, ts should be selected smaller than tw to have

some overlap of the windows and thus capture more variations of the signal.





         


The combined center frequency fc and bandwidth bw must not violate the Nyquist

criterion. A conservative limit of Fs/2.56 is used. It was found empirically that the impulse

response duration th should be short enough to not have overlap between impulses in the

lower end of the range. A summary of the bearing specifications is shown in Table F.4.

Impact arrival time jitter ξ, was set to approximately ±2% to account for slip. Otherwise,

the classifier struggles to separate fault types. The upper limit on RMS ratio λ was set

to 4 for dataset 1, as it was known that rolling element faults were hard to detect. This

did however, not result in successful diagnosis. A low RMS parameter should encourage

the network to learn weak signatures, but at the risk of making damage and healthy too

similar. Other parameters were set wide across the datasets. A systematic parameter grid

search was not performed due to the associated computational load. Table F.5 shows the

dataset-specific parameters, while the parameters common for all datasets are listed in

Table F.6. Distributions for center frequency and bandwidth are deliberately chosen wide

to reduce the chance of achieving good results purely by coincidence. Other parameters

are simply set by making a qualified guess, and has not been tuned specifically to improve

performance except what is already noted for parameter λ and th.

CWRU IMS UiA Unit

Fs 48 20.48 51.2 kHz

fs 29.95 33.33 4.17 Hz

tw 1 1 2 s

ts 0.02 0.1 1 s

fc U(1.5, 15) U(1.5, 8) U(1.5, 15) kHz

bw U(0.5, 5) U(0.5, 5) U(0.5, 5) kHz

λ U(1, 4) U(1, 2) U(1, 2) -

NHE - 256 40 -

Table F.5: Model-specific bearing vibration model parameters.

F.4 Results

This section presents the results of training the classifier on healthy and simulated fault

data and testing on actual fault data. For dataset 1, which has seeded faults, performance

can be evaluated quantitatively through classification accuracy. In datasets 2 and 3,

there is no ground truth available, which makes a quantitative performance evaluation

impossible. Classifier outputs are compared to results in reference papers, and evaluated





     

Parameter Value Unit

th U(0.5, 5) ms

ε N (0, σ2
T ) s

3σT 0.02 s

ξ N (0, σ2
p) -

3σp 0.1 -

m1 U(0.1, 0.5) -

m2 0.25 -

Table F.6: Common vibration model parameters.

qualitatively. All predicted classes shown are the result of a plurality vote in an ensemble

of 5 classifiers.

F.4.1 Dataset 1 (CWRU)

Dataset 1 contained samples of single-point faults in OR, IR and OR. The classifier

successfully diagnosed the IR and OR fault, but did not manage to diagnose RE faults.

Instead, this fault type was consistently misclassified as IR damage by the ensemble. The

confusion matrix for is shown in Figure F.8. As seen in the confusion matrix, there were

no false alarms, and no damaged bearings were classified as healthy. It’s worth noting

that in the reference paper, RE faults were not identifiable using any of the applied

analysis methods, and did not show the same classical behavior as IR and OR faults [35].

The achieved result of the proposed method is therefore on par with the reference paper.

While other deep learning algorithms have been able to diagnose the RE fault as well,

the authors of this paper are not aware of any algorithms achieving this with simulated

training data.

F.4.2 Dataset 2 - Test 1

In this run-to-failure test, bearing three (B3) and four (B4) were damaged at the end of

the experiment with IR and RE damage respectively. In the run-to-failure experiments,

each record is classified separately by the ensemble. The kurtosis trend, shown in Figure

F.6, has a slight increase around record 1435, so this is the time when damage is expected

to start in bearing 4. The outcome of the plurality voting for each record is shown in

Figure F.9. Record 1525 in bearing 4 is the first to be classified as faulty. It is classified

with a RE fault, which is the damage that is found at the end of life. However, from record
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Figure F.8: Confusion matrix for CWRU test data. Predicted label is a result of a

plurality voting in the classifier ensemble.

1554, IR damage is indicated, and from that point and onward the classifier outputs both

IR and RE damage.

In bearing 3, the classifier also identifies RE and IR damage, with a majority of IR

damage from record 2000. Towards the end of life, it is classified as OR fault. The IR

fault indication is in accordance with the findings in the reference paper [37]. The authors

also note that the IR appeared to be severely spalled, so any impact impulses may not be

as prominent as in the training data.

OR damage is indicated in bearing 1 and 2 towards the end of life, but this is assumed

to be caused by faults in the other bearings.

B1

HE IR RE OR

B2

B3

1400 1600 1800 2000
B4

Record

Cl
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s

Figure F.9: Dataset 2, test 1, recording 1400 until end of life. Classification by ensemble

plurality voting.





     

F.4.3 Dataset 2 - Test 2

In this test, an OR fault was found in bearing 1 at the end of life, and first signs are

expected to appear from approximately record 530. The classifier ensemble correctly

outputs OR damage consistently from record 545, as shown in Fig F.10, until the final

stages of bearing life, where the classifier changes from OR damage to HE. A possible

explanation is that at the end of life, fault size increase, and noise masks any periodic

impacts. A healthy bearing is also mainly noisy in some frequency bands. Damage is

indicated in the other bearings as well, but as in test 1, this is assumed to be cause by

vibration induced by the fault in bearing 1.
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Figure F.10: Dataset 2, test 2. Classification by ensemble plurality voting.

F.4.4 Dataset 3

Dataset 3 is a more challenging case, as the shaft operates at a low speed of 250 rpm. As

described in the reference dataset [39], there was extensive bearing damage at the end of

the test. The bearing had a small OR pit, two damaged balls, and a larger spalled area in

the IR. The authors observed signs of damage in the 20 last measurements, with damage

on balls appearing first. Figure F.11 shows RE damage from record 171, then HE from

record 179, and RE again from record 188 until record 192.

0 50 100 150
B1

HE IR RE OR

Record

Cl
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s

Figure F.11: Dataset 3 test classification by ensemble plurality voting.

These results are partly in accordance with the reference paper. Signs of damage occur

at the same time, and the type of damage is coinciding. The classifier does not indicate





         


other damage than RE, but all fault types were present at the end of testing. This shows

that the initial classification was in accordance with the reference paper, but the classifier

struggles when multiple faults are present later in the test. This behavior is expected, as

training data was only simulated with a single fault at a time.

F.5 Conclusion

In this work, a deep learning classifier for raw vibration signals was trained on simulated

data and evaluated on actual fault data. By stacking several layers of 1D convolutions in a

hierarchical, dilated structure, the classifier is able to cover a wide receptive field with few

layers. This type of architecture has been used successfully in speech and audio modeling,

but has yet seen limited application in machine condition monitoring. The presented

results show that simulation-driven training of deep neural networks for bearing fault

detection and classification has clear potential for industrial applications where automated

analysis of time series is beneficial and the access to actual fault data is scarce. Overall,

the classifier was able to detect the presence of faults, but tended to misclassify fault

types. This may be acceptable in some industrial applications, where detection is more

important than diagnosis. In dataset 1, RE damage was classified as IR. In the reference

paper, RE damage was also not identifiable, and was said to not exhibit classical fault

behavior. This may be the cause of misclassification, as the simulated bearing vibration

was simply not representative of this failure mode. Other deep learning classifiers have

achieved near perfect accuracy on the same dataset, but not without using real fault data

for training. Detection performance is also comparable to results in reference articles

in run-to failure dataset 2 and 3, but diagnosis is inconsistent. Training data quality

and consequently classifier performance will improve with more information about the

system. For example, an estimate of the resonance frequency can be obtained through a

bump test. More advanced and accurate models for bearing vibration could also improve

performance, and should be investigated further.
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