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Abstract. Permanent magnet synchronous machines have gained popularity in wind turbines 

due to their merits of high efficiency, power density, and reliability.  The wind turbines normally 

work in a wide range of operations, and harsh environments, so unexpected faults may occur and 

result in productivity losses. The common faults in the permanent magnet machines occur in the 

bearing and stator winding, being mainly detected in steady-state operating conditions under 

constant loads and speeds. However, variable loads and speeds are typical operations in wind 

turbines and powertrain applications. Therefore, it is important to detect bearing and stator 

winding faults in variable speed and load conditions. This paper proposes an algorithm to 

diagnose multiple faults in variable speed and load conditions. The algorithm is based on tracking 

the frequency orders associated with faults from the normalised order spectrum. The normalised 

order spectrum is generated by resampling the measured vibration signal via estimated motor 

speeds. The fault features are then generated from the tracking orders in addition to the estimated 

torque and speed features. Finally, support vector machine algorithm is used to classify the faults. 

The proposed method is validated using experimental data, and the validated results confirm its 

usefulness for practical applications. 

1. Introduction 

Condition monitoring (CM) is necessary to guarantee the healthy and safe operation of critical rotating 

machines. The CM is an important part of condition-based maintenance (CBM) program and based on 

CM results the maintenance schedules can be arranged. Moreover, by analysing the CM data with failure 

mechanisms, the remaining useful life (RUL) of the component can be estimated. This complete process 

is covered in the Prognostics and Health Management (PHM) of engineering systems.  

 In wind turbines, vibration and current sensors are widely used for CM. The mechanical faults 

can be detected by investigating the trends of root mean square (RMS) of measured vibration signal. 

but, the overall RMS of vibration signal can be only used to detect faults, and the classification of 

multiple faults is not possible. Mechanical faults produce forcing frequencies associated with the faults 

which can be differentiated by searching those forcing frequencies in the vibration spectrum. Therefore, 

Faults can be classified by further analysing the frequency spectrum of the vibration signal [1]. Signal 

processing and statistical detection methods are useful for the analysis, due to the noise and stochasticity 

of vibration signals and machine behaviour.  With spectrum analysis, good performances can be 

expected for individual fault classification tasks, but multiple faults classification can be difficult. 

Understanding complex spectrum regions is required for the classification of multiple faults. Statistical 

and machine learning methods have been used in the multiple-fault classifications. Fault-related features 

can be derived using the statistical methods, or domain knowledge of forcing frequencies, and those 

features can be used in statistical and machine learning algorithms to classify the faults. A review on 

http://creativecommons.org/licenses/by/3.0
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different signal processing, statistical and machine learning algorithms can be found in [2]. Decision 

tree algorithm [3] and support vector machine (SVM) algorithm [11] are used for bearing fault detection 

under a constant load and speed or in the steady state.  Most of the existing fault diagnosis algorithms 

are mainly implemented at such conditions, which are not the case for wind turbine applications. This 

work focuses on fault classification for a permanent magnet synchronous motor (PMSM) working in 

variable load and speed conditions.  

 The rest of this paper is organised as follows. The details of proposed fault diagnosis Algorithm 

are discussed in Section 2. The experimental results are presented in Section 3. Finally, the conclusion 

is given in Section 4. 

2. Proposed fault diagnosis algorithm 

A block diagram of the proposed algorithm is shown in Figure 1, in which the rotational speed and 

torque of PMSM are estimated using the current measurements. For the fault classification, features of 

the variable speed and load torque are required. The speed can be estimated from the Hilbert 

transformation, and the torque is calculated from the measured currents [4-5]. Since the mechanical 

rotational speed of a PMSM is directly proportional to the AC supply frequency, it is possible to estimate 

the rotational speed by estimating the frequency of the current waveform. First, the complex-valued 

analytic signal of the current signal is extracted using the Hilbert transformation, and the phase angle of 

the current signal is derived. Next, the rotational speed is calculated by taking the first order derivation 

of the cumulative angle of the current waveform and multiplying with the number of pole pairs. The 

collected vibration signal is resampled based on the estimated rotational frequency, and the order 

normalized frequency spectrum is calculated from the resampled signal.  

 

 
 

Figure 1. The block diagram of proposed fault diagnosis and classification algorithm 

 

 Several features based on vibration and current signals are calculated from the order normalized 

spectrogram. The faults related orders of the vibration spectrum are tracked. Furthermore, additional 

features of speed and torque are produced based on measured currents and calculated rotational speed. 

In this study, a nonlinear SVM algorithm is used as the classifier.  Gaussian radial basis function (RBF) 

kernel is used in the SVM algorithm, which produces a better nonlinear classification in the feature 

space. This study focuses on 4 types of health classes based on the health status of stator winding and 

bearing on a PMSM. The first class is the healthy class where both stator winding and bearings are 

healthy. In health class 2, the stator has 10% inter-turn winding short-circuit fault, and bearing is healthy. 

In health class 3, the stator is healthy, and an outer-race defect occurs on the bearing. In health class 4, 

both the stator winding and bearing fault are defective. As shown in Figure 2, the SVM algorithm is 

trained using labelled training data. After the training process, the algorithm can be employed for 

predicting the health statuses using new current and vibration signals. 
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2.1 Hilbert transformation and motor speed estimation 

In a PMSM, the current signal is usually sinusoidal with varying frequency and amplitude. Therefore, 

the current signal can be considered as a mono-component signal and Hilbert transformation can be used 

to extract the instantaneous frequency, amplitude and the phase.  

 

        The instantaneous frequency and the angle 

estimation example of a mono-component 

signal using Hilbert transformation are given in 

Figure 2. An analytic signal of the original 

signal is required to extract the instantaneous 

frequency, amplitude and the phase of the 

original system. The analytic signal is a 

complex-valued function, which has no 

negative frequency values shown as follows [6].  

      The Fourier transform S(f) of a time-

domain signal S(t) has a Hermitian symmetry 

at zero frequency axis, which is S(−f) = S(f)∗.  

where S(f)∗ is the complex conjugate of  S(f). 

The analytic function in the frequency domain 

is defined as: 

 

 
Figure 2. Frequency and angle estimation of a 

mono-component signal:  Hilbert transformation 
  

Sa(f) 

 
= {

2 S(f),       if f > 0

 S(f), if f = 0
0                 if f < 0

 
 

 

 

(1) 

 

   = 2u(f) ∙ S(f) 

   = S(f) + sgn(f) ∙ S(f) 

where u(f) is the unit step function and sgn(f) is the sign function. The analytic function holds only 

non-negative frequency components of S(f) and the operation is reversible due to the Hermitian 

symmetry of S(f). 

 
 

S(f) = {

0.5 Sa(f),                   if f > 0

 Sa(f),                         if f = 0
0.5 Sa(−f)∗               if f < 0

 

  

(2) 

 

 

The analytic signal of Sa(t) can be drived using the inverse Fourier transform of Sa(f): 
 

Sa(t) = F−1[Sa(f)]  

 = F−1[S(f) + sgn(f) ∙ S(f)]  

 = F−1[S(f)] + F−1[sgn(f)] ∗ F−1[S(f)] (3) 

 
= S(t) + j [

1

πt
∗ S(t)] 

 

 = S(t) + jŜ(t)  

 = Sm(t)ej∅(t) 
 

 

where Ŝ(t) = H[S(t)] is the Hilbert transformation, * is the convolution operator and j is the imaginary 

unit operator. Sm(t) = |Sa(t)| is called the instantaneous amplitude or envelope, and ∅(t) = arg [Sa(t)] 
is called the instantaneous phase. The instantaneous angular frequency in hertz can be extracted by 

differentiating the unwrapped ∅(𝑡).  

 
 

f(t) = (
1

2π
)

d

dx
∅(t) 

(4) 
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2.2 Resampling order normalized FFT and order tracking 

In steady-state fault diagnoses, the frequencies are assumed 

as constants, and the constant time sampling rates can be 

used.  Therefore, Fourier transform can be used for such a 

frequency domain analysis. However, in variable speed 

operations, the Fourier transform cannot be used because the 

analysis signals are not stationary or the frequencies change 

in time. To deal with nonstationary signals, short time 

Fourier transform (STFT) with constant time sampling may 

be used as it assumes that the frequency is constant for a 

small-time period and Fourier transform is performed for 

those short time signal windows. However, using STFT 

requires a wise selection of window sizes in advance to 

archive the best resolution, which is not a solution to tackle 

the characteristic frequencies in variable speed operations as 

the characteristic frequency is changed according to the shaft 

speed.  

         The solution is instead of using constant time sampling, 

using the constant angular sampling and order normalised 

FFT which is demonstrated in Figure 3 for a simple 

frequency varying sine wave. The constant angle sampling 

method can be used to capture the underline constant-

frequency sine wave from a varying frequency sine wave 

where the signal is resampled using the rotor position 

information, which is calculated in the previous section. 

More details on this method can be found in [7-8]. This 

method can be extended for complex vibration and current 

signals in variable speed operations. 

Time

Fr
eq

ue
n

cy

Sample Time

Sample Angle

Sampled waveform

Time

 
Figure 3. Constant angle sampling of a 

variable speed signal 

2.3 Torque estimation 

The voltage equations of a PMSM in 𝑑𝑞0 transformation can be expressed as [9]: 

  

vsd = Rsisd +
dλsd

dt
+ ωrλsq

vsq = Rsisq +
dλsq

dt
+ ωrλsd

                                 } 

 

 

 

(5) 

 
where Rs is resistance of the stator windings. ωr is the rotational speed of the motor.  λsd and λsq are 

the flux linkages in the 𝑑 and  𝑞 axes, respectively.  

 

 λsd = Lsisd + ψPM

λsq = Lsisq
                                                    } 

(6) 

 

where Ls is the inductance of the stator windings. ψPM is the flux of rotor permanent magnets. The 

electromagnetic torque generated by a PMSM with np pole pairs and ms phases can be expressed as: 

 

 Te =
msnp

2
(λsqisd − λsdisq) = −

msnp

2
ψPMisq (7) 

 
 

Based on (7), the electromagnetic torque can be estimated and used as a feature for the 

classification algorithm. 
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2.4 Feature generation 

Based on estimated rotor speed and measured vibration and current signals features are derived. As 

given in Table 1, the devised features are used as inputs to the SVM algorithm. The motor speed is 

calculated by (4), and the motor torque is calculated by (7). 

 

Table 1: The features used in the SVM classification algorithm 

 

Signal Source Feature name Description 

Current Speed Represent the speed  

Torque Represent the torque  

2𝑓𝑠 Characteristic frequency of Inter-turn winding fault from the 

Park’s vector current 𝑖𝑝  in (9) 

Torque Variance Moving variance of 10 consecutive values of the torque signal 

Vibration 3.05X order Characteristic frequency of outer-race bearing fault 

1X Motor rotating speed 

8X Motor rotating speed *No of rotor pole pairs 

16X Motor rotating speed *2nd harmonics of no of rotor pole pairs 

 

An inter-turn stator winding fault can be analysed by calculating the extended Park’s vector (EPV) of 

the motor current as below [10]. 

 

 id = √2 3⁄ ia − √1 6⁄ ib − √1 6⁄ ic

iq = √1 2⁄ ib − √1 2⁄ ic

}       
 
(8) 

 ip = |id + jiq| (9) 
 

where id and id are the direct and quadratic components of the Park’s vector ip. ia, ib and ic are the stator 

currents in each phase. A stator winding fault can be detected by analysing the frequency spectrum ip 

since the inter-turn fault results in an increase in 2fs (two times of supply frequency) components of the 

ip. Further, moving variance of 10 consecutive values of torque signal is also used as a feature, which 

represents any short-term variation of the torque profile. The vibration signals can be used to detect 

bearing faults. The characteristic bearing outer-race fault frequency is the ball pass frequency outer-race 

(BPFO), which can be calculated as [11]: 

 

 
BPFO =

Nb

2
 fs(1 −

Db

Dc
 cosθ) 

 (10) 

   
  where Nb is the number of rolling elements in the bearing, Db represents the diameter of a rolling 

element, Dc denotes the pitch diameter, θ is the contact angle between the outer-race and rolling element, 

and fs is the shaft speed. above BPFO frequency can be divided by the shaft rotational frequency, and a 

frequency order can be found which is a constant for any rotational speed. The related order of the 

bearing fault studied in this study is the 3.05 order (3.05X) of the shaft speed. In addition, the 1X, 8X 

and 16X frequency components are also used as the features for SVM classification algorithm. 

2.5 SVM classification algorithm 

SVM is a vector-space–based machine-learning method where the goal is to find a decision boundary 

between two or more classes that are maximally far from any point in the training data. The simplest 

SVM algorithm can be built to separate data linearly into two classes. This concept can be extended for 

multi-class cases and for nonlinear classification tasks [12-14].  In this study the fault, classification 

problem is solved as a nonlinear SVM classification problem. First, the linear case is studied. 
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The functional margin can be scaled to solve SVM problems, |w| can be set to 1. The functional margin 

of all data points is at least 1 and there exist support vectors for which the inequality is equality. 

 

yi (wT. xi + b) ≥ 1 , i = 1,2, … . . , N (12) 

 

For each sample, distance from the hyperplane is ri =
yi (wT.xi+b)

|w|
 and the geometric margin is ρ =

2

|w|
. 

The objective is to maximise the geometric margin. This means finding w and b such that ρ =
2

|w|
 

maximising for all (xi, yi) and   yi (wT. xi + b) ≥ 1. Maximising the ρ =
2

|w|
 is the same as minimizing 

|𝑤|

2
 and the final optimisation problem with a hard margin (without tolerating for wrong classification) 

is given in (13) and the solution is in (14). 

 

Minimise
1

2
wT w and for all {(xi, yi)}, yi (wT. xi + b) ≥ 1  (13) 

 

 fw,b(x) = sgn (∑ αiyii xi
Tx + b) (14) 

 

where most of  αi are zero and the each non-zero αi represents that the corresponding  xi is a support 

vector. If a data set is not linearly separable, a soft margin can be assigned where wrong classifications 

are allowed when solving the optimisation problem. The new optimisation problem is: 

 

Minimise 
1

2
wT w + C ∑ ℇii  and for all  {(xi, yi)}, yi (wT. xi + b) ≥ 1 − ℇi  

(15) 

 

where the parameter C is the regularisation term, ℇi is the slack variable and non-zero ℇi allows xi to not 

meet the margin requirement at a cost proportional to value of ℇ𝐢.  The linear SVM classifier solution in 

(14) depends on the dot product. By using a function K(xi, xj) = xi
Txj , the equation (14) can be 

modified as: 

 

 fw,b(x) = sgn (∑ αiyii K(xi, x) + b) (16) 

 

The original data points can be mapped into a higher dimension space via some transformation Φ: x →
 ϕ(x). Then dot product become ϕ(xi)

Tϕ(xj). Therefore, by using a proper transformations (kernels) 

the solution in (14) can be solved efficiently. With this kernel trick, the solution can be extended to 

nonlinear classification also.  A kernel function K is such a function that related to a dot product in some 

extended feature space. The radial basic function (RBF) kernel [12-14] is used in this study. An RBF is 

equivalent to mapping the data into an infinite dimensional Hilbert space, which is defined as 

Consider a set of training data points in Figure 4 with 

inputs xi  and two output class labels yi ∈  {±1} ;  i =
1, … N . A linear classifier can be defined as: 

 

fw,b(x) = sgn (wT. x + b) (11) 

  

where the decision hyperplane is defined by an intercept 

term  b and a decision hyperplane normal weight vector 

 w, which is perpendicular to the hyperplane. A value of 

−1 specifies one class, and a value of +1 the other class. 

For a given data set and decision hyperplane, the 

functional margin of the ith  example xi with respect to a 

hyperplane (w, b) can be measured by yi (wT. xi + b). 

 

 

𝜌  𝒘 

1 2 3 4 5 6 7

1

5

6

7

3

2

4

𝑟𝑖  
𝒙𝒊 

 
Figure 4. Linear SVM classification 
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K(x, z) = e−(x−z)2/(2σ2) (17) 

 

where σ is a constant and (x − z)2 is the squared Euclidian distance between two feature vectors. 

 

3. Experimental setup and results 

3.1 The experimental setup 

Experimental results are used to validate the proposed algorithm. Figure. 5 shows the experimental setup 

used to collect the data. There are two 400V, 2.5 kW, 375 rpm, 16 poles PMSMs which are directly 

coupled each other. One motor is used as the test motor, and another one is used as the load motor. The 

load motor is connected to a resistor bank. The vibration sensor is located on top of the bearing housing 

of test PMSM.  
 

 
Figure 5. The experimental setup  

 
                 (a)                     (b) 

Figure 6. Faulty components (a) outer 

race bearing fault (b) stator winding fault 

  

Manually seeded faults are introduced for the bearing and the stator winding. The seeded faulty 

components of the PMSM are given in Figure 6. The faults are tested at constant speeds (150, 250 and 

350 rpm) and 2 types of variable speed profiles. A variable speed profile of 120 seconds used in the 

study is given in Figure 7. 10 repeated testes have been conducted with this speed profile. Therefore, 50 

samples of 2-minute data are recorded. Both vibration and current signals have been collected at the 20 

kHz sampling rate. After making the order normalisation, the number of samples per 2-minute signal is 

approximately 360. This value is selected by balancing both order and time resolutions. Finally, a table 

of 18000 sample rows and 9 columns (8 features and the health class label) have been generated, and 

the proposed algorithm is used to generate features. Then 75% of available data in the table is used to 

train the SVM algorithm, and 25% data is used to validate the algorithm. 

 

 

 

 
Figure 7. The variable speed profile used in 

experiments 

 

 
Figure 8. Average 𝑖𝑝  order spectrum 

The Vibration sensor 
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3.2 Order normalized spectrum and order tracking for a bearing outer-race fault  

The average 𝑖𝑝  order spectrum is given in Figure 8. There is no any significant difference of the 𝑖𝑝 order 

spectrum in healthy and fault cases. Figure 9 shows the average order spectrum of the vibration signals 

in the healthy and faulty conditions, where 3.05X order and its 2nd harmonic (6.1X) has a significant 

increase when the outer-race bearing fault is present. The tracked 3.05X frequency component over time 

is given in Figure 10 where the instantaneous amplitude is varying over time due to variable speed, load 

and noise conditions. Therefore, a simple decision based on threshold values will not work well and 

may produce many false or missing alarms. Therefore, a machine learning or statistical detection method 

is required and, in this work the SVM algorithm is trained to detect these variations.  

 

 
Figure 9. Average vibration order spectrum Figure 10. Tracked 3.05X order  

3.3 Order normalized FFT and order tracking for stator winding fault  

The average 𝑖𝑝 order spectrum is given in Figure 11, where there is a significant increase in the 2nd and 

4th orders with a stator winding fault over healthy case. Figure 12 shows the tracked 2nd order from the 

𝑖𝑝 spectrum over time, and which shows a clear variation for variable speed, load and noise over the 

healthy case. In the average vibration order spectrum given in Figure 13, the 16th order shows a 

significant increase for stator winding fault. When this 16th order is tracked over time a significant 

increase of instantaneous amplitudes can be seen from Figure 14. The 8th order has a similar behaviour. 

Therefore, both current and vibration information are useful for detecting stator winding faults. 

  
Figure 11. Average 𝑖𝑝 order spectrum 

 
Figure 12. Tracked 2nd order  

 

  
Figure 13. Average vibration order spectrum 

 
Figure 14. Tracked 16.05 order  



9

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 032028  doi :10.1088/1742-6596/1037/3/032028

 
 
 
 
 
 

3.4 Order normalized FFT and order tracking for stator winding and bearing outer-race fault  

The analysis conducted in previous sections is focused on individual fault cases. In this section, the order 

spectrums are applied to multiple fault cases where both stator winding and bearing faults occur.  

 
Figure 15. Average 𝑖𝑝 order spectrum Figure 16. Average vibration order spectrum  

The average 𝑖𝑝 order spectrum is shown in Figure 15 where only the 2nd and 4th orders of the supply 

frequency have significantly increased amplitudes when both faults exist. This is mostly like the 

individual stator winding fault since only the stator winding fault related information can be found. 

However, the average vibration spectrum in Figure 16 shows both the bearing fault related characteristic 

order of 3.05X and the stator winding fault related order at 16X. These results show that it is possible to 

detect multiple faults and individual faults from the same order tracking method discussed in the 

previous Sections for individual faults.  

3.5 Performance SVM classification algorithm  

The confusion matrix for validating dataset is given in Figure 17. Four fault classes are predicted by 

SVM namely HB (Stator winding healthy and bearing fault), HH (both stator winding and bearing are 

healthy), SB (both stator winding and bearing are defective) and SH (stator winding is faulty and bearing 

is healthy). The overall accuracy of the SVM classifier is about 92.9%. For all the fault classes more 

than 90% classification accuracy is obtained and the highest classification accuracy is 94%. These 

results are highly acceptable, and the SVM can detect and classify considered two faults in variable 

speed and load conditions. 

 

Tr
u

e 
cl

as
s 

HB 

90% 10% < 1%    90%  10% 

HH 

6% 94% < 1%    94%  6% 

SB 

< 1% < 1% 93% 6%  93%  7% 

SH 
    6% 94%  94%  6% 

 

 HB HH SB SH     

  

Predicted class 

 

True 
Positive 

Rate  

False 
Negative 

Rate 
 

Figure 17. The confusion matrix for the test dataset 
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4. Conclusion 

In this paper, a fault classifier is introduced for fault diagnosis of PMSMs in variable speed and load 

conditions. Features for the fault classification are produced based on the resampled vibration, current 

signals and estimated torque and speed. The fault detection and classification are implemented by a 

supervised machine learning algorithm, namely Support Vector Machine. The proposed method is 

validated by variable speed experimental data, and excellent performances have been obtained. 

Following contributions are provided in this study; 

 

(1) The proposed method is based on estimated rotor speeds and separate speed sensor is not required. 

In PMSMs, the rotor speed can be accurately estimated using the measured current signals. 

(2) In a real wind turbine, the generator is also vibrating on a flexible frame. This vibration can be very 

different depending on the operating conditions. However, in proposed method, only the fault 

related characteristic frequency bands of vibration signal are considered for fault diagnosis purpose 

and other parts of the signals are neglected. Also, current signal may not affect much by additional 

vibration and the feature level fusion method can give a robust result.  

 

Therefore, the proposed method can be implemented in wind turbines and other similar industrial 

applications. In this study, only two types of individual faults and one multiple fault cases are 

considered. However, the proposed method can be extended to other types of faults in both motoring 

and generating operations.  
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