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Abstract

Safe and reliable operations of industrial machines are highly prioritized in
industry. Typical industrial machines are complex systems, including electric
motors, gearboxes and loads. A fault in critical industrial machines may lead to
catastrophic failures, service interruptions and productivity losses, thus condition
monitoring systems are necessary in such machines. The conventional condition
monitoring or fault diagnosis systems using signal processing, time and frequency
domain analysis of vibration or current signals are widely used in industry,
requiring expensive and professional fault analysis team. Further, the traditional
diagnosis methods mainly focus on single components in steady-state operations.
Under dynamic operating conditions, the measured quantities are non-stationary,
thus those methods cannot provide reliable diagnosis results for complex gearbox
based powertrains, especially in multiple fault contexts.

In this dissertation, four main research topics or problems in condition
monitoring of gearboxes and powertrains have been identified, and novel solutions
are provided based on data-driven approach. The first research problem focuses on
bearing fault diagnosis at early stages and dynamic working conditions. The
second problem is to increase the robustness of gearbox mixed fault diagnosis
under noise conditions. Mixed fault diagnosis in variable speeds and loads has
been considered as third problem. Finally, the limitation of labelled training or
historical failure data in industry is identified as the main challenge for
implementing data-driven algorithms. To address mentioned problems, this study
aims to propose data-driven fault diagnosis schemes based on order tracking,
unsupervised and supervised machine learning, and data fusion. All the proposed
fault diagnosis schemes are tested with experimental data, and key features of the
proposed solutions are highlighted with comparative studies.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Background

Safe and reliable operations of industrial machines, such as electric motors and
gearboxes, are important in industry. A failure of a critical machine may end up
with huge financial losses, not only because of the failed machine, but also the loss
of production. Therefore, appropriate maintenance practices are required to
increase the availability of machines. The main objective of a maintenance
operation is to improve system reliability and safety while reducing the cost of
maintenance manpower, monitoring equipment, parts inventories, etc. In addition,
early diagnosis of potential catastrophic failures and estimating remaining useful
life (RUL) of components are also important for proper maintenance planning and
scheduling.

Electric powertrains are widely used in manufacturing, wind energy and
transportation sectors. The industrial applications of powertrains can be found in
various mechanical systems such as pumps, fans, conveyor belts, robotics and
wind turbines. An electric powertrain typically consists of an electric motor, a
gearbox and a control system to drive the motor.

The reliability and failure modes of motors used in various industrial
applications are presented in [1-6]. These studies conclude that 40-50 % induction
motor faults occur in bearings, and faults on stator winding, being the second most
common fault, contribute 15-30 % faults in the machines while the rest is a
combination of other mechanical and electrical faults. Therefore, this research
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mainly deals with bearing faults and inter-turn stator winding faults of electric
motors. Further, bearing and gear faults of gearboxes are also of interest in this
study.

Figure 1.1: Gearbox based motors in an electric powertrain

This dissertation aims to propose and develop data-driven fault diagnostic
algorithms for online condition monitoring (CM) of electric motors and gearboxes.
A laboratory test setup is built to collect required data for training and validating
the developed algorithms. Figure 1.1 shows some gearbox based motors used in
an in-house test setup. An industrial motor drive is used as the control unit, and a
permanent magnet synchronous generator (PMSG) connected to a variable resistor
bank is used as the load. Vibration and current sensors are connected for data
collection. Further, public datasets provided by reputed research organisations are
also used for validating the proposed diagnostics schemes.
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1.2 Motivation and research problem

Early detection of faults in critical components of electric powertrains, e.g
bearings or stator windings, is significant in industrial applications because it gives
an additional time for planning maintenance [7, 8]. Existing fault diagnosis
methods mainly analyse stationary signals in steady state. Unlike industrial
productions, electric powertrains for wind turbine and electric vehicles
dynamically operate based on drive commands or wind conditions, rendering
additional difficulties for a fault diagnosis. New fault diagnostic schemes are
required to deal with non-stationary signals and dynamic operations.

The robustness and accuracy of CM and fault diagnosis systems are highly
important in industry because the false diagnosis can result in unnecessarily forced
system shutdowns, and the inaccurate diagnosis may cause unexpected failures. A
CM system may work properly for a single fault in an ideal condition. However,
background or sensor noise is present in a complex system like gearboxes [9, 10],
fault diagnosis is a challenging task. Hence, finding novel methods to improve the
robustness and accuracy of fault diagnosis algorithms are of importance for both
academia and industry.

Dynamic operating conditions such as variable loads and speeds are
common in industrial applications such as wind turbines and robotics. Further,
concurrent faults in a system might cause missing alarms. Traditional diagnosis
techniques focusing on single faults at steady state may not work for those
applications [9]. CM and diagnostic of multiple faults under variable speeds and
loads are very challenging, requiring new advanced diagnostic schemes.

Online CM systems aim to improve the effectiveness of systems and reduce
the maintenance cost [11, 12]. The new wireless sensors, cloud data storage and
modern artificial intelligent (Al) algorithms are the driving forces to make smart
CM systems. Machine learning (ML), deep learning (DL) algorithms, and its
applications in CM and diagnostics are necessary for industry 4.0 [13-15]. In ML
and DL based CM, fault diagnosis algorithms require a lot of historical data for
training and validation, but the training data is difficult to obtain in reality, or the
available datasets are unbalanced or unlabeled. For example, data from a healthy
machine is usually available in industry, but historical data for faults is limited or
not available due to regular maintenance [18-19]. Maximizing the use of healthy
machine data is important for developing novel diagnostic schemes.
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1.3 Contributions of the dissertation

The scientific contributions of this dissertation are withdrawn from six research
papers published or submitted to international journals and conference
proceedings.

Paper A: Early Detection and Classification of Bearing Faults using
Support Vector Machine Algorithm

Summary: In paper A, an algorithm is proposed for early detection and
classification of bearing faults. Time-domain and frequency-domain features are
extracted using envelop analysis and the energies of signal at characteristic
frequency bands for early fault detection. A support vector machine (SVM)
algorithm is used for fault classification and severity detection. The algorithm can
detect and classify bearing fault at the early stage. The use of envelope analysis
allows for capturing the features for early fault diagnosis, and the SVM algorithm
ensures the classification of different fault severities in the multi-dimensional
feature space. The proposed algorithm is validated using a well-known run-to-
failure test dataset.

Contributions: A data-driven diagnosis method is proposed for detecting bearing
faults in early stage using envelope analysis-based feature generation and SVM
algorithm.

This paper has been published as:

J. S. L. Senanayaka, S. T. Kandukuri, H. V. Khang and Kjell. G. Robbersmyr,
“Early Detection and Classification of Bearing Faults using Support Vector
Machine Algorithm”, IEEE Workshop on Electrical Machines Design, Control
and Diagnosis (WEMDCD), Nottingham, pp. 250-255, 2017.

Paper B: Fault Detection and Classification of Permanent Magnet
synchronous Motors in Variable Load and Speed Conditions using Order
Tracking and Machine Learning

Summary: Common faults in the permanent magnet machines occur in the
bearing and stator winding, being mainly detected in steady-state operating
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conditions under constant loads and speeds. However, variable loads and speeds
are typical operations of powertrains in wind turbines. Therefore, it is important
to detect bearing and stator winding faults in variable speed and load conditions.
Paper B proposes an algorithm to diagnose multiple faults in variable speed and
load conditions. The proposed algorithm is based on tracking the frequency orders
associated with faults from the normalised order spectrum. The normalised order
spectrum is generated by resampling the measured vibration signal via estimated
motor speeds. The fault features are then generated from the tracking orders in
addition to the estimated torque and speed features. Finally, a support vector
machine (SVM) algorithm is used to classify the faults. The proposed method is
validated using experimental data, and the validated results confirm its usefulness
for practical applications.

Contributions: A fault diagnosis scheme based on SVM and order tracking of
fault-related characteristic frequencies is proposed for diagnosing bearing and
stator winding faults of a permanent magnet synchronous motor at variable loads
and speeds.

This paper has been published as:

J.S.L Senanayaka H. V. Khang, Kjell. G. Robbersmyr, “Fault Detection and
Classification of Permanent Magnet Synchronous Motors in Variable Load and
Speed Conditions using Order Tracking and Machine Learning”, Journal of
Physics: Conference Series, vol. 1037, no. 3, 2018

Paper C: Multiple Classifiers and Data Fusion for Robust Diagnosis of
Gearbox Mixed Faults

Summary: Accurate diagnosis of gearbox mixed faults is a challenging task as a
faulty gearbox, consisting of several bearings, shafts and gears, generates a
complex vibration spectrum. A novel diagnosis scheme is proposed for diagnosing
multiple faults in a gearbox. Two parallel classifiers based on convolutional neural
networks (CNN) and multilayer perceptrons (MLP) are used in the proposed
scheme. Continuous wavelet transformation (CWT) is used to generate a time-
frequency representation of vibration measured at two locations of the gearbox,
being fed to CNN for feature learning, feature fusion and classification. The
features for MLP are generated using time and frequency domain signals, and the
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energies associated with faults at characteristic frequencies. Furthermore, the naive
Bayes (NB) combiner is used for decision level data fusion to improve the accuracy
and robustness of the proposed algorithm under noises. This algorithm
demonstrates that both feature level and decision level data fusion could improve
the accuracy and robustness of a fault diagnosis system under noise.

Contributions: A novel fault diagnosis scheme based on MLP, CNN and NB
combiner is proposed for a robust diagnosis of gearbox mixed faults.

This paper has been published as:

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Multiple Classifiers
and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults,” in IEEE
Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4569-4579, 2019.

Paper D: Multiple Fault Diagnosis of Electric Powertrains under Variable
Speeds using Convolutional Neural Networks

Summary: In this paper, a new fault diagnosis system is proposed to diagnose
multiple faults (bearing, gear and inter-turn short circuit stator winding faults) for
electric powertrains at variable load and speed conditions. The order tracking
method is used to generate order normalised short-time Fourier transform (STFT)
based spectrograms from current and vibration signals of the powertrain. This
method helps to deal with variable speed conditions, and CNN algorithm is used
as a classification algorithm. The combined vibration and current STFT
spectrograms fed to CNN for feature level fusion can deal with load variations.
Further, the algorithm requires only training data for single faults, but the
algorithm can detect multiple faults, reducing the training data requirements. The
experimental results show that the algorithm can detect multiple faults at variable
load and speed conditions.

Contributions: A new algorithm is proposed for diagnosing electric powertrain
multiple faults at variable load and speeds. The proposed method can reduce the
required training data as it can be trained by using only data from single faults, but
the algorithm can detect multiple faults.
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This paper has been published as:

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Multiple Fault
Diagnosis of Electric Powertrains under Variable Speeds using Convolutional
Neural Networks”, XXIII International Conference on Electrical Machines
(ICEM), Alexandroupoli, pp. 1900-1905, 2018.

Paper E: Online Fault Diagnosis System for Electric Powertrains using
Advanced Signal Processing and Machine Learning

Summary: The online implementation of the algorithm proposed in paper D is
considered in paper E. The fault diagnosis algorithm proposed in paper D is
improved by adding online data acquisition, diagnostics, decision-making and
visualisation components. Online data acquisition, decision making, and
visualisation aspects were tested using experimental data.

Contributions: An online fault diagnosis algorithm is proposed for accurate
decision making in electric powertrains by utilising historical diagnosis results.

This paper has been published as:

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Online Fault
Diagnosis System for Electric Powertrains using Advanced Signal Processing and
Machine Learning”, XXIII International Conference on Electrical Machines
(ICEM), Alexandroupoli, pp. 1932-1938, 2018.

Paper F: Towards Self-Supervised Feature Learning for Online Diagnosis of
Multiple Faults in Electric Powertrains

Summary: This paper proposes a novel online fault diagnosis scheme for
industrial powertrains while addressing the challenges of limited labelled training
data. The proposed method combines one-class SVM anomaly detection and
supervised CNN algorithm. The one-class SVM aims to derive a score for
detecting faults, and the detected fault results are used as the training data for the
CNN classifier. Within the framework, an online diagnosis scheme is developed
with two stages, utilizing the two algorithms in self-supervised feature learning
passion. The proposed online diagnosis scheme can detect multiple faults at



Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

variable loads and speeds in powertrains. The proposed diagnosis scheme is
validated using experimental data from an in-house test setup.

Contributions: A new online fault diagnosis system is proposed to learn the
features for fault diagnosis in self-supervised online passion using limited
historical data, while minimizing expertise demand.

This paper has been submitted as:

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Towards Self-
Supervised Feature Learning for Online Diagnosis of Multiple Faults in Electric
Powertrains”, Submitted to IEEE Transactions on Industrial Informatics (Under
review).

1.4 Structure of this dissertation

This dissertation consists of seven chapters. The introduction chapter gives an
overview of the dissertation. The remaining chapters of this dissertation are
organized as follows. In the second chapter, the state-of-the-art of CM, fault
diagnostics and prognostics methods are presented, and the research direction is
identified. The experimental works and the datasets used for validating the perused
algorithms are summarized in Chapter 3. Chapter 4 covers the algorithms proposed
for bearings fault diagnosis at early stages and dynamic working conditions
through papers A and B. Chapter 5 provides a summary of the fault diagnostics
schemes proposed for gearbox and electric powertrain applications through papers
C, D and E, respectively. A self-supervised online CM system is given in Chapter
6, which summarizing the online fault diagnosis scheme proposed in paper F. The
conclusions of the dissertation and future improvements are presented in Chapter
7. The contents of each chapter are summarised in Figure 1.2.
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Chapter 2

State-of-the-art

The state-of-the-art condition monitoring, fault diagnostics, prognostics and data
fusion methods for gearboxes, electric motors and bearings are discussed in this
chapter. This is important to define the baseline and identify the research direction
for this dissertation.

2.1 Maintenance strategies

Depending on applications, various types of maintenance, namely reactive,
preventive, predictive and proactive maintenance, are used in industry [16, 17]. In
the reactive maintenance, the maintenance tasks are conducted to fix a machine
when it breaks. The main issue of reactive maintenance is the cost of unexpected
failures. In critical machines, the loss of production hours may lead to huge
financial costs. Therefore, reactive maintenance is generally used for non-critical
machines. Preventive maintenance can be adopted to reduce unexpected
breakdowns in critical machines, where maintenance is conducted in regular time
intervals and sometimes known as time-based maintenance (TBM) [17]. This
method reduces the unexpected breakdown cost, but the maintenance cost can be
higher than the reactive maintenance, because of the increased cost of the spare
parts, tools and maintenance manpower. Preventive maintenance sometimes can
lead to unnecessary costly component replacements. Since the failures of
components are based on the operating condition, failures can happen at any time,
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depending on the condition of the machine. Enhancing maintenance is required to
reduce the cost.

To minimise unexpected failures, more efficient predictive maintenance can
be used [18]. In the predictive maintenance, the condition of a machine or
component is continuously monitored by condition indicators (vibration,
temperature, etc.) in order to identify a significant change, which is indicative of a
developing fault. The fault diagnostic and prognostic functions can be performed
using the results of CM. The International Standard Organization (ISO) -13374 -
condition monitoring and diagnostics of machines, defines the functionality in a
condition monitoring system in eight blocks [19]. Each subunit has a defined
function and interrelation with other subunits. Anyone who develops CM and
diagnostics systems shall follow this standard. Furthermore, the 1SO-18436-
2:2014 specifies the necessities for the training, relevant experience, and
examination of personnel performing condition monitoring and diagnostics of
machines using vibration analysis [20]. Various terms used in condition
monitoring and diagnostics of machines are defined in 1ISO-13372 [21].

Condition-based maintenance (CBM) is a predictive maintenance strategy
that uses CM, fault diagnosis and prognosis to determine the health of machines
and schedule the maintenance accordingly. Generally, CM is performed on
working machines, and CBM can reduce the cost of unexpected failures and the
downtime, and improve the system reliability and safety [18]. However, the
maintenance cost can be further increased in CBM due to the cost of condition
monitoring technologies, sensors and expert manpower for analyzing the data
generated from CM. Timely and reliable monitoring and maintenance decisions
can reduce the unexpected breakdown cost, and increasing the system availability.
In this way, the increased maintenance cost can be compensated with an overall
cost benefit. The predictive maintenance is suitable for critical machines, requiring
high reliability and availability. For general applications, it may not be cost-
effective. In a proactive maintenance, CM and failure-root-cause analysis are
utilised for additional maintenance activities such as ensuring proper lubrication,
alignment and balancing of rotating components in order to eliminate possible
future failures.

Different maintenance methods, rather than being applied independently,
can be combined to maximize their corresponding strengths in order to optimize
the facility and equipment efficiency while minimizing life-cycle costs. The
reliability centred maintenance (RCM) is an advanced control strategy, that can be
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implemented to optimize the maintenance program of a company or facility [16].
An optimal mix of reactive, preventive, predictive and proactive maintenance
practices is adopted in RCM. When implementing RCM, first, the criticality level
of the machine should be analysed. Then depending on the critical level of the
machine, proper maintenance strategy should be selected for relevant components.
For non-critical components, reactive or preventive maintenance may be
sufficient, but critical components may require predictive or proactive
maintenance. In RCM, a systematic methodology is used to identify the
maintenance tasks that are necessary to realise the essential reliability of
components at the lowest possible cost.

Another emerging maintenance discipline is prognostics and health
management (PHM). The key duties of the PHM technology are to detect emerging
component or system fault, performing failure diagnostics and health management
[22]. The concept of prognostics is to diagnose and predict remaining useful life
(RUL) of an item (e.g. device, component, or system). Systems with a prognostic
capability will be able to identify potential failures in advance and provide
information on the system health. This information could be used to reduce an
unscheduled maintenance or to extend scheduled maintenance intervals. PHM can
be considered as an evolution of the CBM and RCM.

CBM, RCM and PHM methods focus on different aspects of industrial
maintenance strategies and asset management. However, the CM, fault diagnostics
and prognostics are the key functions of any advance maintenance program. Thus,
it is important to have reliable and accurate CM, fault diagnosis and prognosis
schemes for industrial applications.

2.2 Data-driven fault diagnostics

Fault diagnostics includes fault detection, isolation and severity quantification.
The fault diagnostic systems can be established through model-based, data-driven
or hybrid algorithms [23-26]. The model-based diagnosis requires a detailed
physical model of the system and accurate parameters. In a model-based
diagnosis, the model output variables and actual output variables are compared,
and a residual of the comparison is used for fault diagnosis. In electric powertrains,
components, such as bearings and gearboxes, are difficult to build their precise
mathematical models. The data-driven method using statistical or machine
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learning algorithms does not need such a physical model [27], and it is attractive
for an automatic CM and diagnosis system of bearings and gearboxes.

In a data-driven machinery fault diagnosis, the machine condition is
monitored using various sensors, and collected signals are fed to a data-driven fault
diagnosis system. The measured data could be temperature, thermography images,
chemical and wear monitoring information (e.g. lubricant oil contamination),
vibration signals, acoustic emission signals, shock pulses, motor current signals,
etc. [28, 29]. The operating temperature is a primary indicator of machine health,
and the temperature or infrared image analysis is one of the easiest methods to
monitor the machine condition. Lubricant oil analysis is often used for detecting
bearing and gearbox faults. Vibration analysis is the most common technique for
analysing mechanical faults, such as bearing and gear faults. The electrical
signature analysis can be used to detect the mechanical and electrical faults in
electrical machines. In CM of electric powertrains, the vibration and the current
signals are the common choice in industry as they are easy to be implemented and
integrated into the systems.

A basic fault detection system can be built by measuring the root mean
square (RMS) vibration of the machine and defining a threshold for normal
vibration level. A deviation of the measured RMS vibration from the threshold can
be an indicator for a variation from a normal operating status, but it is not sufficient
to isolate a fault as the increased vibration may be generated from other sources
such as unbalance, misalignment, etc. Therefore, fault isolation or classification
and severity quantification are necessary despite requiring additional features from
signal processing, statistics or machine learning methods.

As shown in Figure 2.1, a data-driven fault diagnostics system typically
consists of several subunits, namely data acquisition, data processing and feature
extraction, fault diagnosis and maintenance decision.

Data processing
and feature
extraction

Data
acquisition

Maintenance
Decision

Fault
diagnosis

Figure 2.1: A simplified block diagram of a data-driven fault diagnosis system.
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Data acquisition is to collect signals from sensors such as vibration, current
or acoustic emission. The collected signals can be processed to identify the most
useful abstract information for fault diagnosis. If using deep learning algorithms,
both feature learning and classification are combined into one algorithm. In a
machine learning or deep learning algorithm, the feature learning and fault
diagnosis can be achieved in a supervised, unsupervised or semi-supervised way.
The fault diagnosis includes fault detection, fault isolation and fault severity
quantification [30]. The fault diagnosis results will be used for making a
maintenance decision.

2.2.1 Feature extraction using signal processing and statistical methods

To monitor rotating machinery health, the machine vibration, acoustic emission or
motor current are measured and analyzed for finding fault-related features in time
(e.g. RMS of signal), frequency (e.g. Fourier transformation and signal energies at
characteristic frequencies) or time-frequency analysis (e.g. short-time Fourier
transformation, wavelet transformation). In addition, statistical features of signals,
e.g. mean, standard deviation or kurtosis, may be appropriate features [30, 31].
Fixed or statistical thresholds (e.g. ISO vibration thresholds, multivariate statistical
methods) can be used for a fault diagnosis [18].

The above mentioned methods are suitable for a componenet level single-
fault diagnosis. Strong features can be manually produced by expert knowledge.
For example, if the characteristic frequencies are easy to be identified, the high-
quality features can be produced with signal processing skills. However, in a
complex fault context with multiple faults under variable load and speed
conditions, the feature generation is time-consuming and expensive, and may
result in missing or false alarms [32]. Therefore, enhanced methods for feature
generation are required to be developed for accurate fault diagnostics.

2.2.2 Fault diagnosis based on supervised machine learning and deep
learning

To address problems in fixed or statistical thresholds based fault diagnosis,
supervised machine learning methods can be used. The first step of the machine
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learning algorithm is the feature generation. The signal processing and statistical
methods discussed in Section 2.2.1 can be used to manually generate features for
machine learning algorithms. Several classification algorithms, such as SVM [33],
k-nearest neighbour (k-NN) [34], decision tree (DT) and numerous neural network
architectures [35], can be applied to find complex relations on the feature space
via the time-frequency features extracted by the domain knowledge [36] or
statistical methods. Thus, machine learning methods are appropriate for both single
and multiple fault diagnostics.

Performance of supervised machine learning highly depends on the feature
generation and selection. In early fault detections and noisy conditions, additional
signal processing methods are required for capturing hidden features from original
signals. To obtain the better results from a machine learning algorithm, features
have to be relevant and strong. Irrelevant and redundant features will result in a
high-dimensional feature space or complex machine learning model, requiring
more data for training [37, 38]. Additional statistical or optimization methods, e.g.
principal component analysis, particle swarm optimization and independent
component analysis, are thus useful to find the best features for classification
algorithms.

A deep learning algorithm can be used to address challenges on feature
generation, selections and extra optimizations by extracting and transforming
features via nonlinear processing layers, and learn itself the best features by
detecting patterns from the training data of a signal or an image to differentiate
faults [34]. Thus, deep learning provides one advanced step towards smart fault
diagnosis systems. For example, a CNN based supervised deep learning algorithm
can combine feature generation and classification [39]. The algorithm can learn
the features from data, and the fault diagnosis problem is solved as a pattern
recognition problem using automatically detected features [15, 40, 41].

Deep learning methods are widely used in fault diagnosis due to their merit
of analyzing complex or big data while the improved technologies of sensors, cost-
effective processors, graphics processing units (GPUs) and their parallel
processing capabilities allow for collecting and processing big data effectively [13-
15]. The deep learning algorithms are completely based on the information
gathered from training data to identify patterns and relations within the data. In
other words, the deep learning algorithms are advanced pattern recognizers
without using domain knowledge. Therefore, expert knowledge is not required as
characteristic frequencies are not considered separately, being suitable for a
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complex fault diagnosis of multiple faults under variable load and speed
conditions. Supervised deep learning methods can reduce the difficulty of feature
generation and selection, but labelled training data or historical faulty data is
required for fault diagnosis.

2.2.3 Unsupervised and semi-supervised learning methods

Even though supervised deep learning methods have many merits over traditional
machine learning and statistical methods, the practical implications of these
algorithms require labelled training data, which is difficult to obtain or is limited
in reality. Feature learning and fault diagnosis are combined in a supervised CNN
deep learning algorithm [39]. There are other classes of deep learning algorithms,
where the feature extraction and fault diagnosis are separated, without using
labelled training data or requiring considerably smaller training data than the
supervised CNN.

Most widely used deep learning-based feature extraction methods are
unsupervised autoencoders (AEs) [42], or semi-supervised feature learning using
transfer learning methods [43]. AEs are neural networks designed to learn features
from unlabeled input data. Unlabelled healthy and faulty status data can be fed into
an AE to learn features without labels. AE feature learning is suitable for
applications, where healthy and faulty data is offered without being labelled to
differentiate the healthy and faulty data. In transfer learning, features can be
extracted using a pre-trained CNN network or AlexNet [41], which is designed for
image classifications. The internal layers of pre-train CNN represent a set of filters
to identify different patterns of input images. Since the fault diagnosis problem is
solved as a pattern recognition problem using spectrograms of fault signals, the
extracted filters can be fine-tuned using less healthy and faulty data. The transfer
learning is able to extract features, and implements fault diagnosis systems using
less amount of labelled training data.

Data for healthy conditions is much more than faulty conditions in industry.
Unsupervised fault detection algorithms, such as one-class SVM [44-46], can be
used in such situations. The one-class SVM algorithm requires features from
healthy status and faulty status features are not mandatory for training. Once
trained, one-class SVM can calculate a hyper distance in the feature space for new
data, thus a threshold can be defined to differentiate the healthy and faulty classes
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Combination of AE feature learning and one-class SVM fault detection might be
a promising solution to deal with unlabeled training data.

2.2.4 Data fusion for fault diagnosis

The data fusion algorithms can be integrated to improve the accuracy and
robustness of a fault diagnosis system [27]. Various data fusion algorithms can be
found in statistical estimation, pattern recognition, and artificial intelligence
disciplines. The widely used definition of data fusion is defined by Joint Directors
of Laboratory (JDL) as “a multi-level process dealing with the association,
correlation, combination of data and information from single and multiple sources
to achieve refined position, identify estimate and complete and timely assessment
of the situation, threats and their significance” [47]. By considering the
relationship among the data sources, three types of data fusion methods have been
proposed by Durrant-Whyte [48], namely complementary, redundant and
cooperative fusion. Based on the abstraction level, data fusion algorithms are
categorised into four levels in [49], namely; low-level fusion (signal level),
medium level (feature level), high level (decision level) and multiple level fusion
(data from the signal, feature or decision level). Another widely used classification
of data fusion algorithms is proposed by Dasarathy [50], namely, data in data out
(DAI-DAO), data in features out (DAI-FEO), feature in feature out (FEI-FEO),
features in decision out (FEI-DEQ), and decision in decision out (DEI-DEO).

Depending on the applications, proper data fusion methods can be adopted.
In complementary fusion, the data is generated from different sources, and the
fusion is applied to get broad evidence by combining the complementary
information. For example, using both vibration and current signals for a fault
diagnosis is a complementary data fusion because the vibration and current signals
give different viewpoints of the fault information. In the redundant fusion, two or
more information are fused to increase the confidence of data fusion. For example,
signals from two accelerometers in each side of the motor are used in the redundant
fusion to enhance the confidence and accuracy of vibration information. In a
cooperative fusion, the information from sources is fused to get new, and more
complex information, representing a better reality. Further, the selection of a
proper abstract level is important in CM and fault diagnosis applications.
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2.3 Prognostics

Prognostics is the process of estimating the remaining useful life (RUL) of a
system or a component, after which the system or component will not perform its
intended function. The RUL estimation is usually based on model-based or data-
driven methods, and their combination [51]. The physical degradation models, e.g.
crack propagation via fatigue, corrosion or wear, are required for model-based
prognostics. In the data-driven approach, data of the health condition of a
component is collected by various sensors, such as vibration, acoustic emission,
temperature, etc. Then the collected data is used to model the component
degradation process via data-driven models, namely, statistical or machine
learning [52]. An accurate RUL estimation requires a reliable health indicator
(HI), which should be sufficiently sensitive to capture defects in early degradation
stages and consistent over an entire degradation process. Various RUL estimation
methods are reported in literature [53, 54]. Due to the randomness of RUL, there
is no universal approach for identifying a HI and estimating RUL [55]. Most
existing bearing and gearbox prognosis algorithms are based on vibration signals,
and their features are extracted in time, frequency and time-frequency domains.
These features are evaluated to identify the best features, being applied to
statistical or machine learning methods to track the degradation process and predict
the remaining useful life [56, 57]. Recurrent neural networks (RNNSs) are another
supervised deep learning algorithm, which can be used for time-series predictions
and suitable in prognostic applications. The availability of low-cost sensors, data
storages, data processing, deep learning, and data fusion algorithms unveils the
capabilities of data-driven prognostics. When more data is available, the data-
driven algorithms can capture more features to identify more failure modes and
improve the accuracy of prognostic results.

2.4 Condition monitoring of electric powertrains: The
research directions

As highlighted in Section 2.1, CM is the key function of CBM, RCM or PHM
maintenance strategies. Implementing a CM system faces certain challenges, e.g.
cost or expertise demand. A CM system requires various sensors and large
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databases to store data. These equipment costs can be reduced through the
innovation and improvement of sensors, data acquisition, data transmission and
storage systems. Further, diagnostics, prognostics and decision-making process are
mostly done by the expert personal, increasing the maintenance cost. CM and
diagnostics of powertrains, including gearboxes and bearings, face challenges due
to the following factors.

Detecting faults in the early stages in dynamic operating conditions is
challenging since the fault indicator is very small or difficult to capture in
such contexts.

Various background noises available in the working environment can reduce
the accuracy and robustness of CM systems of gearboxes and powertrains,
especially in multiple fault conditions. Finding novel methods to deal with
background noises is important to improve the accuracy and robustness of
the CM systems.

Variable load and speed operations of industrial machines cause measured
guantities non-stationary, thus a mixed fault diagnosis under such conditions
is difficult if using conventional signal processing techniques.

Labelled training data is required for supervised data-driven algorithms, but
labelled training data is limited or restricted in industry and academia.
Therefore, developing new algorithms to deal with limited training data is
very important.

This research focuses on proposing data-driven methods for online CM and fault
diagnostic schemes while addressing above challenges, reducing the manpower of
CM and making it feasible for a wide range of industrial applications.
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Chapter 3

The experimental test setup and data

Proper experimental data is required to validate the proposed CM, fault diagnosis
schemes. Real industrial machine failure data is generally difficult to obtain due to
confidentiality and limited availability. Therefore, the proposed algorithms are
validated using in-house experimental data and published external datasets. This
chapter presents experimental works carried out during the research and other
datasets used in the dissertation.

3.1 Types of experiments

Two types of datasets are used to verify the proposed algorithms. Some algorithms
are tested using seeded faults. This type of data is relatively easy to produce in
laboratory conditions. Noise can be added to data to make the data more practical.
Other types of data are from the run-to-failure test datasets. In such a test,
additional forces, speed or temperature are added to the components, and run until
they completely fail. This type of data is more suitable for prognosis applications,
as the data is for a complete life cycle of the component. A description of the
experiments and datasets used in this dissertation is given in Table 3.1.
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Table 3.1: Description of experiments and datasets used in this dissertation.

Section Experiment Focus Papers

3.2 Seeded faults with Mixed Fault diagnosis at Paper D, -E,
different severities  variable speeds and loads, and -F.
for electric unsupervised fault detection
powertrain faults and online implementation

3.3 Seeded faults for Fault diagnosis at variable B
PMSM speeds and loads

34.1 Bearing run-to- CM and early fault diagnosis A
failure tests

3.4.2 Seeded faults of a Robust fault diagnosis at C
gearbox mixed fault conditions

PMSM: permanent magnet synchronous motor

3.2 The developed in-house test bench

A schematic of the experimental test bench used for electric powertrain fault
diagnosis is shown in Figure 3.1, and the details of actual test bench components
are given in Figure 3.2. The powertrain includes a 1.1 kW, 1450 rpm induction
motor (IM) coupled to the 2-stages parallel shaft gearbox (GB) with 1:8.01 gear
reduction.

[ Computer (data storage, MATLAB)

—

Data Aqusision system ]

1 |

Motor drive Variable

resistor

Powertrain

Figure 3.1: Schematics of the test bench.
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Computer (data storage, MATLAB)

Figure 3.2: Components of the experimental test bench.
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The internal components of the complete powertrain are shown in Figure 3.3,
including 8 bearings, 4 gears and 3 shafts. The gearbox output shaft is coupled to
a permanent magnet synchronous generator (PMSG), and the generator output is
connected to a variable resistive load. When the resistance of the load is fixed, the
powertrain load is proportional quadratically to the rotational speed. The output
currents of the PMSG are measured and used to estimate the rotational speed of
the electric powertrain. However, in real applications, an encoder is required to
measure the speed. An acceleration sensor is placed on top of the gearbox, and the
accelerometer data and motor input currents are collected. Depending on the test
type, the induction motor can be operated at constant speeds or variable speed
profiles. More details of operating profiles can be found in the published papers.
Data files at the sampling rate of 20 kHz and 120 seconds duration are collected
by the data acquisition system. Several repeated tests were conducted to collect
more data and improve the performances of data-driven algorithms.

Figure 3.3: The internal components of the electric powertrain.

Electric discharge machining (EDM) is used to produce seeded faults in
bearings and gears. Figure 3.4 shows the EDM equipment used for making the
seeded faults in a controlled way. An outer-race defect on the induction motor
bearing is made as shown in Figure 3.5 (a). As shown in Figure 3.5 (b), a small-
scale damage is produced in the large gear using EDM. There were identical 5-
units of the powertrain. Different fault severities are produced for bearings and
gears of each powertrain. The details of fault severities can be found in the
published papers. For stator winding faults, 10% inter-turn short circuit is seeded
to one phase of the stator winding as shown in Figure 3.5 (c).
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Figure 3.5: The faulty components of electric powertrain.
(a) outer-race damaged bearing (b) damaged gear (c) 10% inter-turn short circuit
fault in the stator.
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3.3 The modified in-house test bench

The in-house test bench is modified to collect the data for the proposed fault
diagnosis scheme in paper B. As shown in Figure 3.6, the electric powertrain used
in Section 3.2 test bench is replaced by a PMSM motor while the data acquisition
system remain same. A vibration sensor is attached to the PMSM for collecting
vibration signal, and a current sensor is used for collecting motor current signal. A
seeded fault with 2 mm surface damage of the outer race is applied to a bearing in
the PMSM using EDM, and 10% inter-turn short circuit fault is applied to one
phase of the stator winding.

Figure 3.6: The experimental setup used for PMSM fault data

3.4 External datasets

3.4.1 Bearing run-to-failure tests by University of Cincinnati

A run-to-failure test conducted by Intelligent Maintenance Systems, University of
Cincinnati, USA [58, 59] is used in paper A. In this experiment, four bearings were
connected to a shaft rotating at 2000 rpm. A 2700 kg radial load was applied to the
shaft. Four accelerometers were used to collect vibration signals at 20 kHz
sampling frequency. One-second samples were recorded every 10 minutes. Inner-
race, outer-race and rolling element faults have been observed at the end of the
test. Early fault detection and classification of outer-race and inner-race bearing
faults are considered in paper A.
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3.4.2 PHM challenge dataset for gearbox fault diagnosis

An experimental data provided by PHM society data challenge in [60] is used to
validate the algorithm proposed in paper C. A two-stage parallel shaft gearbox is
used for collecting the vibration data. It consists of four gears, three shafts and six
bearings. The gears are removable, and two types of gears, namely spur and helical,
are used. Eight fault cases of the spur gearbox and six fault cases for the helical
gearbox have been tested. Each fault case includes multiple faults from gears,
bearings or shafts. Two accelerometers and one tachometer are used to collect the
vibration data and input-shaft speed. The accelerometers are placed on the input
and output shafts of the gearbox. The data of each channel is sampled at 200 kHz.
Each fault class was tested at five different speeds (30 Hz, 35 Hz, 40 Hz, 45 Hz,
and 50 Hz) and two different load conditions (high and low), and repeated, thus 20
data files were collected. The data is used to train and validate the proposed robust
fault diagnosis system for diagnosing the gearbox mixed faults.
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Chapter 4

Diagnostics of bearings faults in electric
motors

Bearings are the most critical elements in rotating machinery systems, and bearing
faults are the main reasons for failures in electrical motors [1, 2, 5]. Therefore,
early bearing fault detection is very important to prevent critical system failures.
With the proposed diagnostic method in Section 4.1, the bearing faults can be
detected at early stages, and the machine operators will have time to take
preventive action before a large-scale failure. More details of the proposed
diagnosis algorithm are given in Paper A. The bearing fault diagnosis in electric
motors at variable speeds and loads is proposed in paper B. In addition to single
bearing fault diagnosis, a mixed bearing and inter-turn stator winding fault is given
in Section 4.2. The summary of the chapter is presented in Section 4.3.

4.1 Early detection and classification of bearing faults

Numerous bearing fault diagnosis schemes can be found in literature [8, 14, 33,
35, 37, 54, 58, 61], but the focus on early-stage fault diagnosis is limited. Some
patented high-frequency techniques, such as PeakVue™ , Shock Pulse™ Method
(SPM) and Spike Energy™ [62-64], have been used in industry for early fault
detections, but those methods are expensive or applicable in certain applications.
Combination of suitable signal processing and machine learning methods can be
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an useful approach for early fault detection at a reasonable cost. Envelop analysis
provides more information about bearing characteristic frequencies than the
original vibration signal [65]. Using the strong features allows a SVM algorithm
to detect bearing faults in early stages in the multidimensional feature space,
which is the main content of paper A.

4.1.1 The proposed algorithm

The proposed fault diagnosis algorithm consists of two main sections. First, the
vibration signals are processed to collect relevant time and frequency domain
features. Then the SVM algorithm given in Figure 4.1 is used to train a classifier
for fault detection and classification.

/ New data /
—H Known response O +

( Known data ()—-P SVM classifier

A4 4 44

Fault

Bearing || oms | FTE | BsE | BPFI| BPFO || e
health | classification
tat

status Features results

Figure 4.1: Block diagram of the SVM classifier.

Feature extraction is the first step for building the data-driven SVM
algorithm. Time and frequency domain features are extracted from the vibration
signals. Root mean square (RMS) of vibration signal is selected as the time domain
feature. For frequency-domain features, envelop analysis is applied to get the
envelope signal from the time domain signal, and fast Fourier transformation is
used to convert the envelope signal into the frequency domain. Then, fault
characteristics frequencies located in the frequency spectrum and energy
associated with frequency bands are extracted. The characteristic frequency bands
of the bearing consist of fundamental train frequency (FTF), ball spinning
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frequency (BSF), ball pass frequency inner race (BPFI), and ball pass frequency
outer race (BPFO) [66, 67]. Five fault cases were considered: healthy, inner race
degradation (IR_D), inner race failure (IR_F), outer race degradation (OR_D), and
outer race failure (OR_F). The SVM classification algorithm is used to classify the
faults.

In SVM classification, the objective is to make a multidimensional
hyperspace using the available features, and then draw an optimum hyperplane to
separate fault classes. 80% of the available data is used for training the algorithm,
and the remaining 20% data is used for validating the algorithm. The trained
classifier is applied to detect and classify the faults in early stages from new data.

4.1.2 The experimental results and discussion

A run-to-failure dataset explained in Section 3.4.1 is used to validate the algorithm.
Figure 4.2 shows the RMS of vibration signal for a complete life of an inner-race
faulty bearing.
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Figure 4.2: RMS of the vibration signal for a complete life in case of an inner-race
faulty bearing.

The green dotted area is related to healthy duration, and the yellow dotted
area is related to IR_D. The IR_F region is given in red dotted lines. Similarly, the
RMS of vibration signal for outer race fault is given in Figure 4.3, in which the
green, yellow and red dotted areas show the healthy, OR_D, and OR_F of the
bearing, respectively.
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Figure 4.3: RMS of vibration signal for complete life of outer-race faulty bearing.

Figure 4.4 shows the frequency spectrum of vibration signals for the inner
race fault and healthy cases. The expected frequency for the inner race fault is
300.6 Hz and 1X (shaft rotating frequency = 33.75 Hz) sidebands. The observed
frequencies are 301.3 Hz and 1X sidebands. For the healthy case, the fault-related
frequency components are not present in the vibration spectrum. Therefore, the
inner race faults can be clearly seen from the vibration spectrum.
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Figure 4.4: The frequency spectrum of a vibration signal for inner race fault.

As shown in Figure 4.5, the expected frequency associated with an outer race

fault is also present in the frequency spectrum. The expected frequency is 239.3 Hz,
and the observed frequency is 236.3 Hz. The deviation is small, and this small
frequency variation is normal in detecting bearing faults since the right value of
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contact angles is unknown. In the healthy case, fault-related frequency components
are not visible, being closer to zero.
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Figure 4.5: The frequency spectrum of the vibration signal for an outer race fault.

Two types of SVM kernels are used for a comparison of the SVM algorithm,
and the results are summarised in Table 4.1. The accuracies of fault classification
are about 86% in the IR_D class, and 96% in the OR_D class. Both linear SVM
and quadratic SVM classifiers are able to detect faults in early stages, and the
accuracy of classification is reliable since a bearing fault can be detected 2.5-3.5
days ahead in the run-to-failure test. The proposed method can be extendable to an
online fault diagnosis system.

Table 4.1: Performance summary of the proposed algorithms.

Classification accuracies :
True positve rates (TPR) / False negative rates (FNR)

Fault Class Linear SVM classifier Quadratic SVM classifier
TPR FNR TPR FNR
H 99.4% 0.6% 99.3% 0.7%
IR D 87.0% 13.0% 86.2%  13.8%
IR_F 90.2% 9.8% 87.8%  12.2%
OR_D 96.0% 4.0% 97.7%  2.3%
OR _F 78.9% 21.1% 84.2%  15.8%
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4.2 Fault diagnostics of electric motors under variable load
and speed conditions

The bearing and stator winding faults are common faults in electrical machines,
and conventionally detected in steady states, e.g. constant speeds and loads.
However, variable loads and speeds are typical operations in wind turbines and
powertrains. Therefore, it is important to detect bearing and stator winding faults
in variable speed and load conditions. This section provide a summary of the
proposed fault diagnosis scheme used to address above challenges. More details
of the proposed method are given in paper B.

4.2.1 The proposed algorithm

A block diagram of proposed algorithm is given in Figure 4.6, and the algorithm
focuses on tracking the frequency orders associated with faults from the
normalised order spectrum. The normalised order spectrum can be generated by
resampling the measured vibration signal via estimated motor speeds [68, 69].

Vibration ,| Resampling | | Order normalized FFT ,| Vibration R
signal and order tracking features £ "
£ 0n
T_‘ 5 |a
L v
& |c
current .| Hilbert transformation .| Motor N T‘;
signal "| and speed estimation | speed " 9 ¢
;—’ £ ]
L ]
- ; ] -
EPV Resampling | | Order normalized FFT .| Current R v
calculation and order tracking features s H
2| |
(7]
,| Torque ,| Motor .
estimation torque
I I

Health class Label [--~=~{a oniv inthe training stage 77T |
‘ ealth class Labe f Use only in the training stage

Figure 4.6: Block diagram of the proposed fault diagnosis and classification
algorithm.
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The fault features are then derived from the RMS of tracked charasteristic
frequency orders, estimated torque and speed of the motor. The details of the
features used in the algorithm is given in Table 4.2. Finally, a SVM algorithm is
used to classify the faults.

Table 4.2: The features used in the SVM classification algorithm.

Signal Feature name Description
source
Current Speed Represent the motor speed
Torque Represent the motor torque
2f Characteristic frequency of inter-turn winding

fault from the extended Park’s vector (EPV)
[70] current i,,

Torque Moving variance of 10 consecutive values of
Variance the torque signal

Vibration 3.05X order  Characteristic frequency of outer-race bearing
fault = 3.05 x Motor rotating speed/frequency

1X Motor rotating speed
8X order Motor rotating speed x No. of motor pole pairs
16X order Motor rotating speed x 2 x No. of motor pole

pairs (2" harmonics)

4.2.2 The experimental results and discussion

The experimental test setup explained in Section 3.3 is used to collect the data.
Manually seeded faults are applied to the bearing and stator winding. The single
and mixed faults are tested at constant speeds (150, 250 and 350 rpm), and 2 types
of variable speed profiles. A speed profile used in the study is given in Figure 4.7.

In the speed profiles, 10 repeated tests have been conducted, and 50 samples
of 2 minute data are recorded. The sampling rate was 20 kHz. After the order
normalisation, the number of samples per 2 minute signal is approximately 360.
This value is selected by compensating for both order and time resolutions. Finally,

a table of 18000 sample rows and 9 columns (8 features and the health class labels)

35



Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

have been produced. Then 75% of available data is used to train the SVM
algorithm, and 25% data is applied for validating the algorithm.
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Figure 4.7: A variable speed profile used in experiments.

The average order spectrum of i,, is given in Figure 4.8. The 2" order (peak
at 1.989) is the strongest feature for stator winding fault. The 2" order of iy IS

tracked over time, and the tacked signal for healthy and faulty cases are given in
Figure 4.9. The amplitude of signal variation according to the dynamic operating
conditions, but, the amplitude is greater than healthy case.
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Figure 4.8: Average i,, order spectrum for stator winding fault.

Similarly, as given in Figure 4.10, the 3.05X order of the vibration signal is
tracked for the outer race bearing fault. A mixed fault condition is also established.
The RMS amplitude of 3.05X order vibration signal fluctuates over dynamic
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operation, and a fixed threshold cannot be defined to detect bearing faults in single
or mixed fault conditions. Therefore, a statistical threshold or classification rule
using machine learning is mandatory, and a SVM algorithm with additional
features is used in the proposed diagnosis scheme.
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Figure 4.9: Tracked 2" order of i, order spectrum for stator winding fault.
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Figure 4.10: Tracked 3.05X order of vibration signal for a bearing fault.

The confusion matrix for validating dataset is given in Figure 4.11. The overall
accuracy of the SVM classifier is about 92.9%. For all the fault classes, more than
90% classification accuracy is obtained, and the maximum classification accuracy
is 94%. These results are highly acceptable, proving that the SVM can detect and

classify the two faults in variable speed and load conditions.
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HH (both stator winding and bearing are healthy)
SB (both stator winding and bearing are defective)
SH (stator winding is faulty and bearing is healthy).

Figure 4.11: The confusion matrix for the test dataset.

4.3 Summary

This chapter focuses on condition monitoring of bearings in electric motors,
presenting two schemes for fault diagnosis. The algorithm presented in Section 4.1
is applied for early fault diagnosis at constant speed and load conditions. The
diagnosis scheme introduced in Section 4.2 is suitable for fault diagnosis at
variable speeds and loads. The mixed fault diagnosis performances is also tested,
and promising results have been obtained for both cases. The fault diagnosis
algorithms proposed in this chapter, are based on traditional machine learning
procedure, in which the features are manually derived by signal processing and
collected energies at fault-related characteristic frequency bands. In Section 4.1,
the envelope analysis of vibration signal is used to produce strong features for
detecting bearing faults in early developing stages. An order tracking algorithm is
used to detect bearing faults related characteristics frequency orders at variable
speed conditions in Section 4.2. These algorithms work well for considered two
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fault cases. However, in practice, the fault types might be unknown, thus the
manual feature generation is a challenging task. For detecting faults in complex
gearboxes and powertrains, the traditional machine learning process is time-
consuming, requiring automatic feature generation methods.
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Chapter 5

Diagnostics of mixed faults in gearboxes

and electric powertrains

As discussed in the state-of-the-art, new algorithms and diagnosis schemes are
required for dealing with mixed faults under dynamic operations. This chapter
provides solutions for such contexts via two application studies in Papers C, D and
E. In paper C, being summarized in Section 5.1, the machine learning and data
fusion methods are used to improve the accuracy and robustness of a gearbox fault
diagnosis system under noises and steady-state operations. The performance of the
proposed algorithms are compared with those without using data fusion. Being
summarized in Section 5.2, as a summary of papers D and E, briefly presents an
electric powertrain fault diagnosis scheme for diagnosing mixed faults at variable
loads and speeds, and gives a short introduction of the online implementation the
proposed diagnosis system. The conclusion of the chapter is given in Section 5.3.

5.1 Robust fault diagnosis system for gearbox mixed faults

A gearbox has a complex structure with many bearings, shafts, and gears. Under
a mixed fault context, using traditional signal processing to the vibration spectrum
is difficult, requiring the details of gearbox internal structure. In [71], a review of
gear fault diagnosis using various vibration signal condition indicators (Cl) and
features, such as RMS, crest factors, kurtosis, and spectral kurtosis, is presented,
and performances of the different Cls are compared in the work. However, most
existing methods focus on single fault diagnosis of gearbox faults. A gearbox
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multi-fault diagnosis scheme is proposed in [72], but the robustness of the system
under noises is not considered. Other studies also deal with either single or multi-
fault diagnosis, but the details of robustness analysis under noises are very limited
or missing [9, 10, 30, 73-75]. Increasing performance of the detection system
might be more important than looking for a highly reliable feature since the
machine cannot be completely healthy due to the absence of clear characteristic
frequencies as argued in [73]. Al algorithms and data fusion might be a solution
for increasing the accuracies and robustness of a fault diagnosis system [34].

The main objective of paper C is to implement a robust fault diagnosis
system, which can give accurate results at various noise conditions. The
experimental dataset provided by PHM society data challenge is used to validate
the proposed algorithm.. Figure 5.1 shows the structure of the gearbox used in the
experiments. More details of experiments and data can be found in paper C.

Input Pinion
16 0r32 T

Idler Gear
48 0r 96 T

\ Output Gear
.\ 40 or 80 T

Figure 5.1: The structure of the gearbox [60].

In the given experiments, a two-stage parallel shaft gearbox is used for
collecting the vibration data at the sampling rate of 200 kHz. The gearbox consists
of four gears, three shafts and six bearings (B1,2,...6) as described in Chapter 3.
There are 8 different fault classes for spur gearbox and 6 fault classes for helical
gearbox. A summary of fault classes are given in Table 5.1. Each fault class
represents a combination of faults in gears, bearings and shafts of respective
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gearbox arrangements. Each fault class is tested at five constant speeds (30 Hz, 35
Hz, 40 Hz, 45 Hz, and 50 Hz), two load levels (high and low) and two repeated
tests, making 20 test conditions for each fault class

Table 5.1: Fault classes of the gearbox [60]

Gear Bearing ID Shaft
Fault
Class |32T 96T (48T 80T Bl |B2 |B3 B4 B5 |B6 |[Input Output
Spur1 |Good |Good |Good Good |[Good |Good |Good [Good Good |Good |Good Good
Spur 2 |Chipped [Good |Eccentric |Good |Good [Good |Good |Good Good [Good | Good Good
Spur 3 |Good |[Good |Eccentric |Good [Good [Good |Good |Good Good |Good |Good Good
Spur 4 |Good Good |Eccentric |Broken |Ball [Good |Good [Good Good |Good |Good Good
Spur 5 |Chipped [Good |Eccentric |Broken [Inner [Ball |Outer |Good Good |Good |Good Good
Spur 6 |Good Good |Good Broken |Inner [Ball |Outer [Good Good |Good [Imbalance |Good
Spur 7 |Good |Good |Good Good |[Inner |Good |Good [Good Good |Good |Good Keyw ay Sheared
Spur 8 |Good Good |Good Good |Good |Ball [Outer |Good Good |Good [Imbalance |Good
Fault
Class |[16T 48T |[24T 40T =X B2 B3 B4 B5 B6 Input Output
Helical 1 [Good Good |Good Good |[Good |Good |Good [Good Good |Good |Good Good
Helical 2 | Good Good |Chipped |Good |Good [Good |Good [Good Good |Good |Good Good
Helical 3 [Good Good |Broken |Good |Good |Good [Good |Combination [Inner |Good |Bent Shaft | Good
Helical 4 [Good Good | Good Good |Good |Good |Good [Combination |ball  [Good [Imbalnce [Good
Helical 5 [Good Good |Broken |Good |Good |Good [Good |Good Inner |Good | Good Good
Helical 6 [ Good Good | Good Good |Good |Good |Good [Good Good |Good |Bent Shaft | Good

5.1.1 The proposed hybrid algorithm

A block diagram of the proposed hybrid fault diagnosis algorithm is shown in
Figure 5.2. Two vibration sensors are connected at two different places of the
gearbox (input shaft and output shaft sides) to collect the vibration data of gearbox
from two different viewpoints. A redundancy data fusion scheme is implemented
to enhance the accuracy and robustness of the diagnosis, which includes both
feature level and decision level data fusion.

Two types of features, namely domain knowledge features and time-
frequency pattern features, are extracted. The domain knowledge features (20
features) are extracted using time-domain signal and a bank of filters where centre
frequencies are defined by the frequencies of the gearbox shafts and gear meshing
frequencies.
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Fault classification results

Figure 5.2: Block diagram of the proposed hybrid fault diagnosis for the gearbox.

The time-frequency pattern features are extracted using the continuous
wavelet transformation (CWT) from the collected vibration signal. For each
sample, two CWT images are produced from each vibration signals and merged
into one image. In addition, STFT based images were also produced for a
comparative study to find the best images or pattern generation for this application.
Figure 5.3 shows 2-D representation of a vibration signal for a gearbox fault class.

Classifiers based on MLP and CNN are used for feature level fusion and to
increase the confidence of fault classification. In addition to the feature level data
fusion, decision level fusion is used for increasing the robustness of classification
in noisy conditions. More details of this feature extraction and fusion algorithms
can be found in paper C.
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Figure 5.3: The 2-D representation of the signal using wavelet transform.

5.1.2 The experimental results and discussions

There are 280 files for 14 different fault classes or 20 files for each class in the
original dataset. More data samples are required to enhance the effectiveness of
the proposed algorithm. A complete time-frequency representation of a vibration
signal requires the data of one complete cycle of rotation. Based on this rule, one
data file is subdivided into 20 samples, so 400 samples are created for each fault
class. Therefore, 5600 samples for 14 fault classes are used for training and testing
of the algorithm, in which 75% of the data is used for training.

Accuracy and robustness of individual classification algorithms

First, the classification accuracies of each individual MLP and CNN algorithms
are tested (without naive Bayes combiner) using nine test cases as given in Table
5.2. Then, the performance of the proposed feature level fusion scheme is
evaluated and compared with that of the baseline without using data fusion. The
test cases 1, 2 and 3 represent the individual MLP algorithm performances, where
vibration data from a single sensor is used in cases 1 and 2. In case 3, vibration
data from both sensors are used for feature level data fusion.

The test cases 4 to 9 represent the performance of CNN classifier, where
STFT images are used as input for CNN in test cases 4, 5 and 6. CWT-based
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images are used in test cases 7,8 and 9. The results in Table 5.2 show that the
feature level fusion can increase the classification accuracies (by 0.5% to 21.8%
depending on test case) of the individual MLP and CNN algorithms. Furthermore,
in case of CNN, the CWT images give best results for both helical and spur
gearbox tests. According to the results in Table 5.2, the CWT based CNN, and
domain feature-based MLP with feature level fusion can be selected as the best
classifier in this application.

Table 5.2: Overall performances of individual MLP and CNN classifiers.

Test Algorithm Signal Spectrogram Feature  Accuracy and difference

case images fusion ~ compared to feature level
fusion (%)
Spur Helical
1 Input - No 94.1 -4.2 818 -16.2
2 MLP output - No 97.0 -1.3 86.2 -11.8
3 both - Yes 98.3 98.0
4 input  STFT No 94.0 -35 595 -21.8
5 output STFT No 90.3 -7.2 808 -05
6 CNN both  STFT Yes 97.5 81.3
7 input CWT No 92.0 -6.0 878 -84
8 output CWT No 90.6 -74 908 -54
9 both  CWT Yes 98.0 96.2

Two types of noises are added to the original signals to test the robustness
of the proposed individual algorithms. The noise type-1 signals are generated by
adding white Gaussian noises to the signals with a signal to noise ratio (SNR) of
14 dB. Noise type-2 signals are generated by mixing each signal to another signal.
This scenario demonstrates a practical beating situation in a gearbox, where the
original vibration signal (R,,,) being measured is mixed with a fraction (f %) of
another vibration source (R, ). The helical fault class 2 is selected as R, in case of
helical gearbox. The mixing weight (f %) is selected at 0.5, and the helical fault
class 2 is added as noise to all other helical fault classes. In spur gear faults, a
similar rule is applied, and the spur fault class 2 is used as a noise (R,) for other
spur fault classes.
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To further compare the accuracy and robustness of the proposed individual
MLP and CNN algorithms, other classification algorithms are also used. The
comparison results are given in Figure 5.4.

m Org (Spur) m Noise-1(Spur)
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Figure 5.4: Accuracy and robustness comparison of individual algorithms.

The DF-MLP represents the proposed domain features (DF) and MLP
algorithm combination, while DF-SVM represents a DF with a SVM algorithm.
When comparing the DF-MLP and DF-SVM, both algorithms can produce
relatively high accuracies for noiseless case (Org) and the noise type-1 case.
However, compared to DF-MLP, the classification accuracies of DF-SVM are
significantly lower for noise type-2, showing that the DF-MLP algorithm is more
robust than the DF-SVM algorithm. Similarly, the performance of the proposed
CWT-CNN algorithm is compared with that of three different algorithms. In raw-
CNN, the raw vibration signal is fed to CNN without generating CWT images.
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Other two algorithms use, autoencoder based feature learning and SVM
classification. The raw vibration signal is used for feature generation in Raw-SVM
while CWT images are used in CWT-SVM. The comparative study results show
that the CWT-CNN is more accurate and robust under the considered noises.

Accuracy and robustness of the multiple-fault classification using the hybrid
neural networks and decision level fusion

The comparison study in Figure 5.4 shows that both DF-MLP and CWT-CNN are
the best classifiers for the considered diagnosis application. Next, a decision level
fusion based on naive Bayes algorithm is applied to the output of each individual
classifiers, and the accuracies and robustness of the algorithm are further
increased. Table 5.3 summarises the performance of the proposed decision level
fusion.

Table 5.3: Overall performances of MLP and CNN classifiers with noise.

Test  Algorithm  Noise Decision Accuracy and difference compared to

case type level decision level fusion (%)
fusion Spur Helical

1 MLP No 98.3 -0.1 98.0 -0.2
2 CNN - No 98.0 -04 96.2 -2.0
3 MLP+CNN Yes 98.4 98.2

4 MLP No 97.1 -04 97.0 -0.7
5 CNN Noise 1 No 90.4 -7.1 948 -29
6 MLP+CNN Yes 97.5 97.7

7 MLP No 85.3 -5.8 745 -19.0
8 CNN Noise 2 No 84.1 -7.0 93.2 -0.3
9 MLP+CNN Yes 91.1 93.5

The test case 3 shows the performance of decision level fusion without
noise, and the test cases 6 and 7 show the performance of decision level fusion for
noise type-1 and type-2, respectively. Other test cases represent individual
algorithm performances without decision level fusion. For the noiseless case, there
is no much improvement of classification accuracies (from 0.1 to 2.0%

48



Chapter 5. Diagnostics of mixed faults in gearboxes and electric powertrains

improvement). For the noise type-1 case, the classification accuracy improvement
of the proposed decision level fusion is in between 0.4 and 7.1%, being
considerable. In the case of noise type-2, the improvement is in between 0.3 and
19%, which is a significant improvement.

The mean and standard deviation of classification accuracy improvement in
individual algorithms and the proposed decision level fusion are shown in Figure
5.5. For example, the mean and deviation of the MLP algorithm are 91.7% and
8.92% using the six classification accuracies (98.3%, 98.0%, 97.1%, 97.0%, 85.3%
and 74.5%) given in test cases 1, 4 and 7 in Table 5.3. This means that the MLP
classifier has the mean accuracy of 91.7%, but it is not robust under noises due to
the big variation. As seen from Figure 5.5, the mean accuracy is maximized, and
the deviation is minimized if using decision fusion of the CNN and MLP results.

B Mean M Deviation

98.00% oo 10.00%
. (o]
96.07%
96.00% 8.00%
— S
X 94.00% 6.00% =
E 92.78%  4.55% S
0, ©
£ 92.009% 91.70% 4.00% S
8 2.77% g
90.00% I 2.00%
88.00% 0.00%
MLP CNN  MLP +CNN

Figure 5.5: Mean and deviation in different test cases.
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5.2 Fault diagnosis system for an electric powertrain

Reliable diagnosis for defects in the critical components of electric powertrains
such as bearings, gears and stator windings, is important to prevent failures and
enhance the system reliability. Most existing fault diagnosis methods are based on
measuring specific characteristic frequencies to single faults at constant speed
operations. As mentioned, the measured quantities are non-stationary under
variable loads and speeds, thus multiple fault diagnosis of gearboxes or electric
powertrains under such contexts are challenging. Once multiple faults occur in the
system, the existing methods may not detect the faults effectively and may give
false alarms. In [76], a machine learning method is proposed for fault diagnosis of
electric motors, but this study focuses only on single faults under fixed speeds.
Although various bearing faults and gear faults are analysed in a gearbox multi-
fault diagnosis system in [72], the test conditions were at single faults with fixed
loads and speeds. Most recent studies consider either multiple fault diagnosis at
constant speeds, or single fault diagnosis at constant or variable loads and speeds.
It is difficult to find a study dealing with both multiple faults and variable load and
speed levels in literature. Further, research on multiple fault dignosis under
variable loads and speeds using limited data is missing in both academia and
industry.

In this section, a deep learning based fault diagnosis method is proposed to
detect common faults in the electric powertrains. The proposed method is based
on pattern recognition using a convolutional neural network to detect effectively
not only single faults at constant speed but also multiple faults in variable speed
operations. In addition, the algorithm is trained only using single faults, but the
trained algorithm can detect multiple faults. This allows to reduce the training data
requirements. The developed in-house test bench discussed in Section 3.2 is used
for data collection. The internal components of the complete powertrain are
disassembled as shown in Figure 3.3. They include 8 bearings, 4 gears and 3 shafts.
Small-scale damage is artificially produced in the large gear G1 and an outer-race
defect on the induction motor bearing B1 using an EDM. For stator winding faults,
10% inter-turn short circuit is seeded to one phase of the stator winding. Eight fault
cases are conducted with individual and multiple faults. The gearbox is coupled to
a PMSG, and the generator output is connected to a fixed resistive load. Therefore,
the powertrain load is proportional quadratically to the rotational speed. The output
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currents of the PMSG are measured and used to estimate the rotational speed of
the electric powertrain.

5.2.1 The proposed algorithm

A block diagram of the proposed fault diagnosis system for electric powertrains is
shown in Figure 5.6. Motor currents and the vibration sensors are used to diagnose
faults. An order tracking algorithm is applied for collecting currents and vibration
signals to deal with the variable speeds. Then spectrograms of both currents and
vibration signals are generated and combined into large images. This combination
provides an enlargement in the feature space. Based on the generated
spectrograms, CNN can fuse the current and vibration spectrograms and
implement a fault classification.
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Figure 5.6: A block diagram of training and testing of the fault diagnosis system.
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Although CNN is widely used in many applications of image classification,
a CNN based fault diagnosis needs to be carefully implemented on spectrograms.
The information of faults is hidden in the collected signals, thus proper signal
processing methods are required to extract the hidden information from the signals
and convert into spectrograms. For this purpose, the order normalization for
vibration signals and the Park’s vector of currents are used together with CNN.

In the training phase, three classifiers, namely C1, C2 and C3, as shown in
Figure 5.6, are individually trained to detect stator winding faults, bearing faults,
and gear faults, respectively. After the training process, the trained classifiers are
employed to detect multiple fault cases. More details of this system are given in
Paper D. The extension of this algorithm for online implementation is given in
Paper E.

5.2.2 The experimental results and discussion

The classification accuracies for individual classifiers are summarized in Table
5.4. The C1 classifier is trained to detect stator winding faults, giving an accuracy
of 100 %. The classification accuracy of C2 bearing outer-race fault classifier is
98.8 %, and the classification accuracy of C3 gear fault classifier is 99.8%. In other
words, all three classifiers work very effectively for detecting single faults.

Table 5.4: Performance summary of individual classifiers.

Case Classifier ID Component Fault  Test Accuracy
ID SwW Bl Gl class (%)
1 - H H H HHH -
2 Cl F H H SHH 100
3 C2 H F H HBH 98.8
4 C3 H H F  HHG 99.6

SW: stator winding, B1: bearing 1, G1: gear 1, H: healthy, F: faulty.
HHH: all components are healthy.

SHH: faulty stator, healthy bearing and healthy gear.
HBH: healthy stator, faulty bearing and healthy gear.
HHG: healthy stator, healthy bearing and faulty gear.
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The classification accuracies for multiple fault cases are summarized in
Table 5.5. The C1 classifier works well for detecting stator winding faults at any
multiple fault cases considered in the study, and classification accuracies are
greater than 98.8% in all the cases. The C3 classifier also effectively detects the
damaged teeth gear fault in multiple fault conditions with a minimum accuracy of
87.8%. The weakest classifier in this study is the C2 classifier, which performs
well in some multiple faults (Case 5 and Case 8), but not well for the outer-race
bearing faults in Cases 6 and 7, with the accuracies of 76.2% and 71.5%,
respectively.

Table 5.5: Performance of multiple fault diagnosis.

Case Component Fault class Test Accuracy (%)
ID Sw Bl Gl C1 C2 C3
5 F F H SBH 100 86.8 87.8
6 H F F HBG 99.8 76.2 98.6
7 F H F SHG 100 715 100
8 F F F SBG 984 90.2 994

SW: stator winding, B1: bearing 1, G1: gear 1, H: healthy, F: faulty.
SBH: faulty stator, faulty bearing, and healthy gear.

HBG: healthy stator, faulty bearing and faulty gear.
SHG: faulty stator, healthy bearing and faulty gear.
SBG: faulty stator, faulty bearing and faulty gear.

The classifiers for the stator and gear fault diagnosis have an excellent
performance for fault classification under individual and multiple fault conditions.
The experimental results confirm that the proposed algorithm can detect single and
multiple faults under variable speed conditions. Although the classifier for the
bearing fault detection works well for single fault conditions, it has a limited
capacity for classifying some multiple fault conditions. Three types of localized
faults in the stator winding, bearing and gearbox have been studied in this study,
but the concept can be extended to other types of faults such as shaft unbalance,
shaft misalignments, bearing inner race faults, gear misalignments, and broken
gear tooth.
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5.2.3 Online implementation of the powertrain fault diagnosis system

Online fault diagnosis systems are important in industry to monitor the machine
condition over a period of time, and automatically get the decisions about the
machine health. The online implementation details of an electric powertrain fault
diagnosis system are discussed in this section, being detailed in papers D and E.
The procedure used for development of the online fault diagnosis system is given
in Figure 5.7.

-—_————— e
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| |
Il Electric Collect data from Advanced Development of |
| . signal » machine learning |
|| powertrain several test cases : |
| processing model |
| |
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"Step3 | Ty T !
| _ | Embedded data | Algorithm implementation
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|
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acquisition system as an embedded system

—_—————e—ee e — o

Figure 5.7: The procedure used for development of the online fault diagnosis
system

In the first step, the required machine learning algorithm is developed as
summarised in Section 5.2.1. Next, the online fault diagnosis system is developed
by considering the collected experimental data as a virtual system. The latest step
considers aspects of an embedded system development, which is out of scope of
this dissertation.

A block diagram of the developed online fault diagnosis system is shown in
Figure 5.8, including two subunits, namely health class predictor and decision-
maker. In the first subunit, the health classes of the collected signals are predicted
using the trained machine learning and data fusion algorithm. Several consecutive
prediction results are collected and analyzed in the second subunit for the final
decision.
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Figure 5.8: The algorithm used in the online fault diagnosis system in the step 2.

The online operation of the algorithm uses two buffers. In the data
acquisition buffer, the data inflow is controlled. A large data processing buffer is
used in case the length of the dataset is not sufficient for data processing. Further,
this dataset is sent for data preprocessing and feature generation. The trained CNN
classifier bank is applied on these processed spectrograms to classify the faults.

Confusion matrixes and Receiver Operating Characteristic (ROC) are
commonly used to analyse the performance of a trained machine learning model.
In online fault diagnosis applications, these measures cannot be obtained because
the prior information of the faults is unknown. Therefore, a new decision criterion
Is proposed. Each classifier has three parallel buffers to store the predictions. In
each buffer, the health class label with the maximum count is selected as the final
decision. This method can compensate for false predictions from unexpected
noises or interferences. The interface of the developed online fault diagnosis
system is given in Figure 5.9.
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Figure 5.9: The interface of the developed online fault diagnosis system for the
electric powertrain.

The performance of the online fault diagnosis system for three fault cases
is given in Figure 5.10. Each pie chart shows the percentage of the predicted class
labels in each classifier for 20 consecutive predictions. The prediction label with
the highest count is selected as the believed fault type.
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Figure 5.10: A snapshot of online fault diagnosis system performance:
(a) bearing fault (b) stator winding and bearing faults (c) bearing and gear faults

5.3 Summary

In this chapter, two novel fault diagnostics schemes are proposed for mixed fault
diagnosis of gearboxes and electric powertrains at challenging working conditions,
e.g. presence of noise, variable speeds and loads. The foundation for proposed
solutions is based on CWT and STFT based time-frequency representation of input
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signals, deep learning and data fusion. The proposed algorithms are validated using
experimental data, and following remarks are drawn from the experimental results.

Due to the complexity of feature generation, the traditional machine learning
process used in Chapter 4 is time-consuming for fault diagnosis of complex
gearboxes and powertrains. Alternatively, time-frequency spectrograms and a
CNN deep learning algorithm are suitable to combine feature learning and
classification within a unified supervised training scheme. The CNN algorithm
can learn complex features for mixed fault diagnosis, which is difficult to do
manually.

Feature-level data fusion can significantly improve the accuracy of a fault
diagnosis irrespective of the type of machine learning algorithms.

If an individual fault classifier is not robust under noisy conditions, using an
additional classifier and decision fusion can enhance its robustness.

Accuracy of the CNN-based classification depends on the quality of input data,
image or patterns. Using the spectrograms as input data for CNN gives a higher
classification accuracy than the raw vibration signals.

Fusion of order normalised vibration and current spectrograms at feature level
using a CNN algorithm allows for detecting multiple faults at variable speeds
and loads of an electric powertrains.

The online implementation of such algorithms as decision support systems
would reduce the workload of maintenance personnel and downtime, and
increase the productivity.
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Chapter 6

Online self-supervised condition
monitoring system

6.1 Introduction

Various data-driven supervised machine learning, and data fusion based fault
diagnosis schemes are proposed in Chapters 4 and 5, confirming that the proposed
algorithms can work well in challenging working conditions, namely, variable
speeds and loads, and noisy conditions. However, those proposed schemes require
labelled training data or historical data at faults. Labelled training data is limited
in reality, rendering a challenge for any data-driven algorithm. To address the
challenge of limited data, unsupervised and supervised learning methods can be
combined, and a proper combination of different techniques can give an overall
improvement of performance by compensating the weaknesses of each method.

Online implementation of data-driven algorithms is important to obtain an
autonomous diagnostics, and reduce the manpower requirement for fault
diagnosis. Commercial online condition monitoring systems are available in the
market [11, 12], but they are expensive and require high expertise of the system
operators. On the other hand, most published research works focus on proposing
new condition monitoring algorithms [9, 10, 30, 71-75], but details on their online
implementation are limited. As stated in [12], online implementation based on
artificial intelligence, and wireless multi-sensor data fusion is a possible direction
to achieve an intelligent CM system.
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In this research, a novel online condition monitoring system is proposed to
deal with limited data. The proposed solution in this chapter is suitable for fault
diagnosis of new powertrains without prior data of faulty cases. The proposed
diagnosis scheme is summarized in Section 6.2 while Section 6.3 briefly presents
the developed online diagnosis system and its performance. Paper F details
information in this chapter.

6.2 The proposed fault diagnosis scheme

A block diagram of the proposed fault diagnosis scheme comprised of two stages
Is given in Figure 6.1.
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Figure 6.1: A block diagram of the proposed fault diagnosis scheme for electric
powertrain.
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Chapter 6. Online self-supervised condition monitoring system

The first stage is fault detection, and the second stage is fault isolation. A
combination of one-class SVM anomaly detection and supervised CNN algorithms
have been used for fault detection and isolation. The powertrain vibration, speed
and input current signals are measured in online passion and stored in the cloud
storage for stage-1. The order normalised spectrograms are generated using
measured speeds and stored for the stage-2 algorithm. The detailed flowchart of
the operation of the proposed fault diagnostics scheme is given in Figure 6.2.
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Figure 6.2: Detailed flowchart of stages-1 and -2 of the proposed diagnosis
scheme.

There are three main steps in the fault detection algorithm in stage 1;
1) Train the boundaries for healthy class data using features (RMS of the vibration
signal, RMS of IM current signal and IM speed) and one-class SVM.
2) Calculate the score from the trained one-class SVM for incoming data in a
dynamic manner and take the average of the latest samples.
3) Compare the average score and make the decision. If the score is greater than
zero, the machine is assumed to be healthy and otherwise faulty.
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The fault detection results in generating the training data for CNN classifiers
in stage 2. Once a fault is detected in stage 1, a temporary class label (e.g. Fault
type 1 (FT-1)) is assigned. In the stage 2, the supervised CNN algorithm is trained
using healthy data and the FT-1 data. In this self-supervised feature learning
method, the algorithm can learn features related to multiple faults (FT-1, 2, ...).
The algorithm keeps a bank of feature types learned from the cloud data storage.
For new data, the learned feature set is applied to generate a score, which
represents the similarity of new data respective to the corresponding feature type.
The final decision is taken based on a defined decision criteria. When the
powertrain is repaired, the actual label is available, and maintenance department
can update the FT-1 with a correct label.

6.3 The experimental results and discussion

The laboratory test setup explained in Section 3.2 is used to generate data for single
and multiple faults with different fault severities. As given in Figure 6.3, the
powertrain operates at variable speeds and loads, making a realistic diagnosis
scenario.
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Figure 6.3: The constant and variable speeds of each fault class.

Three levels of gear damage scenario are tested (GF1, GF2 and GF3), where GF1
is a small gear tooth damage, and GF2 has a further damaged gear tooth. The GF3
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is a complete broken tooth gear. Three severity levels of outer-race defects on the
induction motor bearing (BF1, BF2 and BF3) were tested. For stator winding
faults, 6% (SF1) and 10% (SF2) inter-turn short circuit faults are applied in one
phase. The sampling rate of the data was 20 kHz for the vibration, motor current
and speed measurements. After preprocessing, there are 3820 samples for each
fault class. More details of experimental data and data preprocessing can be found
in Paper F.

6.3.1 Stage-1 - unsupervised fault detection

As discussed in Section 6.2, the one-class SVM is trained, using healthy system
data, and the trained algorithm is used to generate scores for fault class data. The
scores greater than zero is considered as data from healthy powertrain, and the
scores less than zero is considered as faulty. Table 6.2 shows the summary of one-
class SVM performances for the first 9 fault classes. The high detection accuracies
of Table 6.1 confirm that proposed one-class SVM algorithm can detect fault
reliably in variable speed and loads conditions. However, the stage-1 is to find
whether a component is healthy or faulty, but in this stage the fault type or severity
is unknown.

Table 6.1: One-class SVM performances for fault detection.

Faultclass Fault Detectionscore  Detection Powertrain
ID class (%) criteria Status
1 H 99.9 Score >0 Healthy
2 GF1 98.6 Score <0 Faulty
3 GF2 95.9 Score<0 Faulty
4 GF3 92.0 Score <0 Faulty
5 BF1 100.0 Score <0 Faulty
6 BF2 99.9 Score <0 Faulty
7 BF3 100.0 Score <0 Faulty
8 SF1 100.0 Score <0 Faulty
9 SF2 99.9 Score <0 Faulty
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6.3.2 Stage-2 - supervised CNN fault diagnosis algorithm

The proposed stage-2 algorithm is implemented as explained in Section 6.2, and
the classification accuracies for 11 fault classes are tested. To compare the
performance of stage-2 CNN algorithm, a comparison study is designed using
domain features, binary SVM and MLP algorithms. The average order spectrums
of time-domain signals (vibration and current) are derived, and the amplitude of
fault-related characteristics frequency orders are extracted as features. In this
study, nine features are generated as domain features. The details of fault-related
characteristics frequency orders used for domain feature generation can be found
in paper F. In the comparison study, nine classifiers are trained using the data from
lowest severity fault classes (GF1, BF1 and SF1), and the classification accuracies
are tested for 11 fault classes as shown in Table 6.2. All gear fault algorithms (GF1-
SVM, GF1-MLP and GF1-CNN) classify the healthy class with accuracies over
97.1%.

Table 6.2: The classification accuracies of different classifiers.

Classification
accuracies (%)

Fault

Class GF1- GF1- GF1- BF1- BF1- BF1- SF1- SF1- SF1-
ID FaultClass SVM MLP CNN SVM MLP CNN SVM MLP CNN
1 H 971 978 986 948 937 996 100.0 100.0 99.8
2 GF1 97.4 976 942 675 651 996 954 970 100.0
3 GF2 684 91.6 986 550 670 995 434 98.0 100.0
4 GF3 714 813 991 530 571 996 60.0 100.0 100.0
5 BF1 811 753 949 947 940 900 99.0 100.0 100.0
6 BF2 541 827 962 790 805 990 90.0 100.0 100.0
7 BF3 510 770 825 990 990 990 630 100.0 100.0
8 SF1 760 940 801 600 99.0 99.0 100.0 100.0 99.7
9 SF2 710 950 827 610 980 990 100.0 100.0 99.7
10 GF2_BF2 880 800 934 8.0 890 674 600 100.0 996
11 GF2_BF2_SF1 970 840 971 960 700 721 980 750 98.1

Average 775 869 925 769 829 931 826 97.3  99.7

Minimum 51.0 753 80.1 530 571 674 434 750 981

Maximum 974 978 991 99.0 99.0 99.6 100.0 100.0 100.0
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The GF1-SVM has the lowest performance with minimum and average
accuracies of 51.0% and 77.5%, respectively, while those minimum and average
accuracies of the GF1-MLP are 75.3% and 86.9%. The proposed GF1-CNN
classifier has the best performance with the minimum and average accuracies of
80.1% and 92.5%, respectively. The GF1-SVM classifier has the lowest average
performances, but still, the classification accuracy of its original trained class
(GF1) is 97.4% while having moderate accuracies for other fault classifications.

Domain feature-based classifiers (binary SVM and MLP) have some lower
accuracies due to the limitations of DF, and the amplitudes of characteristic
frequency bands are calculated from average order spectrum, which contains
approximations for the dynamic load and speed operations. However, the CNN
feature learning covers the local regions in the spectrograms for dynamic
operations, resulting in a better feature learning. The CNN-based classifier can
compensate for spatial deviation of fault-related frequency bands in the
spectrograms produced in the order normalization algorithm during sudden speed
changes. This cannot be achieved in DF-SVM and DF-MLP. Therefore, the
performances of CNN classifiers are better than other two methods.

6.3.3 Online implementation

The proposed fault diagnosis system is implemented as an online system. The
interface in Figure 6.4 shows the result of one-class SVM score in stage-1 for a
healthy powertrain at variable speeds. The score is online calculated, and the
average score from historical scores is used for fault detection decision. After
detecting a fault, a temporary label is assigned to new data (e.g. FT1), and a CNN
is trained using data from healthy and fault (FT1). The learned CNN feature dataset
can be used for generating a score (from 0 to 1) to define the similarity level of
new spectrogram data with respect to the learned fault type. A bank of CNN
classifiers are trained for other fault types, and the CNN scores are calculated for
new spectrogram data. The scores of five CNNs for a gear fault case are given in
Figure 6.5. The score for GF1-CNN classifier is very high, and the scores of other
CNN classifiers are low. This clearly indicates a gear fault. The historical score of
each CNN classifier is given in Figure 6.6, and the maintenance personnel can
have more confidence on the final decision based on historical scores.
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Figure 6.4: One-class SVM fault detection interface.
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Figure 6.5: CNN fault score and decision-making interface.
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Figure 6.6: CNN fault score history interface.

6.4 Summary

This chapter introduces an outline for an online fault diagnosis system consisting
of self-supervised feature learning. The rationale for using such a concept is to
eliminate the requirement of historical fault data for data-driven algorithms. In the
proposed method, the data from single faults and temporary labels are used for
initial self-supervised feature learning process. Then, the learned features are used
for detecting future single and multiple faults. The proposed algorithm is validated
using data from signals and multiple faults under variable speeds and loads,
obtaining promising results. A basic similarity score calculation and decision rule
are introduced, working well in the considered fault scenario. More experimental
data is required for improving the decision rule. The generalisability of the
proposed CNN feature learning is tested. The features learnt from initial fault
severity levels are used for detecting faults at higher severity levels, which are not
used in the training process.
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The proposed algorithm has some limitations. In the case of initial multiple
faults, the proposed method cannot learn single fault features separately, requiring
further improvements. An insight for improvements can be obtained from self-
supervised image segmentation applications, where the individual objects in the
images are assigned for each object in self-supervised manner. A similar concept
can be applied for initial multiple fault diagnostics using spectrograms and CNN,
where the local fault features related to individual faults might be detected in the
local context of spectrograms. Therefore, the proposed algorithm, together with
wireless sensors and cloud data storages, might be a possible future direction for
realizing intelligent and online condition monitoring systems for industrial
machines.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This research focuses on online condition monitoring of gearboxes and electric
powertrains. Existing research and industrial products aimed at component level
fault diagnosis for single faults at steady-state operating conditions. Condition
monitoring of complex gearboxes and electric powertrains under dynamic
conditions is limited in literature. Within the framework, four major research
topics or problems were identified within condition monitoring of gearbox-based
electric powertrains, and novel diagnosis schemes based on data-driven approach
were presented to solve the problems.

First research problem focuses on bearing fault detection at early stage and
dynamic operating conditions. Bearing failures modes may depend on its operating
conditions, and it is difficult to detect bearing faults in early-stage. Therefore, an
early-fault diagnosis scheme based on envelop analysis, domain feature generation
and SVM, is proposed via paper A. The envelope analysis generates strong features
for SVM classifier and the trained SVM can detect faults in a multidimensional
hyperspace. The bearing fault diagnosis at variable speeds and loads are solved by
tracking the fault related characteristics frequencies and generating additional
strong features manually for a SVM. The results of Paper B show that the proposed
method is useful for fault diagnosis in wind turbines and powertrain applications.
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The second research problem identified in this work is improving the
robustness of gearbox mixed faults diagnosis. A robust fault diagnosis scheme
consisting of CNN, MLP and data fusion is proposed through paper C, and a
comparative study is used to highlight performance of the proposed method using
experimental data. The results of the gearbox fault diagnosis study show that the
feature level and decision level data fusion can improve the robustness of gearbox
mixed fault diagnosis under noise conditions.

The third research problem focuses on multiple fault diagnosis in variable
speed and load conditions. A new fault diagnosis scheme based on CNN is
proposed via paper D. The spectrograms generated from vibration and motor
current signals are fed in CNN algorithm for feature level fusion to diagnose the
fault at variable speeds and loads. The order tracking process can generate order
normalised spectrograms for CNN algorithm. The CNN can compensate the
frequency overlappings at order normalisation process by compensating the
variations of frequencies in the spectrograms. Based on the proposed algorithm, an
online fault diagnosis scheme is implemented for autonomous fault classification
at dynamic operating conditions in paper E.

This work proposes new data-driven diagnosis methods. The main
challenge of any data-driven approach is requirement of training data. Therefore,
the fourth research topic focuses on finding methods to reduce the training data
requirements of data-driven algorithms. A self-supervised feature learning
algorithm is proposed for online diagnosis of powertrain mixed faults under
dynamic operating conditions. The proposed solution in paper F is based on two
stages. In the first stage, fault are detected, and temporary labels are assigned. The
results of stage-1 algorithm were used for training CNN algorithms. The order
normalisation process allows for detecting faults at variable speeds, and the
proposed CNN scores and decision criteria have the capability to isolate single and
multiple faults.

The existing diagnosis methods based on signal processing, statistical or
domain feature generation and machine learning have limitations for complex
machines at dynamic operating conditions. The domain feature generation may
generate strong features for single fault diagnosis at steady-state operating
conditions, but it is time-consuming and may generate weak features for multiple
fault diagnosis at dynamic operations. The results of this research confirm that the
pattern features from time-frequency spectrograms using CNN learning and data
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fusion algorithms can be used to diagnose multiple faults at variable speeds and
loads. In addition, the usage of many sensors (e.g. vibration and current) allow
for detecting the physical fault information in different domains or viewpoints,
thus data fusion results in more robust diagnosis decisions. The proposed self-
supervised online condition monitoring system can work without historical data
for faults, and the algorithm can learn features for online fault detection and give
automatic decisions to the machine operator.

7.2 Limitations and future works

The deep learning algorithms used in this research are pattern recognisers, which
can detect the difference of patterns for healthy and faulty data. However, to detect
fault patterns, proper spectrogram images should be fed into algorithms. For
example, the quality of input images affects performance of fault detection. The
input spectrogram image quality is constrained by several factors such as
sensitivity of sensors used for data collection, the sampling rate and number of
samples, and the signal processing methods used for image generation. For
example, CWT based images are better than STFT based images. Further, order
tracking at variable speeds has limitations, where the frequency resolution and time
resolution cannot increase at same time to adjust image quality. In this research,
reasonable size spectrograms (maximum dimension :113x226x3) are generated
from each vibration and current signal to represent the time-frequency patterns. A
detailed study is required to find the tradeoff between the size of input data,
classification accuracies, complexity of machine learning algorithms and
computational burden. High-resolution large spectrogram images may capture
large portion of time-frequency patterns from the signals. However, this increases
the complexity and computational burden of the algorithm.

The selection of proper sensors, location and number of sensors is important
in fault diagnosis. For example, the vibration sensor data is more useful for
mechanical faults than current sensor data. In the proposed gearbox fault diagnosis
scheme, two vibration signals are used. In the powertrain application, one vibration
sensor is used, and the vibration sensor is placed on top of the gearbox in the
powertrain for measuring the gearbox vibration. However, using more than one
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vibration sensor and data fusion may give a better result in powertrain applications.
Future study should investigate this issue further.

In this work, the spectrograms of IM currents are mainly used for detecting
electrical faults, and mechanical fault detection using current signatures was not
focused. The deep learning approach with pattern recognition may be relevant for
this task. However, when generating spectrograms, the time and frequency
resolution and frequency ranges are the main parameters to consider. The
mechanical fault signatures in stator current signal can be hidden, weak and present
in diferent frequecy ranges. High resolution spectrograms with large frequency
range may results in high computational burden. Therefore, instead of using one
large spectrograms, many spectrograms can be used with different range (e.g. O-
1000 Hz covered by one spectrogram, 1kHz to 10 kHz covered by another and
more than 10 kHz by another spectrogram). In this way, complete time-frequency
patterns can be identified using CNN and data fusion.

In this study, the early fault detection of electric powertrain components are
focused and the RUL estimation problem was not studied. Intergration of RUL
estimation capability to proposed online solution is a suitable direction for future
studies. In addition, there is high potential to improve the proposed online self-
supervised feature learning fault diagnosis scheme. The diagnosis scheme should
be tested with further experimental data using various operating conditions, and
the decision criteria should be improved. The local time-frequency patterns
learning and detection capabilities of CNN for single and multiple fault features
should be improved. In this research, three types of faults (gear, bearing and inter-
turn stator winding) are considered. However the proposed concept can be
extended for detecting other types of faults such as misalignment, unbalance, etc.
Proper combinations of wireless sensors, cloud data storage and deep learning
algorithms will be attractive topics for condition monitoring of complex
machineries under dynamic operations. The online implimentaion of such
diagnostic schemes will help to reduce the overall maintenance cost, and ensure
safe and reliable operations.
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Abstract— Bearings are one of the most critical elements in rotating
machinery systems. Bearing faults are the main reason for failures in
electrical motors and generators. Therefore, early bearing fault detection is
very important to prevent critical system failures in the industry. In this
paper, the support vector machine algorithm is used for early detection and
classification of bearing faults. Both time and frequency domain features are
used for training the support vector machine learning algorithm. The trained
classier can be employed for real-time bearing fault detection and
classification. By using the proposed method, the bearing faults can be
detected at early stages, and the machine operators have time to take
preventive action before a large-scale failure. The usefulness of the algorithm
is validated by using a run-to-failure experimental test data.

Index Terms-- Fault diagnosis, Fault detection, Support vector machines, Ball
bearings
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A.l Introduction

Rotating machinery systems are one of the fundamental pillars of modern human
society. They can be found in most household appliances, industrial manufacturing
processes, electric power generation, wind turbines, automobiles, etc. Early fault
detection is necessary for large industrial machines as those faults may lead to
catastrophic failures, service interruption and productivity losses. The rotating
machines normally fail because of mechanical or electrical stresses which can be
either structural or dynamic. The primary mechanical failures of rotating machines
can be categorised as static, fatigue and surface failures. Based on the study of
EPRI, 41-42 % of induction motor failures are due to bearing faults, and stator
faults are followed by 36% [1]. Early detection of bearing faults is significant in
industrial applications since the rotating machines are the heart of industrial
processes. Proper maintenance practice is required to reduce the impact of failures
and increase the service availability of these machines.

The oldest maintenance method was breakdown maintenance where the
maintenance tasks were conducted after the failure of the machinery. The
breakdown maintenance practice is suitable for non-critical machinery where
reliability and availability are not very important. For critical machines, such as
electric power plants, manufacturing machines, breakdown maintenance is not an
option since unexpected failures can result in service interruptions and massive
financial losses.

Consequently, preventive maintenance has been used in industry where the
maintenance was conducted at scheduled regular intervals. The major
disadvantages of preventive maintenance are needless planned shutdown and high
maintenance cost. Later, condition-based maintenance (CBM) practices were
slowly adopted by industry. The primary objectives of CBM are reducing the
maintenance cost, increasing the machine reliability and service availability, etc.
CBM is one of the modern maintenance practices where the conditions of
machines are continuously monitored to detect system faults. Based on the
observed machine conditions, the maintenance tasks can be arranged. The basis
for condition/health monitoring is that machine faults can be diagnosed based on
measured quantities of the rotating machines. The measured data could be
temperature, thermography images, chemical and wear monitoring (e.g. lubricant
oil contamination), vibration signals, acoustic emission signals, shock pulses,
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motor current signals, etc. [2-3]. Operating temperature is a primary indicator of
the machine health. Temperature or infrared image analysis is one of the easiest
methods to monitor the machine condition. Lubricant oil analysis is often used for
detecting bearing and gearbox faults. The electrical signature analysis is applied to
detect the mechanical and electrical faults in electrical machines. However,
vibration analysis is the most common technique for analysing mechanical faults,
typically bearing, gearbox, misalignments, etc.

In the broad category, most fault diagnosis approaches can be summarised
into model-based or data-driven. In the model-based fault diagnosis approach, a
predetermined system/process model is required. The system can be modelled
using physical system modelling, system identification techniques or system
observers. Based on the system model, the system status can be predicted, and the
predictions can be compared with the measured system status. The final step is
analysing the residual of the comparison for fault diagnosis and prognosis purpose.
The primary challenge of this method is making an accurate system model.
However, in the data-driven approach, sensor data is used in statistical or machine
learning algorithms to identify and classify the faults of the system. In this method,
the predetermined system model is not required. The data- driven approach
together with advanced signal processing techniques are very powerful tools for
rotating machinery fault diagnosis and prognosis. Therefore, the data-driven
approach is selected for this study.

In the most common system of vibration analysis, root mean square (RMS)
of vibration signal and/or frequency spectrum is analysed in a monitoring process.
Normally the data collection and processing are conducted one a manual
inspection basis and have several limitations, for instance, expensive manpower,
lack of statistical and machine learning fault detection. To solve the above
problems, a system for online classification of bearing faults in electric motors is
proposed in this study. For the proposed system, an accelerometer must be placed
on the motor, and short-duration (e.g. 1 second) vibration signals should be
recorded at predefined time intervals (e.g. in every 60 minutes). During the first
time, there may not be sufficient data to train the classifier. If a manufacturing or
process plant has a large collection of similar motors, it is economical to make this
training data by using few motors, and once the data is available, the classier can
be trained. Then the real-time vibration data can be applied to the trained classier
for detecting possible faults in early stages. In this paper, A support vector machine
algorithm is used for early detection and classification of bearing faults. A data-
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driven condition monitoring approach is adopted for the study. The next task after
the fault detection is predicting the remaining lifetime of the faulty bearing, and
this information can be used to make CBM schedules. The final objective is
reducing the downtime and overall maintenance cost of the system.

This paper is organised as follows: in Section A.2, vibration signal-based
bearings fault diagnosis method is discussed. Then the details of the fault
classification algorithm are presented in section A.3. The experimental results are
analysed in section A.4. The conclusion of the work is provided in section A.5.

A.2 Vibration signal-based diagnosis of bearing faults

The main components of rotating machines are bearings, gears and shafts.
Vibration signal analysis is the traditional method used for fault diagnosis in above
components. The failures can happen in any element of the rolling bearing such as
inner race, outer race, rolling elements and cage. Faults in the bearings, gears and
shafts are presented in the vibration signal, and such faults can be detected by using
time, frequency and time-frequency analysis. The primary task of the signal
processing is to extract fault-related features from the raw data. Most common
time-domain features are RMS, kurtosis, crest factor, time synchronous average,
etc. The essential features in frequency domain include amplitude and power of
frequency components, the length of sidebands, natural frequency, harmonics, etc.
Various combination of signal processing, statistics and machine learning
techniques for the fault diagnosis and prognosis can be found in the literature [4-
12].

Signal processing has been used as the enabling technique in many fault
diagnosis algorithms. The selection, location and orientation of sensors are very
important in detecting the expected faults. Vibration sensors should be selected
based on the rotational speed of the machines and placed closer to the bearing or
gearbox under consideration. Features or fault characteristics can be derived from
different analysis domains. Statistical and machine learning algorithms can be
utilised for automatic detection and classification of faults [4-12]. Moura et al. [4]
demonstrated a data-driven approach for bearing fault diagnosis. First, the
vibration signal of the bearings is recorded, and time domain features were
extracted. Then the principle component analysis (PCA) and artificial neural
networks (ANN) are used to classify the severities of the bearing faults. An
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evaluation of fault recognition efficiency was completed for each combination of
signal processing and pattern recognition techniques. It is determined in [4] that
all four schemes of classification yielded reasonably good results and were thus
shown to be a promising approach for rolling bearing fault diagnosis.
Multiresolution analysis (MRA) is used in [5] to extract the features from vibration
signals. Afterwards, a supervised neural network (NN) is adopted for classification
purposes which can classify four bearing statuses (healthy, inner race fault, outer
race fault and ball fault). Subsequently, the algorithm has been extended to extract
the features from wavelet packet transformation (WPT) and classify them with
ANN [6]. Other studies on feature extraction techniques and classification methods
could be found in [7-12]. In this paper, the SVM algorithm is used for early bearing
fault detection and classification.

A typical rolling element bearing consists of four elements namely, inner
race, outer race, rolling elements and cage. Depending on applications different
types of rolling elements are selected. Ball bearings provide the best
performance/price ratio and are widely used in industry. Other types of bearings
are cylindrical rollers, taper rollers and spherical bearings which are often
designated for high load applications. Figure A.1 shows the spherical roller bearing
used in this study.

Figure A.1: A typical spherical roller bearing [19].

When a bearing starts its degradation process, very high-frequency (5-40
kHz or level 1) components associated with bearing faults begin appearing in the
vibration spectrum. At the second stage, in addition to the high-frequency
components, medium frequency (1-5 kHz or level 2) also begin appearing.
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However, detecting faults at these levels are difficult. At the next, fault associated
frequency components are visible at low-frequency range (< 1 kHz or level 3) in
the vibration spectrum [18]. Based on the geometry, dimensions of the bearing and
the rotational speed, these characteristic frequencies can be calculated. At the level
4, the bearing drives to a complete failure and vibration spectrum becomes a noisy
spectrum. Thus, diagnosis of bearing faults should be focused on the level 3 where
the frequencies associated with bearing defects are given in (A.1) -(A.5) [16], [20].

The fundamental train frequency/cage frequency is defined as
FTF =2 (122 cosp) (A1)

The ball/roller spinning frequency (BSF) can be defined as

BSF =

"= £,(1— (2 cosh)?) (A2)

2Dp

The characteristic frequency of an outer race defect is given by

BPFO =2 f,(1 — 22 cos0) (A.3)
The characteristic frequency of an inner race fault can be calculated as
Np Dp
BPFI = == f:(1+ > cos@) (A.4)
The characteristic frequency of a rolling element fault is defined as

D

REF = D—b (1 = (2 cos6)?) (A.5)

where N,, is the number of rolling elements in the bearing, D, denotes the diameter
of a rolling element, D, represents the pitch diameter, 6 is the contact angle
between the outer-race and rolling element, and f; is the shaft speed.
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A.3 Fault diagnosis and classification algorithm

The fault diagnosis and classification algorithm consists of two main sections.
First, the vibration signals are processed to collect relevant time and frequency
domain features. Then the SVM algorithm is used to train a classifier for fault
detection and classification. Experimental data is used to train and validate the
algorithm.

A.3.1 Signal processing and feature extraction

The steps of signal processing and the feature extraction process are shown in
Figure A.2. First, the time domain signal is collected, and the RMS of the signal is
calculated. Then the Hilbert transformation is applied to detect the envelope of the
time domain signal. Fast Fourier transformation is used to convert the envelope
signal into the frequency domain.

Time Domain Signal
l

v

Envelope Detection

v

Fast Fourier
Transformation

v v

Frequency domain Features Extraction Time Domain Features
]
v v v v v
Energy in Energy in Energy in Energy in

ETE BSF BPFO BPFI RMS of the signal

Figure A.2: The steps of signal processing and feature extraction process..
Finally, fault specific frequencies located in the frequency spectrum and

energy associated with each frequency bands are extracted. Five fault cases were
considered: healthy, inner race degradation (IR_D), inner race failure (IR_F), outer
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race degradation (OR_D), and outer race failure (OR_F). SVM classification
algorithm is used to classify the faults.

A.3.2 SVM-based Classification algorithm

In the previous section, five features used to predict about bearing faults were
selected. Since the status of bearings in each data sample is already known, it is
possible to train a SVM classifier using collected data. However, only 80% of the
collected data is used to train the classifier, and the remaining 20% of data can be
applied to validate the fault detection and classification capability of the system.
In real time applications, after the validation process, this classifier can be used to
make an online fault detection and classification system. Figure A.3 shows a block
diagram of the online fault detection and classification system. When new data is
collected, trained classifier can be used to detect and classify the faults in early
stages.

/ New Data /
—}( Known Response O— *

( Known Data O——P SVM Classifier

A4 4 44 7

. Fault
Bearing || ems | FTE | BSF | BPFI | BPFO oo
Health Classification
Stat

atus Results

Figure A.3: Block diagram of the SVM classifier.

In the algorithm of SVM classification, the objective is to make a
multidimensional hyperspace using the available features and then draw an
optimum hyperplane to separate fault classes. Figure A.4 shows an example
including two features and two classes.
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A Maximum margin
N\

> O

X2

\ Optimum
hyperplan

>

x1 > x1

Figure A.4: An example of SVM classification.

Many possible lines can be drawn to separate two classes. However, the
objective of SVM is to draw an optimum line to separate two classes with
maximum separating margins. This idea can be conceptualised to make an
optimisation problem [17].

Consider the training data set in Figure A.4 with inputs x; € R' and outputs y; €
{£1};

(x;,y;) € R*x{+1} ,i=1,..N (A.6)

There are two classes, and ‘“+1’ represents one class, and ‘-1’ accounts for the other
class. After the training, it is expected to get a decision function given by;

fwp(x) =sgn (w.x + b) (A7)

Where w is the coefficient vector and b is the bias of the hyperplane. The
‘sgn’ represents the bipolar sign function. Ideally the, following condition should
be satisfied by the hyperplane of the classifier.

yilwx;+b]=1,i=12,....,N (A.8)
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Among all the separating hyperplanes satisfying (8), the one with the maximum
distance to the closest point is considered as the optimum separating hyperplane.
Based on structural risk minimization inductive method, the training of an SVM is
to minimise the guaranteed risk bound as follows.

min J(w, e, b) = %WT. w +% C YN, ef (A.9)
Subject to
yilw.x;+bl=1—-¢;,i=12,....,N (A.10)

where e; is a slack variable e; > 0 which allows to manage when the ideal
hyperplane in (A.8) is not possible.

The SVM algorithm doesn’t consider complete dataset, but the boundary
data. SVM can work with both linear and non-linear classification problems. For
nonlinear problems, the data can be mapped to another dot product space F via
nonlinear map @: RN — F , and then perform the above analysis in F. Two
commonly used kernel functions are polynomial kernels and Gaussian RBF
kernels [17]. However, it may be tricky to find the kernel function for a non-linear
classification.

A.4 Experimental setup and results

The primary objective of this study is to make an algorithm for detecting and
classifying the bearing faults. The data for this study was collected from a run-to-
failure test conducted by Intelligent Maintenance Systems, University of
Cincinnati, USA [14-15]. In this experiment, four bearings were connected to a
shaft rotating at 2000 rpm. A 2700 kg radial load was applied to the shaft as shown
in Figure A.5. Four accelerometers were used to collect vibration signals at 20
kHz sampling frequency. One second samples were recorded every 10 minutes. As
shown in Figure A.6, inner-race, outer-race and rolling element faults have been
observed at the end of the test. In this study, the healthy, outer race and inner-race
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faults are considered. Dimensions of the bearing are given in Table A.1. Based on
the bearing dimensions, characteristic frequencies of the faults are calculated via
(A.1)-(A.5) and shown in Table A.2.

Table A.1: Dimensions of a test bearing.

Parameter Value
Number of rolling elements (N,) 16
Diameter of a rolling element (D;) 8.4074 mm
Pitch diameter (D,) 71.501 mm
Contact angle (6) 0.265 rad
Rotational speed (f;) 33.75 Hz

Accelerometers Radial load

Bearing 1

Bearing 2 Bearing 3 Bearing 4

Motor Temperature Sensor

Figure A.5: Experimental setup [13-14].
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Figure A.6: Failed bearings components after the test.
(a) inner race failure, (b) roller element failure and (c) outer race failure [14-15].

Table A.2: Expected characteristics frequencies.

Freguency component Expected frequency
Fundamental train frequency (FTF) 15 Hz

Shaft Rotational frequency (1X) 33.75 Hz

Ball/roller spinning frequency (BSF)  141.6

Outer-race fault (BPFO) 239.3 Hz

Inner-race fault (BPFI) 300.6 Hz and 1X side bands

Figure A.7 shows the frequency spectrum of vibration signals for the inner
race fault and healthy cases. The expected frequency for the inner race fault is
300.6 Hz and 1X sidebands. The observed frequency is 301.3 Hz and 1X
sidebands. For healthy case, fault related frequency components are not present in
the vibration spectrum. Therefore, the inner race faults can be clearly seen from
the vibration spectrum. As shown in Figure A.8, the expected frequency associated
with an outer race fault is also present in the frequency spectrum. The expected
frequency is 239.3 Hz, and the observed frequency is 236.2 Hz. The deviation is
small, and this small frequency variation is normal in detecting bearing faults since
the right value of contact angles is unknown. In the healthy case, fault related
frequency components are not visible, and it remains closer to zero.
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Figure A.7: The frequency spectrum of a vibration signal for inner race fault.
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Figure A.8: The frequency spectrum of the vibration signal for an outer race fault.

In the above analyses, only healthy and faulty cases of inner race and outer
race faults have been considered. However, in most cases, bearing faults are
subjected to a pre-degradation process, and if a proper condition monitoring
process is applied, an early fault detection is possible.

The RMS of a vibration signal for the complete life of inner-race fault
bearing is shown in Figure A.9. There is a significant increase of vibration after
12 days of continues working. Then degradation process starts, and it gradually
increases for 2.5 days until failure. Based on RMS signals, it is possible to detect
a fault in the bearing. However, to find the type of the fault, further analysis is
required. Other frequency domain features have to be analysed to examine the fault
type. Figure A.10 shows the energy content of fault specific frequencies of a
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vibration signal for the complete life of the inner-race faulty bearing. There is a
significant deviation of energy in inner-race fault related frequencies.
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Figure A.9: RMS of the vibration signal for a complete life in case of an inner-race

faulty bearing.
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Figure A.10: The energy content of fault specific frequencies of the vibration
signal for the complete life of inner race fault bearing.
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The RMS of a vibration signal for the complete life of an outer race fault bearing is
shown in Figure A.11.
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Figure A.11: RMS of vibration signal for complete life of outer race fault bearing.
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Figure A.12: The energy content of fault specific frequencies of the vibration
signal for the complete life of the outer-race faulty bearing.
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For 3.5 days, the bearing remains in the healthy stage. Then the bearing
starts degrading, and after 3.5 days of degradation process, the bearing completely
fails. When analysing other features of the signal, a clear energy increase in outer
race fault associated frequencies is visible. Figure A.12 shows the energy content
of fault specific frequencies of a vibration signal for the complete life of the outer-
race faulty bearing. There is a significant deviation of energy in outer race fault
related frequencies.

Based on above analysis and extracted features, two SVM classifiers have
been trained. Linear SVM and quadratic SVM algorithms have been applied for a
comparison. A portion of available data (80%) has been used to train the classifier
and remaining (20%) of the data is used to validate the classifier. The confusion
matrix for a decision tree fault classification is given in Figure A.13 and Figure
A.14. Y-axis represents the true fault classes which are already known, and x-axis
denotes the predicted fault class by the classifier. The diagonal of the matrix gives
the accuracy of the prediction of the classifier.

H 2281 13 99.4%
99.4% | 0.6% 0.6%
IRD |46 309 87.0%
13% 87.0% 13.0%
RF 4 3 90.2%
True
0 0
class 9.8% | 90.2% 0.8%
OR D | 15 2 413 96.0%
0, 0, 0,
3.5% | 0.5% 96.0% AT
ORF (2 2 49 78.9%
10.5% 10.5% | 78.9% 21.1%
H IRD |IR.F |ORD |OR_F TPR/FNR

Predicted class

Figure A.13: Confusion matrix of linear SVM classifier.
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H 2278 | 16 99.3%
99.3% | 0.7% 0.7%
IR_D |48 306 1 86.2%
13.5% | 86.2% | 0.3% 13.8%
IR_F 4 36 1 87.8%
True 9.8% | 87.8% 2.4% 12.2%
class ORD |9 420 1 97.7%
2.1% 97.7% | 0.2% 2.3%
OR_F 2 1 16 84.2%
105 |53% | 84.2% 15.8%
H IRD |IR.F |OR_D | OR_F TPR/FNR
Predicted class

Figure A.14: Confusion matrix of quadratic SVM classifier.

Other boxes represent the prediction errors. There is an accuracy of about
86% in the inner-race degradation (IR_D) class and an accuracy of 96% in the
outer-race degradation (OR_D) class. Furthermore, both classifiers show a high
accuracy. This means that an early fault detection and classification can be done
in both linear SVM and quadratic SVM classifiers, and the accuracy of
classification is trustworthy.

A.5 Conclusion

In this study, the possibility of making a real-time bearing fault detection and
classification algorithm is examined. The support vector machine algorithm is
selected as a classifier. Once experimental data is collected, both time and
frequency domain features can be extracted for training the classifiers. The trained
classifiers are validated using experimental data and shown reliable results. A
Bearing fault can be detected 2.5-3.5 days ahead in the run-to-failure test.
Therefore, the proposed method can be extended to make a trustworthy real-time
fault diagnosis system.
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Abstract: Permanent magnet synchronous machines have gained popularity
in wind turbines due to their merits of high efficiency, power density, and
reliability. The wind turbines normally work in a wide range of operations,
and harsh environments, so unexpected faults may occur and result in
productivity losses. The common faults in the permanent magnet machines
occur in the bearing and stator winding, being mainly detected in steady-state
operating conditions under constant loads and speeds. However, variable
loads and speeds are typical operations in wind turbines and powertrain
applications. Therefore, it is important to detect bearing and stator winding
faults in variable speed and load conditions. This paper proposes an algorithm
to diagnose multiple faults in variable speed and load conditions. The
algorithm is based on tracking the frequency orders associated with faults
from the normalised order spectrum. The normalised order spectrum is
generated by resampling the measured vibration signal via estimated motor
speeds. The fault features are then generated from the tracking orders in
addition to the estimated torque and speed features. Finally, support vector
machine algorithm is used to classify the faults. The proposed method is
validated using experimental data, and the validated results confirm its
usefulness for practical applications.
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B.1 Introduction

Condition monitoring (CM) is necessary to guarantee the healthy and safe
operation of critical rotating machines. The CM is an important part of condition-
based maintenance (CBM) program and based on CM results, the maintenance
schedules can be arranged. Moreover, by analysing the CM data with failure
mechanisms, the remaining useful life (RUL) of the component can be estimated.
This complete process is covered in the Prognostics and Health Management
(PHM) of engineering systems.

In wind turbines, vibration and current sensors are widely used for CM. The
mechanical faults can be detected by investigating the trends of root mean square
(RMS) of measured vibration signal. but, the overall RMS of vibration signal can
be only used to detect faults, and the classification of multiple faults is not possible.
Mechanical faults produce forcing frequencies associated with the faults which can
be differentiated by searching those forcing frequencies in the vibration spectrum.
Therefore, Faults can be classified by further analysing the frequency spectrum of
the vibration signal [1]. Signal processing and statistical detection methods are
useful for the analysis due to the noise and stochasticity of vibration signals and
machine behaviour. With spectrum analysis, good performances can be expected
for individual fault classification tasks, but multiple faults classification can be
difficult. Understanding complex spectrum regions is required for the
classification of multiple faults. Statistical and machine learning methods have
been used in the multiple-fault classifications. Fault-related features can be derived
using the statistical methods, or domain knowledge of forcing frequencies, and
those features can be used in statistical and machine learning algorithms to classify
the faults. A review on different signal processing, statistical and machine learning
algorithms can be found in [2]. Decision tree algorithm [3] and support vector
machine (SVM) algorithm [11] are used for bearing fault detection under a
constant load and speed or in the steady-state. Most of the existing fault diagnosis
algorithms are mainly implemented at such conditions, which are not the case for
wind turbine applications. This work focuses on fault classification for a
permanent magnet synchronous motor (PMSM) working in variable load and
speed conditions. The rest of this paper is organised as follows. The details of
proposed fault diagnosis Algorithm are discussed in Section B.2. The experimental
results are presented in Section B.3. Finally, the conclusion is given in Section B.4.
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B.2 Proposed fault diagnosis algorithm

A block diagram of the proposed algorithm is shown in Figure B.1, in which the
rotational speed and torque of PMSM are estimated using the current
measurements. For the fault classification, features of the variable speed and load
torque are required. The speed can be estimated from the Hilbert transformation,
and the torque is calculated from the measured currents [4-5]. Since the mechanical
rotational speed of a PMSM is directly proportional to the AC supply frequency,
it is possible to estimate the rotational speed by estimating the frequency of the
current waveform. First, the complex-valued analytic signal of the current signal
Is extracted using the Hilbert transformation, and the phase angle of the current
signal is derived. Next, the rotational speed is calculated by taking the first order
derivation of the cumulative angle of the current waveform and multiplying with
the number of pole pairs. The collected vibration signal is resampled based on the
estimated rotational frequency, and the order normalized frequency spectrum is
calculated from the resampled signal.

Vibration . Resampling L Order normalized FFT ,| Vibration
signal and order tracking features £ o
c 7]
= i
1B
current .| Hilbert transformation R Motor | T‘;
signal | and speed estimation | speed - o e
4,—, c T
= 0
- . (1] -
L, EPV | | Resampling | ,| Order normalized FFT .| Current 9 ]
calculation and order tracking features < b
= |&
0
,| Torque ,|  Motor .
estimation torque
-

Health class Label [---="="{jcd onivin the training stage 77T
[ Health class Label | Use only in the training stage

Figure B.1: The block diagram of proposed fault diagnosis and classification
algorithm.

Several features based on vibration and current signals are calculated from the
order normalized spectrogram. The faults related orders of the vibration spectrum
are tracked. Furthermore, additional features of speed and torque are produced
based on measured currents and calculated rotational speed. In this study, a
nonlinear SVM algorithm is used as the classifier. Gaussian radial basis function
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(RBF) kernel is used in the SVM algorithm, which produces a better nonlinear
classification in the feature space. This study focuses on 4 types of health classes
based on the health status of stator winding and bearing on a PMSM. The first class
is the healthy class where both stator winding and bearings are healthy. In health
class 2, the stator has 10% inter-turn winding short-circuit fault, and bearing is
healthy. In health class 3, the stator is healthy, and an outer-race defect occurs on
the bearing. In health class 4, both the stator winding and bearing fault are
defective. As shown in Figure B.2, the SVM algorithm is trained using labelled
training data. After the training process, the algorithm can be employed for
predicting the health statuses using new current and vibration signals.

B.2.1 Hilbert transformation and motor speed estimation

In a PMSM, the current signal is usually sinusoidal with varying frequency and
amplitude. Therefore, the current signal can be considered as a mono-component
signal and Hilbert transformation can be used to extract the instantaneous
frequency, amplitude and the phase.

Time Domain Signal

IATAN MY

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
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o
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Time

Figure B.2:Frequency and angle estimation of a mono-component signal: Hilbert
transformation.

The instantaneous frequency and the angle estimation example of a mono-
component signal using Hilbert transformation are given in Figure B.2. An analytic
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signal of the original signal is required to extract the instantaneous frequency,
amplitude and the phase of the original system. The analytic signal is a complex-
valued function, which has no negative frequency values shown as follows [6].

The Fourier transform S(f) of a time-domain signal S(t) has a Hermitian
symmetry at zero frequency axis, which is S(—f) = S(f)*. where S(f)* is the
complex conjugate of S(f). The analytic function in the frequency domain is
defined as:

28(f), iff>0

So(f) =4S, iff=0
0 if f<0 (B.1)
= 2u(f) - S(f)

= S(f) +sgn(f) - S(f)

where u(f) is the unit step function and sgn(f) is the sign function. The analytic
function holds only non-negative frequency components of S(f) and the operation
is reversible due to the Hermitian symmetry of S(f).

0.55,(f), if f>0
S(f) =1 Sa(f), if f=0 (B.2)
0.5S,(—f)" if f<0

The analytic signal of S,(t) can be drived using the inverse Fourier transform of

Sa(f):

S0 = F[S,(P)]
= FIS(F) + sgn(f) - ()]
= FHIS() + Flsgn(P) « F1S(0) 83)
=50 +j |+ 50|

=S +j$(t)
= Sp(D)e®®

where S(t) = H[S(t)] is the Hilbert transformation, * is the convolution operator
and j is the imaginary unit operator. S,,(t) = [S,(t)| is called the instantaneous

amplitude or envelope, and @(t) = arg [S,(t)] is called the instantaneous phase.
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The instantaneous angular frequency in hertz can be extracted by differentiating

the unwrapped @(t).

/1y d (B.4)
f(t) = (E)EQ(‘L)

B.2.2 Resampling order normalized FFT and order tracking

In steady-state fault diagnoses, the frequencies are assumed as constants, and the
constant time sampling rates can be used. Therefore, Fourier transform can be
used for such a frequency domain analysis. However, in variable speed operations,
the Fourier transform cannot be used because the analysis signals are not stationary

or the frequencies change in time.

Frequency

Sample Time

A

Sample Angle

NANN
AVAVAVAV.

Sampled waveform

Figure B.3: Constant angle sampling of a variable speed signal.

To deal with nonstationary signals, short time Fourier transform (STFT) with

constant time sampling may be used as it assumes that the frequency is constant
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for a small-time period and Fourier transform is performed for those short time
signal windows. However, using STFT requires a wise selection of window sizes
in advance to archive the best resolution, which is not a solution to tackle the
characteristic frequencies in variable speed operations as the characteristic
frequency is changed according to the shaft speed. The solution is instead of using
constant time sampling, using the constant angular sampling and order normalised
FFT which is demonstrated in Figure B.3 for a simple frequency varying sine
wave. The constant angle sampling method can be used to capture the underline
constant-frequency sine wave from a varying frequency sine wave where the signal
i1s resampled using the rotor position information, which is calculated in the
previous section. More details on this method can be found in [7-8]. This method
can be extended for complex vibration and current signals in variable speed

operations.

B.2.3 Torque estimation

The voltage equations of a PMSM in dq0 transformation can be expressed as [9]:

. d/lsd
Veqg = Rslsd + 7 + wrlsq
dA
Vsq = Rslgq + d—:q + w,Agq (B.5)

where R is resistance of the stator windings. w, is the rotational speed of the
motor. A4 and A, are the flux linkages in the d and q axes, respectively.

Asa = Lsisq +Ypu } (B.6)
Asq = Lsisq

where L, is the inductance of the stator windings. Y, is the flux of rotor
permanent magnets. The electromagnetic torque generated by a PMSM with
n, pole pairs and m, phases can be expressed as:

_mgn,

T, = T (Asqisd - Asdisq) = -

mgn,,

TlpPMisq (B7)
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Based on (B.7), the electromagnetic torque can be estimated and used as

a feature for the classification algorithm.

B.2.4 Feature generation

Based on estimated rotor speed and measured vibration and current signals features
are derived. As given in Table B.1, the devised features are used as inputs to the
SVM algorithm. The motor speed is calculated by (B.4), and the motor torque is
calculated by (B.7).

Table B.1: The features used in the SVM classification algorithm.

Signal Feature name  Description
Source
Current Speed Represent the speed
Torque Represent the torque
2f Characteristic frequency of Inter-turn winding

fault from the Park’s vector current i, in (B.9)

Torque Moving variance of 10 consecutive values of the
Variance torque signal
Vibration  3.05X order  Characteristic frequency of outer-race bearing
fault
1X Motor rotating speed
8X Motor rotating speed *No of rotor pole pairs
16X Motor rotating speed *2nd harmonics of no of

rotor pole pairs

An inter-turn stator winding fault can be analysed by calculating the extended

Park’s vector (EPV) of the motor current as below [10].

iy =+/2/3i, —~/1/6i, —+/1/61,
ig =/1/21, —/1/21, (B.8)

i, = |ig + Jjig] (B.9)
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where iy and i, are the direct and quadratic components of the Park’s vector i,,.
iy, ip and i, are the stator currents in each phase. A stator winding fault can be
detected by analysing the frequency spectrum iy, since the inter-turn fault results
in an increase in 2 f; (two times of supply frequency) components of the i,,. Further,
moving variance of 10 consecutive values of torque signal is also used as a feature,
which represents any short-term variation of the torque profile. The vibration
signals can be used to detect bearing faults. The characteristic bearing outer-race
fault frequency is the ball pass frequency outer-race (BPFO), which can be
calculated as [11]:

N D
BPFO = 717 f:(1— D_b cosh) (8.10)

c

where N, is the number of rolling elements in the bearing, D, represents the
diameter of a rolling element, D, denotes the pitch diameter, 8 is the contact angle
between the outer-race and rolling element, and f; is the shaft speed. above BPFO
frequency can be divided by the shaft rotational frequency, and a frequency order
can be found which is a constant for any rotational speed. The related order of the
bearing fault studied in this study is the 3.05 order (3.05X) of the shaft speed. In
addition, the 1X, 8X and 16X frequency components are also used as the features

for SVM classification algorithm.

B.2.5 SVM classification algorithm

SVM is a vector-space—based machine-learning method where the goal is to find
a decision boundary between two or more classes that are maximally far from any
point in the training data. The simplest SVM algorithm can be built to separate
data linearly into two classes. This concept can be extended for multi-class cases
and for nonlinear classification tasks [12-14]. In this study the fault, classification
problem is solved as a nonlinear SVM classification problem. First, the linear case
is studied.

Consider a set of training data points in Figure B.4 with inputs x; and two

output class labels y; € {£1}; i = 1,...N . A linear classifier can be defined as:
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fwp(x) =sgn (W'.x + b) (B.11)

where the decision hyperplane is defined by an intercept term b and a decision
hyperplane normal weight vector w, which is perpendicular to the hyperplane. A
value of —1 specifies one class, and a value of +1 the other class. For a given data
set and decision hyperplane, the functional margin of the i*® example x; with

respect to a hyperplane (w, b) can be measured by y; (w”.x; + b).

Figure B.4: Linear SVM classification.

The functional margin can be scaled to solve SVM problems, |w| can be set to 1.
The functional margin of all data points is at least 1 and there exist support vectors

for which the inequality is equality.
yiwl.x; +b)=>1,i=12,....,N (B.12)

. . Vi (WT.xi+b) .
For each sample, distance from the hyperplane isr; = — and the geometric

marginis p = |V2V—| The objective is to maximise the geometric margin. This means

2

(w]

finding w and b such that p = — maximising for all (x;,y;) and y; (wT.x; +

b) = 1. Maximising the p = 2 js the same as minimizing % and the final

lwi
optimisation problem with a hard margin (without tolerating for wrong
classification) is given in (B.13) and the solution is in (B.14).
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Minimise%wT w and for all {(x;,v)},y; Wl.x; +b) =1 (B.13)
fuwp(x) = sgn X; a;y; x;,"x + b) (B.14)

where most of «; are zero and the each non-zero a; represents that the
corresponding x; is a support vector. If a data set is not linearly separable, a soft
margin can be assigned where wrong classifications are allowed when solving the
optimisation problem. The new optimisation problem is:

Minimise %WT w + CY; €; and for all

B.15
{Goydbyi Whox +b) 21§ (B.15)
where the parameter C is the regularisation term, &; is the slack variable and non-
zero €; allows x; to not meet the margin requirement at a cost proportional to value

of €;. The linear SVM classifier solution in (B.14) depends on the dot product. By

using a function K (xl-, xj) = xiij , the equation (B.14) can be modified as:

fwp(x) = sgn C; a;y; K(x;, x) + b) (B.16)

The original data points can be mapped into a higher dimension space via some
transformation @:x — ¢(x). Then dot product become qb(xl-)Tqb(xj). Therefore,
by using a proper transformations (kernels), the solution in (B.14) can be solved
efficiently. With this kernel trick, the solution can be extended to nonlinear
classification also. A kernel function K is such a function that related to a dot
product in some extended feature space. The radial basic function (RBF) kernel
[12-14] is used in this study. An RBF is equivalent to mapping the data into an

infinite dimensional space, which is defined as
K(x’ Z) — e—(x—Z)Z/(ZO'Z) (Bl?)

where o is a constant and (x — z)? is the squared Euclidian distance between two

feature vectors.
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B.3 Experimental setup and results

B.3.1 The experimental setup

Experimental results are used to validate the proposed algorithm. Figure B.5 shows
the experimental setup used to collect the data. There are two 400V, 2.5 kW, 375
rpm, 16 poles PMSMs which are directly coupled each other. One motor is used
as the test motor, and another one 1s used as the load motor. The load motor is
connected to a resistor bank. The vibration sensor is located on top of the bearing
housing of test PMSM.

Figure B.5: The experimental setup.

(a) (b)
Figure B.6:Faulty components (a) outer race bearing fault (b) stator winding
fault.
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Manually seeded faults are introduced for the bearing and the stator winding. The
seeded faulty components of the PMSM are given in Figure B.6. The faults are
tested at constant speeds (150, 250 and 350 rpm) and 2 types of variable speed
profiles. A variable speed profile of 120 seconds used in the study is given in
Figure B.7. Ten repeated testes have been conducted with this speed profile.
Therefore, 50 samples of 2-minute data are recorded. Both vibration and current
signals have been collected at the 20 kHz sampling rate. After making the order
normalisation, the number of samples per 2-minute signal is approximately 360.
This value is selected by balancing both order and time resolutions. Finally, a table
of 18000 sample rows and 9 columns (8 features and the health class label) have
been generated, and the proposed algorithm is used to generate features. Then 75%
of available data in the table is used to train the SVM algorithm, and 25% data is

used to validate the algorithm.

400

300

200

Speed (RPM)

100

Healthy,

Stator + Bearing Fault

0 20 40 60 80 100 120
Time (s)

Figure B.7: The variable speed profile used in experiments.

B.3.2 Order normalized spectrum and order tracking for a bearing
outer-race fault

The average i, order spectrum is given in Figure B.8. There is no any significant

difference of the i, order spectrum in healthy and fault cases.
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Figure B.8: Average i, order spectrum

Figure B.9 shows the average order spectrum of the vibration signals in the healthy
and faulty conditions, where 3.05X order and its 2" harmonic (6.1X) has a
significant increase when the outer-race bearing fault is present. The tracked 3.05X
frequency component over time is given in Figure B.10 where the instantaneous
amplitude is varying over time due to variable speed, load and noise conditions.
Therefore, a simple decision based on threshold values will not work well and may
produce many false or missing alarms. Therefore, a machine learning or statistical
detection method is required and, in this work the SVM algorithm is trained to
detect these variations.
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Figure B.9: Average vibration order Figure B.10: Tracked 3.05X order.
spectrum.
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B.3.3 Order normalized FFT and order tracking for stator winding
fault

The average i, order spectrum is given in Figure B.11, where there is a significant
increase in the 2" and 4" orders with a stator winding fault over healthy case.
Figure B.12 shows the tracked 2" order from the i, spectrum over time, and which
shows a clear variation for variable speed, load and noise over the healthy case. In
the average vibration order spectrum given in Figure B.13, the 16™ order shows a
significant increase for stator winding fault. When this 16" order is tracked over
time a significant increase of instantaneous amplitudes can be seen from Figure
B.14. The 8™ order has a similar behaviour. Therefore, both current and vibration

information are useful for detecting stator winding faults.
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Figure B.11: Average i, order Figure B.12: Tracked 2nd order
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B.3.4 Order normalized FFT and order tracking for stator winding
and bearing outer-race fault

The analysis conducted in previous sections is focused on individual fault cases.
In this section, the order spectrums are applied to multiple fault cases where both

stator winding and bearing faults occur.
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Figure B.15: Average i, order Figure B.16: Average vibration order
spectrum. spectrum.

The average i,, order spectrum is shown in Figure B.15 where only the 2" and 4"
orders of the supply frequency have significantly increased amplitudes when both
faults exist. This is mostly like the individual stator winding fault since only the
stator winding fault related information can be found. However, the average
vibration spectrum in Figure B.16 shows both the bearing fault related
characteristic order of 3.05X and the stator winding fault related order at 16X.
These results show that it is possible to detect multiple faults and individual faults
from the same order tracking method discussed in the previous Sections for

individual faults.

B.3.5 Performance SVM classification algorithm

The confusion matrix for validating dataset is given in Figure B.17. Four fault
classes are predicted by SVM namely HB (Stator winding healthy and bearing
fault), HH (both stator winding and bearing are healthy), SB (both stator winding
and bearing are defective) and SH (stator winding is faulty and bearing is healthy).
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The overall accuracy of the SVM classifier is about 92.9%. For all the fault classes
more than 90% classification accuracy is obtained and the highest classification
accuracy is 94%. These results are highly acceptable, and the SVM can detect and

classify considered two faults in variable speed and load conditions.

HB 90% | 10% | <1% 90% 10%
0 6% 94% | <1% 94% 6%
© HH
©
g
= <1% | <1% | 93% 6% 93% 7%
SB
6% 94% 94% 6%
SH
HB HH SB SH
True False
Predicted class Positive Negative
Rate Rate

Figure B.17: The confusion matrix for the test dataset.

B.4 Conclusion

In this paper, a fault classifier is introduced for fault diagnosis of PMSMs in
variable speed and load conditions. Features for the fault classification are
produced based on the resampled vibration, current signals and estimated torque
and speed. The fault detection and classification are implemented by a supervised
machine learning algorithm, namely Support Vector Machine. The proposed
method is validated by variable speed experimental data, and excellent
performances have been obtained. Following contributions are provided in this
study;

(1) The proposed method is based on estimated rotor speeds and separate speed
sensor is not required. In PMSMs, the rotor speed can be accurately estimated
using the measured current signals.
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(2) In a real wind turbine, the generator is also vibrating on a flexible frame. This
vibration can be very different depending on the operating conditions.
However, in proposed method, only the fault related characteristic frequency
bands of vibration signal are considered for fault diagnosis purpose and other
parts of the signals are neglected. Also, current signal may not affect much by
additional vibration and the feature level fusion method can give a robust result.

Therefore, the proposed method can be implemented in wind turbines and other
similar industrial applications. In this study, only two types of individual faults and
one multiple fault cases are considered. However, the proposed method can be
extended to other types of faults in both motoring and generating operations.
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Abstract—Detection and isolation of single and mixed-faults in a gearbox are
very important to enhance the system reliability, lifetime, and service
availability. This paper proposes a hybrid learning algorithm, consisting of
Multilayer Perceptron (MLP)- and Convolutional Neural Network (CNN)-
based classifiers, for diagnosis of gearbox mixed faults. Domain knowledge
features are required to train the MLP classifier, while the CNN classifier can
learn features itself, allowing to reduce the required knowledge features for
the counterpart. Vibration data from an experimental setup with gearbox
mixed faults is used to validate the effectiveness of the algorithms and
compare them with conventional methods. The comparative study shows that
accuracies and robustness of the individual MLP- and CNN-algorithms are
better than those of the compared methods and can be significantly improved
using data fusion at the feature level. Furthermore, the robustness of the
algorithm is secured under noises by combining the results of individual
classifiers.

Index Terms— Convolutional neural network, data fusion, fault diagnosis,
gearbox, mixed faults, multilayer perceptron.
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C.1 Introduction

Fault detection for gearboxes has gained an increased attention in both research
and industry since the gearboxes are among the most essential components in
mechanical power transmission and industrial machineries [1-3]. A gearbox is a
complex mechanical system, consisting of spur-, helical-, bevel- or worm gears,
shafts, and bearings. A defect on a gear can produce a fluctuation in the gearbox
bearing, resulting in a false alarm [4]. Once mixed faults occur in a gearbox, the
fault diagnosis is very challenging, and the faulty parts can only be found offline
by dissembling the gearbox.

A localized defect on a gearbox can be detected by current signature,
lubrication oil or vibration analysis. The current signature can be used to detect
certain faults in a gearbox when being connected to an electric drive [5-6]. The on-
line or on-site lubrication oil analysis is relatively new and requires expensive
equipment for monitoring, and testing, thus only economically viable in very
critical machines. The off-line oil analysis is time-consuming as oil samples are
collected and sent to separate laboratories for testing and reporting. This method
can cause productivity loss due to longer monitoring cycles and slow analysis
process [7]. The vibration analysis is more preferred than the lubricant oil analysis
since it can be done without interrupting the system and collecting the analysis
data is easier than the counterpart. The main challenge of the vibration analysis is
that processing the collected data and understanding faulty features need a skilled
manpower with an advanced knowledge of the gearbox fault. International
Standard Organization (ISO) with 1ISO 18436-2:2014 specifies the necessities for
the training, relevant experience, and examination of personnel performing
condition monitoring and diagnostics of machines using vibration analysis [8].

An automatic fault detection and classification system based on vibration
signals can reduce the manpower dependence and time consumption for condition
monitoring of the gearboxes in industry. Increasing performance of the detection
system might be more important than looking for a highly reliable feature since
the machine cannot be completely healthy due to the absence of clear characteristic
frequencies as argued in [9]. Table C.1 summarizes common faults on a gearbox
and features captured by vibration analysis [10-11]. Gear defects result in an
increased vibration energy at gear natural- and mesh frequencies, sidebands, and
their higher harmonics. A localized fault on a bearing can be detected using
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envelop detection [12], empirical mode decomposition and wavelet transformation
[13] based on characteristic frequencies associated with the faults. Defining
amplitude limits to distinguish healthy and faulty cases in the spectrum analysis is
very difficult if the energy of the signals associated with a fault is very low or
masked by random noises. Furthermore, the vital information on mixed faults are
normally similar or overlapping in the spectra [9].

Table C.1: Common faults of a gearbox and features of vibration signals.

Component Fault modes Features
Gear Crack in gear Gear natural frequency, the
sidebands around
Cracked/broken tooth Sidebands around gear mesh
frequency
Excessive wear / clearance Sideband spacing
Bearing Bearing inner race Characteristics frequency
Bearing outer race Characteristics frequency
Bearing rolling element Characteristics frequency

Excessive bearing clearance  Sub-synchronous whirl

Shaft Rotor imbalance 1X shaft speed
Shaft misalignment 2X shaft speed, high axial
vibration
Mechanical looseness Higher harmonics of shaft
speed

To reduce a false alarm in the spectrum analysis, an automatic fault
diagnosis can be used. The automatic fault diagnosis can be developed via model-
based, data-driven or hybrid algorithms [14-17]. The model-based diagnosis
requires not only a detailed physical model of the system but also its accurate
parameters, which are difficult to be obtained in case of gearboxes. Data-driven
approach using statistical or machine learning algorithms does not need such a
physical model [13], making it attractive for an automatic diagnosis system of a
gearbox. A statistics method is usually based on the frequency spectrum to enhance
the accuracy of fault detection techniques and reduce false and missing alarms
[18]. However, mixed faults in a gearbox make the vibration spectrum very
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complicated, causing the statistics-based fault classification costly, time-
consuming and expertise-demanding. Alternatively, supervised machine learning
methods, namely support vector machine (SVM) [19-20], decision tree (DT) [12],
various neural network architectures [21-22] combined with advanced signal
processing can be used to find the complex relations on the feature space by using
predefined time-frequency features extracted by the domain knowledge [23].
Performance of the supervised machine learning highly depends on the feature
selection. Irrelevant and redundant features will result in high-dimensional feature
space, highly complex machine learning model, requiring more data for the
training. Additional statistical and optimizations, e.g. principal component
analysis, particle swarm optimization and independent component analysis, are
thus required to find the best features for the classification algorithms [24-25].

To address challenges on feature selections and extra optimizations, a deep
learning algorithm can be used to extract and transform features via nonlinear
processing layers and learn itself the best features by detecting patterns from the
training data of a signal or an image to differentiate faults. It therefore provides
one advanced step towards online automatic fault detection systems. Deep learning
methods are widely used in fault diagnosis due to their merit of analyzing complex
or big data while the improved technologies of sensors, cost-effective powerful
processors, graphics processing units (GPUs) and their parallel processing
capabilities allow collecting and processing big data effectively [5], [26-31]. The
algorithms are completely based on the information gathered from training data to
identify patterns and relations within the data. In other words, the deep learning
algorithms are advanced pattern recognizers without using domain knowledge.
Consequently, the validity and accuracy of training dataset are the most important
tasks in deep learning algorithms. To sum up, the most common analyses based on
vibration signals for fault detection and classification are summarized in Table C.2.
Root mean square (RMS) of the vibration signal can be used to detect single faults
of a gearbox. Time domain analysis and time synchronous average (TSA) are
simple tools for detecting gearbox faults, but the analysis requires a highly skilled
manpower. Spectrum analyses are not applicable to an automatic diagnostic
system for gearboxes due to the difficulty of fault classification and manpower
demands. Machine- and deep learning algorithms are capable of highly-accurate
fault classifications, providing a better solution to detect single or mixed faults in
a gearbox effectively.
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Table C.2: Different methods for fault diagnosis of Gearboxes.

Method Advantages Disadvantages

RMS, TSA and Low computational cost, Fault classification is

time domain simple difficult. Skilled

analysis manpower is required

Spectrum Moderate cost, fault Low-accurate fault

analysis and classification with skilled classification  required

statistics. workers knowledge on advanced
analysis

Machine Moderate  cost,  highly- Accuracy of the fault

learning + signal accurate classification, classification depending

processing improvable with data fusion on applications, difficult
feature generation.

Deep learning + Highly-accurate Computational  burden,

signal processing classification, improvable classification based on

with data fusion, automatic pattern recognition,

feature detection, applicable without wusing domain
to complex data. knowledge

This work first proposes a novel fault detection and classification scheme,
taking both advantages of domain knowledge analysis in the machine learning and
pattern recognition in the deep learning. The domain knowledge of gearbox is
captured by measuring energies from several frequency bands in the vibration
spectrum and applied to the MLP algorithm for classifying mixed faults in a
gearbox. The CNN algorithm is trained to identify patterns in the spectrograms of
vibration signals via Short-time Fourier transform (STFT) and Continuous
Wavelet transform (CWT). Secondly, a data fusion algorithm is introduced to
improve the robustness and accuracy of the learning algorithms so that the
proposed diagnosis scheme can work effectively regardless of noises in the
measured data. The data fusion is used at feature and decision levels in the fault
diagnosis systems. The feature space dimension is enlarged at the feature level to
identify complex relations in the feature space. Finally, Naive Bayes combiner is
selected to fuse results of the individual classifiers at decision level to enhance the
reliability of the fault classification. Beside the Naive Bayes combiner, weighted
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majority and multinomial distribution are among the widely used ensemble
learning methods [32]. This study focuses on developing a hybrid fault diagnosis
system consisting of supervised - MLP and - CNN, and data fusion for a complex
gearbox and enhancing its robustness, so selecting a best combiner or algorithm is
out of scope of the work.

C.2 The proposed hybrid fault diagnosis scheme

A simplified diagram of the proposed hybrid fault classification is shown in Figure
C.1. First, the individual classifiers based on MLP and CNN with feature-level
fusion will be trained using the training dataset of vibration signals from 2
accelerometers and shaft speeds.

Vibration signals

Y Y
Domain knowledge Image or pattern
generation generation

Y A\ 4

Feature fusion and Feature fusion and
MLP-based CNN-based
classifier classifier

Y
Naive Bayes
combiner

v

Fault classification results

Figure C.1: Flowchart of the proposed hybrid fault diagnosis for gearbox.
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Then the trained algorithms will be used to predict probabilities of the
mixed health classes or individual decisions, and the individual decisions of the
MLP and CNN - classifiers will be used to train the decision-level fusion algorithm
or Naive Bayes combiner for enhancing robustness of the proposed scheme.
Finally, the trained combiner model will be used to predict multiple faults in the
gearbox. The MLP classifier uses domain knowledge or physical-based knowledge
to classify the faults while the CNN-based classifier is based on the image or
pattern features. The MLP based classifier needs inputs of time and frequency
domain features, characteristic frequencies calculated by bearing and gear
parameters, filter designing and energy calculations at interested frequencies. The
CNN based classifier needs a proper generation of spectrograms or images. This
section describes the features used in each classifier and basic principles of the
fault classification.

C.2.1 Domain knowledge and MLP-based classifier.

The MLP-based classifier requires the predefined features. As shown in Table C.1,
the faults in a gearbox can be detected via features. In this work, both time- and
frequency-domain features are selected for the domain-knowledge analysis [35].
The time-domain features are defined by RMS and crest factor of the vibration
signal. Unlike the statistics approach using vibration spectra, the frequency-
domain features for the MLP-based classifier are the energies at interested
frequencies, which are extracted via bandpass filters as shown in Figure C.2.
Bandpass filters are designed based on the fault-related characteristics frequencies
[12].

Time-domain signals

Y ”
RMS and crest Slgnal energies at
designed bandpass-

factor

filter frequencies

Figure C.2: Domain knowledge extraction for the MLP-based classifier.
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Figure C.3 shows an exemplary vibration signal collected from a gearbox
with mixed faults in the time- and frequency- domain. Various forcing frequencies
are excited in different bands of the spectrum as indicated in Figure 3.C (b). As
mentioned earlier, the vibration spectrum of multiple faults in a gearbox is very
complicated, thus a statistics-based fault classification based on such a vibration
spectrum alone is not feasible. The MLP-based classifier needs only the signal
energies captured by the filters at different bands, in which the centre frequency of
each filter is selected based on characteristic frequencies and the gearbox’s
specification.
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Figure C.3: Exemplary vibration signal of a gearbox with multiple faults in time-
and frequency-domain: (a) time-domain (b) frequency-domain.

The MLP-based classifier can be trained from the features as shown in
Figure C.2 and health classes, e.g. good or defective, of the subcomponents on a
gearbox, namely bearings, gears, and shafts. Figure C.4 shows the MLP
architecture for multiple-fault detection. Without a data fusion, the feature
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dimension N is enlarged to kxN? via k hidden layers. A small number of features
renders a problem of identifying complex relations within the data and results in a
low-accurate fault identification. Therefore, a data fusion among vibration sensors
is implemented in this work to increase the feature number. If the number of
vibration sensors is L and the number of input features is N, the number of features
after k hidden layers is enlarged to kx(LN)?, enhancing effectiveness of learning a
non-linear relationship within the data [36]. The output of the MLP-based classifier
is the probability of each health class.
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Figure C.4: The MLP architecture for gear-box fault detection.

C.2.2 Pattern Recognition and CNN-based classifier.

The domain knowledge or spectrum-based analysis is useful for explaining
physical meanings of a gearbox defect. However, the MLP- based classifier may
miss important features or capture false information since the mixed faults in a
gearbox produce a complex vibration spectrum. In addition, the passband filters
were designed based on single forcing frequencies, which are highly dependent on
shaft speeds and contact angles between one faulty part to another.

To enhance the accuracy of mixed fault detection, the CNN is applied to
reduce the dependence on domain knowledge or forcing frequencies. CNNs were
highly successful in pattern recognition, and widely used in image classification.
The CNN architecture for the gear-box fault classification in this study is shown
in Figure C.5. If supplying the time-domain vibration signal directly to the
classifier, the CNN pattern recognition is constrained by the 1-dimensional
convolution [37]. For detecting signals associated with faults in both time and
frequency domains, input data of the classifier are selected as 2-D images or
spectrograms with 2-D convolution. The input spectrograms are used to train the
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classifier via 3 layers: convolution, rectified linear unit, and pooling. After the
training, probabilities of each fault class are calculated via flatten-, fully
connected-, and SoftMax layers. Table C.3 describes layers and functionalities of
each layer in the CNN-based classifier.

Input spectrogram

l

Convolution +ReLLU
Pooling

Convolution +ReLLU
Pooling

L

Flatten
Fully Connection
SoftMax
]

Output fault Classes

uonealyIsse|)  BuiuresT ainjes

Figure C.5: The CNN architecture for gear-box fault detection.

Table C.3: Description of layers in the CNN.

Section Layer Functionalities
Convolution operation with several kernels
Convolution Reduce the dimensionality
Learn local features
Feature - n
. - Activate or deactivate some neurons based on
learning REL (rectified .
linear unit) their impact . .
Introduce the non-linearity to the system
Pooling Reduce the dimensionality
Flatten Convert 2D image to 1D array for classification

Implement the classification task based on
Classificati Fully connected derived features in convolution and pooling
on operation

SoftMax Convert the classification probabilities to
classes

138



Paper C. Multiple Classifiers and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults

STFT and CWT can be used to extract time-frequency features and show
them as spectrogram images [38-40]. To study which transform or image
generation can provide better features for the CNN-based classifier, both STFT
and CWT are applied to analyze the vibration signals collected from a gearbox.
Applications of the STFT and CWT to detect faults on a gearbox-based drivetrain
via vibration signals are detailed in [41]. Figure C.6 shows an exemplary
spectrogram generated by STFT of an accelerometer signal in the presence of
multiple faults in the gearbox. The spectrogram generated by CWT on the same
accelerometer is shown in Figure C.7.
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Figure C.6: The 2-D representation of 1-D non-stationary signals using STFT.
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Figure C.7: The 2-D representation of the signal using wavelet transform.

139



Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

Image classification using the CNN results in a highly computational
burden as each pixel represents an input in the neural network. The 2-dimensional
(2-D) convolution can be applied to an image with different sets of shared weights
(or kernels) using a neuron map, in which the weights are optimized through a
backward propagation algorithm. The convolution provides two advantages for a
mixed-fault classification. First, local features of the input images can be well
identified for the classification. Second, the convolution combined with pooling
can reduce the dimensionality of mixed-fault classification problem, thus
simplifying the structure of fully-connected neural networks for the classification.
Details of CNN training and analysis can be found in [42], and are summarized
here. The CNN is trained by using a backpropagation algorithm by minimizing the
cost function with respect to an unknown weight.

£=——= 3" (pG|xH) (C1)

X1

where |X| is the number of training images, X* is the ith training image with the
corresponding label y! and p(y‘|X%) denotes the probability by which X! is
correctly classified.

If W denotes the weight of the Ith convolutional layer at iteration t, and £
denotes the cost over a mini-batch size T, then the updated weight in the next
iteration is computed as follows:

)/t = y(tT/le)
Vit = wrt —yta oL (C.2)
! ! Low, :
Wlt+1 — Wlt + Vlt‘+1

where a; is the learning rate of the " layer, u is the momentum to express the

contribution of previous update, and y is the scheduling rate, which reduces the
learning rate at the end of each epoch.
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C.2.3 Decision — level data fusion

The outputs of the MLP- and CNN- based classifiers are large datasets of
probability values in the heath classes. A probability classifier is required to
combine the results from the neural networks. In this work, a Naive Bayes model
is used to combine the classification results of each individual classifiers since it
is simple to build and effective to big and complicated datasets. The Naive Bayes
combiner needs to be trained before applying it to classification [32]. The training
steps are implemented as:

Step 1: Getan array Ey 4y , Which contains specific outputs of the Q classifiers for

M entities in the training set. The true health class labels are extracted from the
training set and included in Zy, ;, array.

Step 2: Obtain the numbers - M, M,, ... M. , which represent the number of entities
in each health class within Z,, ;). Here the ¢ represents the number of health
classes.

Step 3: For each classifier D;, i = 1, 2,.., Q, calculate a bespoke ¢ x ¢ confusion
matrix C;.

1
K(hlrh2)+z
Mh1+1

C;(hy, hy) = (C.3)

where K (hy, h,) is the number of entities in training set with true class label h,,
labelled by classifier D; in class h,. After the training process, the trained bespoke
¢ % ¢ confusion matrix C;, can be used to fuse new results of individual classifiers.
The calculation steps are as follows:

Step 1: For each new entity, find the class labels s, s,, ... s, assigned by the L base
classifiers.

Step 2: For each class wy, k = 1, .....c find the probability P(k) of each health
class.
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Set P(k) = 2« (C.4)

M
Calculate P(k) = P(k)C;(k,s;) fori=1,...,L (C.5)
Step 3: Assign label k* to the entity, where
k* = argmaxj;_,P(k) (C.6)

Step 4: Return the final label of the new entity.

C.3 Experimental data and pre-processing

C.3.1 The experimental setup and data

To validate the proposed algorithm, experimental data provided by PHM society
data challenge in [43] is used. Figure C.8 shows the inside of the two-stage parallel
shaft gearbox (with helical gears) used for collecting the vibration data

Input Pinion

160r32T

Idler Gear
24 0r 48 T

—tr AN
N o 400r80T
\{ Wi

480r96T M @ | °°

Idler Gear

Figure C.8: The structure of the gearbox.
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It consists of four gears, three shafts and six bearings. The gears are
removable, and two types of gears, spur and helical, are used in this study. Eight
fault cases of the spur gearbox and six fault cases for the helical gearbox have
been tested. Each fault case includes multiple faults from gears, bearings or shafts.
Two accelerometers and one tachometer are used to collect the vibration data and
input-shaft speed. The accelerometers are placed on the input and output shafts of
the gearbox. The data of each channel is sampled at 200 kHz. Each fault class was
tested at five different speeds (30 Hz, 35 Hz, 40 Hz, 45 Hz, and 50 Hz) and two
different load conditions (high and low), and repeated, thus 20 data files were
collected. The bearing dimensions shown in Table C.4 are used to calculate the
characteristic frequencies associated with bearing faults in Table C.5 [19].

Table C.4: Bearing dimensions.

Number of Elements 8

Roller Element Diameter 7.94 mm (or 0.3125 inch)
Pitch Diameter 33.5 mm (or 1.319 inch)
Contact Angle 0

Table C.5: Forcing frequencies of bearing faults.

Frequency component Order
Fundamental train frequency (FTF) 0.38X
Shaft rotational frequency (1X) 1X

Ball/roller spinning frequency (BSF) 1.99X
Outer-race fault (BPFO) 3.05X
Rolling element fault (2*BSF) 3.98X
Inner-race fault (BPFI) 4.94X

In this work, 18 frequency-domain features described in [35] and 2 time-
domain features are selected for the domain knowledge analysis based on MLP.
Since the MLP-based classifier requires the energies at interested frequencies, the
filter banks are applied at different bands of the spectrum to capture the energies
of those bands. The central frequency of each filter is defined based on forcing
frequencies and the specification of the gearbox as shown in Table C.6.

143



Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

Table C.6: Description of the Filter bank.

Filter 01 Characteristic frequency of the input shaft unbalance

Filter 02 Characteristic frequency of the bent input shaft

Filter 03 Characteristic frequency of the outer-race defect of input-shaft
bearing

Filter 04 Characteristic frequency of the ball defect of input-shaft bearing

Filter 05 Characteristic frequency of inner race defect of input-shaft
bearing

Filter 06 Natural frequency of rotating element

Filter 07 Output-shaft helical 1X Gear Mesh Frequency (GMF)

Filter 08 Input-shaft helical 1X GMF, Output-shaft helical 2X GMF or
output-shaft spur 1X GMF

Filter 09 Output-shaft helical 3X GMF

Filter 10 Input-shaft helical 2X GMF, output-shaft helical 4X GMF, Input-
shaft spur 1X GMF or output-shaft spur 2X GMF

Filter 11 Output-shaft helical 5X GMF

Filter 12 Input-shaft helical 3X GMF, Output-shaft helical 6X GMF or
Output-shaft spur 3X GMF

Filter 13 Output-shaft helical 7X GMF

Filter 14 Input-shaft helical 4X GMF, output-shaft helical 8X GMF, Input-
shaft spur 2X GMF or output-shaft spur 4X GMF

Filter 15 Input-shaft helical 5X GMF or output-shaft spur 5X GMF

Filter 16 Input-shaft helical 6X GMF, Input-shaft spur 3X GMF or Output-
shaft spur 6X GMF

Filter 17 Input-shaft helical 7X GMF or output-shaft spur 7X GMF

Filter 18 Input-shaft helical 8X GMF, input-shaft spur 4X GMF or output-

shaft spur 8X GMF

Table C.7 shows fault classes of the spur and helical gearboxes under mixed
defects in gears, bearings, and shafts. The fault classes Spur 3, Helical 2 and
Helical 6 are single fault cases, which are useful to test whether the proposed
algorithm is capable to detect single faults or not. In the study of gear faults, four
health conditions, namely good, broken tooth, chipped tooth and eccentric gears,
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are tested. In the case of the bearing, the health statuses of good, inner-race-, outer-
race- and ball faults are examined. For the shafts, the statuses of good, imbalance-
, bent- shaft and keyway sheared are tested.

Table C.7: Fault classes of the gearboxes.

Gear Bearing ID Shaft
Fault
Class |32T 96T |48T 80T Bl [B2 |B3 B4 B5 [B6 |Input Output
Spur 1 [Good Good |Good Good |Good |Good |Good |Good Good |Good |Good Good
Spur 2 [Chipped [Good |Eccentric |Good |Good |Good |Good |Good Good |Good |Good Good
Spur 3 [Good Good |Eccentric |Good |Good |Good |Good |Good Good |Good |Good Good
Spur 4 [Good Good |Eccentric |Broken |Ball |Good |Good |Good Good |Good |Good Good
Spur 5 [Chipped [Good |Eccentric |Broken |Inner |Ball |Outer |Good Good |Good |Good Good
Spur 6 [Good Good |Good Broken [Inner |Ball |Outer |Good Good |Good |Imbalance |Good
Spur 7 [Good Good |Good Good |Inner |Good |Good |Good Good |Good |Good Keyw ay Sheared
Spur 8 [Good Good |Good Good |Good |Ball |Outer |Good Good |Good |Imbalance |Good
Fault
Class |[16T 48T [24T 40T Bl [B2 |B3 B4 B5 [B6 |Input Output
Helical 1 | Good Good |Good Good |Good |Good |Good |Good Good |Good |Good Good
Helical 2 | Good Good |Chipped |Good |Good |Good |Good |Good Good |Good |Good Good
Helical 3 |Good |Good [Broken |Good [Good |Good |Good [Combination [Inner |Good |Bent Shaft | Good
Helical 4 |Good |Good |Good Good |Good [Good |Good |Combination |ball [Good |Imbalnce |Good
Helical 5 | Good Good |Broken |Good |Good |Good |Good |Good Inner |Good [Good Good
Helical 6 |Good |Good |Good Good |Good [Good |Good |Good Good |Good |Bent Shaft | Good

C.3.2 Data pre-processing

Accuracy and reliability of the MLP or CNN -algorithms are proportional to data
samples for training. There are 280 files for 14 different fault classes, or 20 files
for each class in the original dataset. Increasing data samples for training is to
enhance the effectiveness of the proposed algorithm. A complete time-frequency
representation of a vibration signal requires the data of one complete cycle of
rotation. Based on this rule, one data file is subdivided into 20 samples, so 400
samples are created for each fault class. Therefore, 5600 samples for 14 fault
classes are used for training and testing of the algorithm, in which 75% of the data
Is used for training the classifiers, and 25% of the data is used to validate the trained
algorithms. To test the robustness of the proposed algorithms, two types of noises
are added to the original signals. The first type or noise type-1 signal is generated
by adding white Gaussian noise at the signal to noise ratio (SNR) of 14 dB, which
means the actual signal power to noise power ratio (Ps;z/Ppoise) IS approximately

25. Figure C.9. shows the original signal and the noise type-1 signal.
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Figure C.9: The original signal and noise type 1 signal.

Noise type-2 signals are generated by mixing each signal to another signal.
This scenario demonstrates a practical beating situation in a gearbox, where the
original vibration signal (R,,,) being measured is mixed with a fraction (f %) of
another vibration source (R,). The final signal is normalized using the weighted
average of both signals. The signal mixing rule is defined in (A.7)

(Rsu+tf*Re)
Repy = T (C7)

where R, is the final noise type-2 signal of the uth fault class. u=1, 2..., NG, in
which NG = 8 for the spur gear and NG = 6 for the helical gear.

In the cases of helical gearbox, R, is the helical fault class-2, which is
selected as a noise to all other helical fault classes. The mixing weight (f %) is
selected at 0.5. In spur gear faults, a similar rule is applied and the signal of the
spur fault class-2 is used as a noise (R,) for other spur fault classes. Figure C.10
shows the original and noise type-2 signal for the first 200 samples in the spur 1
fault class.
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Figure C.10: The original signal and spur-gear type 2 signal.

C.4 Results and discussions

In this study, each algorithm, namely MLP and CNN, was first applied to the
dataset with and without using data fusion at the feature level. The effect of feature
extraction using STFT and CWT on the accuracy of the individual neural networks
was also assessed on the individual algorithms. Finally, the effectiveness of the
proposed hybrid approach and data fusion at the decision level was validated by
the same dataset. The accuracy is selected as the performance metric of machine
learning in this fault diagnosis problem, thus the assessment of the proposed
algorithm is only based on the accuracy and improvement of accuracy.

C.4.1 Performance of the multiple-fault classification using MLP, CNN
and feature level fusion

The MLP architecture of a multiple-fault classification shown in Figure C.4 is
used. It includes 20 input nodes from 20 features and 10 hidden layers. 8 fault
classes of the spur gearbox and 6 fault classes for helical gearbox are studied, so 8
nodes are used in the output layer of spur gearbox and 6 nodes for helical gearbox
fault classification with SoftMax functions. The classification accuracy and the
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difference of accuracy compared to respective decision fusion test case of each
classifier with the test dataset is sumarized in Table C.8. The training process of
neural networks holds a property of randomness. Therefore, 20 tests for each case
are repetitively implemented to get the average accuracy values, minimizing the
effect on randomness of the training process in this study.

Table C.8: Overall performances of individual MLP and CNN classifiers.

Test Signal Spectrogram Feature Accuracy and  difference
case i Images fusion compared to feature level
Algorithm i
fusion (%)
Spur Helical
1 input - No 94.1 -42 818 -16.2
2 MLP output - No 97.0 -1.3 86.2 -11.8
3 both - Yes 98.3 98.0
4 input  STFT No 94.0 -35 595 -21.8
5 output STFT No 90.3 -7.2 808 -05
6 CNN both  STFT Yes 97.5 81.3
7 input  CWT No 92.0 -6.0 878 -84
8 output CWT No 90.6 -74 908 -54
9 both CWT Yes 98.0 96.2

In the first case — test case 1, 20 features from the input-shaft vibration
accelerometer alone are applied to the MLP algorithm to classify the multiple
faults. The classification accuracies for the spur and helical gearboxes are 94.1%
and 81.8%, respectively. In the second case - test case 2, the classification
accuracies of those gearboxes are 97.0% and 86.2% when using 20 features from
the output-shaft vibration accelerometer alone. In the test case 3, the data fusion of
40 features from the input- and output-shaft vibration accelerometers enhances the
classification accuracies for the spur and helical gearboxes by 4.2% and 16.2%,
respectively, compared to test case 1. In the test case 3, the feature level fusion
improves the accuracy of classification for the spur gearbox only 1.3% as
compared to test case 2. However, for the helical gearbox, it allows increasing the
classification accuracy to 11.8%.
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The CNN algorithm is applied to the image features extracted by STFT in
the test cases: 4 (input-shaft signal), 5 (output-shaft signal) and 6 (fusion of the
input- and output-shaft signals). The same procedure is implemented on the image
features produced by CWT in the test cases from 7 to 9. The accuracy of the CNN
algorithm on the fault classification of the spur gearbox is around 98% in case of
using data- fusion on features extracted by either STFT or CWT, but the accuracy
of the CNN algorithm reduces significantly to 81.3% if using data-fusion features
extracted by STFT for the fault classification of the helical gearbox. Therefore,
from the individual algorithm point of view, the MLP algorithm with feature-level
fusion (case 3) and the CNN using CWT-base features with image fusion (case 9)
are the best options for the multiple-fault classification for the gearbox in this
study.

The accuracy of the test case 6 for the helical gearbox is only increased by
0.5 % as compared to the test case 5. However, for the spur gearbox the increase
Is 7.2% in the same test case. The classification accuracies for all test cases are
improved from 0.5 % to 21.8%. From the type of gearbox point of view, the feature
level fusion increases the accuracies for the spur-gearbox classification of about
5% (mean difference in 6 cases), and those of the helical gearbox classification of
10.7%, keeping consistent (less variant) for different test cases.

A graphical representation of the overall accuracy is shown in Figure C.11,
in which the blue dotted-line -IP, green dashed-line -Op, and red solid-line -1IP+OP
fusion curves are referred to the signal sources from the input-, output-shaft
accelerometers and fused signals, respectively. In the next section, further
improvements on the best options (cases 3 and 9) will be presented with and
without the presence of noises in the collected data.

Changing the time and frequency (scale in wavelets) resolution of the
spectrograms has an impact on classification results. Low time-frequency
resolution results in low classification accuracies due to low information contents.
On the other hand, increasing the time-frequency resolution is effective up to some
levels and after that more detailed information of the spectrogram will act as noises
to the classifiers, reducing their accuracies. Increasing both time and frequency
resolutions at same time is not feasible. For a given sampling rate, the frequency
resolution is decreased, once time resolution is increased, and vice versa. Further,
high time-frequency resolution and sampling rates require expensive data storage
devices. Therefore, a balanced time and frequency (wavelet scale) resolution is
experimentally selected as both are important for the classification, and high
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classification accuracies are obtained in this study.

STFT: Helical CWT: Spur

CWT: Helical STFT: Spur

MLP: Helical

Figure C.11: Overall performances of individual MLP- and CNN- classifiers.

C.4.2 Accuracy and robustness comparison between the proposed
method and other algorithms

In this section, the accuracies and robustness of the proposed algorithms are
compared with those from other algorithms, which are commonly used in feature
detection and classification. Figure C.12 shows the comparison results. Domain
features (DF) generated from filter banks are supplied to the proposed MLP and
support vector machine (SVM) classifiers in the first two studies, and their
performances are shown as DF-MLP and DF-SVM in Figure C.12. The main
objective of the SVM classification is to define a hyperplane in the feature space
to differentiate each class with a maximum margin between classes [44-46]. In this
study, the SVM algorithm is tested with different kernel functions (linear,
quadratic and gaussian), and the highest accuracy SVM with the gaussian kernel
is used for classification in Figure C.12,
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Figure C.12: Accuracy and robustness comparison of individual algorithms.

From the first two studies, the classification accuracies of the proposed
MLP and SVM classifier are high when fed by original- and the noise-type-1
signals. However, under noise-2 signals the accuracy of the SVM classifier is
considerably lower than the proposed MLP about 10% for the spur gearbox, and
9% for the helical gearbox. This verifies that the proposed MLP classifier is more
robust and accurate than the SVM classifier.

The raw vibration signals (without any signal processing steps) are fed to
the CNN in study 3 (Raw-CNN). In study 4 (CWT-CNN), first the raw vibration
signals are converted to spectrograms by CWT, and then the supervised feature
learning and classification are conducted using the proposed CNN. Using the raw
vibration signal, the accuracy of the CNN classifier is significantly low as
compared to the CNN using CWT spectrograms. These results confirm that using
CWT spectrograms as inputs of the CNN classifier is better than using the raw
signals.
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To test the effectiveness of CNN feature learning, the raw vibration signals
are used to derive pattern features in training a feed forward neural network,
namely autoencoder (AE), and a SVM classifier is used in study 5 (Raw-AE-
SVM). In the study, sparse autoencoders are implemented to learn the features
from inputs in an unsupervised way. In this study, two stages sparse autoencoders
are used to derive 100 features from each input data type [47-49]. The overall
accuracy in study 5 is lower than that of the proposed CNN method (Raw-CNN).
This confirms that the combined feature learning and classification in the CNN
result in a higher accuracy as compared to the combination between an individual
feature learning and a classification.

In study 6, the CWT spectrograms are used in training the autoencoders,
and SVM is used as the classifier (CWT-AE-SVM). The classification accuracies
in study 6 are lower than those in the proposed CNN method (study 4 or CWT-
CNN), but greater than those in study 5 (Raw-AE-SVM). Using CWT
spectrograms and the CNN is a better option to enhance classification accuracy as
compared to using raw signals and individual feature learning and SVM
classification.

The comparative study in this section confirms that the proposed domain
features and MLP based algorithm and the CWT spectrogram-based CNN
algorithm are the best individual algorithms in terms of average accuracies and
robustness under noises.

C.4.3 Accuracy and robustness of the multiple-fault classification using
the hybrid neutral networks and decision level fusion.

In the previous section, two best options of the multiple-fault classifications were
identified: feature-level data-fusion based-MLP and feature-level data-fusion
based CNN algorithm implemented on the CWT features. The next step is to
enhance the accuracy and robustness of those best classifications by fusing the
results of the two best individual classifiers at the decision level using the Naive
Bayes combiner. 9 different tests are conducted on the selected classifiers to verify
the robustness of the proposed data fusion. Table C.9 summarizes the overall
performance of the MLP and CNN classifiers with and without noises in the
collected signals.

152



Paper C. Multiple Classifiers and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults

Table C.9: Overall performances of MLP and CNN classifiers with noise.

Test Algorithm Noise Decision Accuracy and difference compared to

case Type level decision level fusion (%)
fusion  Spur Helical

1 MLP No 98.3 -0.1 98.0-0.2

2 CNN - No 980 -04 96.2-2.0

3 MLP + CNN Yes 98.4 98.2

4 MLP No 97.1 -04 97.0-0.7

5 CNN Noise 1 No 904 -7.1 94.8-2.9

6 MLP + CNN Yes 97.5 97.7

7 MLP No 853 -5.38 74.5-19.0

8 CNN Noise 2 No 841 -7.0 93.2-0.3

9 MLP + CNN Yes 91.1 93.5

Without noises in the first three test cases, the Naive Bayes combiner allows
maintaining the accuracy of the selected classifications at 98.4% in the spur
gearbox and 98.2% in the helical gearbox. The effect of decision fusion on the
accuracy improvement is small under this noise less case.

Under the effect of noise type 1, the accuracies of the individual MLP and
CNN classifiers to the spur gearbox reduce by 1.2 % (test case 4 is compared to
test case 1) and 7.6 % (test case 5 is compared to test case 2), and those to the
helical gearbox drop by 1% and 1.4 %. The white Gaussian noises affect slightly
on the accuracy of the MLP classifier, but significantly deteriorate the performance
(7.6 % compared to spur gearbox test case 2) of the CNN classifier. The decision
fusion of the MLP and CNN results keeps the accuracy of the multiple-fault
classification for both the spur and helical gearbox close to 98%. This verifies that
the proposed decision-level fusion algorithm is well robust against the white
Gaussian noise at SNR of 14 dB.

When applying the type-2 noises to the signals collected from the spur
gearbox, the accuracies of the MLP and CNN classification reduce by 13%
(compared to the test case 1) and 13.9% (compared to the test case 2), respectively.
The Naive Bayes combiner enhances the accuracy of the overall classification by
about 5.8% for MLP and 7.0% for CNN and keeps the final accuracy at 91.1% for
spur-gearbox classification. For the helical gearbox dataset, the accuracy of the

153



Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

MLP classifier drops significantly by 23.5% (compared to the test case 1) under
the effect of the type-2 noise, but the accuracy of CNN classifier is only decreased
by 3% (compared to the test case 2). The decision level fusion improves the
classification accuracy by 19% for MLP and 0.3% for CNN and maintains 93.5%
accuracy.

Figure C.13 shows the mean and standard deviations of accuracies of each
algorithm for different test cases. The standard deviation of an algorithm is the
square root of its accuracy variance, quantifying the variation of accuracies around
its mean under different noise conditions. For example, the mean and deviation of
MLP algorithm are 91.7% and 8.92% using the six classification accuracies
(98.3%, 98.0%, 97.1%,97.0%, 85.3% and 74.5%) given in test cases 1,4 and 7 in
Table C.9. This means that the MLP classifier has the mean accuracy of 91.7%,
but it is not robust under noise conditions due to the big variation. As seen from
Figure C.13, the mean accuracy is maximized, and the deviation is minimized if
using decision fusion of the CNN and MLP results.
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Figure C.13: Mean and deviation of algorithms in different test cases.
The importance of decision fusion is substantially highlighted since the

individual MLP or CNN classifier alone is sensitive to the noise. Under the noise
type 1 and 2 cases, the classification accuracies are dropped as the information

154



Paper C. Multiple Classifiers and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults

contents on the inputs (MLP features and spectrograms) are distorted. The
accuracy of machine learning reduces further once the information distortion is
increased from noise-less, noise type 1 to noise type 2. The proposed decision
level fusion cannot prevent the dropping of accuracy, but it can minimize the
accuracy reduction and standard deviation. It can be concluded that the individual
algorithms are not robust against noise type-2 or external sources added to
vibration signals, which are common in drivetrains of the wind turbines or heavy
industry.

C.5 Conclusion

In this work, a hybrid neural network scheme, consisting of Multilayer Perceptron
and Convolutional Neural Network, is proposed to detect mixed faults in a
gearbox. Using the proposed MLP algorithm, CWT spectrograms as input data to
CNN is recommended for the classification of gearbox mixed faults. The
robustness and reliability of the proposed scheme are further improved by data
fusion algorithms, and its accuracy is maintained at above 91% regardless of
disturbances or noises in the collected data. The average accuracy of the proposed
algorithm under different noise types is high as 96.07% with a standard deviation
of 2.77%. This improvement is highly important since the main objective of
multiple- fault classifications is to avoid the false and missing alarms. Other
remarks are drawn from this work:
= Feature-level data fusion can significantly improve the accuracy of a fault
diagnosis irrespective of the type of machine learning algorithm.
= Accuracy of the CNN-based classification depends on the quality of input data,
image or patterns. Using the spectrograms as input data for CNN gives a higher
classification accuracy than the raw vibration signals. In this application, the
images extracted by continuous wavelet transform are more reliable than those
from short-time Fourier transform or raw vibration signals.
= |fanindividual MLP- or CNN-based fault classifier is not robust under noises,
using an additional classifier and decision fusion can enhance its robustness.
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Abstract — Electric powertrains are widely used in automotive and renewable
energy industries. Reliable diagnosis for defects in the critical components
such as bearings, gears and stator windings, is important to prevent failures
and enhance the system reliability and power availability. Most of existing
fault diagnosis methods are based on specific characteristic frequencies to
single faults at constant speed operations. Once multiple faults occur in the
system, such a method may not detect the faults effectively and may give false
alarms. Furthermore, variable speed operations render a challenge of
analysing nonstationary signals. In this work, a deep learning-based fault
diagnosis method is proposed to detect common faults in the electric
powertrains. The proposed method is based on pattern recognition using
convolutional neural network to detect effectively not only single faults at
constant speed but also multiple faults in variable speed operations. The
effectiveness of the proposed method is validated via an in-house experimental
setup.

Index Terms — Fault diagnosis, convolutional neural networks, electrical fault
detection, induction motors, electromechanical systems, gears, bearings.
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D.1 Introduction

Electric powertrains are one of the most demanding components in modern
engineering systems. Electric drives, gearboxes and various types of loads, e.g.
pumps, fans, mixers, conveyor systems, are the workhorses of manufacturing and
food processing industries. According to a recent survey in Germany, electric
drives consume more than 70% of electric energy in industries [1]. Furthermore,
in modern automobiles there is an increased trend to replace combustion-engine
powertrains by hybrid or electric powertrains due to the merits of efficiency,
controllability and maintenance [2]. Electric powertrains together with the
electricity generated from renewable sources can reduce the environmental
impacts of human activities.

Condition monitoring systems are necessary to prevent catastrophic failures
in critical industrial machines via predictive maintenance. However, most of the
condition monitoring techniques used for electric powertrains and other rotating
machines are still based on manual or semi-automated techniques, which are costly
and time-consuming. Manual condition monitoring methods are based on
analysing the data collected from vibration, current, oil samples and acoustic
sensors [3-4], which require maintenance teams with skilled human resources and
proper training to deal with various signal processing and statistical analyses using
time and frequency domain signals [5].

To address challenges associated with the conventional condition
monitoring methods, online condition monitoring and fault diagnosis methods can
be used to increase the monitoring reliability. However, implementing a full online
condition monitoring and fault diagnosis systems is a challenging task, requiring
expertise of analysing complex relations from many data sources and making
combined or fused decisions. Modern machine learning, deep learning algorithms
and cloud computing methods are among the best options for implementing an
automatic fault diagnosis system [6-7]. In this work, a deep learning-based fault
diagnosis method is proposed for electric powertrains. The proposed algorithm is
based on convolutional neural network (CNN). The CNN algorithms are originally
developed for image classification applications. The main advantages of using
CNN for image classification is that it does not require any domain knowledge
about images, and CNN can learn features from the training data. In fault
classification applications, signal processing techniques are necessary to extract
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the hidden fault signatures from the signals and later the processed signals can be
used to generate spectrograms. Further, CNN can learn complex spatial
relationships from the spectrograms of fault signals to compensate noises and other
disturbances.

Machine-learning and deep-learning algorithms have been widely used in
fault classification, but most of them have been focused or limited to fault detection
and classification under constant speed conditions for individual faults [8].
However, electric powertrains in automotive applications normally work in
variable speeds and loads according to driver’s demands, and multiple faults may
occur in such a condition. These situations render challenges for the existing
techniques, i.e. nonstationary signals, or may cause false alarms. This work focuses
on detecting multiple faults in variable speeds. Within the framework, individual
CNN-based classifiers are trained to detect single faults, but the validation for the
classification is done for both single and multiple faults. This suggested procedure
of training and validation matches with practical implementation cases, where the
classifiers can be easily trained for single fault cases, but there can be several
combinations in multiple fault cases. By eliminating the training for multiple fault
cases, the proposed method allows to reduce the training time and computational
burden of the classifiers. This rest of paper is organised as follows: in Section D.2,
the proposed fault diagnosis system is presented in detail. The experimental results
are discussed in Section D.3. In Section D.4 the conclusion of the work is provided.

D.2 Proposed fault diagnosis system

A block diagram of the proposed fault diagnosis system for electric powertrains is
shown in Figure D.1. A typical electric powertrain includes the electric power
source, controller, electric motor, gearbox, mechanical power transmission
components and load as described on the top of Figure D.1. This fault diagnosis
system focuses on the most common faults in critical components. To identify the
critical components, the important functionalities and component failure
probabilities can be taken into consideration. For example, in electric motors, most
of the faults occur in bearings and stator windings, which provide important
functionalities [9]. Therefore, the diagnosis system has to detect common faults on
bearing and stator winding. Within this study, multiple faults in electric motors,
namely inter-turn fault on the stator and bearing outer-race fault, and a damaged
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gear on the gearbox are selected as studied fault cases. For each fault, an individual
classifier is designed to detect the fault.
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Figure D.1: A block diagram of the proposed fault diagnosis system.

Motor currents and the vibration sensors are used to diagnose faults in this
work. Since the motor operates in variable speed conditions, the collected currents
and vibration signals are order tracked and normalized to consider the variable
speed operation. More details of this method are presented in Section D.2.2. Then
spectrograms of both currents and vibration signals are generated and combined
into large images. This combination provides an enlargement in the feature space.
Based on the generated spectrograms, CNN can fuse the current and vibration
spectrograms and implement a fault classification.

Although CNN are widely used in many applications of image
classification, a CNN based fault diagnosis needs to be carefully implemented on
spectrograms. The information of faults is hidden in the collected signals, thus
proper signal processing methods are required to extract the hidden information
from the signals and convert into spectrograms. For this purpose, the order
normalization for vibration signals and the Park’s vector of currents are used
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together with CNN. In the training phase, three classifiers, namely C1, C2 and C3
as shown in Figure D.1, are individually trained to detect stator winding faults,
bearing faults, and gear faults, respectively. After the training process, the trained
classifiers are employed to detect multiple fault cases.

D.2.1 Fault diagnosis in constant speed operations

In a fault diagnosis of rotating machines, faults are detected by tracking the
characteristic frequencies associated with the faults. For example, the
characteristic frequency associated with an outer-race bearing fault (ball pass
frequency outer-race (BPFQ)) is calculated in (D.1) [10]. Such a characteristic
frequency can be observed in analysed vibration signals when there is a defect on
the bearing outer race.

BPFO = =2 f,(1— =2 cost) (D.1)

where N, is the number of rolling elements in the bearing, D, denotes the diameter
of a rolling element, D. represents the pitch diameter, 8 is the contact angle
between the outer-race and rolling element, and f; is the shaft rotational frequency.
The BPFO frequency divided by the shaft rotational frequency is equal to a
frequency order, which is a constant for any rotational speed. Based on the bearing
dimensions, the order of the bearing fault in this study is defined at 3.6 order (3.6X)
of the shaft rotational frequency. An inter-turn stator winding fault can be detected

using Park’s vector (PV) analysis of motor currents [11].
ig =+/2/3i,—+/1/610, —+/1/61,
ig=+1/2i, —/1/2i,
(D.2)
i, = |ig + Jjig]

where i; and i, are the direct and quadratic components of the Park’s vector i,,.

iq, ip and i, are the phase currents. A stator winding fault results in an unbalanced
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winding, which produces a frequency of two times of the fundamental frequency
in spectrum of i), [11]. This means the second order of supply frequency (2f;).

Similarly, a damaged gear fault results in an increase of vibration in the first
order (1X) of the gear rotating frequency, gear natural resonance frequency and
gear mesh frequencies and its 1X sidebands [12]. By tracking the mentioned
frequency orders, the gear faults can be detected.

D.2.2 Fault diagnosis in variable speed operations using order tracking

In the fault diagnosis in constant speed operations, the sampling rate of signals is
kept as a constant, and Fourier transform can be used to analyse the collected
signals in such a steady-state operation. In variable speed operations, the Fourier
transform cannot be applied because the analysed signals are not stationary or the
frequency changes in time. Short-time Fourier transform (STFT) can be an
alternative option as it assumes that the frequency is constant in small-time
windows, thus Fourier transform is performed for those short-time signal windows.
However, parameters of STFT need to be correctly selected in advance to
compromise time and frequency resolution in spectrograms, thus it might not be a
good solution to observe the characteristic frequencies in wide-range variable
speeds. To address this challenge, instead of using a constant time sampling, the
constant angular sampling is used for extracting the hidden stationary signal.

As shown in Figure D.2, the constant angle sampling method can be used
to extract the underlined constant-frequency sine wave from a varying frequency
sine wave. Details on this method can be found in [13-14]. Since the angle/phase
information is required for this process. The rotational speed is measured from the
test bench.

Figure D.3. shows how the constant angle sampling and order tracking are
used in this study to detect a stator winding fault. The variable speed profile used
in this study is given Figure D.3 (a). Figure D.3 (b) shows the STFT of the Park’s
vector i, of the current signals, in which the 2f; is clearly visible in the spectrum

of i,,. After using the order tracking based on constant angle sampling, a constant

2X order is presented in the spectrogram for the variable speed operation as shown
in Figure D.3 (c).
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Figure D.2: Constant angle sampling of a variable frequency signal.
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Figure.D.4. shows the order tracking spectrogram of vibration signals for
the outer-race bearing fault and the 3.6X characteristics order is visible in the
spectrogram. Similarly, for a damaged gear fault, the order tracking spectrograms
can be generated.

0.07
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0.05
0.04
0.03
0.02

10.01

Time (s)

Figure D.4: Order tracked and normalised spectrogram for the bearing fault.

D.2.3 Convolutional neural network

A simplified block diagram of a CNN architecture is presented in Figure D.5.
There are two main subsections of the network: feature learning and classification.
Image classification using the CNN is a high computational intensive task as each
pixel represents an input in the neural network. The 2-dimensional (2-D)
convolution can be applied to an image with different sets of shared weights (or
kernels) using a neuron map, in which the weights are optimised by a backward
propagation algorithm. With convolution operation, local features of the input
images can be identified for the classification. The convolution combined with
pooling can reduce the dimensionality, allowing to simplify the structure of a fully-
connected neural network for the classification. The rectified linear unit (ReLU)
introduces the non-linearity to the system. Details of CNN training and analysis
can be found in [15].
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Figure D.5: A block diagram of a CNN architecture.

In the classification section, the learned features are utilised in a fully
connected neural network architecture for classification. The Flatten operation is
required to convert a 2-D image to the 1-D array for the classification. Based on
derived features in the convolution and pooling operation, the classification task is
done by the fully connected network, which finds the complex relations in the
feature space. The SoftMax function converts the outputs of the fully connected
network to probabilities of health classes. The highest probability value represents
the output fault class of the network.

172



Paper D. Multiple Fault Diagnosis of Electric Powertrains under Variable Speeds...

D.3 Experimental results and discussion

D.3.1 Experimental setup

The experimental test setup used in this study is shown in Figure D.6. The
powertrain on the left side includes a 1.1 kW, 1450 rpm induction motor (IM)
coupled to the 2-stages parallel shaft gearbox (GB) with 8.01 gear reduction. The
internal components of the complete powertrain are disassembled and shown in
Figure D.7. They include 8 bearings, 4 gears and 3 shafts. The gearbox is coupled
to a permanent magnet synchronous generator (PMSG), and the generator output
is connected to a fixed resistive load. Therefore, the powertrain load is proportional
quadratically to the rotational speed. The output currents of the PMSG are
measured and used to estimate the rotational speed of the electric powertrain.
However, in real applications, an encoder is required to measure the speed.

Figure D.7: The internal components of the electric powertrain.
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Figure D.8: The faulty components of electric powertrain. (a) damaged gear (b)
outer-race damaged bearing (c) 10% inter-turn short circuit fault in the stator.

As shown in Figure D.8 (a), a small-scale damage is artificially produced in
the large gear using an electric discharge machining. An outer-race defect on the
induction motor bearing is made as shown in Figure D.8 (b). For stator winding
faults, 10% inter-turn short circuit is seeded to one phase of the stator winding as
shown in Figure D.8 (c). Eight fault cases with individual and multiple faults are
conducted as shown in Tables D.1 and D.2.

For each fault case, the induction motor operates at constant speeds of 500,
1000, 1400 rpm and two variable speed profiles in Figure D.3 (a) the constant- and
ramp speed and in Figure D.9 with the random speed. An acceleration sensor is
placed on top of the gearbox, and the accelerometer data together with motor input
currents are collected. The output currents and speed of the PMSG are also
measured. With this test arrangement, data of 50 repeated runs for each fault class
is collected, and each file contains 120-seconds data at the sampling rate of 20
kHz. Each file is subdivided into 20 pieces, producing 1000 samples for each fault
class or 8000 samples for training and validation of all fault cases. Data of single
fault cases, from Case 1 to Case 4 as shown in Table I, are used to train individual
classifiers, where 75% of samples are used to train, and 25% of the data is used to
validate. Data of multiple-fault cases, from Case 5 to Case 8 in Table Il, are not
used for any training task, and 25% of those data is used for validation.
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Figure D.9: A random-variable speed profile used in the experiments.

D.3.2 The experimental results

The confusion matrixes for individual classifiers are shown in Figure D.10 and the
classification accuracies are summarized in Table I. The C1 classifier is trained to
detect stator winding faults, and it gives an accuracy of 100 %. The classification
accuracy of C2 - bearing outer-race fault classifier is 98.8 %, and the classification
accuracy of C3 - gear fault classifier is 99.8%. In other words, all three classifiers
work very effectively for detecting single faults.

Stat. wind. Fault: Confusion Matrix

Output Class

1 2
Target Class

(a)
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Bearing Fault: Confusion Matrix

Output Class

1 2
Target Class

(b)

Gear Fault: Confusion Matrix

Output Class

1 2
Target Class
(c)

Figure D.10: The confusion matrixes of individual classifiers. (a) C1 classifier (b)
C2 classifier (c) C3 classifier

The classification accuracies for multiple fault cases are summarized in
Table 1. The C1 classifier works well for detecting stator winding faults at any
multiple fault cases considered in the study and classification accuracies are
greater than 98.8 % in all the cases. The C3 classifier also effectively detects the
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damaged teeth gear fault in multiple fault conditions with a minimum accuracy of
87.8 %. The weakest classifier in this study is the C2 classifier, which perform
well in some multiple faults (Case 5 and Case 8), but not well for the outer-race
bearing faults in Case 6 and Case 7, with the accuracies of 76.2 % and 71.5 %,
respectively.

Table D.1: Performance summary: individual classifiers.

Case Classifier ID  Component Fault Test Accuracy
ID Sw Bl Gl class (%)

1 - H H H HHH -

2 Cl F H H SHH 100

3 C2 H F H HBH 98.8

4 C3 H H F HHG 99.6

Sw: stator winding, B1: bearing 1, G1: gear 1, .H: healthy, F: faulty.

Table D.2: Performance summary: multiple Faults.

Case  Component Fault Test Accuracy (%)

ID Sw Bl G1 class C1 C2 C3
5 F F H SBH 100 86.8 878
6 H F F HBG 99.8 76.2 98.6
7 F H F SHG 100 715 100
8 F F F SBG 98.4 902 994

SBH: faulty stator, faulty bearing, and healthy gear.
HBG: healthy stator, faulty bearing and faulty gear.
SHG: faulty stator, healthy bearing and faulty gear.
SBG: faulty stator, faulty bearing and faulty gear.
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D.4 Conclusion

In this study, a fault diagnosis system is proposed to detect faults in an electric
powertrain in variable speeds and multiple fault conditions. The classifiers for the
stator and gear fault diagnosis have given an excellence performance for fault
classification under individual and multiple fault conditions. The experimental
results confirm that the proposed can detect single and multiple faults under
variable speed conditions Although the classifier for the bearing fault detection
works well for single fault conditions, it has a limited capacity for classifying some
multiple fault conditions.

Three types of localized faults in the stator winding, bearing and gearbox
have been studied in this work, but the concept can be extended to other types of
faults such as shaft unbalance, shaft misalignments, bearing inner race faults, gear
misalignments, broken gear tooth etc. Furthermore, following improvements are
suggested for future works:

1. Identify problems in the bearing fault classifier and improve its
performance.

2. In this study, 10% inter-turn short circuit fault is considered, and the
accuracy of the stator winding fault classifier for lesser faults (severities
less than 10%) was not tested. Furthermore, one level of fault severity is
studied for bearing and gear fault. Thus, testing accuracies of the classifiers
for different fault severities is a possible extension of study.
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Abstract — Online condition monitoring and fault diagnosis systems are
necessary to prevent unexpected downtimes in critical electric powertrains.
The machine learning algorithms provide a better way to diagnose faults in
complex cases, such as mixed faults and/or in variable speed conditions. Most
of studies focus on training phases of the machine learning algorithms, but
the development of the trained machine learning algorithms for an online
diagnosis system is not detailed. In this study, a complete procedure of
training and implementation of an online fault diagnosis system is presented
and discussed. Aspects of the development of an online fault diagnosis based
on machine learning algorithms are introduced. A developed fault diagnosis
system based on the presented procedure is implemented on an in-house test
setup and the reliably detected results suggest that such a system can be
widely used to predict multiple faults in the power drivetrains under variable
speeds online.

Index Terms — online fault diagnosis, convolutional neural network, electrical
fault detection, induction motors, electromechanical systems, gears, bearings.
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E.1 Introduction

Electric powertrains are one of critical building blocks in automotive and
manufacturing industries. Proper condition monitoring and fault diagnosis
methods are essential to enhance their reliability and availability. Online fault
diagnosis systems are useful to monitor the health status of critical machines,
detecting the faults and planning maintenance schedules accordingly. However, a
procedure to develop these online systems is not well detailed in literature.

Three main approaches, namely model-based-, signal-based- and
knowledge-based, are widely used to implement fault diagnosis systems [1-3].
Furthermore, a hybrid approach is also a promising option by combining the
mentioned methods in various ways [4]. In the model-based approach, the dynamic
model of a system is developed using first-principle physics. The developed model
should be sufficiently sensitive to represent different fault situations. The model
parameters should be tuned properly to match real-plant behaviours. Then the
responses of the model are compared with those of the real system via measured
system parameters. A threshold is applied to the residual signal of the comparison
to diagnose the faults [1-3]. This diagnosis method is reliable if the system model
and its parameters are well identified in advance. However, identifying a detailed
mathematical model to represent various machine health statuses is very difficult
and time consuming. To address such a challenge, system identification, parameter
estimation and observers are used to improve performance of the model-based
approach [2].

In the signal-based approach, various signal processing methods, e.g.
wavelet-, fast Fourier-, short-time Fourier transforms can be used to find fault
characteristic frequencies for the fault diagnosis [5-6]. This approach requires
expertise on signal processing and fault knowledge. However, missing harmonics
of the characteristic frequencies associated with faults in the spectrum cannot
guarantee that the system is healthy [7]. The knowledge-based approach combines
the advantages of signal processing and modern artificial intelligent methods for a
better fault diagnosis [1-3]. In this approach, a data-driven model can be developed
from a large amount of measured data in various system conditions. Statistical and
machine learning techniques can be used to develop such a data-driven model. If
the data is sufficiently available, data-driven models can capture the health statuses
of a system [8-9]. A predictive model based on data-driven models can detect the
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faults without generation and analysis of the residual signals. Further details of
data-driven models are discussed in section E.2.

In complex fault scenarios, e.g. multiple faults occur in a system in variable
speed conditions, defining a clear rule to detect and classify faults is difficult or a
given rule can be complicated. In addition, the data collected via sensors can be
noisy or interfered by other sources. For example, vibration signals can be mixed
of internal machine- and external vibrations. Furthermore, the data can be affected
by electromagnetic interference (EMI) in the motor drive system. Therefore, by
considering all above factors, a hybrid approach based on an advanced signal
processing and machine learning is selected in this work regardless of some
challenges when building a data-driven model based on machine learning-
algorithm. The model accuracy, robustness, generalizability, complexity and
computational speed are among important performance indicators, which should
be addressed in designing an online fault diagnosis system [8]. In this study, a
complete procedure to develop an online fault diagnosis system for an electric
powertrain is presented and discussed. Further details of a fault diagnosis
algorithm based on this procedure can be found in [9].

This paper is organised as follows: in Section E.2, the development
procedure of an online fault diagnosis system is presented and discussed. In
Section E.3, the development stages of integrating a predictive model into the
online diagnosis system are described in detail. The experimental test setup, data
and results are discussed in section E.4. The conclusion of the study is presented
in section E.5.

E.2 Development procedure of the online fault diagnosis
system

Figure E.1 shows a procedure for implementing an online fault diagnosis system.
The system can be developed in three steps, namely development of a data-driven
model, integration of the trained predictive model into the online diagnosis system,
and development of an embedded system. In this study, the first two steps are
presented and discussed. In many applications, the first two steps are sufficient for
an online fault diagnosis. However, in more critical machines, the fault diagnosis
system can be implemented as an embedded system or integrated into the existing
control system, being placed closer to the machine for monitoring the health status.
The algorithm development is an iterative process, which is to find the best
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machine learning model [8]. In this iterative process, the important steps are:

e Analysis of the system requirements

e Sensor selection and raw data analysis

e Signal processing, feature extraction and dimension reduction in the feature
space

e Integration of suitable data fusion methods

e Analyzing the model performance, parameter optimization and selection of the
best learning algorithm

F—_——— e e

| Step 1 !
| |
Il Electric Collect data from Adyan sd Deve_lopment .Of |
| e signal » machine learning |
|| powertrain several test cases . |
| processing model |
| |
Step 2 Y v

Development of online fault
» dignosis system using The
trained model

_ | Build a virtual test setup
using stored data

ek 2 !
| Embedded data | Algorithm implementation |,
| " | acquisition system in a embedded system |
| |

—_—————e—ee e — 4

Figure E.1: The development procedure of the online fault diagnosis system.

E.2.1 System requirements

In this study, the requirements of a fully operational online fault diagnosis system

are suggested. A block diagram of the developed fault diagnosis system is shown

later in Figure E.2. The suggested system requirements are based on domain

knowledge, critical components and failure rate analysis.

e The diagnosis system shall be able to detect and classify multiple faults in
variable speed conditions reliably.

e The diagnosis system shall use a reasonably small number of sensors.

e The algorithm shall use a minimum training data for multiple fault cases.

e Fault types shall be detected: inter-turn fault in a stator winding, bearing and
gear faults.
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e The system shall be robust against sensor signal noises and interferences.

E.2.2 Sensor selection and raw data analysis

Current and vibration signals are selected as the inputs of the fault diagnosis
system. Thus, a right selection of vibration and current transducers is important
since each sensor is designed to work within certain operating ranges and sensitive
levels, which should be matched with the fault diagnosis system requirements.
Shielded cables must be used in the data acquisition system to reduce the external
interference. The location of vibration sensors is very important to collect properly
vibration information. The vibration sensors shall be tightly fixed to the machine
to obtain sufficiently required information.

After the sensor selection and installation, the data must be collected in
different health statuses and operating conditions of the electric powertrain. Then
the collected raw data shall be analysed to find the statistical distribution of the
signals, and the analysed data shall be normalised via a suitable normalization
method. After the normalization, the signals shall be further processed using
advanced signal processing methods discussed in Section E.2.3.

E.2.3 Advanced signal processing, feature extraction and dimension
reduction

Once having the normalization on the collected data, the next step is to process the
data and extract the important features from the signals for detecting faults. The
domain knowledge-based features are the most reliable among features extracted
by domain knowledge-, statistical- and deep learning algorithms since they are
based the physical phenomena of the powertrain. The features based on statistical-
and deep learning algorithm or using pattern recognition do not represent a direct
physical meaning.

Domain knowledge-based features can be extracted by investigating the
forcing frequencies associated with faults and powertrain parameters. If the fault
severity and rotational speed are low, or signals are noisy, advanced signal
processing methods are required to extract the hidden information associated with
the faults in the collected signals. Various signal processing techniques used to
extract the domain knowledge-based features can be found in literature [5], [10-
14], and key techniques are summarized in Table E.1.
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Table E.1: Signal processing techniques for fault diagnosis applications.

Signal processing objectives Techniques
Noise and signal separation Digital filters
[5], [10-11] Time synchronous analysis

Order tracking and normalizing
Wavelet denoising

Denoising autoencoders

Adaptive noise cancellation
Discrete/random separation (DRS)
Cyclostationary analysis and spectral
correlation

Time domain analysis [5] Root mean square and autocorrelation

Frequency domain analysis [5], [12] Fast Fourier transformation (FFT)
Spectrum averaging

Time-frequency analysis [5], [13] Short time Fourier transformation
(STFT) and Wavelet transform (WT)
Instantaneous frequency and phase Hilbert transform

analysis [5], [14] Envelop analysis
Signals and system behavior [5] Convolution
Analysis of the impulsivity [5] Spectral kurtosis and the kurtogram

Statistical features can be generated without any prior knowledge of faults.
The statistical features can capture patterns in the signals in various working
conditions, which can be used in the fault classification based on machine learning
algorithms. Some commonly used statistical features from time and frequency
domain signals are the signal mean, standard deviation, minimum, maximum,
skewness, kurtosis, crest factor, etc. [15].

Dimension reduction in the feature space is the next step after the feature
extraction process. This step is to simplify the model and reduce the curse of
dimensionality and training time. Further, it’s useful to avoid the model overfitting,
recognising noises as a concept in the training phase. To reduce the dimensions,
new features are created by combining existing features based on the dimensional
methods such as principle component analysis, factor analysis, and complex
nonlinear techniques [16]. Alternatively, the best features are selected by the
filtering strategy (e.g using information gain), wrapper strategy (e.g. accuracy-
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guided search) and embedded strategy [17]. After reducing the feature space, those
features can be fed to the supervised machine learning algorithms with the health
class labels.

Feature generation based on deep learning is an alternative way to extract
features. The original concept of using deep learning algorithms, e.g.
Convolutional neural network (CNN), is to combine feature extraction, dimension
reduction and classification in one algorithm. The CNN algorithm combines those
tasks in image classification applications [18]. Using sparse autoencoders, features
can be also generated in an unsupervised way and then the generated features can
be used in a supervised classification algorithm [19]. However, an automatic
feature extraction from raw data is not feasible in most of fault diagnosis
applications. The extraction process should be always combined with advanced
signal processing methods. In other words, using CNNs alone, a feature extraction
is partly automatic in fault diagnosis applications.

E.2.4 Integration of data fusion methods

To reduce the noise effect and increase the accuracy and robustness of machine
learning based classifications, data fusion methods should be applied on collected
data and extracted features. The fusion methods can be applied at sensor, feature
or decision level. In the feature level fusion, the features from multiple signals are
combined to increase the feature space. In the decision level fusion, the fault
classification can be done based on individual signals and the output of each
classifier can be fused to get the final decision. One of the widely used decision
level methods is ensemble learners, namely probabilistic approach, majority
voting, weighted majority vote and Naive Bayes combiner, in which the outputs
of several classifiers are combined to create a more accurate classifier [20].

E.2.5 Analysing the model performance, parameter optimization and
selection of the best learning algorithm

To assess the performance of a data-driven model, the generalizability, accuracy,
robustness, complexity and computational speed are selected as the main
performance indicators. Based on these indicators and system constraints, the best
algorithm among trained models is identified and the test data set is then used to
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validate the final model. The most commonly used machine learning algorithms
for fault diagnosis applications are given in Table E.2 [8], [21].

Table E.2: Machine learning techniques for fault diagnosis applications.

Algorithms

Remarks

Support vector machine
(supervised
classification)

Linear SVM: fast training and prediction speed with
less memory usage, used only for linear decision
boundary cases.

Nonlinear SVM: slow in both training and
prediction, and requiring considerable memory,
good performance for nonlinear cases.

Multi-layer
(supervised
classification)

perceptron

Slow in training but moderate speed for prediction,
requiring many training cases and large memory.

Decision tree (supervised
classification)

Fast in both training and predations cases, requiring
less training cases, possible model overfitting.

neural
(supervised

Convolutional
networks
deep learning)

large training samples and training time, but
moderate prediction time, capturing complex
spatial relationships from the spectrograms.

Sparse-autoencoders
(unsupervised
learning)

deep

Applicable to feature extraction and feature
dimension reduction, slow training process,
requiring individual classifiers.

The generalisability is an important indicator because the algorithm should
be able to detect and classify faults other than training and test datasets. Otherwise,
there is no use of the trained algorithm. Overfitting is one of the most critical issues
of any machine learning algorithm and may result in a reduction of the
generalisability since the random noises is defined as a concept in the model. If the
model is not properly trained, the model will only try to mimic the input data, thus
it cannot be used in generalized fault diagnosis applications [22]. To address the
overfitting problem, the data should be sufficiently enhanced to train the model.
Adding a regularisation term into the cost function of the model is an alternative
solution in many neural network models. Using the dropout is another technique
for reducing the model overfitting, where some of the neurons are randomly
disabled in the training process. Furthermore, to avoid the overfitting, the data can
be subdivided into three subsets, namely training-, validation- and test set. The
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training set is used to train the model, and the model performance is evaluated
using the separate data set for validation.

The accuracy of fault classifications is also an important performance
measure of a machine learning model. Further, the algorithm should be able to give
a consistent accuracy when the input data is noisy or distorted. If the model
accuracy is not good, the model parameters can be optimized and retrained until
obtaining a good model. Machine learning algorithms require hyperparameters,
which should be properly set according to the intended application. Optimization
methods can be applied for tuning the hyperparameters of machine learning
algorithms, e.g Bayesian optimization and grid search. Further, complexity and
computational burden of algorithms need to be carefully evaluated to reduce the
cost and increase the implementation speed.

E.3 Description of the development stages for an online fault
diagnosis system

The development procedure detailed in the section E.2 is used to develop an
algorithm to detect multiple faults in electric powertrain under variable speeds. In
this section, the development stages of a machine learning algorithm for online
fault diagnosis system are presented, but the development of an embedded system
IS not considered.

E.3.1 Stage-1: Advanced signal processing and development of machine
learning algorithms

According to the system requirements or objectives (in Section E.2. 1) of detecting
multiple faults, namely inter turn in the stator winding, bearing and gear faults
based on machine learning algorithms, a CNN based binary classifier bank is
selected for the fault diagnosis application in this work. Park’s vector for the phase
currents, order tracking and normalisation for vibration and current signals, short-
time Fourier transform (STFT) for generating patterns or spectrograms are tools to
process the collected signals. The rationales of using the mentioned methods can
be found in literature and summarized in the Table E.3.
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Table E.3: Selection of signal processing and machine learning methods.

Objectives Selected methods refs.
Inter-turn faults in stator Park’s vector for the phase currents, [23-25]
winding, bearing and gear short-time Fourier transform (STFT),

faults

Variable speeds Order tracking and order normalisation [10-11]
Multiple fault detection CNN for the semi-automated feature [18]
and classification extraction and classification under

noises, variable speed and load conditions.

A block diagram of the developed algorithm detailed in [9] is given in Figure
E.2. First the current, vibration and the rotational speed signals of the electric
powertrain are collected. Then the order tracking algorithm [10-11] is used to
normalize the speed variation of the vibration and current signals. The shaft speed
and angular sampling are used in the order tracking and normalisation algorithm.

Next the processed signals are converted into spectrograms using STFT. Both
vibration and current signal-based spectrograms are combined to create an
extended spectrogram, which is fed into the CNN-based classifier. Based on the
time-frequency features in the spectrograms, the CNN algorithm finds patterns or
images to classify different health classes, e.g. good or defective, of the
components.

The individual classifiers of C1 — stator winding fault classifier, C2 — bearing
fault classifier and C3 — gear fault classifier, are first trained using the known
health classes. Since the binary classifiers are used for each fault type, 4 health
classes, namely healthy, stator winding fault, bearing fault and gear fault are
sufficient for the training. However, the algorithm can classify 8 health classes,
which include the trained single health classes and untrained multiple fault health
classes. After that, the trained model is used to predict health classes (healthy or
faulty) from new signals.
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Figure E.2: A block diagram of training and testing of fault diagnosis system in
the step-1 of the development process.

E.3.2 Stage-2: Development of online fault diagnosis system

Figure E.3 shows a block diagram of the developed online fault diagnosis system.
There are two subunits: health class predictor and decision maker. In the first
subunit, the health class of the collected signal is predicted. Next, several
consecutive results are collected and analyzed in the second subunit for the final

decision.

E.3.3 Data acquisition and processing buffer

For an online operation of the algorithm, two nested buffers have been used. In the
data acquisition buffer, the data inflow is controlled. A large data processing buffer
is used in case the length of the dataset is not sufficient for data processing. Further,
this data set is sent for data preprocessing and feature generation, where the
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extracted features via spectrograms are order-normalized. The trained CNN
classifier bank is applied on these processed spectrograms to classify the faults.

( Data from actual or virtual electric powertrain )

data acquisition buffer

Data processing buffer

Data preprocessing and feature generation

Health class prediction

iy ;

Predicted health class (N)
Predicted health class (N-1)

Y

Number the predicted healthy and faulty classes in a
buffer. Select a health class with the higher amount.

Decision maker
Buffer for predicted health class labels

|
| |
| |
| |
| |
| |
| |
| .. |
| |
! Predicted health class (1) l
| |
| |
| |
| |
| |
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| |
| |
| |

( Display the believed fault classes )

Figure E.3: The algorithm used in the online fault diagnosis system in the step 2.

E.3.4 Decision criterion of the online diagnosis algorithm

Confusion matrixes and Receiver Operating Characteristic (ROC) are commonly
used to analyse the performance of the trained machine learning model. In online
fault diagnosis applications, these measures cannot be obtained because the prior
information of the faults is unknown. Therefore, a new decision criterion is
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proposed in this study. Each classifier has three parallel buffers to store the
predictions. In each buffer, the health class label with the maximum count is
selected as the final decision. This method can compensate for false predictions
from unexpected noises or interferences.

E.4 Experimental tests and results

An electric powertrain shown in Figure E.4 is used to collect data for training,
validation and implementation of the developed online fault diagnosis algorithm.
The internal components of the electric powertrain are shown in the Figure E.5. As
shown in Figure E.6, seeded faults are introduced to the selected gear, bearing and
stator winding. Then the data is collected from 8 different single and multiple fault
conditions in various speed profiles.

Figure E.4: The experimental setup (IM: Induction motor, GB: Gearbox, PMSG:
Permanent magnet synchronous generator).

Figure E.5: The internal components of the electric powertrain.
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The speed profiles include constant speeds and variable speeds as described
in [9]. Based on the collected data, 50% of the data is used to train the model. 15%
of the data is used for the validation and another 15% of the data is used to test the
algorithm. The remaining 20% of the data is used for testing the online fault
diagnosis system performance.

Three binary classifiers work in parallel, and each of them focuses on one
type of fault. First, the individual CNN classifiers are implemented and trained
using the training data. Then the parameters of the algorithm are optimized using
Bayesian optimisation algorithm [26] until getting good performances for the
validation dataset. Finally, the optimized algorithm is tested using the test dataset.
Further, the online fault diagnosis system is implemented as discussed in section
E.3. The interface of the implemented online fault diagnosis system is shown in
Figure E.7, where the powertrain is in healthy condition. The measured vibration,
currents and estimated rotor speed are shown using three graphs. The displayed
signals are online analysed by the proposed algorithm and the results are displayed
in the pie charts.

(b)

Figure E.6: The faulty components of the powertrain. (a) damaged gear (b) outer-
race damaged bearing (c) 10% inter-turn short circuit fault in the stator.
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Figure E.7: The interface of the developed online fault diagnosis system for the
electric powertrain.

E.4.1 Stage-1: The machine learning model performances

The classification accuracies of the trained binary classifiers with the test
dataset are shown in Table E.4. For all the test cases, high classification accuracies
have been obtained. The classification accuracies for each classifier with mixed
fault cases are given in Table E.5. The C1 and C3 classifiers perform well for
multiple fault cases. However, the classification accuracy of the C2 is low in
multiple fault cases.
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Table E.4: Performance summary: individual classifiers.

Case  Classifier Component Fault ~ Test  Accuracy
ID ID Sw Bl Gl class (%)

1 - H H H HHH -

2 Cl F H H SHH 100

3 C2 H F H HBH  98.8

4 C3 H H F HHG  99.6

Sw: stator winding, B1: bearing 1, G1: gear 1, H: healthy, F: faulty.

Table E.5: Performance summary: multiple faults

Case ID Component Fault class Test Accuracy (%)

Sw Bl Gl Cl C2 C3
5 F F H SBH 100 86.8 87.8
6 H F F HBG 99.8 76.2 98.6
7 F H F SHG 100 715 100
8 F F F SBG 98.4 90.2 99.4

SBH: faulty stator, faulty bearing, and healthy gear.
HBG: healthy stator, faulty bearing and faulty gear.
SHG: faulty stator, faulty bearing and faulty gear.
SBG: faulty stator, faulty bearing and faulty gear.

E.4.2 Stage-2: Performances of the online fault diagnosis system

The performance of the online fault diagnosis system for three fault cases is
given in Figure E.8. Each pie chart shows the percentage of the predicted class
labels in each classifier for 20 consecutive predictions. The prediction label with
the highest count is selected as the believed fault type.
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Figure E.8: A snap shot of online fault diagnosis system performance (a) bearing
fault (b) stator winding and bearing faults (c) bearing and gear faults.

E.5 Conclusion

In this study, a complete procedure of developing an online fault diagnosis system
is presented. The developed fault diagnosis system based on this suggested
procedure is tested with the experimental data and implemented online on an in-
house setup. The fault diagnosis system shows good performance in training cases,
and the online fault diagnosis algorithm can predict multiple faults in the electric
powertrain under variable speeds reliably. The developed fault diagnosis system
can be used for online monitoring and detecting multiple faults in electric
powertrains.
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Towards Self-Supervised Feature
Learning for Online Diagnosis of Electric
Powertrain Faults

Jagath Sri Lal Senanayaka, Huynh Van Khang, Kjell G. Robbersmyr

Abstract— This paper proposes a novel online fault diagnosis scheme
for industrial powertrains without using historical faulty or labelled training
data. The proposed method combines one-class support vector machine
(SVM) anomaly detection and supervised convolutional neural network
(CNN) algorithm to online detect multiple faults and fault severities under
variable loads and speeds. The one-class SVM algorithm is to derive a score
for defining faults or health classes in the first stage, and the resulting health
classes are used as the training data for the CNN -based classifier in the
second stage. Within the framework, the self-supervised learning of the
proposed CNN algorithm allows the online diagnosis scheme to learn the
features based on latest data. The effectiveness of the proposed scheme is
validated via a comparative study using experimental data from an in-house
test setup. Finally, the online implementation of the proposed algorithm on
the test setup is briefly introduced in this work.

Index Terms— One-class support vector machine, convolutional neural
network, fault diagnosis, electric powertrains, self-supervised learning
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F.1 Introduction

Reliable operation is the most important in industrial machines or electric
powertrains, including electric motors [1], gearboxes and loads such as fans,
pumps, conveyor belts, robotic arms, etc. Electrical and mechanical faults, namely
inter-turn, bearing and gear faults, are common in interconnected complex
systems. Condition monitoring (CM) and fault detection and diagnosis (FDD)
techniques are therefore required to monitor the health status of industrial
machines and ensure their safe and reliable operation. To achieve this, analysis
methods of various sensor data, such as vibration, acoustic emission, motor
current, temperature, lubricant oil, have been intensively developed for CM and
FDD, mainly focusing on stationary quantities. Complexity of machines, variable
loads and speeds renders challenges due to nonstationary signals, requiring lot of
research in industrial and academic communities in recent years [2,3].

A summary of the most recent research on CM and FDD is presented in
Table F.1, showing different condition monitoring and fault diagnosis approaches
and their suitability for a powertrain consisted of electric motors, gearboxes and
loads. The FDD methods can be broadly classified into model-based, data-driven
or hybrid algorithms [2-5]. The model-based fault diagnosis requires precise
physical models and parameters of the implemented system, which is difficult to
obtain in reality. A data-driven method using statistical or machine learning
algorithms does not need such physical models, making it attractive for an
automatic diagnosis system. Various combinations among signal processing,
statistics and machine learning methods have been intensively proposed in data-
driven approaches for CM and FDD. Signal processing and statistical methods
[6,7] need an identification of the fault-related characteristic frequencies or
statistical features from the data being used for FDD with fixed or statistical
thresholds. These methods are simple but are only applicable to single fault
diagnosis. Multiple faults in a complex system require more advanced solutions.
For example, mixed faults in a gearbox can be detected by a combination of
traditional machine learning methods and data fusion [8]. However, expert
knowledge to derive features manually for the algorithm, resulting in a time-
consuming work, is the main disadvantage of using conventional machine learning
methods.
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Supervised deep learning methods were suggested to address the difficulty
of feature generation [8-11], but the supervised deep learning methods for CM and
FDD applications require a lot of historical faulty data for training. Unsupervised
feature learning methods such as autoencoders (AEs) [9] require unlabeled data
for healthy and faulty conditions, but historical data for faults may not exist for
new machines, and autoencoder feature learning becomes irrelevant for such cases.
On the other hand, transfer learning [12] is suggested to reuse the learned feature
from one application to another, but these methods must use labelled training data
for fine-tuning. An online fault diagnosis algorithm for an electric powertrain,
based on supervised learning is proposed in [13,14], and a lot of training data is
required to train the algorithm, which is restricted in practice. To avoid labelled
data demanding in an online diagnosis system, self-supervised learning can be a
promising solution. The self-supervised learning is a relatively new concept, and
their existing applications are mainly focus on image classification, pattern
recognition and robotics [15-17]. The advantage of self-supervised learning is that
it does not require prior labels and can learn features online. No previously
published work has tackled the labelled data problem for an online diagnosis of
electric powertrains.

To address limitations of the existing data-driven fault diagnosis methods
shown in Table F.1, namely limited faulty data, computation burden, offline
implementation, expertise demand, this work proposes an online fault diagnosis
algorithm including two stages. The first stage based on one-class SVM is to online
detect multiple faults of an electric powertrain under variable speed and load
conditions in an unsupervised way as a component risk analysis, and automatically
store healthy and faulty data for the second stage. In the first stage, any deviation
from healthy status is defined as an anomaly or fault, but the location of the fault
is unknown. The one-class SVM algorithm [18, 19] calculates a distance or hyper-
length between data points in the feature space to define whether the machine is
healthy or faulty based on healthy machine data alone. The trained SVM algorithm
separates the healthy data from faulty one. In the second stage, the stored data from
the first stage is fed in a supervised fault classifier using convolutional neural
network (CNN) to make a self-supervised feature learning and accurately isolate
multiple faults online (or fault classifications). Within this framework, a novel
decision criterion based on classification scores is proposed for the multiple fault
diagnosis. Further, a comparative study is presented to highlight the effectiveness
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of the proposed method. Finally, an online implementation of the proposed scheme
is validated on an in-house test setup.

The rest of this paper is organized below. Section F.2 presents details of the
proposed fault diagnosis scheme. The experimental details and results are
discussed in Section F.3. The conclusion of this research study and future research
directions are given in Section F.4.

F.2 Proposed fault diagnosis scheme.

A block diagram of proposed fault diagnosis scheme is given in Figure F.1, where
the vibration, speed and current signals are collected from the gearbox, and motor.
The collected vibration and current signals are order-normalised to remove the
speed variation, and spectrograms are derived from the order normalised ones
using short-time Fourier transform (SFFT) [14, 29-31]. These vibration and motor
current spectrograms are combined as one spectrogram for each sample and stored
in the cloud data storage.
The proposed online diagnosis scheme consists of two main stages, namely

1. Stage 1 - Unsupervised fault detection algorithm is to define the machine is
healthy or faulty, but local faults or detailed locations of the faults are unknown.

2. Stage 2 —online multiple fault classification and decision making based on self-
supervised feature learning, feature-level data fusion, supervised CNN fault
classification.

This study focuses on multiple faults on gear, bearing and stator winding under
variable speeds and loads. However, the concept can be extended to other faults
and working conditions. The details of each stage are given in the following
sections.
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Figure F.1: A block diagram of the proposed fault diagnosis scheme for Electric
Powertrain.

F.2.1 Stage 1: unsupervised fault detection

In industrial applications, data of healthy machines can be easily obtained, but data
for faulty ones is restricted or unavailable. Training a data-driven model using
healthy data alone is practically of importance in CM. In this study one-class SVM
is used to identify the healthy cases using available healthy data, and then any data
point different from healthy cases is considered as an anomaly. The aim of this
anomaly detection (also referred as outlier detection) is to determine all such
occurrences in a data-driven algorithm. In the one-class SVM, the input data is
mapped into a high dimensional feature space using a kernel function to find the
maximum margin hyperplane or the best separation of the training data from the
origin [18, 19, 32]. Figure F.2 shows the one-class SVM concept.
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The hyperplane defines the classification rule.

fX)=<w,x>+b

where w is the normal vector, and b is the bias term.

Consider a test example x. If f(x) < 0 then x is an anomaly, otherwise X is

normal.

Training samples

/

Support vectors /

Original

Outliers

Projection in
feature space

Support vectors
/ Training samples

/
/OO/

© /f>0

$ o

f<0

Feature space f

Figure F.2: A classification based on one-class SVM with two features.

(F.1)

To get the above decision rule, solving the one-class SVM optimization problem
(using kernel function), is equivalent to solving the following dual quadratic

programming problem:

min 1
o E C{i(le(xi,x]')
i,j

Subject to the constraints

1
< = and E :
0 < > a;

i
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where a; is the Lagrange multiplier, and is the “weight” on example i such that
vectors associated with non-zero weights represent “support vectors” and uniquely
determine the optimal hyperplane. v is a parameter to control the trade-off between
the maximum distance of the hyperplane from the origin and the number of data
points contained by the hyperplane, [ is the number of points in the training dataset,
and K(xi,xj) is the kernel function [18, 19, 32]. This study uses Gaussian kernel
given in (4).

2

i

K(xi,xj) =e 242 (F.4)

where 2 is the variance.

Three main steps in stage 1 of the proposed unsupervised fault detection
algorithm are as follows

1) Train the boundaries for healthy class using features (RMS of vibration
signal, RMS of motor current signal and motor speed) and one-class SVM.

2) Calculate the score from the trained one-class SVM for coming data in
dynamic manner and take the average of latest samples. In this study, 20
latest samples are selected for the average score calculation. Depending on
application, better averaging criteria can be revised.

3) Compare the average scores to define machine status. If the score is greater
than zero, the machine is healthy, and otherwise, machine is faulty.

F.2.2 Stage 2: online multiple fault classification

The detailed flowchart of the operation of the proposed fault diagnostic scheme is
given in Figure F.3, where the green colour boxes and lines represent the stage-1
algorithm, and the remaining boxes and lines represent the stage 2 algorithm. Once
a fault is detected in stage 1, a temporary class label (e.g. Fault type 1 (FT-1)) is
assigned. In the stage 2, the supervised CNN algorithm is trained using healthy
data and the FT-1 data. In this self-supervised feature learning method, the
algorithm can learn features related to multiple faults (FT-1, 2, ...). The algorithm
keeps a bank of feature types learned from the cloud data storage. For new data,
the learned feature set is applied to generate a score, which represents the similarity
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of new data respective to the corresponding feature type. The final decision is taken
based on the decision defined in the Table F.2. When the powertrain is repaired,
the actual label is available, and maintenance department can update the FT-1 with
a correct label.

Cloud data storage

| ibrati Order normalised
Class (RMS 0 wbratlon,) vibration and current
labels current and speed spectrograms
J
* Y Y

Y Y
New
FffatUVQSfOFfaH't (spectrograms) < Healthy ><Faulttype1> (FaulttypeZ) (Faulttypel\D
detection (RMS of signals )

Self-learned features Supervised Supervised Supervised
from CNN feature dlassification: || classification: | classification: |
CNN1 CNN 2 3

learning

Trained one-class
SYM

CNN N

A

Calculate the class
score using CNNs
Y
( Maintenace
Gelf feature Learning, online diagnosis and decision making)< —————— Department .

Health class deviation Fault classification ' Fault Diagnosis Results
warnings for the machine T >
operator/analysis expert ;

Note: The green color boxes and lines represent the stage-1 algorithm and the remaining boxes and lines
represent the stage 2 algorithm

Figure F.3: Detailed flowchart of stage-1 and -2 of the proposed fault diagnosis
scheme.

In most existing CNN based fault diagnosis methods, pre-labeled training
data is required. In this work, the proposed self-supervised feature learning based
on CNN in stage 2 does not require any pre-labeled training data. It uses only the
temporary labels after stage 1 in self-supervised feature learning. A simplified
block diagram of the CNN architecture is presented in Figure F.4. The algorithm
consists of two main subsections: feature learning and classification. The 2-
dimensional (2-D) convolution can be applied to an image with different sets of
kernels (or shared weights) using a neuron map, in which the weights are optimized
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by using a backward propagation algorithm. The convolution operation used to
identify the local features of the input images. The convolution combined with
pooling is to reduce the dimensionality, allowing for simplifying the structure of a
fully connected neural network for the classification. The rectified linear unit
(ReLU) introduces the non-linearity to the system. Details of the CNN training and
analysis can be found in [33].

Input spectrogram

+

Convolution +ReLU

Pooling
-

Convolution +ReLU

Pooling

]

Flatten

Full connection

SoftMax
-

Output fault classes

Classification Feature Learning

Figure F.4: A block diagram of a CNN architecture.

The learned complex relations in the feature space are utilised in a fully
connected neural network for the fault classification. The Flatten operation is
essential for converting a 2-D image to the 1-D array. Based on derived features
in the convolution and pooling operation, the classification task is done by the fully
connected network and Softmax function. The Softmax function converts the
outputs of the fully connected network to probabilities of health classes. The
highest probability value represents the output fault class of the network. Once
trained, the output of the Softmax layer is used to produce a score to define the
similarity of given input images respective to the learned feature map.
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Order

Time (s)

Figure F.5: Order normalized vibration spectrogram with a gear fault.

Order

Figure F.6: Order normalized current spectrogram with a stator winding fault.

CNN is well known as a pattern recognition algorithm, which can detect the
patterns within data. Figure F.5 shows a sample of an order normalized vibration
spectrogram of a gear tooth damage fault, where the amplitudes of gear meshing
frequencies and its harmonics are clearly visible (within red dotted lines), being
detected by a CNN classifier. Compared to healthy spectrograms, any visible
changes are not observed in the current spectrum for gear faults. However, in the
case of stator winding fault, 3-times supply frequency components appear in the
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current signal spectrum as shown in Figure F.6. Since vibration and current
spectrograms are combined as one image and fed to CNN, the feature level fusion
is applied, allowing the CNN to learn from both vibration and current
spectrograms. The trained CNN is used to generate a label for new data
(spectrograms). As shown in Figure F.4, the Softmax layer output is a score,
representing the similarity of new data with respect to a trained fault type. A bank
of CNN-based classifiers are to generate scores for new data of multiple fault
types. The generated scores are used for a final decision. An outline for a
preliminary decision criterion is shown in Table F.2.

Table F.2: Decision criteria for the final decision.

feature type

S
@c}c} o © . : é\OQ é&e

U é\c; & %\)&@& oF Qo&&b

DT1 score < 0.25 for - Healthy HC
each feature type

DT2 0.25<Score<0.5 - Healthy MC
for each feature
type

DT3 0.5 <score <0.75 score < 0.25 for remaining FT1 MC
for only one feature types

DT4 feature type (e.g 0.25 < score < 0.5 for least FT1 LC
FT1) one remaining feature type

DT5 0.75 <score<0.9 score < 0.25 for remaining FT1 HC
for only one feature types

DT6 feature type (e.g 0.25 < score < 0.5 for least FT1 MC
FT1) one remaining feature type

DT7 score < 0.25 for remaining FT1 HC

feature types

DT8 0.9 <score for 0.25 < score < 0.5 for least FT1 MC
only one feature  one remaining feature type
type (e.g FT1)

DT9 0.5 < score for - Multiple -
more than one faults

HC: High confidence, MC: Medium confidence, LC: Low confidence
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The proposed decision criteria in Table F.2 are suggested criteria, which have not
been optimized and can be improved further in future work since no standard was
defined or available in literature. The multiple fault decision criterion is simplified
in this work.

F.3 The Experimental data and results

F.3.1 Experimental setup and data

The in-house experimental setup shown in Figure F.7 is used to collect data and
validate the proposed fault diagnosis scheme. The powertrain includes a 1.1 kW,
1450 rpm induction motor (IM) coupled to the 2-stages parallel shaft gearbox (GB)
with 8.01 gear reduction. The gearbox is coupled to a permanent magnet
synchronous generator (PMSG), and the generator output is connected to a
resistive load. The powertrain load is proportional quadratically to the rotational
speed. The output currents of the PMSG are measured and used to estimate the
rotational speed of the electric powertrain. However, in real applications, an
encoder can be required for speed measurements. The internal components of the
complete powertrain are disassembled as shown in Figure 8, including 8 bearings,
4 gears and 3 shafts.

Figure F.7: The experimental setup.
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Figure F.9: The faulty gears of electric powertrain.

(@) small gear tooth damage (GF1), (b) moderate gear tooth damage (GF2), (c)
broken gear tooth (GF3), (d) Outer-race damaged bearing (BF2), (e) 10% inter-
turn short circuit fault in the stator (SF2).

The G1 gear in the powertrain, Figure F.8 has three fault severities: a
small-scale gear tooth damage (GF1), a medium-scale tooth damage (GF2), and a
broken tooth damage (GF3) as shown in Figures. F.9 (a), (b) and (c), respectively.
Outer-race defects on the bearing B1 of the induction motor (IM) are made by
using an electric discharge machining, and three bearing severities BF1, BF2 and
BF3 are produced with 1, 2 and 3mm radius surface damages. The bearing shown
in Figure F.9 (d) represents an outer race damage with 2 mm radius (BF2). Further,
stator winding faults in the induction motor of 6% (SF1) and 10% (SF2) inter-turn
short circuit faults are introduced in one phase as shown in Figure F.9 (e).

Eleven fault classes with individual and multiple faults are tested, and the
details of fault classes are given in subsections F.2.2 and F.3.3. As specified in
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Figure F.10, the induction motor operates at one constant speed of 1450 rpm and
two variable speed profiles for each fault class. Two load levels of 55% and 100%
the rated motor torque are applied to the constant speed profile. In the variable
speed operation, the load also dynamically varies. A vibration sensor is used to
collect vibration data, and a current sensor is used to collect IM current. The rotor
speed is estimated using the PMSG current signal.

The sampling rate of the data acquisition system was 20 kHz. The data
samples (120 seconds duration) are collected, and for each fault class, 5 repeated
tests were conducted. Each 120-seconds file has 24x1075 data points, and 191
samples are derived from each file with a section window (120000 data points
representing 6 second of data), shifting the window by 12000 data points.
Therefore, each fault class has 3820 samples. As described in Figure F.3, RMS of
vibration and current, and the speed are recorded for stage 1 - unsupervised fault
detection algorithm. Stage 2 - CNN algorithm uses order-normalized spectrograms
generated from each signal. The first 100 orders are clipped in the vibration
spectrograms, while in the current spectrograms, the first 10 orders are clipped.
The dimension of each signal is 113x226. The spectrograms from each vibration
and current samples are combined to produce images of 226x226 dimension, being
fed to CNN-based multiple fault classifiers. In the next subsections, performances
of stages 1 and 2 are individually evaluated before combining them in the proposed
online scheme as shown in Figure F.3.
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Figure F.10: Constant and variable speeds of each fault class.
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F.3.2 Performance of Stage 1 - unsupervised fault detection

The proposed anomaly detection algorithm based on one-class SVM is
implemented as discussed in section F.2.1, detecting whether machine status is
deviated from its healthy status or not. Figure F.11. illustrates the vibration RMS
of four gear fault classes in the G1 gear. Using the RMS of vibration signal alone
is not able to detect a gear fault in variable loads and speeds as the RMS of
vibration depends on load and speed variations.
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Figure F.11: RMS vibration for fault classes in G1 gear.

Figure F.12 shows the RMS of current under different gear fault cases, showing
that the RMS current is not a reliable indicator to detect a gear fault since the RMS
differences among fault severities are unclear. It is difficult to define a fixed
threshold to detect a fault in both signals, thus a new health indicator is required
for the fault detection in variable loads and speeds. In this work, a consistent health
class indicator is produced by fusing the healthy classes based on RMS of vibration
current signals, and rotor speed in the one-class SVM.
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Figure F.12: RMS current for fault classes in G1 gear.

The trained one-class SVM algorithm is used to calculate scores for
different fault classes. Figures. F.13, F.14 and F.15 show the scores of gear,
bearing, and stator winding faults at different fault severities, in which a
component is defined as a healthy one if the score is greater than 0 (healthy: score
> 0), otherwise it is a faulty one (faulty: score < 0).

40
O H
35 X GF1
* GF2
30T + GF3

One-class SVM Score

1 |

_5 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Sample ID

Figure F.13: One-class SVM score for gear faults.
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Figure F.14: One-class SVM score for bearing faults.
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Figure F.15: One-class SVM score for stator winding faults.

The average accuracies of the stage 1 - one-class SVM algorithm are summarised
in Table F.3. For the healthy class (H), the one-class SVM score is greater than 0
for 99.9% of the test samples. The scores become negative with the accuracies of
98.6%, 95.9% and 92.0% for the gear fault severities GF1, GF2 and GF3 classes,
respectively. More than 99.9% detection accuracies can be observed for other fault
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classes, namely bearing and stator winding fault severities, and the proposed fault
detection algorithm works well for detecting the tested fault classes. It is worth
mentioning that the state 1 is to identify whether a component is healthy or faulty,
which is not able to know a fault type or severity. In an online diagnosis
application, the fault classes are unknown, and fault isolation is not possible at
stage 1.

Table F.3: One-class SVM performances for fault detection.

Faultclass  Fault Detection score Detection Powertrain
ID class (%) criteria Status
1 H 99.9 Score >0 Healthy
2 GF1 98.6 Score <0 Faulty
3 GF2 95.9 Score <0 Faulty
4 GF3 92.0 Score <0 Faulty
5 BF1 100.0 Score<0 Faulty
6 BF2 99.9 Score <0 Faulty
7 BF3 100.0 Score <0 Faulty
8 SF1 100.0 Score <0 Faulty
9 SF2 99.9 Score<0 Faulty

Therefore, a self-supervised feature learning procedure is implemented at
stage 2, where temporary labels are assigned to incoming data from the faulty
component, being stored in the cloud data storage. In the stage 2, the spectrograms
from healthy powertrain and faulty components (with temporary fault class labels)
will be used to train a CNN for detecting the features of temporary fault class. The
decision criteria explained in Table F.2 will be used for isolating the single and
multiple faults.

F.3.3 Performance of Stage 2 - supervised CNN fault diagnosis
algorithm

Consider a practical gear fault scenario, where a small fault originates, and the
severity gradually increases over time. Hence, the lowest severity data is first
available. Once a faulty case is detected as a gear fault 1 (GF1) using stage 1 -
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one-class SVM algorithm, the supervised CNN algorithm for GF1 or GF1-CNN
algorithm can be trained using data at healthy and at gear fault 1 (GF1) severity
level,, which is a small gear tooth damage. Similar scenarios are trained for bearing
and stator winding. The trained CNN algorithms of stage 2 have been tested with
other fault classes, and classification accuracies are summarized in Table F.4.

Table F.4: Classification accuracies of CNN classifiers.

Fault Accuracy (%)
Class ID Fault Class GF1-CNN BF1-CNN SF1-CNN
1 H 98.6 99.6 99.8
2 GF1 94.1 99.6 100
3 GF2 98.6 99.5 100
4 GF3 99.1 99.6 100
5 BF1 94.9 90.0 100
6 BF2 96.2 99.0 100
7 BF3 82.5 99.0 100
8 SF1 80.1 99.0 99.7
9 SF2 82.7 99.0 99.7
10 GF2_BF2 93.4 67.4 99.6
11 GF2_BF2_SF1 97.1 72.1 98.1

The GF1-CNN classifier can detect healthy class with high accuracy of
98.6% as shown in the first row of Table F.4. Further, it can effectively detect other
gear fault severities of GF1, GF2 and GF3 at accuracies of more than 94.1%.
Moreover, the GF1 classifier classifies bearing fault severities (BF1, BF2 and BF3)
as ‘healthy’ respective to the learned gear faults features with a minimum accuracy
of 82.5%. Correspondingly, it classifies stator winding faults (SF1 or SF2), as the
‘healthy’ respective to the gear fault features with a minimum accuracy of 80.1%.
When a gear fault occurs with other faults, the GF1-CNN classifier can detect it
correctly with accuracies of over 93.4% (93.4% for the fault class 10, and 97.1%
for the fault class 11 in Table F.4). Similarly, single fault diagnosis with accuracies
of over 90.0% and 99.7% can be obtained with BF1-CNN and SF1-CNN
classifiers, respectively. However, the BF1-CNN classifier is able to detect
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multiple faults at the moderate accuracy of 67.4% and 72.1%. In future studies, the
reasons for low accuracies will be investigated.

F.3.4 Comparison with other fault diagnosis algorithms

A comparative study is used to highlight the performance of the proposed CNN
fault diagnosis algorithm. Classifiers (GF1-MLP, BF1-MLP, and SF1-MLP)
based on domain features (DF) and multi-layer perceptron (MLP) algorithms are
used in as the first baseline algorithms in the comparison. The MLP consists of
two layers. The average order spectrums of time-domain signals are derived, and
the amplitude of fault-related characteristic frequency orders are extracted as
features. The fault-related characteristic frequency orders used for feature
generation are summarized in Table F.5 with 9 features.

Table F.5: Characteristics frequency orders for Domain features.

Feature Signal Order
1X IM rotational order Vibration 1X
2X IM order Vibration 2X
3.6X IM rotational order Vibration 3.6X
Input shaft 1X gear mesh frequency Vibration 23X
(GMF)

Input shaft 2X GMF Vibration 46X
Output shaft 1X Vibration 0.12X
Output Shaft 1X GMF Vibration 8.1X
Output Shaft 2X GMF Vibration 16.25X
3X (three-time current frequency) Phase current 3X

Domain feature generation is a time-consuming task, requiring the details of
gearbox components (e.g: number of teeth in gears, number of balls in bearings
etc.), signal processing and fault diagnosis expertise. However, the proposed CNN
pattern recognition algorithm does not require the details of gearbox components
and signal processing to calculate characteristic frequency features. The CNN
algorithm can learn the fault-related time-frequency patterns from data. The
second baseline classifiers (GF1-SVM, BF1-SVM, and SF1-SVM) consist of DF
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with a binary SVM algorithm using Gaussian kernel Therefore, three types of
classification methods for each fault type result in nine classifiers in Table F.6.
showing the classification accuracies at different fault types and severities.

Table F.6: The classification accuracies of different classifiers.

Classification
accuracies (%)

Fault
Class GF1- GF1- GF1- BFl1- BFl1- BFl- SFi- SF1-  SF1-
1D Fault Class SVM MLP CNN SVM MLP CNN SVM MLP CNN
1 H 97.1 97.8 986 948 93.7 99.6 100.0 100.0 99.8
2 GF1 974 976 942 675 65.1 99.6 95.4 97.0 100.0
3 GF2 68.4 916 986 55.0 67.0 995 434 98.0 100.0
4 GF3 714 813 991 530 57.1 99.6 60.0 100.0 100.0
5 BF1 81.1 753 949 947 94.0 90.0 99.0 100.0 100.0
6 BF2 541 827 962 790 805 99.0 90.0 100.0 100.0
7 BF3 51.0 770 825 99.0 99.0 99.0 63.0 100.0 100.0
8 SF1 76.0 940 801 60.0 99.0 99.0 100.0 100.0 99.7
9 SF2 71.0 950 827 61.0 980 99.0 100.0 100.0 99.7
10 GF2_BF2 880 800 934 860 89.0 674 600 100.0 99.6
11 GF2_BF2_SF1 970 840 971 96.0 70.0 72.1 98.0 75.0 98.1
Average 775 869 925 76.9 82.9 93.1 82.6 97.3 99.7
Minimum 51.0 753 80.1 53.0 57.1 67.4 43.4 75.0 98.1
Maximum 974 978 991 99.0 99.0 99.6 100.0 100.0 100.0

All gear fault algorithms (GF1-SVM, GF1-MLP and GF1-CNN) classifies the
healthy class with accuracies over 97.1%. The GF1-SVM has the lowest
performance with minimum and average accuracies of 51.0% and 77.5%,
respectively while those minimum and average accuracies of the GF1-MLP are
75.3% and 86.9%. The proposed GF1-CNN classifier has the best performance
with the minimum and average accuracies of 80.1% and 92.5%, respectively. The
GF1-SVM classifier has the lowest average performances, but still the
classification accuracy of its original trained class (GF1) is 97.4% while having
moderate accuracies for other fault classifications. Domain feature-based
classifiers (binary SVM and MLP) have some lower accuracies due to the
limitations of DF, and the amplitudes of characteristics frequency bands are
calculated from average order spectrum, which contains approximations for the
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dynamic load and speed operations. However, the CNN feature learning covers the
local regions in the spectrograms for dynamic operations, resulting in a better
feature learning. The CNN-based classifier can compensate for spatial deviation
of fault-related frequency bands in the spectrograms produced in order
normalization algorithm during sudden speed changes. This cannot be achieved in
DF-SVM and DF-MLP. Therefore, the performances of CNN classifiers are better
than the other two methods.

F.3.5 Classification score and decision criteria

In the proposed algorithm, the score generated by Softmax layer of CNN is used
for final decision. The reason is that the score gives more information than using
final labels like existing studies [8, 27]. The scores of CNN-based classifiers for
all data samples are calculated, and the average scores of all fault classes are
summarized in Table F.7. The decision criteria explained in Table F.2 are used
for final decisions. The score of the GF1-CNN classifier for healthy data is O.
However, the scores for GF1, GF2 and GF3 are high and more than 0.95.
Therefore, the GF1-CNN classifier can isolate gear faults at GF1, GF2 and GF3
severities with high confidences. In the best case, the score of the GF1-CNN
classifier is closer to zero except gear faults. When data of bearing faults - BF1,
BF2 and BF3 is fed to the GF1-CNN classifier, the average scores are 0.01, 0.05
and 0.37, respectively. This proves that the GF1-CNN classifier (gear fault
classifier) classifies the first bearing fault severities BF1 and BF2 into being not a
gear fault with high confidence at while the bearing fault severity is classified into
a similar one at a medium confidence. Figure F.16 illustrates the average scores of
each classifier for single fault classes. Each classifier can independently isolate
faults for respective trained fault classes with minimum missing and false alarms
for data samples of other fault classes.

When multiple faults occur in the studied powertrain (fault classes 10 and
11), the GF1-CNN can isolate gear faults (0.76 and 0.96 scores). The SF1-CNN
classifier also performs well for single and multiple faults. The performance of the
BF1-CNN classifier is good for all single bearing fault detections, but moderate
(0.71 for class 10 and 0.74 for class 11) for multiple fault detection.
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Table F.7: CNN scores for various fault classes

Fault Fault class Score
class Name GF1- BF1- SF1- Final Decision
ID CNN CNN CNN Decision type
1 H 0.00 0.00 0.00 healthy DT1
GF1 0.96 0.00 0.00 GF DT7
GF2 095 0.06 0.00 GF DT7
GF3 098 0.02 0.00 GF DT7
BF1 0.01 0.90 0.00 BF DT7
BF2 0.05 0.95 0.00 BF DT7
BF3 0.37 0.93 0.00 BF DT8
SF1 0.33 0.00 0.99 SF DT8
SF2 0.33 0.00 1.00 SF DT8
10 GF2_BF2 0.76 0.71 0.00 Multiple DT9
11 GF2 BF2 SF1 096 0.74 1.00 Multiple DT9
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Figure F.16: Average scores of each CNN classifier for single fault classes.
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F.3.6 Online implementation of the proposed algorithm

The online implementation of the proposed diagnosis scheme is briefly discussed
in this section. The first interface is for data acquisition, where the vibration and
current spectrograms are displayed to the machine operator together with the
rotational speed. The one-class SVM was trained using data in the healthy
powertrain under variable loads and speed conditions. The trained algorithm is
used for calculating the score for online fault detection, and the scores for latest
800 samples are displayed in Figure F.17. The interface shown in Figure F.17 is a
situation when the healthy machine operates at variable speed conditions, thus the
health status indicator shows the green color (red for faults). After detecting a fault,
a temporary label is assigned to new data (e.g. FT1), and a CNN-based classifier
is trained using healthy and the fault data (FT1). The learned CNN feature set are
used for generating a score (from 0 to 1) to define the similarity level of the new
spectrogram data with respect to the learned fault types or severities. Multiple
CNN classifiers are trained for detecting other fault types so that they calculate
scores for new spectrogram data as shown in Figure F.3.
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The decision criteria defined in Table F.2 are used for the final decision or
classification. The scores for 3 CNN classifiers for GF2 data are shown in Figure
F.18, where the score for fault type 1 (GF1-CNN) is closer to 1, and the scores for
others are closer to zero. The CNN based classifiers for fault types 4 and -5 are not
trained yet, being open for training next faults. The historical CNN scores are also
displayed, being useful for a machine operator to define a machine condition. The
historical scores of the CNN classifiers for the first 3 classifiers are shown in
Figure F.19, in which some sudden score changes depend on the dynamic
operation conditions, but the average scores are always consistent over time.

F.4 Conclusion

This paper proposes an online fault diagnosis scheme, aiming to use data in healthy
condition alone by learning the features for fault diagnosis in a self-supervised
manner. The powertrain health status or health class is defined in the first stage by
using a one-class SVM. The resulting health classes are used to train the CNN -
based classifiers. The comparative study shows that the proposed method performs
better than those using domain feature extraction and existing algorithms, namely
binary SVM or MLP. The order normalization process and CNN feature learning
allow the proposed fault diagnosis scheme to perform well in dynamic operating
conditions. The effectiveness of the proposed fault diagnosis scheme is validated
using experimental data from an in-house test setup. In the proposed scheme, data
of the lowest fault severity is used for training the CNN classifiers, but the trained
algorithm can detect faults at higher severities, proving the generalization ability
of CNN feature learning. The proposed scheme can be improved by testing the
robustness under noises, revising decision criteria, self-supervised image learning,
wireless sensors, and online diagnosis.
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