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Summary

Due to the increased focus on pollution and global warming, there is a demand for energy

efficient systems. This also applies to the offshore oil and gas industry. Normally used

hydraulic systems tend to suffer from low energy efficiency, especially when operating

with part loads. In the last decades, a new pump and motor technology has experi-

enced increased interest due to the potential of high energy efficiency in a wide range of

operation conditions. This new technology is called digital displacement machine techno-

logy. Nowadays, there is a desire from the offshore oil and gas industry to use this digital

displacement machine technology to design highly efficient hydraulic winch drive systems.

The main objectives of the work presented in this thesis are to design a controller

for a digital displacement winch drive system and evaluate its control performance. The

design of a controller is one part of the work needed to realizing a winch drive system

with digital displacement machines. A winch with a lifting capacity of 20000 kg and a

drum capacity of 3600 m of wire rope is used as a case study.

Digital displacement machines have strict requirements for the on/off valves used to

control each cylinder chamber. It is important to activate the valves at optimal times

to ensure operation with high energy efficiency and low pressure and flow peaks. Only

a small mistiming of the valves will affect the performance of the digital displacement

machine significantly. One of the first contributions presented in this thesis is a method

for defining how early or late the valves can be timed without reducing the energy efficiency

significantly.

The control of digital displacement machines is complicated and non-conventional.

Each cylinder can be controlled individually and multiple displacement strategies can be

used to achieve the same displacement. Each displacement strategy has its dynamic re-

sponse characteristics and energy efficiency characteristics. The dynamic response charac-

teristics of the drive system are highly relevant when designing control systems. Therefore,

in addition to the conventional classical controller, also a suitable displacement strategy

must be designed. Designing controllers for digital displacement machines are therefore

more complex than designing controllers for conventional hydraulic machines.

One of the main focuses of this project has been to analyze the transient and steady-
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state response characteristics of different displacement strategies. In all, three displace-

ment strategies are examined: full stroke displacement strategy, partial stroke displace-

ment strategy and sequential partial stroke displacement strategy. Also, during this work,

a new version of the partial stroke displacement strategy has been developed and included

in the dynamic response analysis.

The dynamic response analysis is a simulation study, where the simulation model is

experimentally validated. The experimental work is conducted on a prototype of a single

cylinder digital displacement machine. The prototype consists of a five cylinder radial

piston motor where one cylinder is modified to operate with the digital displacement

technology. The rest of the cylinders are not changed and not used. In addition to vali-

dating the simulation model, the prototype is used to test all of the analyzed displacement

strategies in low speed operation.

The results from the dynamic response analysis are used to select the displacement

strategy that is most suited for use in a winch drive system. Then, controllers for the

digital displacement winch drive system are developed. The main focus in the control

design phase is not to design a new type of controller but to examine already developed

controllers and fit them to a winch system driven by digital displacement machines. In

the end, the simulation results of the designed controllers are shown and the results are

discussed. The simulation results show that digital displacement machines can be used in

winch drive systems and achieve both high motion control performance and wire tension

control performance.
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Chapter 1

Introduction

The main objectives of the work presented in this thesis are to design a control system

for a secondary controlled high torque low speed digital displacement motor and evaluate

its control performance. The need for such a control system origins in the potential of

using digital displacement machines in offshore winch drive systems in, for example, a

subsea crane. This chapter gives a short introduction to current hydraulic winch drive

systems, followed by a presentation of a new alternative: the secondary controlled digital

displacement winch drive system. This leads to a presentation of the digital displacement

machine. At the end of this chapter, the research objectives and the main contributions

are presented in addition to the reading guidelines.

1.1 Offshore Winch Systems and Their Drive System

Big offshore winches are typically found on subsea cranes on floating vessels. They are

normally used for deployment, recovery and relocation of equipment on the seabed. Float-

ing vessels tend to move up and down due to waves. This vertical motion is often called

”heave motion”. This heave motion makes subsea lifting operations challenging, especially

in rough weather conditions.

Winches used in subsea lifting operations have a safe working load (SWL) from a few

tonnes up to 900 tonnes and can operate in water depths beyond 3000 m. The winch is

normally a single drum type. The drum is large and designed to accommodate a long wire

rope arranged in several overlapping layers. The winch drum is normally actuated by one

or more high speed hydraulic motors with gearboxes. The driving torque is transfered to

the winch drum through a pinion and gear ring mounted on the drum. Figure 1.1 shows

an example of a subsea crane with an offshore winch actuated by 12 hydraulic motors.

The winch is normally controlled by a human operator that operates a joystick. In

harsh weather conditions where the vessel has a significant heave motion, additional

1
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Winch 

drum

Hydraulic 

motors

Wire rope

Winch 

drum

Hydraulic 

motors

Wire rope

Figure 1.1: Subsea crane equiped with a hydraulic winch system [1].

control systems may ease the operation and increase the weather window of operation.

The weather window is a set of weather conditions, for example wind speed and wave

hight that must not be exceeded during the lift. Examples of additional control systems

are active heave compensation and constant tension system.

An active heave compensation (AHC) system is a control system used to decouple the

vertical vessel motion from the payload motion. This means that the winch operator can

use the joystick to control the payload motion relative to a fixed surface, which makes it

easier to, for example, land a payload on a fixed installation or the seabed. The AHC

system normally utilizes a motion reference unit (MRU) to measure the unwanted vessel

motion and actively controls the winch to counteract the influence on the payload motion.

The constant tension (CT) system is a control system used to keep the wire tension

at a given pre-set value regardless of the vessel motion. A load cell is typically used to

measure the wire tension. If the measured value deviates from the pre-set value, the winch

will pull in or pay out wire rope to maintain the pre-set value. The CT system is typically

used during lift-off and lift-down on the sea bed.

To conduct lifting operations with high quality, the winch drive system must be able

to operate in all four quadrants and provide high motion and torque control. Normally,

only two quadrant operation are needed. Quadrant 1 during hoisting and quadrant 3

during lowering. However, in special cases as for example in AHC mode or operations

with an empty hook, all four quadrants may be used. High motion control is needed in

the operator mode and the AHC mode. High torque controll is needed in the CT mode.

The hydraulic system is normally an open loop or closed loop circuit. The open loop

circuit is used in small winches typically below 20-50 tonnes and the closed circuit system

is normally used in large winches.

2



Chapter 1. Introduction

1.1.1 Open Loop Hydraulic Circuit

In an open loop hydraulic circuit, the fluid from the pump is regulated by a directional

control valve before it reaches the motor, performs work and returns to the tank via the

directional control valve. Figure 1.2 shows a simplified hydraulic diagram of a general open

loop circuit driving a winch. The benefits of the open loop circuit are simple design, low

mload

Tank

GearboxDriveDrive

Pump Motor Pinion

Gear ring 

Directional 

control valve

mload

Tank

GearboxDrive

Pump Motor Pinion

Gear ring 

Directional 

control valve

Figure 1.2: Schematic illustration of open loop winch drive system.

cost and that one hydraulic power unit (HPU) can supply multiple actuators. The main

disadvantage is low energy efficiency. In some applications, the average energy efficiency

of open loop systems may be as low as 10-35 % [2]. However, efficiencies as low as these

occur normally only when operating at low loads. The least energy efficient system utilizes

a fixed displacement pump operating at constant speed and thereby delivers a constant

flow. The directional control valve regulates the flow that is delivered to the motor. The

unused flow is routed back to tank resulting in significant energy losses. This type of

system may be acceptable for systems that are only operated for short periods of time,

and where simplicity, low initial cost and ease of maintenance are more important than

high energy efficiency.

In larger systems or systems that are running over a long period of time, a variable

displacement pump may be used to improve the energy efficiency. A variable displacement

pump will only deliver fluid when necessary and thereby reduce the amount of unused

fluid that is routed back to the tank. The energy losses in such a system are mainly caused

by throttling flow in the directional control valve and losses in the pump and motor. It is

not unreasonable to achieve an energy efficiency between 50 % and 80 % in such a system

[3].

Another drawback of the closed loop system is that it is not suited for regenerating

energy during, for example, heave compensation or lowering of the payload.

3
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1.1.2 Closed Loop Hydraulic Circuit

In the closed loop hydraulic circuit, the directional control valve is removed and the motor

is directly connected to a variable displacement pump, as shown in Figure 1.3. In order to

mload

Tank

GearboxDriveDrive

Pump Motor

Charge 

pump
Charge 

pressure

Pinion
Gear ring 

mload

Tank

GearboxDrive

Pump Motor

Charge 

pump
Charge 

pressure

Pinion
Gear ring 

Figure 1.3: Schematic illustration of closed loop winch drive system.

account for leakage in the pump and motor, and to ensure that the pressure lines maintain

a minimum pressure, the circuit has a charge pump that supplies cooled and filtered fluid

to the pressure lines.

The closed loop system provides high motion tracking performance. The motor speed

is linearly controlled by the pump outlet instead of the nonlinear response found in most

of the proportional control valves. Energy efficiency of 80 % may be realized [4].

Compared to open loop systems, closed loop systems have increased costs since more

expensive components are used and a dedicated pump is needed for each actuator to oper-

ate independently and at high energy efficiency. Closed loop systems are also considered

to be more difficult to diagnose and repair [5].

1.2 Secondary Controlled Digital Displacement Winch

Drive System

An alternative to the commonly used winch drive systems with open loop and closed

loop circuits and conventional hydraulic pumps and motors, is a secondary controlled

hydraulic system with digital displacement machines. An illustration of such a system is

shown in Figure 1.4. The stepped arrow on the pump and motor symbol indicates that

it is a digital displacement machine. The alternative system consists of a prime mover,

accumulator and a secondary unit capable of operating in both motor mode and pump

mode with positive and negative direction of rotation. Unlike conventional winch drive

systems that utilize high speed motors and gearboxes, the alternative system consists of

a low speed motor directly connected to the gear ring on the winch drum without any

4
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Figure 1.4: Schematic illustration of secondary controlled digital displacement winch drive

system.

gearbox. The prime mover, or pump, has a pressure controller and its main task is to keep

the high pressure level, pH , on a minimum level. The secondary unit, or hydraulic motor,

is directly connected to the high- and low pressure line, without the use of any throttling

valves. The output torque is controlled by controlling the displacement of the secondary

unit. The purpose of the accumulators is to store energy whenever the secondary unit

operates in pump mode. The stored energy can later be reused when the secondary unit

operates in motor mode. One primary unit and one accumulator bank can supply several

secondary control units that operate with varying loads.

This thesis is limited to development of a control system for the secondary controlled

digital displacement motor. It is therefore not in the scope of this thesis to design a

pressure controller for the primary unit nor design a suitable accumulator bank. For

simplicity reasons, it is assumed that the primary unit, together with the accumulator

bank, can keep the high pressure level at a nearly constant level. The secondary controlled

winch drive system can then be simplified as illustrated in Figure 1.5, where it is assumed

that the digital displacement motor is connected to a constant high and low pressure

source.

This winch drive system is further in this thesis referred to as the digital displacement

winch drive system.

1.2.1 Motivation

The main motivation of using the digital displacement winch drive system is to increase

the energy efficiency. The conventional closed loop circuit is considered to be the most

5
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mload
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Figure 1.5: Schematic illustration of the simplified secondary controlled digital displacement

winch drive system.

energy efficient of the existing systems. The main losses come from the pump, motor

and gearbox. Conventional hydraulic pumps and motors are known to suffer from low

energy efficiency, especially at partial displacement while digital displacement machines

are known to have a potential for high energy efficiency even at partial displacement. In

addition, it is reasonable to assume that the digital displacement winch drive system can

provide reduced losses, cost and mass of hydraulic winch drive systems [6].

Secondary controlled hydraulic systems combine the benefits of both the open and

closed circuit system by providing high energy efficiency, high motion control and the

capability to use the same primary unit to supply several secondary units. In addition,

the secondary controlled system is suitable for use in energy recovery systems. Energy

recovery systems can, for example, be used during lowering of payloads. The energy can

be recovered by storing the energy in accumulator banks and reuse the energy at a later

point in time, reuse the energy continuously by other hydraulic actuators or in case of an

electric prime mover, the energy can be fed back to the electric grid by using the primary

unit as a motor and the electric drive as a generator.

Increasing the energy efficiency and removing the gearbox have several benefits. By

increasing the energy efficiency, less power is consumed which makes the operation more

cost effective. In addition, less heat is generated in the hydraulic system which may

result in downsizing of the cooling system. Since less power is used, the HPU may also be

downsized. The gearbox is costly and requires maintenance. In case of gearbox failure,

the gearbox needs to be replaced, which is time consuming and requires lifting equipment.

Lately, due to increased focus on pollution and global warming, there has been a trend

of replacing hydraulically actuated offshore applications by more environmentally friendly

electric actuated applications. Electric systems are known to be energy efficient and easy

to control. On the other hand, they are also known to be expensive, big in size and heavy.

The energy efficiency of digital displacement motors is comparable to electric motors with
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frequency converters in addition to be lighter and smaller in size [6]. In Figure 1.6 the

size of a high torque low speed digital displacement motor is compared to the size of an

electrical motor and gearbox. Both drive systems have almost the same power rating. The

Figure 1.6: High torque low speed digital displacement motor vs high speed electrical motor

with gearbox [6].

digital displacement machine has a mass to power ratio of 1.4 kg/kW while it is 6 kg/kW

for the electrical solution. Hence, the digital displacement machine requires less space

and is lighter compared to the electrical solution. This is an important characteristic

when considering applications that shall operate offshore where space is limited and mass

should be minimized.

The disadvantages of the digital displacement winch drive system are that the tech-

nology is relatively new, the control is complicated and non-conventional and the valve

requirements are strict. The valves should have high flow capacity, low response time,

high durability, low power consumption, be cheap and easy to replace.

The main motivations for using a digital displacement winch drive system are summarized

in the following bullet points:

• Increase energy efficiency in winch systems.

• Reduce system and operation costs by removing the gearbox and downsizing the

cooling system and the HPU.

• Reduce space requirements and mass of the application.

1.2.2 Control Design Considerations

Digital displacement motors deviate from traditional piston motors in the way the hy-

draulic fluid is diverted in and out of the cylinder chambers. Each cylinder chamber is

connected to two fast switching on/off valves which divert the hydraulic fluid to and from

the low or high pressure line. The displacement ratio can be changed by changing the ac-

tivation sequence of the on/off valves. Also, the same displacement ratio can be achieved
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by using different valve activation sequences. A valve activation sequence is further in

this thesis referred to as a displacement strategy.

Each displacement strategy has its own dynamic response characteristics and energy

efficiency characteristics. Therefore, when designing controllers for digital displacement

machines, it is not enough to design a classic controller for the desired displacement. Also,

a suitable displacement strategy needs to be designed or selected from previously designed

displacement strategies. In addition, different displacement strategies have different re-

quirements for the on/off valves used in the digital displacement motor. Therefore, the

valve properties are also important to consider when designing the controller.

A general control structure for a digital displacement motor is illustrated in Figure

1.7. First, the input signal is transformed into a desired displacement ratio of the digital

Application
Displacement 

strategy

ucon,xInput DmDisplacement 

controller

Digital displacement motor

Output
Application

Displacement 

strategy

ucon,xInput DmDisplacement 

controller

Digital displacement motor

Output

Figure 1.7: General schematic illustration of a digital displacement motor controller.

displacement motor, Dm, by a displacement controller. The displacement controller is

a classic controller that can be of any type, with or without feedback signals, like for

example an open loop proportional controller or a closed loop PID controller. The de-

sired displacement ratio is then transformed into valve activation signals, ucon,x, by a

displacement strategy. After that, the on/off valves activate and deactivate the cylinder

chambers in order to achieve the desired displacement ratio. The activated chambers

creates an output torque, which finally drives the application.

When designing a controller for a digital displacement motor, it is important to have

knowledge about its working principle, different displacement strategies, the properties of

the on/off valves used in the digital displacement motor and also classic control design.

The next section, Section 1.3, will therefore start by describing the working principle

of the digital displacement machine and continue with the advantages and disadvantages

related to the digital displacement machine technology. Then, the state of the art of

different displacement strategies, valves for digital displacement machines, and control

of digital displacement machines are presented and it is pointed out where knowledge is

missing. The section ends by summarizing the development trends of digital displacement

machines. The research objectives presented in Section 1.4 are based on the missing

knowledge revealed in the state of the art.
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1.3 Digital Displacement Machine

Digital displacement machines deviate from traditional piston machines in the way the

cylinders are connected to high and low pressure. In, for example, a conventional radial

piston machine, the cylinders are connected to high and low pressure in conjunction with

the shaft position through a rotary valve, as shown to the left in Figure 1.8. The displace-

ment is changed by changing the eccentricity of the cam disk. During one shaft revolution,

all cylinders are pressurized resulting in almost constant leakage, friction and compress-

ibility losses independent of the displacement. The machine efficiency will therefore be

significant reduced when operating at low displacements.
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Figure 1.8: Illustration of a conventional radial piston machine [7] (left) and a radial piston

type digital displacement machine (right).

In a digital displacement machine each cylinder is connected to two fast switching

on/off valves as shown to the right in Figure 1.8. The high pressure valve is connecting the

high pressure manifold to the cylinder chamber and the low pressure valve is connecting

the cylinder chamber to the low pressure manifold. By controlling the on/off valves, each

cylinder can be controlled individually, which makes this unit very flexible and suited

for new system designs. The displacement is changed by only pressurizing cylinders

when necessary, resulting in leakage and friction losses that scale with the displacement

providing high energy efficiency even at partial displacement.

The digital displacement machine is not limited to a radial cylinder configuration, but

the radial configuration provides several advantages. The radial configuration with pistons

facing outwards leaves enough space for mounting two on/off valves to each cylinder. The

machine displacement can easily be increased by adding several motor modules/cylinder

banks, side-by-side along the same shaft. A more detailed description of the digital

displacement technology can be found in [8, 9, 10].
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1.3.1 Advantages and Disadvantages

There are several advantages and disadvantages of digital displacement machines com-

pared to conventional hydraulic machines. The main advantages and disadvantages men-

tioned in the literature [11, 12, 13] are:

Advantages:

− Higher energy efficiency at partial displacement, since each cylinder chamber is only

pressurized when necessary. Unpressurized cylinder chambers have typically losses

less than one percent of an active one at high pressure [14].

− Superb scalability due to the modular structure. In case of a radial motor configu-

ration, several motor modules can be added side-by-side along the same shaft.

− Fast response (at high shaft speed) since the displacement can be changed from zero

to full in half a shaft revolution.

− Require less cooling due to higher energy efficiency. Hence, the cooling systems can

be downsized.

− Completely new solutions like machines with several independent outlets, also called

digital hydraulic power management systems, are possible due to individual cylinder

control.

− The capability of full four quadrant operation and high energy efficiency makes

the digital displacement machine suitable for use in secondary control systems and

energy recovery systems. The energy can be recovered to hydraulic accumulators,

other actuators or back to the prime mover.

− Reliable load holding since the on/off valves are leak free.

Disadvantages:

− Pulsation in machine output, especially when operating at partial displacements.

− Complicated and non-conventional control. Instead of, for example, changing the

angle of the swash plat in an axial swash plate machine, each on/off valve needs to

be controlled individually.

− High valve requirements. The on/off valves should have low cost, compact design,

high durability, be easy to replace, low electric power consumption, zero leakage,

low switching time and high flow capacity.

− Noise due to switching between active and inactive cylinder chambers.

The high energy efficiency is the key feature of digital displacement machines. The

high energy efficiency is achieved due to the low losses of de-pressurized cylinders, only

switching the valves at low pressure difference and low flow rates and having zero leakage

valves. Figure 1.9 maps the energy efficiency from a variable displacement bent axis pump

and a digital displacement pump at full and 20 % displacement. The upper plots show

the energy efficiency maps for the variable bent axis pump and the bottom plots show
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the energy efficiency maps for the digital displacement pump. The bent axis pump has
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Figure 1.9: Efficiency map of a typical bent axis machine (top) and a digital displacement

machine (bottom) at full displacement (left) and 20 % displacement (right) [15].

a peak efficiency of 93 % at full displacement and can keep the efficiency above 80 % in

a relatively large operation area (speed and pressure). The peak efficiency is reduced to

81 % at 20 % displacement and the efficiency is only kept above 80 % in a very small

operation area. For the digital displacement pump, the peak efficiency is 97 % at full

displacement and only reduced to 96 % at partial displacement. The energy efficiency is

kept above 80 % for a very large operation area, even at 20 % displacement. This example

clearly shows the improvement on energy efficiency in digital displacement pumps.

1.3.2 Variable Displacement Control

In general, each cylinder chamber can either be connected to the high pressure manifold

or the low pressure manifold. A chamber that is connected to high pressure is called an

active cylinder and a chamber connected to low pressure is called a deactivated or inactive

cylinder. The cylinder acts as a motor if the chamber is active in the downstroke piston

motion and as a pump if the chamber is active in the upstroke piston motion.

By systematically activating and deactivating the cylinder chambers, the digital dis-

placement machine can operate as a motor or pump at variable displacements. This
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systematic activation and deactivation strategy is referred to as a displacement strategy.

Examples of displacement strategies mentioned in the literature are full stroke and par-

tial stroke displacement strategy [16], sequential partial stroke displacement strategy [17]

and creep mode [18]. Two other displacement strategies are full stroke and partial stroke

flow limiting [16]. These displacement strategies are very similar to the full stroke and

partial stroke displacement strategy but introduce cavitation in the cylinder chambers.

Cavitation should normally be avoided in hydraulic systems. The full stroke and partial

stroke flow limiting strategy should therefore be further investigated to see if cavitation

in the cylinder chambers will damage the hydraulic fluid or the digital displacement ma-

chine some how. The full stroke and partial stroke flow limiting strategy are therefore not

considered in this project.

Different displacement strategies have different energy efficiency characteristics, dy-

namic response characteristics and control challenges. One of the simplest displacement

strategies are the full stroke displacement strategy. Further down in this section, only a

short description of the full stroke displacement strategy is given. A detailed description

of full stroke, partial stroke and sequential partial stroke can be found in section 2.2 or

in [16, 19, 20, 21]. A detailed description of creep mode can be found in [18]. At the end

of this section, the energy characteristics and the dynamic response characteristics for all

displacement strategies are presented.

Full Stroke Displacement Strategy

In the full stroke displacement strategy, the cylinder chambers are activated and deacti-

vated on a stroke-by-stroke basis, meaning that a cylinder is either activated or deactivated

for an entire piston stroke. This is illustrated for a single cylinder, cylinder i, in Figure

1.10. Plot 1 shows the piston position, xcyl,i, Plot 2 shows the opening ratio of the high
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Figure 1.10: Schematics of the valve activation sequence for the full stroke displacement

strategy. The left plot shows motor operation, the middle plot shows pump operation and the

right plot shows idle operation.

pressure valve, uH,i, and the low pressure valve, uL,i, Plot 3 shows the chamber pressure,

pcyl,i, and Plot 4 shows the cylinder torque contribution, Tcyl,i. Note that TDC and BDC

are abbreviations for top dead center and bottom dead center respectively. In the left
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plot, the cylinder chamber is active in the downstroke piston motion giving a high positive

output torque and deactivated in the upstroke piston motion giving a low negative output

torque. Hence, the cylinder acts as a motor. In the middle plot, the chamber is active

in the upstroke piston motion giving a high negative output torque and deactivated in

the downstroke piston motion giving a small positive output torque. Hence, the cylinder

chamber pumps fluid out to the high pressure source and operates as a pump. In the right

plot, the cylinder chamber is deactivated for the entire shaft revolution. This operation

is referred to as idle mode. In idle mode, the cylinder chamber pumps and receives low

pressure fluid to and from the low pressure source, resulting in a minimum of friction

losses, leakage losses and compressibility losses. Note that for motor and pump opera-

tions, the valves are timed to only switch when the chamber fluid is fully compressed

or decompressed such that the pressure difference across the valve is small during the

valve switching. This results in a minimum of flow throttling losses and flow and pressure

peaks during the valve switchings. The displacement can be changed by idling one or

more cylinders. For example, motor operation with 50 % displacement can be achieved

by motoring and idling every other cylinder.

Energy efficiency characteristics

Operation with different displacement strategies results in different energy efficiency of

the digital displacement machine. The energy efficiency for full stroke and partial stroke

displacement strategy have earlier been investigated in the literature [19, 22, 21, 23], but

there are still missing energy efficiency analysis for the sequential partial stroke displace-

ment strategy and creep mode. Experimental results show that the energy efficiency at

20 % displacement is 70 % for full stroke displacement strategy, but only 45 % for par-

tial stroke displacement strategy. In order to achieve higher energy efficiency, the on/off

valves need to be faster and have lower electric power consumption [19]. At full displace-

ment, the energy efficiency is approximately 90 % for both the full and partial stroke

displacement strategies. The sequential partial stroke displacement strategy and creep

mode are based on switching the valves more often than full and partial stroke, in addi-

tion to allow switching when the pressure difference across the on/off valves is high. The

sequential partial stroke displacement strategy and creep mode are therefore considered

to have lower energy efficiency compared to full and partial stroke displacement strategy.

In the literature, there are experimental results of digital displacement machines ope-

rating with full stroke displacement strategy and partial stroke displacement strategy

[16, 19, 23]. There are still missing experimental results for sequential partial stroke dis-

placement strategy and creep mode.
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Dynamic response characteristics

Different displacement strategies give different dynamic response characteristics. The

transient and steady-state response for digital displacement motors have been investi-

gated in a limited number of papers. In [22], the authors investigate the steady-state

flow ripples for a digital displacement machine operating at two different displacement

ratios and with two different displacement strategies, full and partial stroke displacement

strategy respectively. The results show that when operating at displacements greater

than 50 %, the full stroke displacement strategy has the lowest flow ripples, but when

operating at displacements down to 20 %, the partial stroke displacement strategy has

the lowest flow ripples.

In [24], the authors investigate the transient and steady-state response for full and

partial stroke displacement strategy when operating at different speeds and with different

number of cylinders. The results show that the transient response is highly affected by

the shaft speed for both displacement strategies. The transient response of partial stroke

displacement strategy is also affected by the magnitude of the displacement step. The

steady-state response is affected by the number of cylinders in the machine.

There is still missing a more in-depth analysis of the dynamic response characteristics

of digital displacement machines that considers all displacement strategies.

1.3.3 Valves for Digital Displacement Machines

This section presents important details regarding valves used in digital displacement ma-

chines. First, important features of the valves are discussed and then prototype and com-

mercially available valves suitable for use in digital displacement machines are presented.

Valve Functionalities

The on/off valves are the key components in digital displacement machines. In order to

achieve high energy efficiency, it is important to use valves with suitable functionalities.

Important features are low switching time, high flow capacity and accurate timing. On/off

valves can typically be divided into two types: passively and actively activated valves.

Passively activated valves are typically poppet valves that are being passively opened and

closed by pressure forces. For example, a passively activated high pressure valve can only

be opened when the cylinder pressure is higher than the high pressure level and thereby

forces the poppet valve to open. This operation is illustrated to the left in Figure 1.11.

The valve actuator is only capable of keeping the valve open against flow forces such that

flow can run from the high pressure source and into the cylinder chamber. In order for the

valve to close, the valve actuator must be turned off and the cylinder pressure must be

lower than the high pressure level. The main advantages of passively actuated valves are
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that they can only be switched when the pressure drop across them is small which results

in a minimum of valve throttling losses, and that the actuators can be small since they

only need to keep the valves open against flow forces. The disadvantages are that this

valve type can not self-start in motor mode [25] nor be used for operation with sequential

partial stroke displacement strategy or creep mode. These limitations occur since the

valve type is not able to open against high pressure differences.
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Figure 1.11: Schematic illustration of passive activation of the high pressure valve. The left

plot illustrate opening and the right plot illustrate closing.

Actively activated valves are typically, but not limited to, spool type valves and are ca-

pable of opening against high pressure difference. Hence, this valve type can operate with

all types of displacement strategies and self-start in motor mode. The main disadvantage

of this type of valves is that they must be actively opened and closed. This means that it

is more difficult to only activate the valves when the pressure drop across them is small.

Requirements regarding valve timing and repeatability are therefore stricter compared to

passively activated valves.

Independently of the valve type, the valves need to have appropriate valve character-

istics such as high flow capacity, low switching time, low power consumption and high

repeatability in order to facilitate high energy efficient operation. In [19, 20], these valve

characteristics have been evaluated with respect to energy efficiency by simulation studies.

The results show that it is essential to have valves with high flow capacity compared to

the maximum flow running through the valves and low switching time. The shaft rotation

time to the valve transition time ratio, time per revolution/valve transition time, should

be in the range of 15 to 20 [19]. At Aalborg University, a research team has developed

a general method for specifying the valve transition time requirements and the flow ca-

pacity requirements [26, 25]. The method shows that the valve requirements are stricter

for partial stroke compared to full stroke displacement strategy. For the partial stroke
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displacement strategy, the valve switching time should be below 1.7 % of the shaft rev-

olution time and the valve pressure drop should be below 0.5 % of the machine pressure

span for achieving energy efficiency above 95 % at 20 % displacement. To achive the same

energy efficiency for the full stroke displacement strategy, the valve switching time should

be below 20 % of the shaft revolution time and the valve pressure drop should be below

0.5 % of the machine pressure span.

Optimally, the valves should only be switched when the pressure difference across

them is small. If a valve is opened too early or too late, the throttling losses during valve

switching may increase significantly. A mistiming of only ±2 ms for one valve can cause an

increase in valve throttling losses by a factor of 8 [20]. This clearly shows the importance

of accurate valve timing and valves with high repeatability. For passively opened valves,

the activation of the valves happens automatically due to pressure forces. For actively

activated valves, the timing must be done manually by a control signal. In the literature,

there is still missing a general method for calculating the requirements regarding valve

timing accuracy. It is among other reasonable to think that the operation speed will affect

the requirements.

Prototype and commercially available valves for digital displacement machines

This section presents several prototype and commercially available valves which may have

the potential of being used in digital displacement motors.

Artemis Intelligent Power Ltd. (AIP) is the pioneer in the digital displacement ma-

chine technology. Since the on/off valves are the key components, they have not disclosed

any detailed information about the performance or the working principle of their valves.

However, some information is possible to fined in patents filed by AIP [27, 28]. In general,

AIP are using solenoid operated seat type poppet valves. Poppet valves are often used in

digital displacement machines because of their large opening area that allows high flow

rate for a relative small valve, the activation stroke is low which allows fast switching and

the valve is capable of being passively opened. In 2006, AIP filed a patent for a solenoid

operated poppet valve that was capable of opening against high pressure difference [29].

This valve concept retains the benefit of passive activation and still being able to operate

with all types of displacement strategies and self-start in motor mode.

In 2007, Winkler and Scheidle [30] presented a pilot operated seat type valve for large

flow rate with the capability of opening against high pressure difference. The presented

valve utilizes the Hörbirger plate principle which has several annular rings at two opposite

valve plates to form multiple metering edges. This principle allows a high flow rate for

a small actuator stroke. The pilot valve is a 3/2 way spool type valve developed at Linz

Center of Mechatronics (LCM). The nominal flow rate is 3.5 l/min at 5 bar pressure drop
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and the switching time is about 1.6 ms. The main stage valve has a transition time below

2 ms when the pilot pressure is high. Due to a delay introduced by the pilot valve of

about 1.6 ms, the entire switching time is 3.6 ms. The main stage valve has a measured

flow rate of 90 l/min at 5 bar pressure drop and a measured leakage of 2.8 ml/min with

200 bar pressure drop. The valve can not be passively opened and has therefore increased

demands to valve timing.

In 2010, Winkler et al. [31] presented a new pilot operated poppet valve with similar

characteristics as presented in [30]. In the new valve, the Hörbirger plate is replaced by a

novel concept based on multiple small poppets. The pilot valve is replaced by a 3/2 way

valve with a higher flow rate. The new 3/2 way pilot valve is developed at LCM and has

a flow rate of 10 l/min at 5 bar pressure drop and a transition time of 1-2 ms. The main

stage valve has a flow capacity of 85 l/min and a transition time of about 1 ms. Due to

the delay caused by the pilot stage, the entire switching time is approximately 3 ms.

A third valve developed at LCM is the FSVi4.1 [32]. This valve is a direct solenoid

operated pressure compensated seat type poppet valve. The valve is capable of opening

against high pressure difference and has no leakage. Measured results show switching

time below 3 ms and a flow capacity of 5 l/min at 5 bar pressure drop across the valve.

The valve is capable of switching at frequencies up to 200-500 Hz. The FSVi4.1 can be

ordered for test applications in the prototype phase [33].

At Aalborg University, a research team has developed direct actuated seat type poppet

valves for digital displacement machines with high power ratings. Both a moving coil

actuator (MCA) [34, 35] and a moving magnet actuator (MMA) [36] have been optimized

and tested. The valves have a flow capacity above 400 l/min at 5 bar pressure drop and

switching time in the range of 2-6 ms. The valves are not capable of opening against high

pressure difference.

The Bosch Rexroth WES valve is a commercially available valve [37]. The valve is

a direct solenoid operated spool type valve with the capability of opening against high

pressure difference. According to the data sheet, the switching time is below 5 ms and

the flow capacity is 45 l/min at 5 bar pressure drop. The maximum switching frequency

is only 10 Hz. This frequency may limit the operation speed in cases of using this valve

type in high speed digital displacement machines.

Another valve developed in the industry is the pilot operated poppet valve from Diinef

AS [38]. This valve is developed to be used in high torque low speed digital displacement

motors. The pilot valve is a 3/2 way solenoid operated spool valve. The main drawback of

this pilot valve is a minor leakage. However, the minor leakage is said to have a negligible

influence on the performance and the energy efficiency of the motor. The valve switching

time is 20 ms [18].
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Table 1.1 gives an overview of the on/off valves that may be used in digital dis-

placement machines. For more detailed information on fast switching on/off valves, see

[25, 39, 33].

Table 1.1: Overview of on/off valves with the potential of being used in digital displacement

machines. The table is inspired by [25].

Commercial valves Switching time Flow at ∆p = 5 bar Leak free

Bosch Rexroth WES [37] < 5 ms 45 l/min no

Bosch Rexroth SEC6 [33] 7-10 ms 7 l/min yes

SUN DLV [33] 10 ms 7 l/min yes

Bucher Hydraulics WS22GDA-10 [40] < 21 ms 37 l/min no

Diinef AS [38, 18] 20 ms - almost

LCM FSVi4.2 [32] < 3 ms 5 l/min yes

Prototype valves Switching time Flow at 5 bar Leak free

Winkler et al. [30] < 3.6 ms 90 l/min no

Winkler et al. [31] < 3 ms 85 l/min no

Rømer et al. [34] < 2.9 ms 19001l/min -

Nørg̊ard et al. [35] (MCA) < 3.5 ms 4001 l/min yes

Nørg̊ard et al. [36] (MMA) < 6 ms 5101 l/min yes

1.3.4 Control of Digital Displacement Machines

The dynamic behavior of digital displacement machines is changing based on the machine

configuration (number of cylinders), displacement strategy and operation conditions (dis-

placement ratio, speed and pressures). Also, cylinders are being activated and deactivated,

which results in a non-continuous output signal. These features make model based feed-

back control of digital displacement machines complicated and non-conventional. This

section gives an overview of controllers designed for digital displacement machines.

Ehsan et al. [10] are the first to present control strategies for digital displacement

machines. The control strategy is based on the full stroke displacement strategy and the

concept is to activate or deactivate the next cylinder based on knowledge about previously

activated cylinders and the demand signal. The control method is implemented in a

digital displacement pump that operated at 1500-2100 rpm. Both a pressure and flow

control strategy is given. The presented control method has two key characteristics. The

first characteristic is a quantification error duo to enabling or disabling the next cylinder

chamber for an entire piston stroke. The quantification error is minimized by placing an

accumulator close to the output valves. The second characteristic is a delay in the response

1Estimated flow
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following a decision. An enabled cylinder will affect the output for a half shaft revolution

after the decision is made. This delay is accounted for by predicting the decision-making

process into the future by including a look-ahead time or angle. The control strategy

is applied in an open-loop configuration. The results show that the proposed control

strategy is robust and efficient.

Heikkilä et al. [41] propose a displacement controller for a digital hydraulic power

management system (DHPMS) operating with the full stroke displacement strategy and

at 1500 rpm. The DHPMS is a digital displacement machine with multiple independent

controlled inputs and outputs. The principle of the proposed displacement controller is

to convert a position reference, for example for a cylinder, into a volume displacement

reference. The displacement error is minimized by choosing the best combination of idling,

pumping and motoring cylinders. Experimental results show good open-loop tracking

performance whenever the volume flow is sufficiently large [10]. Small flows are difficult

to control. One way to increase the controllability of small flows is to increase the number

of cylinders and the speed of the DHPMS while keeping the maximum flow fixed.

Armstrong and Yuan [17] describe a multi-level control method for speed control of

a digital displacement machine operating at speeds ranging from -100 rpm to 100 rpm.

The multi-level control method is based on the sequential partial stroke displacement

strategy. The outer control level consists of a simple PI speed controller, which defines

the desired motor torque. By using off-line optimization, the best cylinder combination of

both motoring, pumping and idling cylinders are found to meet the desired motor torque.

The best cylinder combination is updated with fixed time intervals. This control strategy

is characterized by frequent switchings resulting in high valve throttling losses and flow

and pressure peaks. However, the simulation results show good tracking performance at

low motor speeds.

Sniegucki et al. [42] present a model predictive control approach for optimal torque

control of a digital displacement machine. The nonlinear and discrete system behavior of

the digital displacement machine is modeled using mixed logical dynamic system repre-

sentation. The control performance depends on the optimization objective, sample size

and prediction horizon. The presented optimization objective is a summed weighting of

minimum set-point deviation, number of switching events and switching effort. The pre-

diction horizon should be sufficiently large to be able to detect any constraint violations.

The simulation results show that the torque output is close to the reference. Compared

to using a delta-sigma modulator to generate the control signal for the full stroke dis-

placement strategy or using pulse width modulation to generate the control signal for the

partial stroke displacement strategy, the model predictive control strategy shows superior

performance. One drawback of the model predictive controller is the large average solv-
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ing time of 2 s per iteration, which makes the control strategy only suitable for off-line

optimization unless the computational time is significantly reduced.

Research within the control design of digital displacement machines is often limited to

open-loop systems with simplified load conditions and fixed speed operation. At Aalborg

University, Pedersen [12] has therefore developed models describing the fundamental char-

acteristics of the digital displacement units which can be used to design model based

feedback controllers. These models include both continuous, discrete and hybrid dynami-

cal system approximations. The continuous dynamical approximation is used to design a

model based feedback controller for a digital displacement machine used in a wind turbine

transmission [43]. The digital displacement motor operates at 1000-1200 rpm and with

the full stroke displacement strategy. The results show that the continuous approximation

is sufficient to describe the fundamental dynamics of the digital displacement motor if the

number of cylinders and the displacement fraction are sufficiently high. Also, the con-

tinuous approximation is nonlinear in the time domain if the operation speed varies. In

the case of applying linear control theory, the rotational speed of the digital displacement

machine must, therefore, be lower bounded by the linearization point. Due to the high

nonlinearities when operating at variable speed, the continuous approximation is only

valid in a limited range of operation.

Johansen et al. [44] are the first to present a discrete dynamical approximation for

fixed speed digital displacement machines. The discrete approximation is later extended

by Pedersen et al. [45] to apply for variable speed units. In both cases, the digital displace-

ment unit is operating with the full stroke displacement strategy. The discrete dynamical

approximation has later been used to design a linear quadratic regulator (LQR) [46] and

a linear quadratic gaussian (LQG) [47] controller for a digital hydraulic transmission used

in a wind turbine. The hydraulic transmission consists of a conventional low speed fixed

displacement pump and a variable displacement high speed digital displacement motor.

The results show that both controllers can control the rotor speed similar to a conventional

transmission. However, the LQG-controller with disturbance compensation does not im-

prove the tracking performance compared to the LQR-controller. This means that the

simpler LQR-controller, with the integral state, is sufficient to achieve accurate tracking

performance.

The discrete dynamical approximation method is also extended for use with partial

stroke [48] and sequential partial stroke displacement strategy [49]. In these cases, a

model predictive controller is designed. The partial stroke displacement strategy is used

on a motor operating at 100 rpm and the sequential partial stroke displacement strategy

is used on a pump operating at 10 rpm. The reference signal is in both cases sinusoidal

and with a period time of 50-60 s. The simulation results for the sequential partial stroke
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displacement strategy show improved tracking capability compared to full and partial

stroke operation [49]. The model predictive control allows the designer to specify the

importance of energy consumption compared to output peaks. The results show great

tracking performance when energy consumption is of low importance and reduced tracking

performance when energy consumption is of high importance [48, 49].

The discrete dynamical approximation is fairly accurate for a high number of cylinders

but has reduced accuracy for lower numbers due to larger phase shifts between cylinders.

The approximation is also inaccurate for lower displacements. As for the continuous

approximation, the rotational speed must be lower bounded by the linearization point in

case of applying linear control theory on variable speed machines.

In [50], Pedersen et al. propose a hybrid dynamic approximation for digital displace-

ment machines operating with the full stroke displacement strategy. The model includes

the fundamental dynamic behavior of the digital displacement unit but is limited to

operation in one direction of rotation with either pump or motor operation. In [51],

Pedersen et al. propose a hybrid dynamic approximation for digital displacement ma-

chines operating with partial stroke and sequential partial stroke displacement strategy

in all four quadrants. The model has high accuracy but is quite complex and, therefore,

not suitable for use in stability analyses or control design theory. This is due to a large

number of states and multiple jump maps and sets.

Summary

There is limited research within the field of control of low speed digital displacement

machines. Pedersen et al. [48, 49] have designed pressure and flow controllers for low

speed digital displacement motors and pumps operating with partial and sequential par-

tial stroke displacement strategy. The input signal was, in both cases, a sinusoidal signal

with a period time of 50 to 60 s. This period time is very high, compared to, for ex-

ample, the period time used in winch systems during heave compensation. The period

time of the vessel is typically in the range of 6 to 12 s. Armstrong and Yuan [17] have

also designed a controller for low speed digital displacement machines. The controller is a

simple velocity PI-controller and the used displacement strategy is the sequential partial

stroke displacement strategy. The used reference speed is a sinusoidal signal with a time

period of approximately 12 s. This controller may have the potential of being used in

digital displacement winch drive systems. Still, more research must be done to exam-

ine if this PI-controller or other types of controllers have the motion and tension control

performances that are needed to operate a winch system.

21



Using Digital Hydraulics in Secondary Control of Motor Drive

1.3.5 Development Trends for Digital Displacement Machines

The field of digital fluid power is characterized by only using on/off valves to control

the output of a system [11]. Digital displacement machine technology is one part of this

field. For a detailed description of the field of digital fluid power, see [11]. This section

presents a summary of the history of digital displacement machine technology and the

development and research trends.

In the 1980s, a research team at Edinburg University tried to develop a power take-

off system for generating electricity out of wave energy [14]. The main challenge was to

transform irregular, slow, high-force motion into constant high-speed motion suitable for

driving a conventional generator. The most promising solution the research team could

find was to use a hydraulic power take-off system. The hydraulic solution had three

serious shortcomings: the power take-off system had to handle power in the megawatt

range, the rotating machine had to be able to change displacement efficiently and with

high bandwidth and, finally, the energy efficiency at partial load had to be improved [14].

The team solved those problems and the outcome of the work is the digital displacement

machine technology and Artemis Intelligent Power Ltd.

Artemis Intelligent Power Ltd. was founded in 1994 and is a research and develop-

ment company located in Edinburgh. The company is specialized in research, develop-

ment and technology licensing associated with digital displacement machine technology.

In 2010, Mitsubishi Heavy Industries (MHI) acquired AIP, but in October 2018, AIP

announced that Danfoss Power Solution (Danfoss) had acquired the majority of shares

in AIP. Artemis Intelligent Power is now a joint venture between Danfoss and MHI, with

Danfoss as the majority shareholder. Today, AIP is working within the following appli-

cations: on and off-road vehicles, rail vehicles, and wind and wave power take-off systems.

Off-Road Vehicles

AIP has since the late 1990’s worked with Danfoss Power Solution in using the digital

displacement machine technology in off-road vehicles. AIP studied the energy losses in

excavators and discovered that 70 % of the engine shaft power is lost as heat in the hy-

draulic system [52]. In July 2016, AIP reported that they had started the process of

replacing the original axial piston pump in a 16-tonne excavator with their own E-dyn 96

digital displacement pump [53]. The project is co-funded by Scottish Enterprise [54]. In

the first step, the modification is limited to a pump swap only. The results show that fuel

consumption is reduced between 16 % and 21 % while at the same time, the productivity

(cycle per hour) is increased by 10 % [54]. When operating in something called produc-

tivity mode, the productivity is increased by 28 % while the fuel consumption is reduced

by 10 % [54]. By using a fully digital hybrid system, including hydraulic accumulators for
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energy storage, it is estimated that the fuel consumption will be reduced by more than

50 % [52]. An experimental test on an internal combustion forklift truck shows a 40 %

reduction of fuel consumption compared to a conventional hydrodynamic transmission

[52].

On-Road Vehicles

In 1999 AIP formed a licensing agreement with Dana Incorporated to use the digital

displacement machine technology in on-road vehicles [14]. This licensing agreement was

sold to Bosch Rexroth in 2006 [14]. In parallel with the work done with Bosch Rexroth,

AIP has developed a hydraulic series hybrid system for on-road vehicles. In the series

hydraulic hybrid system, the traditional gearbox is replaced by a digital hydraulic trans-

mission. The digital hydraulic transmission consists of a digital displacement pump that

is directly connected to the combustion engine. The pump delivers working fluid to two

digital displacement motors, which are directly connected to the driving wheels [55]. In

2008, the series hydraulic hybrid system was tested on a BMW 530i. The results show a

50 % fuel saving for the European Urban Cycle [55]. In addition to the series hydraulic

hybrid system, AIP has, in cooperation with Lothian Buses and Alexander Dennis Ltd.,

also developed a parallel hydraulic hybrid system for recovering braking energy in a city

bus [56]. A pre-study show that 32-35 % of the energy delivered by the engine is lost

as heat in the brakes and 25 % in engine accessories as cooling fans [57]. The parallel

hydraulic hybrid system consists of a digital displacement machine that is connected in

parallel with the combustion engine. The digital displacement machine is used to store

the braking energy in hydraulic accumulators. The recovered energy is later used to accel-

erate the bus. Based on validated simulation results, the system is predicted to reduce the

fuel consumption by up to 27 % and with a payback time of around two to three years [58].

Wind Power Take-Off System

One of the most attractive fields of using digital displacement machines is in large hy-

draulic power take-off systems for wind turbines. In 2010, Mitsubishi Heavy Industries

acquired AIP with the main purpose of using their digital displacement machine techno-

logy in wind turbines [59]. In the same year, AIP started to develop a 7 MW offshore

wind turbine with a digital displacement hydrostatic transmission [60]. In January 2013,

a 1.5 MW prototype started operation at Yokohama Dockyard & Machinery Works [60].

This is the world’s first digital displacement hydrostatic transmission. The prototype is

used for elemental tests of components such as hydraulic pistons, valves, cams and rollers.

The first 7 MW wind turbine with a digital displacement transmission was assembled

at the land-based test facility at Hunterston test-site in 2014 and started testings in 2015
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[61, 62]. The wind turbine consists of a 7 MW low speed ring-cam pump that delivers

working fluid to two high speed 3.5 MW crank type piston motors. Each motor drives a

generator. The energy efficiency of the digital displacement transmission is approximately

94 %, with 98 % for the low speed pump and 96 % for the high speed motor [63]. The rotor

diameter is 167 m and the hub height is approximately 116 m from the average sea level

[60]. A more in-depth analysis of the digital displacement hydrostatic transmission can be

found in [64]. The second 7 MW wind turbine with digital displacement transmission is

destined to operate as a floating wind turbine 20 km off the coast of Fukushima in Japan.

This will be the world’s largest floating wind turbine, and the largest wind turbine of any

kind in Japan [62].

Wave Power Take-Off System

Digital displacement machines are well suited for wave energy converters due to their

high energy efficiency over a wide range of operating conditions, fast response time, and

its ability to integrate gas accumulators for energy storage [8]. AIP has together with

Quoceant, a marine energy and technology consultancy, developed a technology called

”Quantor” [65]. This development involves using digital displacement machine techno-

logy to transform the slow back and forth motion of waves into a reliable and cost-effective

stream of electricity [65]. The project has received funds of £2.5 million from the Scottish

agency Wave Energy Scotland to build and demonstrate a full-scale prototype that can

work at sea [65].

Rail

In 2010, AIP, together with First ScotRail, analyzed the losses in trains [66]. The result

shows that between 64 % and 73 % of the energy is lost through braking and transmission.

Since 2013, AIP has worked with Ricardo and Bombardier on reducing fuel consumption

in rail vehicles. They have developed a system where a digital displacement machine cap-

tures braking energy and stores it in a Ricardo flywheel and then uses the stored energy to

accelerate the rail vehicle. According to Ricardo, the digital displacement rail transmis-

sion with flywheel energy storage are capable of reducing fuel consumption by 10 % [67].

This system won the top prize in ”The Most Interesting initiative in safety and sustain-

ability” category at The Rail Exec Club Awards on 29th November 2014 [67]. AIP has also

worked with an alternative traction system. By using their digital displacement machine

technology, they developed a new type of hydraulic transmission for diesel-powered rail

vehicles for use in the parts of the rail network that are uneconomical to electrify. The

hydraulic transmission consists of an E-dyn 96 digital displacement pump that delivers

working fluid to an axle mounted digital displacement motor. A diesel engine drives the

pump and accumulators are used to storing energy during braking and supplying energy
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during acceleration [68]. The project is funded by the Rail Safety and Strategy Board and

aims to reduce fuel consumption and reduce journey time by increasing the acceleration.

The new traction system is planned to be installed and tested in a Chiltern Railways’

Mark 3 DVT vehicle for three months starting from December 2017 [66]. The initial

results show that the overall fuel consumption can be reduced by up to 30 % [69].

Tampere University of Technology

At Tampere University of Technology, a research team has further developed the digital

displacement machine. By connecting more than two on/off valves to all cylinders, the

digital displacement machine can have multiple independently controlled outlets. This

novel solution is first presented in [70] and is later referred to as a digital hydraulic power

management system (DHPMS). The DHPMS has the following functionalities: serving

each outlet with arbitrary pressure levels, recovering energy from each outlet back to the

prime mover, transferring power from one outlet to another with arbitrary pressure levels

and energy storing and recovering from hydraulic accumulators independently of pres-

sures [70]. The main challenges for the DHPMS are that the flow is strongly pulsating

at partial displacement and that extremely fast and durable on/off valves are needed.

In [71], the authors propose to use several fixed displacement pump/motors (e.g., gear

type) instead of independently controlled pistons. The main goals of this concept are

to achieve a smoother output flow and reduce the valve requirements. The first experi-

mental test results from a piston type DHPMS with two independently controlled outlets

are presented in 2010 [72]. The prototype is a modified six-piston boxer pump with a

geometrical displacement of about 30 cm3 [73]. The original check valves are replaced

by prototype on/off valves with a flow capacity of 23 l/min at 5 bar pressure drop. The

DHPMS is tested at speeds ranging from 500 rpm up to 1000 rpm and with pressures

ranging from 20 bar up to 180 bar. The experimental results show that the total energy

efficiency when pumping at full displacement is between 65 % and 85 % and between 80 %

and 85 % when motoring at full displacement [72]. Note that the electrical losses in the

valves are not included in the energy efficiency calculations. The energy efficiency is not

as good as the results presented in Figure 1.9, mainly because of low flow capacity and

leakage in the valves.

The measured characteristics of a second prototype DHPMS are presented in 2016

[73]. The second prototype is based on the same six-piston boxer pump, but the geometric

displacement of each cylinder is decreased, the number of individually controlled outlets is

increased to 5 outlets, and the prototype on/off valves are replaced by leak free commercial

Bosch Rexroth SEC 3/3 poppet valves. The efficiency can still not reach the same results

as shown in Figure 1.9, mainly because of the low flow capacity of the Bosch Rexroth
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SEC 3/3 poppet valves. However, the reduced geometric displacement increases the flow

resolution, the leak free on/off valves allows for effective use of accumulators as energy

storage, and the number of outlets is increased to five.

The DHPMS can be used to design more energy efficient systems for off-road vehicles.

In [41] the authors propose to use a DHPMS with two independently controlled outlets to

control a double acting cylinder. The cylinder is directly connected to the DHPMS with-

out the use of any throttling valves. The proposed controller is a displacement controller.

The simulation results show the feasibility of using the direct connection between a cylin-

der and the DHPMS. The results also show high energy efficiency due to no throttling

valves and very good open-loop control. The same system is later experimentally tested in

[74]. The experimental results verified the earlier simulation results regarding feasibility

and open-loop position tracking performance. On the other hand, small cylinder velocities

should be avoided due to pulsating output flow from the DHPMS. Increasing the number

of pistons in the DHPMS and the rotational speed while keeping the maximum flow fixed

will improve the controllability at low cylinder velocities. Also, the energy efficiency is

reduced due to leakage in the on/off valves and low flow capacity. However, the experi-

mental results show the ability to convert energy from one outlet to another. This makes

it possible to attach an accumulator for energy recovery.

The use of an accumulator for energy recovery in a displacement controlled DHPMS

is investigated in [75] by simulations. An excavator’s arm is used as a case study. The

excavator’s arm is controlled using a single acting cylinder directly connected to one of

the outlets of the DHPMS. Another outlet is connected to a high pressure accumulator

and used for energy storage. The results show that energy recovery is possible.

In [76], the authors present an experimental comparison analysis of a proportional valve

controlled cylinder and a displacement controlled cylinder. For the proportional valve

controlled cylinder, the system pressure is controlled by a DHPMS. For the displacement

controlled cylinder, the cylinder is directly connected to the DHPMS similar to the system

used in [41] and [74]. The results show that the displacement controlled cylinder uses 50 %

less energy compared to the proportional valve controlled cylinder. On the other hand,

the controllability is lower at low velocities.

A simulation study of a DHPMS with five independently controlled outlets is presented

in [77]. The DHPMS is used to actuate two double acting cylinders on an excavator’s

arm. The cylinders are directly connected to the DHPMS. The fifth outlet is connected

to an accumulator for use as energy storage. The simulation results show good open-loop

control for both cylinders and that the accumulator can be used for energy recovery.
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Purdue University

At Purdue University, researchers have focused on developing displacement strategies and

analyzing valve parameters with respect to energy efficiency [19, 22, 21, 23, 20, 78]. This

research has already been discussed in Section 1.3.2 and 1.3.3.

In [79], the author presents an algorithm that optimizes the valve timing during opera-

tion and an algorithm that detects the best displacement strategy for the current operation

conditions. The following displacement strategies are included in the analysis: full stroke

displacement strategy, partial stroke displacement strategy, full stroke flow limiting and

partial stroke flow limiting. The optimal valve timing is found by measuring the input

and output pressures and searching for pressure ripples. If there are any pressure ripples,

the valve timing is adjusted to remove the ripples. Two different displacement switching

algorithms are developed: one efficiency based and one ripple based. For more informa-

tion, see [79].

Aalborg University

At Aalborg University, a research group has worked with the design and optimization of

fast switching poppet valves for use in high speed digital displacement machines [80, 25].

This work is presented in Section 1.3.3. One important contribution of the work is a

general method for specifying required valve switching time and flow capacity. At Aal-

borg University, a researcher has also developed models of digital displacement machines

that can be used for model based feedback control design purposes [12]. Both continu-

ous, discrete and hybrid dynamical system approximation are investigated. This work is

described in Section 1.3.4.

Diinef AS

The company Diinef AS has developed a pilot operated valve, designed for use in high

torque low speed digital displacement machines [38]. In May 2017, Diinef AS officially

unveiled the world’s first digital high torque low speed motor [81]. The motor is developed

in cooperation with Imenco Bauer Hydraulics and described in [82].

In 2017, Diinef AS and Imenco Bauer Hydraulics joined MacGregor Norway in a

project intenting to develop energy efficient hydraulic winch drive systems with the use

of high torque low speed digital displacement motors [83]. In 2018, they presented a new

displacement strategy for very low speed operations [18]. The new displacement strategy

is called creep mode and can typically be used in winch systems during tensioning of the

wire before lift-off.

27



Using Digital Hydraulics in Secondary Control of Motor Drive

1.4 Research Objectives

The work presented in this thesis aims to develop a controller for a secondary controlled

high torque low speed digital displacement motor used in a winch drive system. The work

can be divided into five research objectives that are based on the lack of research revealed

by the state of the art.

Objective A: The digital displacement motor can achieve variable displacement by

using different displacement strategies. Different displacement strategies have different

transient and steady-state response. Objective A is to analyze the transient and steady-

state response for the following displacement strategies: full stroke, partial stroke and

sequential partial stroke displacement strategy.

Objective B: Objective B is to design and build a test rig for a high torque low

speed digital displacement motor. The test rig shall be used to experimentally test the

displacement strategies analyzed in research objective A and validate the used simulation

model of the digital displacement motor.

Objective C: The digital displacement machine technology sets high requirements

for the on/off valves. In order to operate with all displacement strategies investigated in

objective A, the on/off valves must be of the actively activated valve type. Opening a

valve too early or too late may result in a significant increase of the valve throttling losses.

Objective C is therefore to investigate requirements regarding valve timing accuracy.

Objective D: Objective D is divided into two parts. The first part is to analyze winch

operations and define performance requirements for the winch drive system. The second

part is to use the results from objective A and select the displacement strategy that is most

suited for use in the digital displacement winch drive systems. Also, a control strategy

for four quadrant operation for the selected displacement strategy must be developed.

Objective E Objective E is to design controllers for the digital displacement winch

drive system. The control system should use the displacement strategy chosen in Ob-

jective D. The aim is to adjust already developed control structures to fit to the digital

displacement winch drive systems. If this is not possible, a new control structure should

be developed.

1.5 Contribution

The main contributions of this thesis are:

− Definition of requirements regarding valve timing accuracy.

− Development of a new type of displacement strategy: partial stroke displacement

strategy 2.
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− Dynamic response analysis of a digital displacement motor operating at different dis-

placement strategies: full stroke displacement strategy, partial stroke displacement

strategy 1 (original version), partial stroke displacement strategy 2 (new version)

and sequential partial stroke displacement strategy.

− Development of a test setup that can experimentally test digital operation on a high

torque low speed digital displacement motor.

− Experimental test of full stroke displacement strategy, partial stroke displacement

strategy and sequential partial stroke displacement strategy in low speed operations.

− Validation of the simulation model by experimental work.

− Development of switching logic between operation quadrants for a digital displace-

ment motor operating with partial stroke displacement strategy 2.

− Development of motion controller and tension controller for the digital displacement

winch drive system.

1.6 Reading Guidelines

Chapter 2 aims to present a detailed description of the digital displacement motor. The

chapter begins with presenting the nonlinear simulation model of the digital displacement

motor. Then the working principle of the full stroke, partial stroke and sequential partial

stroke displacement strategy are described in detail. At the end, the valve requirements

for the fast switching on/off valves are presented. First, a short summery of general valve

requirements that can be found in the literature is given. Then requirements regarding

valve timing accuracy are given. The given requirements regarding valve timing accuracy

are based on the work published in paper C

Chapter 3 describes the experimental test rig, presents experimental test results and

uses the experimental results to validate the nonlinear simulation model of the digital

displacement motor presented in Chapter 2. This work is published in paper D.

Chapter 4 presents an analysis of the transient and steady-state response of the digital

displacement motor operating with the displacement strategies described in Chapter 2.

At the end of the chapter, the dynamic characteristics of each displacement strategy are

discussed. The work presented in this chapter is published in paper D

Chapter 5 presents a preliminary winch drive study conducted in the beginning of the

project. The aim of the presented work is to compare the use of conventional and digital

displacement machines in a closed circuit winch drive system. This work is published in

paper A and paper B.

Chapter 6 gives a description of different winch operation modes, different subsea

lifting operations and defines performance requirements for winch drive systems. Parts of
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the work presented in this chapter is published in paper E

Chapter 7 describes the designed controllers and shows the simulation results. Most

of the work is presented in paper F but some of the work is presented in paper E.

Finally, the main conclusions are presented in Chapter 8 together with a proposal of

future work.
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The Digital Displacement Motor

The digital displacement motor (DDM) technology has experienced increased interest in

the last years due to their high energy efficiency potential. The working principle of the

DDM is described in Section 1.3. This section presents a nonlinear simulation model of

the DDM, four displacement strategies and important valve requirements.

2.1 Simulation Model of a Digital Displacement

Motor

This section describes the nonlinear simulation model of a DDM. The simulation model

is based on a radial piston type machine with the pistons uniformly distributed around

the shaft. The model is inspired by the model presented in [80]. For simplicity, equations

for the simulation model is derived for a single cylinder chamber, but the same method

is used for all cylinders. A sketch of a single cylinder DDM is shown to the left in Figure

2.1.

θcyl,i 

Center of 

shaft
Center of 

rotation

1
2
3
4
5
6
7

Piston
Cylinder
High pressure valve
Low pressure valve
Cylinder chamber
Low pressure manifold
High pressure manifold

1
2
3
4
5
6
7

Piston
Cylinder
High pressure valve
Low pressure valve
Cylinder chamber
Low pressure manifold
High pressure manifold

1
2

3 45
6

7

˙ θm
˙ θmθcyl,i 

Center of 

shaft
Center of 

rotation

1
2
3
4
5
6
7

Piston
Cylinder
High pressure valve
Low pressure valve
Cylinder chamber
Low pressure manifold
High pressure manifold

1
2

3 45
6

7

˙ θm

Figure 2.1: Sketch of single cylinder chamber (left side) and a 15 piston DDM (right side).
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In this thesis, different numbers of cylinder chambers and different piston displace-

ments will be used in different parts of the thesis. However, every simulation model

is built up in the same manner. It is always assumed that the cylinder chambers are

uniformly distributed around the same shaft. In cases with a high number of cylinder

chambers, the cylinders can be uniformly distributed around the same shaft by stacking

the cylinders in banks along the same shaft with the banks phase shifted in relation to

each other. This solution is shown to the right in Figure 2.1. Another alternative may be

to place several motors on the same gear ring with each piston movement phase shifted

relative to each other.

The cylinder chambers can either be connected to a high or low pressure source. It

is assumed that the high and low pressure sources have constant pressure levels and

that friction and leakage in the DDM are negligible. The pressure dynamics in cylinder

chamber i is calculated by using the continuity equation,

ṗcyl,i =
βeff,i
Vcyl,i

·
(
QH,i −QL,i − V̇cyl,i

)
(2.1)

where βeff,i is the effective bulk modulus of the hydraulic fluid, Vcyl,i is the cylinder

chamber volume, V̇cyl,i is the time derivative of cylinder chamber volume, QH,i is the flow

through the high pressure valve and QL,i is the flow through the low pressure valve. The

cylinder chamber volume, Vcyl,i, and its time derivative are given by Equation 2.2 and

Equation 2.3 respectively.

Vcyl,i = V0 +
Vd
2
· (1− cos (θcyl,i)) (2.2)

V̇cyl,i =
Vd
2
· sin (θcyl,i) · θ̇m (2.3)

where V0 is the dead volume in the cylinder chamber, Vd is the piston displacement, θcyl,i

is the shaft position relative to the piston position and θ̇m is the DDM shaft speed. Note

that θ̇m = θ̇cyl,i. θcyl,i is called the local shaft position and is defined to be 0 rad when the

piston is at TDC. Due to the phase shift between the cylinders, the local shaft position

for cylinder number i is given by:

θcyl,i = θm +
2 · π
Nc

· (i− 1) i ∈ {1, ..., Nc} (2.4)

where θm is the DDM shaft position and Nc is the number of cylinders. The volume

flows through the valves, QH,i and QL,i, are described by the orifice equation as shown in

Equation 2.5 and Equation 2.6 respectively.

QH,i =
uH,i
kf
·
√
|pH − pcyl,i| · sign(pH − pcyl,i) (2.5)

QL,i =
uL,i
kf
·
√
|pcyl,i − pL| · sign(pcyl,i − pL) (2.6)
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where uH,i and uL,i are the opening ratios of the high and low pressure valve ranging from

0 to 1, where 0 is fully closed and 1 is fully open. Both valves have the same flow-pressure

coefficient, kf , and the same transient response. The flow-pressure coefficient can be

calculated based on experimental measurements or data given by the manufacturer,

kf =

√
∆pref

Qref

(2.7)

where Qref is the flow trough the valve when the valve is fully open and with a pres-

sure drop equal to ∆pref . Qref is often called the valve flow capacity and specified at

∆pref = 5 bar.

The transient response of the on/off valves is described by a second-order system,

üH,i = uconH,i · ω2 − uH,i · ω2 − 2 · ζ · ω · u̇H,i (2.8)

üL,i = uconL,i · ω2 − uL,i · ω2 − 2 · ζ · ω · u̇L,i (2.9)

where uconH,i and uconL,i are the desired valve positions for the high and low pressure

valves, ω is the natural frequency of the valves, and ζ is the damping ratio. The desired

valve positions, uconH,i and uconL,i, are either 0 or 1 and is given by the chosen displacement

strategy. Different displacement strategies and their valve actuation sequence is described

in detail in Section 2.2.

The effective bulk modulus is calculated according to [84] as shown below.

βeff,i =
1

1
βL

+ εg

p
(abs)
cyl,i

(2.10)

where βL is the bulk modulus of the liquid and εg is the volume fraction of undissolved

gas. The volume fraction of undissolved gas is calculated as shown in Equation 2.11

εg =
1(

1−εg0
εg0

)
·
(
p
(abs)
atm

p
(abs)
cyl,i

)− 1
κ

+ 1

(2.11)

where εg0 is the volume fraction of undissolved gas at atmospheric pressure, p
(abs)
atm is the

atmospheric pressure and κ is the specific heat ratio.

Finally, the torque contribution from each cylinder chamber is given by

Tcyl,i =
Vd
2
· sin(θcyl,i) · pcyl,i (2.12)

and the DDM output torque is the sum of the torque contribution from all cylinders

Tm =
Nc∑
i=1

Tcyl,i (2.13)
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2.2 Displacement strategies

The displacement of the DDM can be changed by using different displacement strategies.

This section describes the valve activation sequence for the displacement strategies ana-

lyzed in this project: full stroke, partial stroke and sequential partial stroke displacement

strategy. A general example of a DDM controller is shown in Figure 2.2. The input to

Figure 2.2: Schematic of open loop motor controller.

the controller is the desired DDM displacement ratio, Dm, and the output is the DDM

torque. The displacement strategy is used to transform the desired displacement ratio

into valve activation signals.

Note that in this section only motor operation is described, but the same strategy can

also be used for pump operation.

2.2.1 Full Stroke Displacement Strategy

Full stroke displacement strategy (FSDS) is considered to be the simplest displacement

strategy. The cylinder chambers are activated and deactivated for entire piston strokes.

This means that the on/off valves are only switched when the pistons are close to TDC

or BDC. In those positions, the valve flow is low, which results in a minimum of valve

throttling losses when switching the valves. Also, the valves are timed only to be actuated

when the pressure drop across them is small. The displacement of the DDM is changed

by changing the number of active cylinder chambers.

Figure 2.3 illustrates the valve timing strategy for a single cylinder chamber. Through

the first shaft revolution [0 − 2π], the chamber is deactivated, and through the second

revolution [2π − 4π], the chamber is activated. Plot 1 shows the piston position, Plot

2 shows the opening ratios of the valves, Plot 3 shows the chamber pressure, Plot 4

shows the cylinder torque and Plot 5 shows the local shaft position. For an inactive

cylinder chamber, the high pressure valve is kept closed and the low pressure valve is

kept open, resulting in only a small torque contribution in the downstroke piston motion

due to low chamber pressure. For an active cylinder chamber, the valves are switched

close to TDC and BDC with the high pressure valve being open during the downstroke

piston motion and the low pressure valve being open during the upstroke piston motion.

The high chamber pressure during the downstroke piston motion results in a high torque
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Figure 2.3: Valve timing schematics for the full stroke displacement strategy.

contribution.

It can also be seen that for the active cycle, the high pressure valve and low pressure

valves are in closed position at the same time. This is done to compress and decompress

the oil in the chamber in order only to switch the valves when the pressure difference

is small. Switching the valves only when the pressure difference is small, results in a

minimum of flow peaks, pressure peaks and valve throttling losses.

For each cylinder, the decision of activating or deactivating the cylinder chamber is

taken at a fixed angle once every shaft revolution. This position is illustrated in Plot 5

in Figure 2.3 with the decision angle αd (red dashed line). When θcyl,i = αd, the decision

of activating or deactivating cylinder chamber i for the next shaft revolution is taken.

The desired displacement fraction, Dm, is normally a continuous signal ranging from 0

to 1 which corresponds to zero and full displacement respectively. The displacement

fraction can be converted into a cylinder actuation sequence by a first-order delta-sigma

modulator, which determines whether the current cylinder shall be active or inactive.

This method was first proposed by Johansen et al. [85] and later used in several control

papers [43, 46, 47, 45]. A block diagram of the proposed controller is shown in Figure 2.4.

Figure 2.4: Schematic of open loop control system for FSDS.
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Since the decision of activating or deactivating is taken at a fixed shaft position ahead

of TDC, the sampling time, Tsample, for the delta-sigma modulator depends on the number

of cylinders and the rotational speed.

Tsample =
2 · π
θ̇m ·Nc

(2.14)

where θ̇m is the shaft speed and Nc is the number of cylinders. If the shaft speed is

varying, the sampling time is also varying. A varying sampling time makes the control

design more challenging.

2.2.2 Partial Stroke Displacement Strategy

In partial stroke displacement strategy (PSDS), all cylinder chambers are activated during

every shaft revolution, but only in a portion of the downstroke piston motion. The

displacement of the machine is changed by increasing or decreasing the active part. In

this project, two versions of PSDS are investigated. The first version, PSDS 1, is the

conventional version which is described in the literature. The second version, PSDS 2,

is a development of the PSDS 1. PSDS 1 is based on operation with passively activated

valves and are only capable of having one active period during the downstroke piston

motion. PSDS 2 is based on operation with actively activated valves which makes it

possible to reactivate a cylinder chamber and thereby have have more than one active

period during the downstroke piston motion.

2.2.2.1 Partial Stroke Displacement Strategy 1

Figure 2.5 shows the valve timing strategy for a single cylinder chamber operating with

PSDS 1. The red dashed line in the bottom plot shows the state change angle α. α

describes at which local shaft position angle, θcyl,i, the cylinder shall change state from

active to inactive. If θcyl,i ≤ α the cylinder is active, else the cylinder is inactive.

For the situation shown in Figure 2.5, the state change angle is first set to α = α1 = π/2

rad and the cylinder is active in the first half of the downstroke piston motion. This

situation corresponds to 50 % displacement. After a small period, the state change angle

is stepped up above the local cylinder angle, α = α2 = 3π/4 rad. Increasing the state

change angle after the cylinder has been deactivated, will not result in a reactivation of

the cylinder due to the nature of the PSDS 1. Once the cylinder is deactivated, it can

not be re-activated before the next shaft revolution.

As for the FSDS, the PSDS 1 also has a decompression phase and a compression

phase in order only to switch the valves when the pressure difference across them is

small. Switching the valves mid-stroke will result in higher flow throttling losses during
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Figure 2.5: Valve timing schematics for the partial stroke displacement strategy 1.

switching compared to switching the valves closer to TDC or BDC. This is because the

piston velocity and therefore also the flow is higher mid-stroke compared to closer to TDC

or BDC.

The state change angle, α, is calculated based on the desired displacement ratio,

Dm. The desired displacement ratio can be defined as the ratio between the intake

volume during the active motoring period and the maximum intake volume [24]. Based

on the calculation of the cylinder volume shown in Equation 2.2, the displacement ratio

is calculated as shown below.

Dm =
Vcyl(α)

Vcyl(π)
=

Vd
2
· (1− cos (α))

Vd
2
· (1− cos (π))

=
(1− cos (α))

2
(2.15)

where Vcyl(α) is the intake volume during the active motoring period and Vcyl(π) is the

maximum intake volume. The state changing angle, α, is then calculated by rearranging

Equation 2.15 as:

α = cos−1 (1− 2 ·Dm) (2.16)

The state change angle, α, is updated continuously until the state change is carried out.

Figure 2.6 shows the block diagram of the open loop control system. Note that due to the

decompression phase shown in Figure 2.5, the displacement fraction can not be as high as

1, because the last piston movement must be used to decompress the cylinder chamber.
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Figure 2.6: Schematic of open loop control for PSDS (equal for PSDS 1 and PSDS 2).

2.2.2.2 Partial Stroke Displacement Strategy 2

PSDS 2 is developed based on the PSDS 1. In PSDS 2, the cylinder is capable of being

reactivated. Instead of only having one active period during the downstroke piston motion,

the cylinder can be reactivated if the desired displacement ratio is changed, see Figure

2.7. For the illustrated situation, the state change angle is first set to α = α1 = π/2 rad.
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Figure 2.7: Valve timing schematics for the partial stroke displacement strategy 2.

When θcyl,i = α1, the cylinder chamber changes state from active to inactive. After a small

period, the state change angle is stepped up to α = α2 = 3π/4 rad. Since θcyl,i < α2, the

cylinder is reactivated in the remaining shaft rotation up to θcyl,i = α2.

When reactivating a cylinder, both valves are activated at the same time, opening the

high pressure and closing the low pressure valve. This valve activation strategy is used

because it is not possible to compress the oil in the cylinder chamber before opening the

high pressure valve. The chamber oil can not be compressed because the cylinder volume

is increasing due to the downward piston motion. Since both valves are activated at the

same time, the high pressure valve must open against a high pressure difference, and the

hydraulic fluid will flow directly from the high pressure source and into the low pressure

source from the time the high pressure valve starts to open and until the low pressure valve

is fully closed. This will result in higher valve throttling losses compared to switching the
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valves when the oil in the chamber can be compressed or decompressed properly. The

cylinder chamber may cavitate if the low pressure valve closes before the high pressure

valve starts to open due to the downstroke piston motion. An anti-cavitation valve can

be included to avoid the risk of cavitation in the case of poor timing of the valves.

2.2.3 Sequential Partial Stroke Displacement Strategy

In the sequential partial stroke displacement strategy (SPSDS), one combination of active

and inactive cylinder chambers are used in a limited amount of time before a new cylinder

combination is activated. The best cylinder combination can, for example, be found by an

optimization algorithm or a search routine. This displacement strategy is characterized

by frequently switchings and therefore lower efficiency compared to for example FSDS. In

this section, only a short description of the SPSDS is given. A more detailed description

can be found in [17].

For simplicity, a 5 cylinder DDM is used as an example when describing the concept

of the SPSDS. For a 5 cylinder motor, the cylinder states can be described by a 5-bit

binary number, where ”1” indicates that the cylinder is active and connected to the

high pressure source and ”0” indicates that the cylinder is inactive and connected to the

low pressure source. The left plot in Figure 2.8 shows the cylinder torque contribution

from a 5 cylinder motor when all cylinders are activated for an entire shaft revolution.

When θm = 4π/7 rad, three chambers can potentially provide a positive torque, and

Figure 2.8: Cylinder torque (left plot) and possible torque levels at θm = 4π/7 (right plot).

two chambers provide a negative torque. For a 5 piston motor, there are in all 2Nc = 32

possible cylinder configurations. At θm = 4π/7 rad, the 32 possible cylinder configurations

gives only 31 distinct output torques because all cylinders connected to the high pressure

source and all cylinders connected to the low pressure source gives the same output

torque, Tm = 0 Nm. The 31 distinct output torques when θm = 4π/7 are shown in the

right plot in Figure 2.8. The red point corresponds to activation of cylinder number 1

and 2 (Uc = [1 1 0 0 0]).

Rotating the motor shaft one revolution with the same cylinder configuration will

result in a sinusoidal output torque. The cylinder configuration is therefore changed after
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a short period, Tupdate, in order to meet the desired output torque. This is illustrated in

the left side of Figure 2.9.

Figure 2.9: Schematic of open loop control for SPSDS.

The red line shows the desired motor torque and the blue line shows the actual motor

torque. It can be seen that when the time is equal to Tupdate, 2 · Tupdate and 3 · Tupdate,
there is a step in the motor torque. These steps occur because the combination of active

cylinder chambers is changed. The right side of Figure 2.9 shows the block diagram of the

controller. In this work, a search routine is used to find the best cylinder configuration.

The input to the system is the desired motor torque, and the output is the actual motor

torque. The search routine finds the best cylinder configuration based on the desired

motor torque, Tdes, the current motor shaft position, θm, the motor shaft speed, θ̇m, and

a look-up table. The look-up table is estimated offline and describes the output torque,

T11...in, for all possible cylinder configurations, Uc, at different shaft positions θm. In

this work, the cylinder configuration, Uc, is updated every Tupdate = 20 ms and given by

Equation 2.17.

Uc(k) = arg

(
min
Uc

(∣∣TLuT (θm, Uc)− Tdes
∣∣)) (2.17)

where k is the sample index and TLuT is the average output torque estimated from the

look-up table over the interval of rotation which the valve configuration, Uc(k), will be

applied. The applied interval is defined as [θm, θm + ∆θm] where ∆θm = θ̇m · Tupdate.
Figure 2.10 shows the result of the described controller for a 5 cylinder motor. The

red line in the left plot shows the desired motor torque, Tdes, and the blue line shows

the actual motor torque, Tm. The right plot shows the torque contribution from every

single cylinder (one color per cylinder). It can be seen that the cylinder configuration is

frequently switched and that the best cylinder configuration includes both positive and

negative torque contribution.
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Figure 2.10: Example of DDM operation with SPSDS.

2.3 Valve Requirements

The most important components in the DDM are the on/off valves. One of the keys to

achieving high energy efficiency are the on/off valve characteristics. In general, an on/off

valve to be used in a DDM should have the following features [39]:

− low cost

− compact design

− high durability

− easy to replace

− low electrical power consumption

− zero leakage

− low switching time

− high flow capacity

− high repeatability and accuracy

A DDM needs two on/off valves per cylinder chamber. A high number of valves requires

the valves to be cheap to keep the production costs of the DDM low and to be compact to

reduce space requirement. Also, a high number of valves raises the risk of a system failure

caused by a malfunction of one valve. The valves must, therefore, have high durability

and be easy to replace. From an energy efficiency point of view, the valves should have

low electric power consumption, low leakage (zero leakage is best), low switching time,

high flow capacity and high repeatability and accuracy. The electrical power consumption

should preferably be below 20 W [39], but this may be affected by the motor size. The

valves should be leak tight to avoid leakage losses. Fast switching and high flow capacity is

important to minimize flow throttling losses. High repeatability and accuracy is important

to fully decompress and compress the pressure in the cylinder chamber before opening

the valves in order to reduce compressibility losses and minimize flow and pressure peaks.
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2.3.1 Flow capacity and response time

Rømer et al. [26] and Nørg̊ard [25] have developed a method for finding the required

flow capacity and switching time when operating with FSDS and PSDS 1. For FSDS,

the result shows that it is possible to achieve energy efficiency higher than 95 % at 20 %

displacement if the valve switching time is less then 20 % of the shaft revolution time,

and the pressure drop across the valve is less than 0.5 % of the pressure drop across the

machine at maximum valve flow. In order to achieve the same high energy efficiency when

operating with PSDS 1, the valve switching time must be reduced to 1.67 % of the shaft

revolution time. Note that the electrical energy consumed in the valves was not taken

into account in this study. The switching time and flow capacity can be calculated as

shown in Equation 2.18 and Equation 2.19.

Ts = Trev · T s (2.18)

Qref = Qmax ·
√

5 bar√
∆pmachine ·∆p

(2.19)

where Ts is the switching time of the valve, Trev is the time for one shaft revolution and

T s is the normalized switching time and equal to 20 % for FSDS and 1.67 % for PSDS 1.

Qref is the valve flow with a pressure drop of 5 bar (also called flow capacity), Qmax is

maximum flow through the valve (Qmax = Vd
2
· θ̇m,max), ∆pmachine is the pressure difference

across the machine and ∆p is the normalized pressure drop and is equal to 0.5 % for both

FSDS and PSDS 1.

Table 2.1 shows the required flow capacity and response time for a digital displacement

motor with a cylinder displacement equal to Vd = 50 cc/rev, a pressure drop across the

DDM of ∆pmachine = 200 bar and operating at 10 rpm, 100 rpm and 1000 rpm.

Table 2.1: Required switching time and valve flow capacity.

Full stroke displacement strategy

θ̇m,max 10 rpm 100 rpm 1000 rpm

Ts 1200 ms 120 ms 12 ms (based on T s = 20 %)

Qref 3.5 l/min 35 l/min 350 l/min (based on ∆p = 0.5 %)

Partial stroke displacement strategy 1

θ̇m,max 10 rpm 100 rpm 1000 rpm

Ts 100 ms 10 ms 1 ms (based on T s = 1.67 %)

Qref 3.5 l/min 35 l/min 350 l/min (based on ∆p = 0.5 %)

It can be seen that the valve requirements are stricter for PSDS compared to FSDS.
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Also, operation at higher speeds sets higher requirements for valve response time and flow

capacity.

Note that the opening and closing profile of the valves will affect the efficiency of

the digital displacement machine. In the method described above, a linear valve opening

profile is assumed. The timing of the valves will also affect the efficiency of the DDM.

The next section shows how mistiming of one valve will affect the energy efficiency.

2.3.2 Valve accuracy and repeatability

In addition to a proper valve timing strategy, it is important to have valves that are

capable of operating according to the strategy. For example, opening a valve too early or

too late may result in increased flow throttling losses and compressibility losses. Switching

the on/off valves precisely is very important. In [20], the authors showed that the valve

throttling losses were increased by a factor of approximately 8 when the actuation of the

valves was off by 2 ms when operating at 3000 rpm, 300 bar, 57 % displacement and with

valves capable of switching in 1 ms. The used displacement strategy was PSDS 1. This

section aims to analyze the energy efficiency sensitivity to the mistiming of the valves. It

also aims to describe the maximum mistiming that can be allowed without introducing

significant losses. The work is presented in the paper C.

2.3.2.1 Analyzing Method

The piston speed is largest mid-stroke and smallest close to TDC and BDC. The valve flow

will therefore have a similar flow profile. It is assumed that the energy efficiency is more

sensitive to poor valve timing when the valve flow is high and also at lower displacements

when the output power is low. In order to ensure that the most critical operation condition

is covered, the effect of mistiming should be conducted along the entire piston stroke. For

simplicity, when analyzing the sensitivity to mistiming of the valves, only motor operation

and mistiming of one valve are considered. Figure 2.11 shows the valve timing strategy

and relevant parameters used in this analysis. Plot 1 shows the piston position, Plot 2

shows the opening ratio of the high pressure valve and Plot 3 shows the opening ratio of

the low pressure valve. θdelay1 is defined as the angle the shaft rotates between starting to

close the high pressure valve and starting to open the low pressure valve. α is the control

angle and describes at which local shaft position the high pressure valve shall start to

close. The motor displacement can be calculated based on the control angle, α, as shown

in Equation 2.15.

To evaluate the energy efficiency’s sensitivity to mistiming of a valve, several simula-

tions are conducted where α varies from αmin to αmax. At each step of α, the delay angle
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Figure 2.11: Simplified illustration of valve timing strategy when analyzing requirements

regarding valve timing accuracy.

θdelay1 is varied from 0 rad up to θdelay,max, marked with two green lines in Plot 3 in Figure

2.11. At each simulation the energy efficiency is evaluated and saved. By using the saved

values, the energy efficiency can be mapped for different values of α and θdelay1. Based

on the efficiency map, it is possible to evaluate which delay angle that gives the highest

efficiency, and how early or late the low pressure valve can bee opened without reducing

the energy efficiency significantly.

The maximum delay angle, θdelay,max, is defined as shown in Equation 2.20 and illu-

strated in Figure 2.12.
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Figure 2.12: Illustration of θdelay,max.

θdelay,max = θact + θdecomp (2.20)

where θact is the angle the shaft rotates while closing the high pressure valve and θdecomp

is the angle the shaft needs to rotate in order to decompress the chamber oil from high

pressure level down to the low pressure level. This definition is chosen in order to limit the

number of simulations where the cylinder chamber cavitates, because if the delay angle
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becomes too large, the cylinder chamber will cavitate. In a real system, cavitation can be

avoided by for example connecting an anti-cavitation valve to every cylinder camber.

By knowing the valve switching time, Ts, and the motor speed, θ̇m, θact is calculated

as shown in Equation 2.21

θact = Ts · θ̇m (2.21)

For simplicity, the effective bulk modulus is set to βeff ≈ βL when estimating the de-

compression angle. The decompression angle, θdecomp, can then be calculated as shown in

Equation 2.22.

θdecomp = θ1 − θ2 (2.22)

where θ1 is calculated as shown in Equation 2.23 and θ2 is calculated as shown in Equation

2.24.

θ1 = α + θact (2.23)

θ2 = cos−1

(
cos (θ1) +

3− cos (θ1)

βL
· (pH − pL)

)
(2.24)

A more detailed derivation of the expression for θ2 can be found in paper C. Note that

the decompression angle is small when switching mid-stroke and larger when switching

closer to TDC and BDC.

2.3.2.2 Results

The simulation parameters used in this analysis are listed in Table 2.2.

Table 2.2: Fixed simulation parameters.

Parameter Value Description

Vd 50 cc/rev Cylinder displacement

V0 50 cc/rev Dead volume in cylinder

pHP 220 bar Constant high pressure source

pLP 20 bar Constant low pressure source

T s 1.67 % Normalized valve transition time

∆p 0.5 % Normalized pressure drop

βL 1.2 MPa Bulk modulus liquid

Describing the valve characteristics by the normalized valve parameters T s and ∆p,

makes the simulation results valid for all speeds. This method has earlier been used in

[26] and [25]. The switching time and valve flow capacity can be calculated as shown in

Equation 2.18 and Equation 2.19 respectively.
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The energy efficiency sensitivity of the digital displacement motor to the valve accuracy

and repeatability is evaluated by performing a large number of simulations with different

values of the control angle, α, and the timing delay angle, θdelay1. The energy efficiency

is evaluated for every simulation and saved together with the valve throttling losses. The

energy efficiency is calculated as shown in Paper C. The control angle, α, is ranging from

40◦ to 154◦, where 154◦ corresponds to full displacement. The timing delay angle, θdelay1,

is ranging from 0◦ to θdelay,max.

In Figure 2.13, the left plot shows the energy efficiency map and the right plot shows

the valve throttling losses. The x-axis shows the control angle α and the y-axis shows the

Highest efficiency Lowest lossesHighest efficiency Lowest losses

Figure 2.13: Efficiency and valve losses as a function of the state change angle and the delay

angle.

normalized delay angle, θdelay. The normalized delay angle is defined as θdelay =
θdelay1

θdelay,max
.

From the plots, it can be seen that the energy efficiency is high and the valve throttling

losses are low for high values of θdelay. At lower values of θdelay, the energy efficiency drops

and the valve throttling losses increase significantly. The blue line marks the highest

energy efficiency and lowest valve losses in the left and right plot respectively. It can be

seen that the optimal delay angle varies with the control angle, α. In this simulation, the

best delay angle is between 75 % and 95 % of θdelay,max, shown by the blue line. Note that

a change in dead volume, valve flow capacity, valve transition time, valve motion profile

or oil stiffness will change the optimal delay angle.

In the area below the green line, the low pressure valve starts to open before the

high pressure valve is fully closed, resulting in increased flow throttling losses due to flow

running directly from the high pressure source into the low pressure source. By further

reducing the normalized delay angle, θdelay, below the green line, the time where both

valves are open simultaneously will increase and result in a significant increase of flow

throttling losses.

Even though the optimal opening angle is known, the blue line in Figure 2.13, it is
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not possible to actuate the valve at the exact optimal position every time. Some times

it may open a little too early or too late. Simplifying the optimal delay angle to be

θdelay,opt = 80 %, marked with the cyan dotted line, the flow throttling losses will stay

low, and the motor efficiency will stay high. Even though there is a delay in the timing of

±20 %, marked with the light area inside the red box in Figure 2.13, the valve throttling

losses will remain low and the motor efficiency will remain high. Switching the low pressure

valve within ±20 % of the simplified optimal delay angle, θdelay,opt, is more demanding in

high speed motors than low speed motors. By knowing the motor speed, θ̇m, the delay in

time can be calculated as shown in Equation 2.25 for various speeds.

Tdelay =
±20 % · θdelay,max (α)

θ̇m
(2.25)

In Figure 2.14, Equation 2.25 is used to calculate the allowable delay in time at different

displacements and speeds. Note that the y-axis is scaled logarithmically. It can be seen

Figure 2.14: Acceptable deviation from optimal valve timing.

that the required accuracy and repeatability is stricter in high speed motors than in low

speed motors. The requirements are also higher when switching mid stroke compared

to close to BDC (α close to αmax). When operating at 1000 rpm, the low pressure

valve should be opened within approximately ±0.3 ms from optimal opening time. When

operating at 10 rpm, the requirements are not that strict, and the low pressure valve

should open within approximately ±30 ms from the optimal opening time.
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Chapter 3

Experimental Test Rig

A test rig has been built in order to validate the simulation model of the DDM and

experimentally test the displacement strategies presented in Section 2.2. The test rig is

designed to facilitate digital displacement operation on a single cylinder. It is assumed

that all cylinders in a motor have the same characteristics. Therefore, only operation on

a single cylinder is required to experimentally test a displacement strategy. Also, if the

simulation model for a single cylinder is validated, then the entire DDM model is assumed

to be valid. The test rig is based on a previously developed test rig at Aalborg University,

Denmark [25].

This chapter presents the test rig, experimental results and validation of the simulation

model. The simulation model is verified for operation with the displacement strategies

FSDS, PSDS 1, PSDS 2 and SPSDS. The presented work is published in paper D.

3.1 Test Rig Description

The test rig is designed and built to test different digital displacement strategies. The

test rig is based on a five cylinder Calzoni MR250 radial piston motor which has been

modified to operate with digital displacement technology on one cylinder. Figure 3.1 shows

a picture of the test rig. A permanent magnet synchronous electric machine is used as a

load and to control the rotational speed. The control block is used to supply the modified

radial piston motor with appropriate pressures and volume flows. The control block is

supplied by a 250 kW variable displacement pump station, not shown in the picture. The

power cabinet contains power supplies, valve drivers, data acquisition system, and control

system.
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Figure 3.1: Test rig.

3.1.1 Modification of the Hydraulic Motor

The hydraulic motor is modified to operate with the digital displacement technology on a

single cylinder. The cylinder has been modified by blocking the original oil supply to the

cylinder chamber and replace it with two on/off valves mounted in a custom made valve

block. Figure 3.2 shows the modified hydraulic motor with the custom made valve block.

In addition to the two on/off valves, the valve block is equipped with two accumulators,

three pressure sensors and a pressure relief valve with anti-cavitation function. The on/off

valves (1) and (2) are normally open WES type valves from Bosch Rexroth with a flow

capacity of 45 l/min at 5 bar pressure drop and a switching time below 5 ms. The

hydraulic accumulators are 0.7-L diaphragm type from Bosch Rexroth. The low pressure

accumulator (3) is pre-pressurized with 5 bar and the high pressure accumulator (4) is

pre-pressurized with 80 bar. In total three pressure transmitters are mounted on the

valve block. They measure the pressure in the low pressure source (5), high pressure

source (6) and in the cylinder chamber (7). For safety reasons, a pressure relief valve

with anti-cavitation function (8) is connected to the cylinder chamber to avoid dangerous

high cylinder chamber pressures and cavitation. A new top cover (10) for the modified

cylinder has been designed and manufactured. The new top cover was designed to block

the original oil connection (12) between the port plate and the cylinder chamber, and to

create a new oil connection to the valve block.

There is also mounted an encoder and torque transducer on the motor shaft for shaft

position measurements and torque measurements respectively. The position encoder and

torque transducer is not shown in Figure 3.2 but can be seen in Figure 3.1. The position

encoder is an incremental Scancon encoder with 5000 ppr. The torque transducer is an

HBM T12 inductive torque transducer.
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Figure 3.2: Illustration of the modified radial piston motor.

Table 3.1 lists all parts used in the valve block.

Table 3.1: Part list for the custom made valve block and motor shown in Figure 3.2.

Description Part number Ordering code Manufacturer

On/off valve 1 and 2 3WES 8 P1XK/AG24CK50/V Bosch Rexroth

Accumulator 3 and 4 HAD-0.7-250-1x/50Z06A-1N111-BA Bosch Rexroth

Pressure transducer 5 HM 20-2x-100-H-K35 Bosch Rexroth

Pressure transducer 6 and 7 HM 20-2x-400-H-K35 Bosch Rexroth

Pressure relief valve 8 PLC053 393000K179 Parker

Hydraulic motor 16 MR250D-P1Q1N1C1N07 00 Delivered by Parker

3.1.2 Hydraulic Diagram

The hydraulic diagram for the test rig is shown in Figure 3.3. The hydraulic diagram is

divided into three main parts; control block, valve block and the unmodified cylinders.

The control block delivers desired pressures and flows to the valve block and the unmodi-

fied cylinder chambers. The control block is designed to facilitate pumping, motoring and
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Figure 3.3: Hydraulic diagram for the test rig.

idling (inactive) operation on the modified cylinder. In this study, only the motor opera-

tion is used, and therefore, only the motor operation will be described. Pump operation

is described in [86].

The pressure reduction valves (1, 3) are used to control the pressure level in the high

pressure line, pH , and in the intermediate pressure line, pint,reg. The high pressure line

is used to supply the modified cylinder chamber. The intermediate pressure line is used

to supply the four remaining cylinder chambers and for flushing of the machine casing

by using the flow control valve (9). During motor operation, the 4/2 directional control

valve (2) is set opposite of drawn, the gate valve (11) is open, the pressure relief valve

(5) is set to high pressure level and the remaining cylinder chambers are short circuited

by setting the 3/2 directional control valve (7) opposite of drawn. The accumulators are

used to reduce the pressure oscillations introduced by the digital displacement operation.

3.2 Experimental Work and Model Validation

The test rig has been used to validate the simulation model and experimentally test

operation with FSDS, PSDS and SPSDS. The simulation model has been validated by

comparing experimental results with simulation results. Table 3.2 shows the opening and

closing angles used in both the experimental work and in the simulation model. Note

that HPV and LPV are abbreviations for high pressure valve and low pressure valve
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respectively. Table 3.3 shows the operation conditions. The simulation parameters are

set to match the parameters in the experimental test setup and are shown in Table 3.4.

Table 3.2: Activation angles.

FSDS PSDS SPSDS

Open HPV 0◦ 0◦ 60◦

Open LPV 180◦ 90◦ 125◦

Close HPV 154◦ 90◦ 120◦

Close LPV 338◦ 338◦ 60◦

Table 3.3: Operation conditions.

Description Symbol Value

Operation speed θ̇m 100 rpm

High pressure level pH 110 bar

Low pressure level pL 10 bar

Table 3.4: Simulation parameters.

Parameter Symbol Value Unit

Piston chamber displacement Vd 50 cc/rev

Cylinder chamber dead volume V0 130.8 cc

Number of pistons Nc 1 −
Switching time on/off valves Ts 5 ms

Flow-pressure coefficient kf 1.2 · 106
√

Pa · s/m3

Bulk modulus liquid βL 1.2 GPa

Volume fraction of undissolved gas at p
(abs)
atm εg0 0.01 −

3.2.1 Full Stroke Operation

Figure 3.4 shows measured and simulated results of the cylinder pressure pcyl (red line)

and cylinder torque Tcyl (blue line) during full stroke operation as a function of the shaft

angle position. Note that the cylinder is at TDC for θm = j · 2π rad and at BDC for

θm = π + j · 2π rad ∀jεZ where Z is a set of positive and negative integers. The left plot

downstroke upstrokedownstroke upstroke downstroke upstrokedownstroke upstroke

Full stroke deactivated cylinder (idling) Full stroke activated cylinder (motoring)

Compression

Decompression 

activeinactive

downstroke upstroke downstroke upstroke

Full stroke deactivated cylinder (idling) Full stroke activated cylinder (motoring)

Compression

Decompression 

activeinactive

Figure 3.4: Experimental and simulation results for idling and full stroke motor operation

(light colors are experimental results and dark colors are simulation results).
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shows an inactive cylinder operation and the right plot shows an active full stroke motor

operation. The light colors show the experimental results and the dark colors show the

simulation results.

For the inactive cylinder, the simulated chamber pressure matches the measured pres-

sure. The simulated output torque matches the measured torque in the upstroke phase

but deviates in the downstroke phase. Some of the negative measured torque may be due

to friction in the motor, but most of it is produced by the unmodified cylinder chambers.

As mentioned earlier, the four unmodified cylinder chambers are short circuited with a

1-L accumulator (15) connected to the short circuit line as shown in the hydraulic diagram

in Figure 3.3. If all five cylinders had been short circuited, the fluid volume in the short

circuited line would be relatively constant when rotating the radial piston motor. Since

one cylinder is disconnected, there will be a difference in the amount of fluid going in and

out of the unmodified cylinders. When the modified cylinder is in the downstroke phase,

more fluid will go out of the unmodified cylinders than in. When the modified cylinder is

in the upstroke phase, more fluid will go in to the unmodified cylinders than out. The 1-L

accumulator is therefore used to store excess fluid in the downstroke phase and deliver

fluid in the upstroke phase. This will result in a varying pressure in the short circuited

line. The measured pressure in the short circuited line is shown by the black line in Fig-

ure 3.5. It can be seen that the pressure is higher in the downstroke phase than in the

upstroke phase. The high pressure in the downstroke phase results in a negative torque

contribution from the unmodified cylinders. This torque contribution has been simulated

by using the measured pressure. The green line, denoted Tcyl,sim, shows the simulated

torque from the unmodified cylinders added to the simulated cylinder torque. Now when

the negative torque produced by the unmodified cylinders is included, the simulated and

experimental measured torque is a close fit. This can be seen by comparing the green and

light blue colored lines. The precharge pressure of the 1-L accumulator (15) is 20 bar. A

precharge pressure of 20 bar is unnecessarily high and should have been reduced to reduce

the torque contribution from the unmodified cylinders.

In the active full stroke motoring cycle, shown to the right in Figure 3.4, the measured

and simulated torque have the same trends. The simulated torque is a good match in the

upstroke phase, but the measured torque has a lower magnitude in the downstroke phase

due to the negative torque produced by the unmodified cylinders. The green line in the

right plot in Figure 3.5 shows the simulated cylinder torque when the torque contribution

from the unmodified cylinders is included, Tcyl,sim. The results show that the simulated

and measured torque is a good match when the negative torque from the unmodified

cylinders is included in the simulation results. The simulated cylinder pressure matches

the measured pressure quite well, except for small deviations in the compression and
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decompression phase, seen in the right plot in Figure 3.4. It can be seen that in the

experimental work, the chamber fluid does not compress fully up to the high pressure

level in the compression phase and decompresses slightly faster in the decompression

phase. The poor compression and decompression phases may occur due to leakage in

the modified cylinder or leakage in the on/off valves. In the simulation model, it was

originally assumed that the cylinder and the on/off valves are leak free. Assuming that

the cylinder is leak free does not reflect reality. Some leakage is expected in order to

reduce friction between moving parts in the hydraulic motor. By including some leakage

in the simulation model, the simulated pressure matches very well with the measured.

The improvement can be seen in the compression and decompression phase in the right

plot in Figure 3.5.

downstroke upstrokedownstroke upstroke

Full stroke deactivated cylinder (idling)

downstroke upstrokedownstroke upstroke

Full stroke activated cylinder (motoring)

Compression

Decompression 

downstroke upstroke

Full stroke deactivated cylinder (idling)

downstroke upstroke

Full stroke activated cylinder (motoring)

Compression

Decompression 

Figure 3.5: Experimental and simulated results for full stroke motor operation when the

simulation model is modified to include leakage in the cylinder chamber and the negative torque

produced by the unmodified cylinders.

The leakage is included as shown in Equation 3.1.

QL =
w · h3

12 · µ · L
· (pcyl − pd) (3.1)

where w is the width of the leakage path, h is the height of the leakage path, L is the

length of the leakage path, µ is the viscosity of the hydraulic fluid and pd is the drain

pressure. The width of the leakage path is calculated as w = π · dcyl, where dcyl is the

diameter of the cylinder chamber. The height of the leakage path is adjusted until the

simulated pressure matches the measured pressure. The used height is set to 25.5 ·10−6 m

and the drain pressure is set to pd = 5 bar.

3.2.2 Partial Stroke and Sequential Partial Stroke Operation

The left plot in Figure 3.6 shows the measured and simulated results for PSDS 1 mo-

tor operation and the right plot shows measured and simulated results for SPSDS motor

operation. The red line shows the chamber pressure and the blue line shows the cylinder
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Figure 3.6: Experimental and simulated results for partial stroke and sequential partial stroke

motor operation (light colors are experimental results and dark colors are simulation results).

torque. Light colors are experimental results and dark colors are simulation results. When

operating with the PSDS 1 the cylinder chamber is deactivated at θcyl = π/2 rad. Deacti-

vating a chamber at this position corresponds to the most critical switching position due

to maximum piston velocity and, therefore, the highest valve flow. It can be seen that the

measured and simulated chamber pressures match quite well, except in the compression

phase and some small oscillations right after θ = 0 rad and θ = 2π rad. The error in the

compression phase occurs due to leakage in the cylinder chamber as discussed earlier in

Section 3.2.1. In the downstroke phase, the measured and simulated cylinder torques have

the same characteristics but with a deviation in the magnitude. This deviation is expected

to occur due to the negative torque introduced by the unmodified cylinder chambers, also

discussed in Section 3.2.1. In the upstroke phase, the measured and simulated output

torques match well.

In the SPSDS, shown to the right in Figure 3.6, there is no compression phase, because

the cylinder chamber is activated during the downstroke piston motion. Hence, the cylin-

der volume is increasing and the cylinder fluid can therefore not be compressed by the

piston motion. The high pressure valve is opened at the same angle as the low pressure

valve is closed. The measured and simulated pressures match very well. The measured

and simulated output torques match very well in the upstroke phase but deviate in the

downstroke phase due to the negative torque introduced by the four unmodified cylinder

chambers. However, the torque characteristics are the same, except for some oscillations

in the measured torque.

The PSDS 2 is quite similar to the PSDS 1, except that in PSDS 2, the cylinder can

be reactivated. Reactivation of a cylinder is shown in the SPSDS operation. The PSDS 2

is therefore considered as a combination of the PSDS 1 and the SPSDS. If the simulation

model is valid for the PSDS 1 and the SPSDS, it is also assumed that it is also valid for

the PSDS 2.

Figure 3.7 shows the measured results and the simulation results for the PSDS 1
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and the SPSDS when leakage and the negative torque contribution from the unmodified

cylinders are included in the simulation model. The plots show that the measured and

simulated results match well.
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Figure 3.7: Experimental and simulated results for partial stroke and sequential partial stroke

motor operation when the simulation model is modified to include leakage in the cylinder cham-

ber and the negative torque produced by the unmodified cylinders.

3.3 Discussion

In the experimental measurements, there is some uncertainty due to sensor accuracy and

alignment of shaft position and piston position in the modified cylinder chamber. The

piston position is not measured but estimated based on the shaft position measurements.

The piston position is an essential parameter considering proper activation of the on/off

valves. The piston position was aligned with the shaft position measurements by compar-

ing measured and simulated results of the output torque and cylinder pressure. A possible

deviation in the range of a few degrees is therefore assumed.

There is also uncertainty in the valve switchings. The valve positions are not measured,

and therefore it is not known exactly when the valves are switched. However, since the

motor is operating at a low speed, approximately 100 rpm corresponding to 600 ms pr

revolution, a valve that opens a few milliseconds too late or too early will not significantly

affect the results. This is also verified by the valve accuracy analysis conducted in Section

2.3.2.

By comparing the measured and simulated results, it has been shown that the results

match quite well except for some deviation in the pressure expectedly due to leakage

in the cylinder and some deviation in the torque due to negative torque introduced by

the four unmodified cylinder chambers. In this project, the simulation model is used to

analyze the dynamic behavior of a digital displacement machine and to test controllers.

The output torque is therefore essential. By modifying all cylinders, it is assumed that the

measured output torque will be closer to the simulated output torque because the effect
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of the unmodified cylinders is removed. The deviation between measured and simulated

pressure is largest in the compression phase and only small in the decompression phase.

Since the compression phase occurs close to TDC, an error in the chamber pressure at this

position will have a very small influence on the cylinder torque. This is seen in Equation

2.12. When θcyl,i = j · 2π ∀ j εZ the cylinder torque is 0 Nm. The simulation model is

therefore assumed to be a valid model of the digital displacement motor when considering

the output torque.
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Dynamic Response Analysis

The dynamic response characteristics of a DDM are among others affected by the dis-

placement strategy, operation speed, number of cylinders and the displacement ratio.

Knowledge about the dynamic response characteristics is highly relevant considering con-

trol design. The displacement strategy and the number of cylinders should therefore be

chosen in order to meet the operation requirements of the driven application.

This chapter gives a detailed analysis of the transient and steady-state behavior of

a DDM operating with different displacement strategies, FSDS, PSDS 1, PSDS 2 and

SPSDS, respectively. This analysis also examines how the shaft speed, the number of

cylinders and the displacement ratio affect the dynamic response. The work presented in

this chapter is published in paper D.

The simulation parameters used in this chapter are as shown in Table 4.1. Those

parameters apply as long as nothing else is specified.

Table 4.1: Simulation parameters used in the transient and steady-state response analysis.

Parameter Symbol Value Unit

Piston chamber displacement Vd 50 cc/rev

Cylinder chamber dead volume V0 50 cc

Number of pistons Nc 15 −
Switching time on/off valves Ts 5 ms

Flow-pressure coefficient kf 1.2 · 106
√

Pa · s/m3

Bulk modulus liquid βL 1.2 GPa

Volume fraction of undissolved gas at p
(abs)
atm εg0 0.01 −
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4.1 Full Stroke Displacement Strategy

In the FSDS the cylinders are enabled and disabled on a stroke by stroke basis. This

section describes the transient and steady-state characteristics of the DDM operating

with FSDS.

4.1.1 Transient Response for the Full Stroke Displacement

Strategy

The decision of either activating or deactivating the cylinder chamber is made ahead of

TDC, as described in Section 2.2. Since the chamber is activated or deactivated for an en-

tire piston stroke, this decision will affect the output torque until the piston reaches BDC.

Hence, the motor shaft has to rotate more than a half revolution to change displacement

fully. As a result, the response time is affected by the shaft speed. This analysis starts,

therefore, by analyzing the transient behavior in the shaft position domain.

Figure 4.1 shows the step response in the shaft position domain. The left plot shows

the step-up response when the displacement fraction, Dm, is stepped from 0 up to 0.25, 0.5,

0.75 and 1. The right plot shows the step-down response when the displacement fraction

is stepped from 1 down to 0.75, 0.5, 0.25 and 0. The step is applied at θm = 0 rad.

Dm = 1
Dm = 0.75
Dm = 0.5
Dm = 0.25

Dm = 1
Dm = 0.75
Dm = 0.5
Dm = 0.25 Dm = 0

Dm = 0.75
Dm = 0.5
Dm = 0.25

Dm = 0

Dm = 0.75
Dm = 0.5
Dm = 0.25

θd

π 
θd -∆θ  

π 

Dm = 1
Dm = 0.75
Dm = 0.5
Dm = 0.25 Dm = 0

Dm = 0.75
Dm = 0.5
Dm = 0.25

θd

π 
θd -∆θ  

π 

Figure 4.1: Transient response FSDS in position domain.

When stepping up, there is a small delay before the torque starts to rise. This delay

angle occurs since the decision of activating or deactivating the cylinder is made ahead of

the compression phase. Right before the torque starts to rise, there is a small drop in the

torque due to the compression phase in the first activated cylinder. The response angle

when stepping up is θFSup = θd + π. The delay angle, θd, is calculated as θd = 2 · π − αd
where αd is the position where the decision of activating or deactivating the next cylinder

is taken, as shown in Figure 2.3.

When stepping down, there is also a delay before reducing the motor torque. When

stepping down to 0 displacement, the delay occurs because the decision of activating or
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deactivating the cylinder is made ahead of the decompression phase, similar to the delay

in the step-up case. When stepping down to Dm > 0 there is an extended delay. However,

the response angle when stepping down is equal in all plotted cases. The response angle

is calculated as θFSdown = θd−∆θ+ π, where ∆θ is the phase shift between the cylinders

and given by ∆θ = 2 · π/Nc.

The step-up and step-down response angles are in some cases less than the maximum

response angles, θFSup and θFSdown. Examples of this phenomena can be seen in Figure

4.2 and is a result of the nature of the delta-sigma modulator.

Dm = 0.5
Dm = 0.25
Dm = 0

Dm = 0.8
Dm = 0.6
Dm = 0.5
Dm = 0.25
Dm = 0

Dm = 0.8
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Dm = 0.6
Dm = 0.5
Dm = 0.25

Dm = 1
Dm = 0.8
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Dm = 0.25

Dm = 1
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θFSup,max

θFSup1
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θFSdown,max

θFSdown1
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Dm = 0.5
Dm = 0.25
Dm = 0

Dm = 0.8
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Dm = 0.8
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θFSdown,max

θFSdown1

θFSdown2

Figure 4.2: Transient response FSDS with variable response angle.

For the simulated case, it can be seen that the response angle when stepping up

deviates from the maximum response angle for the green and purple line. When stepping

down, the step response angle deviates from the maximum response angle for the blue

and red line.

As shown above, the step response can be expressed as a function of the shaft position.

The step response time will therefore be highly affected by the shaft speed and operation

at variable speed will result in variable response time. Figure 4.3 shows the step response

in the time domain when stepping the displacement fraction from 0 up to 1 at various

speeds.

The results show that the response time is decreasing at higher shaft speeds. Assuming

that the response angle is always at the maximum, the response time is inversely propor-

tional to the shaft speed.
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Figure 4.3: Transient response FSDS in time domain operating at various speeds.

4.1.2 Steady-State Response for the Full Stroke Displacement

Strategy

When operating with the FSDS, the steady-state characteristics depend on the number of

cylinders, the displacement fraction and the shaft speed. Already in Figure 4.1, it can be

seen that the steady-state torque tends to oscillate. In this section it is discussed how the

number of cylinders, the shaft speed and the displacement fraction affect the steady-state

torque.

The left plot in Figure 4.4 shows the steady-state torque in the shaft position domain

for DDMs with a various number of cylinders and equal maximum motor displacement.

The displacement ratio is set to Dm = 0.5 for all motors. The right plot shows the

steady-state torque from a 15 cylinder DDM operating at various displacement fractions.

From the left plot, it can be seen that the amplitude of the torque oscillations can be

Nc = 15Nc = 15Nc = 12Nc = 12Nc = 5Nc = 5 Nc = 15Nc = 12Nc = 5

Dm = 0.5
Dm = 0.2
Dm = 0.1

Dm = 0.467

Dm = 1
Dm = 0.9

Dm = 0.5
Dm = 0.2
Dm = 0.1

Dm = 0.467

Dm = 1
Dm = 0.9

Nc = 15Nc = 12Nc = 5

Dm = 0.5
Dm = 0.2
Dm = 0.1

Dm = 0.467

Dm = 1
Dm = 0.9

Figure 4.4: Steady-state response FSDS with various number of cylinders (left plot) and at

various displacements (right plot).

reduced by increasing the number of cylinders. From the right plot, it can be seen that for

some selected displacements, for example, Dm = 1, Dm = 0.5 and Dm = 0.2, the output

torque is relatively smooth. On the other hand, only a small change in the displacement

may change the cylinder actuation sequence and result in significant torque variations,
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see Dm = 0.1, Dm = 0.462 and D = 0.9. A significant torque peak or drop may not be

very critical in high speed motors due to a very short duration, but more critical in very

low speed motors where the exposure time is much longer. Off course, the inertia of the

load will also affect the impact of a torque peak or drop. The number of smooth outputs

can be increased by increasing the number of cylinders.

The frequency of the torque oscillations is affected by the rotational shaft speed and

the number of cylinders. The effect of changing the shaft speed can be seen in Figure 4.3

where the frequency of the steady-state oscillations is clearly increased when increasing

the speed. The effect of changing the number of cylinders can be seen in the left plot in

Figure 4.4, where the frequency is increased when increasing the number of cylinders.

4.2 Partial Stroke Displacement Strategy

In the PSDS the cylinders are activated in only a portion of the downstroke piston motion

and deactivated in the remaining part. This section describes the transient and steady-

state characteristics for both the PSDS 1 and the PSDS 2. The transient response is

different for the two displacement strategies, but the steady-state response is the same.

4.2.1 Transient Response for the Partial Stroke Displacement

Strategy 1

In PSDS 1, the cylinders can only have one active period during the downstroke piston

motion. Hence, the motor needs to rotate in order to increase displacement, similar to

the FSDS. Therefore, the step response is constant in the shaft position domain but will

vary with shaft speed in the time domain. Figure 4.5 shows the step response in the shaft

position domain. In the left plot, the displacement fraction is stepped up from 0.1 to 0.25,
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Dm = 0.25

Dm = 0.95
Dm = 0.75
Dm = 0.5
Dm = 0.25

Dm = 0.95
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Dm = 0.75
Dm = 0.5
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Dm = 0.1
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Figure 4.5: Transient response PSDS 1 in position domain.

63



Using Digital Hydraulics in Secondary Control of Motor Drive

0.5. 0.75 and 0.95. In the right plot, the displacement is stepped down from 0.95 to 0.75,

0.5, 0.25 and 0.1. The step is applied at θm = 0 rad.

From the left plot, it can be seen that there is no delay before increasing the torque,

but the step-up response angle is affected by the magnitude of the applied step. A small

step gives a small response angle. In fact, the relation between a change in the state

change angle, ∆α, and the response angle, θPSup, is 1:1, or ∆α = θPSup.

It can be seen that the step-down response angle is much lower than the step-up

response angle. The step-down response angle is affected both by the response time of

the valves and the angle the shaft needs to rotate in order to decompress the cylinders.

Assuming that the on/off valves are fast compared to the time it takes for the shaft to

rotate the angle needed to decompress the oil, the response angle is approximately equal

to θPSdown ≈ θdecomp, where θdecomp is the decompression angle.

Figure 4.6 shows the step response in the time domain at various speeds. The left plot

shows the step-up response when the displacement ratio is stepped from 0.1 to 0.95. The

right plot shows the step-down response when the displacement ratio is stepped down

from 0.95 to 0.1. It can be seen that the step-down response is much faster than the

50 rpm50 rpm
100 rpm100 rpm
200 rpm200 rpm

25 rpm25 rpm
50 rpm
100 rpm
200 rpm

25 rpm

50 rpm50 rpm
100 rpm100 rpm
200 rpm200 rpm

25 rpm25 rpm
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100 rpm
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200 rpm
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Tr1
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Figure 4.6: Transient response PSDS 1 in time domain operating at various speeds.

step-up response. Also, by comparing the step-up response times, marked with Tr1, Tr2,

Tr3 and Tr4, it can bee seen that the response time is inversely proportional to the speed.

The step-up response time is equal to the time it takes to rotate the step-up response

angle (θPSup). The step-down response time is equal to the time it takes to rotate the

step-down response angle (θPSdown).
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4.2.2 Transient Response for the Partial Stroke Displacement

Strategy 2

In the PSDS 2, the cylinder chambers can be reactivated and have more than one active

period during the downstroke piston motion. In PSDS 1, the step-up response time is

much larger than the step-down response time. The PSDS 2 has the same step-down

characteristics as PSDS 1, but the step-up characteristics are changed. With the PSDS

2, the step-up response time is much lower than for the PSDS 1 and it is not affected by

the motor speed nor the magnitude of the displacement step. This is shown in Figure

4.7. The left plot shows a step response in the time domain when stepping up at various
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100 rpm
50 rpm
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Dm = 0.95

Tr Tr

100 rpm
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Dm = 0.75
Dm = 0.5
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Dm = 0.95

Tr Tr

Figure 4.7: Transient response PSDS 2 in time domain at various speeds and displacement

step up to various displacements.

speeds, and the right plot shows the step response in the time domain when stepping up

to various displacement ratios with the shaft speed kept constant.

The left plot shows that the step-up response time is equal at various speeds. The step

response is approximately equal to the response time of the on/off valves which in this

simulation is Ts = 5 ms. The right plot shows that the response time is equal regardless

of the magnitude of the displacement step, unlike the PSDS 1.

4.2.3 Steady-State Response for the Partial Stroke Displacement

Strategy

The steady-state response for the PSDS 1 and PSDS 2 is the same and characterized by

small ripples. The ripples occur because the cylinders are deactivated mid-stroke. The

shape is constant in the shaft position domain, but the frequency will vary with the shaft

speed in the time domain. Therefore, the steady-state torque shape is analyzed in the

position domain.

The amplitude of the ripples is affected by the used displacement ratio and the dis-

placement of the cylinders. The left plot in Figure 4.8 shows the steady-state torque at

different displacement ratios, and the right plot shows the steady-state torque for DDMs
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with a various number of cylinders and equal maximum motor displacement. Hence, the

cylinder displacement is different in order to have the same maximum motor displace-

ment. The left plot shows that maximum amplitude occurs when operating at 50 %

Nc = 15Nc = 15
Nc = 10Nc = 10
Nc = 5Nc = 5

Nc = 15
Nc = 10
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Figure 4.8: Steady-state response PSDS 1 and PSDS 2 at various displacements (left plot)

and with various number of cylinders (right plot).

displacement. 50 % displacement corresponds to changing the cylinder state from active

to inactive when θcyl,i = π/2. From Equation 2.12, it can be seen that it is in this position,

the torque contribution is at its highest. Therefore, deactivating a cylinder at this posi-

tion, results in the highest possible torque ripple. The smoothest output torque occurs

when operating with very high or very low displacement ratios, meaning that the valves

are switched close to TDC or BDC where the torque contribution from each cylinder is

low. From the right plot, it can be seen that the amplitude is reduced when the number

of cylinders is increased. Meaning that the cylinder displacement is reduced and therefore

also the torque contribution from each cylinder. The frequency of the ripples is increased

when the number of cylinders is increased. The frequency of the torque ripples is also

affected by the shaft speed. Increased shaft speed results in increased frequency. This

can best be seen in the left plot in Figure 4.6.

4.3 Sequential Partial Stroke Displacement Strategy

In SPSDS the cylinders are activated in limited periods. The activation sequence is

found by a search routine. This section presents the transient and steady-state response

characteristics of a DDM operating with the SPSDS.

4.3.1 Transient Response for the Sequential Partial Stroke

Displacement Strategy

The transient response of the SPSDS is constant in the time domain and affected by

the response time of the on/off valves. The step-up and step-down response in the time
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domain is shown in Figure 4.9 when operating at 100 rpm. The step-up and step-down

response have no delay and are equal and independent of the magnitude of the step.
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Figure 4.9: Transient response of the SPSDS in time domain.

Figure 4.10 shows the step response when the DDM is operating at different speeds,

100 rpm, 50 rpm and 25 rpm respectively. The results show that the step response time

is not affected by the speed.

50 rpm50 rpm
100 rpm100 rpm

25 rpm25 rpm
50 rpm
100 rpm

25 rpm

Tr

50 rpm
100 rpm

25 rpm

Tr

Figure 4.10: Transient response of the SPSDS in time domain when operating at various

speeds.

4.3.2 Steady-State Response for the Sequential Partial Stroke

Displacement Strategy

The steady-state torque tends to oscillate when operating with the SPSDS. The torque

ripples are affected by the motor speed, the number of cylinders and also the update

frequency of the controller. In Figure 4.11 the desired torque is set to 2000 Nm. The

left plot shows the steady-state torque when the DDM is operating at various speeds,

100 rpm, 50 rpm and 25 rpm respectively. The results show that the amplitude of the

torque ripples tend to increase with the shaft speed.

The middle plot in Figure 4.11 shows the steady-state torque for two motors with

equal maximum motor displacement but a different number of cylinders. The red line

shows the output torque from a 7 piston motor and the blue line shows the output torque
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Figure 4.11: Steady-state response SPSDS at various shaft speeds (left plot), with various

number of cylinders (mid plot) and various controller update frequencies (right plot).

from a 15 piston motor. It can be seen that the torque ripples are reduced when the

number of cylinders is increased. This reduction in torque ripples occurs because the

number of possible cylinder configurations is affected by the number of cylinders (2Nc).

By increasing the number of cylinders, the number of distinctive output levels will also be

increased. Hence, the probability of finding a valve configuration that meets the desired

output torque is increased.

The right plot in Figure 4.11 shows the steady-state torque when the controller update

frequency varies. The controller update time is set to 80 ms for the black line, 40 ms for

the blue line and 20 ms for the red line. A reduction in the torque ripples can be seen

when the controller update time is changed from 80 ms and down to 40 ms. A further

reduction in the torque ripples can be seen when the update time is decreased down

to 20 ms. In addition the frequency of the torque ripples is increased when the valve

controller is updated more frequently.

Both the left and right plot in Figure 4.11 show that it is beneficial with many controller

updates per shaft revolution to reduce the amplitude of the torque ripples. Meaning that

if the speed is high, the update time should be low. If the speed is reduced, the update

time does not need to be that low.

The search routine used in this work is shown in Equation 2.17. Another search routine

may also affect the torque ripples. It is not in the scope of this work to further investigate

other search routines.

4.4 Discussion

In this section, the transient and steady-state response of the analyzed displacement

strategies are discussed. In Figure 4.12, both the input signal and the output torque is

plotted when a sinusoidal input signal with increasing frequency is given. The operation

speed is set to 50 rpm. In order to be able to compare the output torque to the input

signal, the values on the y-axis are normalized. The normalization is done by dividing the

output torque and motor displacement by its maximum value, Tm/Tm,max and Dm/Dm,max
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respectively. The DDM is operating with the FSDS in Plot 1, the PSDS 1 in Plot 2, the

PSDS 2 in Plot 3 and the SPSDS in Plot 4.

Plot 1

FSDS

Plot 2

PSDS 1

Plot 3

PSDS 2

Plot 4

SPSDS

Plot 1

FSDS

Plot 2

PSDS 1

Plot 3

PSDS 2

Plot 4

SPSDS

Figure 4.12: DDM torque response with a sinusoidal input signal operating at 50 rpm.

As shown earlier, the transient response when operating with FSDS is known to have

a delay in the response. Also, the response time is highly affected by the operation speed.

These effects can be seen in Plot 1. At low frequencies, the output torque is phase shifted

to the input signal due to the delay. When increasing the frequency, the amplitude of the

output torque starts to decrease because of the high response time at low operation speeds.

By increasing the operation speed, the time delay will be reduced and the amplitude will

reach 1 for a higher input frequency. Therefore, FSDS is most suited for use in high speed

operations due to the delay in the transient response and the fact that the response time

is highly affected by the speed.

The response time of the DDM when operating with the PSDS 1 is highly affected by

the operation speed, similar to the FSDS. However, the response of the PSDS 1, shown in

Plot 2 in Figure 4.12, is much better than for FSDS, especially at low input frequencies.

This improvement is because the PSDS 1 does not have any delay and the step up response

time is affected by the magnitude of the step. A small step has a low response time. The
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PSDS 1 is also known to have much lower response time when stepping down compared

to stepping up. This characteristic is seen when increasing the input frequency. The

output torque follows the input signal in the torque reduction phase but rises too slow

in the torque increasing phase. The output torque tends to oscillate with small ripples.

The magnitude of the ripples can be reduced by increasing the number of cylinders.

The frequency is affected both by the number of cylinders and the operation speed. A

small number of cylinders will result in large magnitude of the ripples and should be

avoided. Since the step-up response time is highly affected by the operation speed, this

displacement strategy should only be used for medium and high speed operations. The

controllability is considered to be higher than for the FSDS.

The PSDS 2 can have more than one active period in the downstroke piston motion.

This feature results in a response time that no longer is affected by the operation speed

but is closer to the response time of the on/off valves. The third plot in Figure 4.12 shows

that the PSDS 2 has high controllability and follows the input signal very well, also at

higher frequencies. The small torque ripples seen for the PSDS 1 can also be seen for the

PSDS 2 (best seen at low input frequencies).

The SPSDS is characterized by frequent switchings. Plot 4 in Figure 4.12 shows that

the output torque follows the input signal very well. The output torque has some small

ripples. Those ripples are smaller than for the PSDS but will be increased if the speed

increases, the number of cylinders is reduced or the controller update frequency decreases.

The SPSDS is best suited for low operation speeds, because it is hard to keep the number

of controller updates per shaft revolution high when the speed is high.

The main characteristics of the investigated displacement strategies are summarized

in Table 4.2. In general, the FSDS and PSDS 1 have low controllability at low loads

and are therefore most suited for high speed applications. The PSDS 2 and the SPSDS

have high controllability at low operation speeds and are therefore suited for low speed

applications.
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Table 4.2: Summary of transient and steady-state characteristics.

FSDS PSDS 1 PSDS 2 SPSDS

T
ra

n
si

en
t

re
sp

on
se Delay-time

Some delay due
to decision angle
ahead of TDC

No delay No delay No delay

Response
time

Affected by shaft
speed

Affected by shaft
speed and
displacement step

Affected by valve
response time

Affected by valve
response time

Overshoot No overshoot No overshoot No overshoot No overshoot

S
te

ad
y
-s

ta
te

re
sp

on
se

Magnitude
of torque
ripples

Affected by displa-
cement ratio &
number of cylinders

Affected by displa-
cement ratio &
number of cylinders

Affected by displa-
cement ratio &
number of cylinders

Affected by shaft
speed, controller
update rate &
number of cylinders

Frequency
of torque
ripples

Affected by shaft
speed & number
of cylinders

Affected by shaft
speed & number
of cylinders

Affected by shaft
speed & number
of cylinders

Affected by contr-
oller update rate

71





Chapter 5

Preliminary Winch Drive Study

A preliminary winch drive study was conducted at the beginning of this project. The

preliminary study has two main focuses. The first focus is to investigate the potential

of increasing energy efficiency in hydraulic winch drive systems by using digital displace-

ment machines. Since digital displacement machines are known to have a pulsating output

torque, the second focus is to examine if digital displacement machines can provide reason-

able controllability of the winch. In order to examine if digital displacement machines can

increase energy efficiency in winch drive systems, both a conventional and digital winch

drive system is studied. Both winch drive systems are of the closed circuit type. Note that

the winch drive system with digital hydraulic machines analyzed in this chapter is not the

same as the system referred to as the digital displacement winch drive system described

in Section 1.2. The digital displacement winch drive system analyzed in this chapter is

referred to as the full digital displacement winch drive system. The work presented in

this chapter is based in the work published in paper A and paper B.

A 20 tonnes winch with a drum capacity of 3600 m of wire is used as a case study. This

chapter presents the preliminary winch drive study. First, the mechanical winch system

is presented. Then, the conventional and full digital displacement winch drive systems

are presented. Finally, the simulation results are presented and discussed.

5.1 Mechanical Winch System

The simulated winch system is shown in Figure 5.1. In this preliminary winch study,

all lifting operations are conducted in air with a maximum traveling distance of 10 m

and with a small amount of wire payed out. Since the simulated traveling distance is

low, it is assumed that the inertia of the system is constant and that the entire lifting

operation is conducted on only one wire layer. Since only one wire layer is used, the winch

radius is considered to be constant. Since only a small amount of the wire is payed out,
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Figure 5.1: Illustration of mechanical winch system.

it is assumed that the wire elasticity is neglectable. Friction in the winch drum is also

neglected.

The equation of motion for the winch drum is shown in Equation 5.1

θ̈d =
Tdrive −mload · g · reff

Jeff
(5.1)

where Tdrive is the drive torque acting on the winch drum, mload is the mass of the payload,

reff is the radius of the outer wire layer, g is the acceleration of gravity and Jeff is the

effective mass moment of inertia relative to the drum shaft. The effective mass moment

of inertia is calculated as shown in Equation 5.2:

Jeff = mload · r2
eff + Jwinch + Jdrive (5.2)

where Jwinch is the mass moment of inertia of the drum and the wire on the drum and

Jdrive is the mass moment of inertia of the winch drive system relative to the drum shaft.

The driving torque, Tdrive, for each drive system is given in the following two sections.

5.2 The Conventional Winch Drive System

The conventional winch drive system is a closed circuit system with one variable displace-

ment over center axial piston pump and two variable displacement axial piston motors,

as illustrated in Figure 5.2. There is also included a charge pump to ensure a minimum

pressure in Line A and Line B. The pressure relief valve connected to Line A is included

to avoid high pressures that may damage the system. The axial piston pump has a maxi-

mum displacement of 500 cc/rev and delivers working fluid to the two motors. Each motor

has a maximum displacement of 250 cc/rev. The pump is driven at a constant speed of

1800 rpm and can deliver pressure up to 350 bar. The motor torque is transfered to the

winch drum through a gearbox and a pinion and gear ring. The gear ring is mounted

directly on the winch drum but this is not shown in Figure 5.2. The gearbox and the

pinion and gear ring have a total gear ratio of 156.
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Figure 5.2: Illustration of conventional winch drive system.

5.2.1 Simulation Model

The driving torque acting on the winch drum is calculated as shown in Equation 5.3.

Tdrive = 2 · (pA − pB) · Vgm
2 · π

· igear · ηhmm · ηgear (5.3)

where pA is the pressure in Line A, pB is the pressure in Line B, Vgm is the displacement

of each motor (Vgm = Vgm1 = Vgm2), igear is the total gear ratio of the gearbox and the

pinion and gear ring, ηhmm is the hydromechanical efficiency of the motors and ηgear is the

total efficiency of the gearbox and the pinion and gear ring. ηgear is in this study assumed

to be 95 %. The hydromechanical efficiency is found by interpolation between measured

data from a representative axial piston machine. The pressures in Line A and Line B are

calculated by integrating the pressure gradients calculated in Equation 5.4 and Equation

5.5 respectively.

ṗA =
β

VA
· (Qp −QPRV +QCHV 1 −Qm) (5.4)

ṗB =
β

VB
· (Qm +QCHV 2 −Qp) (5.5)

where β is the effective bulk modulus of the oil, VA is the volume in Line A, VB is the

volume in Line B, Qp is the pump flow, Qm is the summed motor flow (Qm = Qm1 +Qm2),

QPRV is the flow through the pressure relief valve, QCHV 1 is the flow through check valve

1 and QCHV 2 is the flow through check valve 2. The bulk modulus is in this analysis

assumed to be constant. The following equations describe the flow through the pump and

the motors.

Qp =
θ̇p · Vgp

2 · π
· ηvp (5.6)

Qm = 2 · θ̇m · Vgm
2 · π

· 1

ηvm
(5.7)
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where θ̇p is the shaft speed of the pump, θ̇m is the shaft speed of the motors, Vgp is

the displacement of the pump, ηvp is the volumetric efficiency of the pump and ηvm is the

volumetric efficiency of the motors. The volumetric efficiencies of the pump and motors are

found by interpolation between measured data from a representable axial piston machine.

The dynamic response of the pump and motors is described by a first order system.

V̇g =
Vg − Vgc

τ
(5.8)

where Vg is the current displacement of the machine, Vgc is the desired displacement and

τ is the time constant.

5.2.2 Control System

The control strategy for the conventional winch drive system is to have an open loop

controller for the motor and a closed loop controller for the pump. The main purpose for

the open loop motor controller is to provide a motor displacement that keeps the pressure

drop across the motors relatively close to a desired pressure drop. By ignoring leakage in

the pump and motors and assuming that the flows in the pressure relief valve and the check

valves are zero, the drum speed is proportional to the pump outlet if the displacement

of the motors is kept constant. The main purpose of the closed loop pump controller

is, therefore, to control the motion of the winch drum. The controller is illustrated in

Figure 5.3.

MM

calculation

+ ++
-

calculation

M

calculation

+ ++
-

calculation

Figure 5.3: Illustration of control system for the conventional winch drive system.

The desired motor displacement, Vgmc, is calculated based on measured values of the

payload, m̃load, a reference acceleration of the winch drum, θ̈ref , and a desired pressure

drop across the motor ∆pm, as shown in Figure 5.3 and in Equation 5.9.

Vgmc =
(θ̈ref · Jeff + m̃load · g · reff ) · 2 · π

∆pm · igear
· 1

2
(5.9)
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The term 1
2

occurs because the drive systems have two motors and Vgmc is the desired

displacement for each of the motors.

The closed loop pump controller has a position feedback controller and a feedforward

controller. Assuming that the motors have no leakage the feedforward reference flow can

be calculated based on Equation 5.7 as shown in Equation 5.10.

Qref =
θ̇ref · igear · Vgmc

π
(5.10)

By rearranging Equation 5.6, the feedforward signal, VgpFF , can be calculated as

VgpFF =
2 · π ·Qref

θ̇p

=
2 ·
(
θ̇ref · igear · Vgmc

)
θ̇p

(5.11)

The feedback control signal for the pump is calculated by

VgpFB = θerr · kp + θ̇err · kd +

∫
θerr · ki dt (5.12)

where θerr is the position error of the winch drum and kp, kd and ki are the controller gains

for the PID-controller. Finally the desired pump displacement is calculated as shown in

Eq. 5.13.

Vgpc = VgpFB + VgpFF (5.13)

5.3 The Full Digital Displacement Winch Drive

System

This section presents the simulation model and the control system for the full digital

displacement system. The full digital displacement winch drive system consists of a high

speed digital displacement pump (DDP) and a low speed digital displacement motor

(DDM) connected in a closed circuit system as shown in Figure 5.4. The low speed DDM

is directly connected to the winch drum without any gearing. The DDP is driven at a

constant speed of 1800 rpm. Two gas accumulators are connected to each line, Line A

and Line B, in order to smooth out any flow and pressure peaks. The DDP and DDM

are two radial piston type machines with 9 and 42 cylinders respectively. Both the pump

and the motor are operating with the full stroke displacement strategy.

5.3.1 Simulation model

The DDP and the DDM are simulated based on the single cylinders shown in Figure 5.5.

The left illustration shows cylinder number i in the DDP and the right illustration shows
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Figure 5.4: Illustration of the full digital displacement winch drive system.
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Figure 5.5: Illustration of cylinder number i in the DDP (left) and DDM (right).

cylinder number i in the DDM. The simulation model of the DDP and DDM is built up

by the same principle as shown in Section 2.1, except that in this preliminary study, the

bulk modulus is assumed to be constant. The input and output flows from the digital

displacement machines, illustrated in Figure 5.4 and Figure 5.5, are given by:

Qinp =
9∑
i=1

QBp,i (5.14)

Qoutp =
9∑
i=1

QAp,i (5.15)

Qinm =
42∑
i=1

QAm,i (5.16)

Qoutm =
42∑
i=1

QBm,i (5.17)
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and the driving torque is given by:

Tdrive =
42∑
i=1

Tcylm,i (5.18)

The pressure build up in pressure Line A is calculated as shown in Equation 5.19.

ṗA =
β

VA
·
(
Qoutp −Qinm − V̇accA

)
(5.19)

where VA is the volume in Line A and accumulator A and V̇accA is the rate of change of

the accumulator volume. V̇accA is positive if the volume is expanding and is calculated as

shown in Equation 5.20

V̇accA = ṗA ·
VaccAg

naccA · pA
(5.20)

where VaccAg is the gas volume in accumulator A and naccA is the polytropic exponent.

By substituting Equation 5.20 into Equation 5.19, the pressure dynamics in Line A can

be expressed as shown below.

ṗA =
β

VA
· Qoutp −Qinm

1 +
β·VaccAg

VA·naccA·pA

(5.21)

The pressure dynamics in Line B is calculated in the same manner as for Line A and is

shown in Equation 5.22.

ṗB =
β

VB
· Qoutm −Qinp

1 +
β·VaccBg

VB ·naccB ·pB

(5.22)

5.3.2 Control system

The control system for the full digital displacement winch drive system is divided into two,

similarly as for the conventional winch drive system, with an open loop motor controller

and a closed loop pump controller. The main purpose for the open loop motor controller

is to keep a desired pressure drop across the DDM. The main purpose for the closed loop

pump controller is to control the motion of the winch drum. The control structure is

illustrated in Figure 5.6.
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Figure 5.6: Illustration of the control structure for the full digital displacement winch drive

system.

Motor controller

The output of digital displacement machines is known to pulsate. In order to ensure a

relatively smooth output torque, the 42 cylinders in the DDM are divided into 14 packages

or cylinder banks with three cylinders in each bank. The three cylinders in each bank

are equally spaced around the shaft. This principle is illustrated in Figure 5.7 where a 6

cylinder motor is divided into two cylinder banks, one bank marked with yellow pistons

and one with green pistons.

Figure 5.7: Illustration of a 6 cylinder digital displacement machine divided into two cylinder

banks with 3 cylinders in each bank. One of the cylinder banks is marked with yellow pistons

and the other bank is marked with green pistons.

The open loop motor controller controls the number of cylinder banks that shall be

active. The number of active banks, also called nstep, is calculated based on measurements
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of the payload, m̃load, and a desired pressure drop across the DDM, ∆pm, as shown in

Equation 5.23

nstep ≈
Tload,est
Tcylbank

=
m̃load · g · reff

∆pm · Tstep
, round off to nearest integer (5.23)

where Tstep is the torque delivered from one bank with a pressure drop of 1 Pa across the

machine. nstep = 1 corresponds to one active bank, nstep = 2 corresponds to two active

banks and so on.

Pump controller

The pump controller is based on the displacement controller first introduced in [41]. The

controller is mainly developed for use in DHPMSs but can also be used in DDPs. The

controller estimates the desired volume the pump shall deliver and the volume the pump

has delivered. If the desired volume is more than a half piston displacement higher than

the delivered volume, the next cylinder is set to pump. If the desired volume is more than

a half piston displacement below the delivered volume, the next cylinder is set to motor.

If the displacement error is in between, the next cylinder is deactivated. This control

strategy is illustrated in Figure 5.8, where Vdes is the desired volume, Vest is the delivered

volume and Vdp is the piston displacement in one of the cylinders in the DDP.

Figure 5.8: Example of the DDP displacement controller.

When the delivered volume, Vest, is stepped up, the DDP is pumping and delivers fluid

to Line A. When Vest is stepped down, the DDM is motoring and removes fluid from Line

A.

The already delivered volume is estimated based on the piston displacement, Vdp, and

the number of cylinders that already have been pumping, npump, and motoring, nmotor.

Vest = (npump − nmotor) · Vdp (5.24)

In a real system, it is reasonable to assume that there will be leakage in the DDP and

DDM. In order to account for this, an integral term can be added when designing the

desired volume, Vdes.
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In this study, the desired volume is the sum of a feedforward signal, VFF , and a

feedback signal VFB. The feedforward signal consists of two parts, Vref and ∆VaccA, and

is calculated as shown in Equation 5.25.

VFF = Vref + ∆VaccA (5.25)

where Vref is called the reference volume and is the volume the motor needs to displace to

follow the reference position of the drum. The reference volume is estimated based on the

reference speed of the drum and the known displacement of the DDM. Vref is calculated

by integrating Equation 5.26.

V̇ref =
Vdm · nstep · 3 · θ̇ref

2 · π
(5.26)

where Vdm is the piston displacement for one of the cylinders in the DDM and θ̇ref is

the reference speed of the drum. The DDM will normally be running at a constant

displacement. In order to accelerate and decelerate the payload, the pressure in Line A

has to be increased or decreased. When changing the pressure in Line A, the accumulator

volume will also change. The second part in the feedforward controller accounts for

variations in the accumulator volume when accelerating and decelerating the payload.

This volume change is called ∆VaccA and is calculated in Equation 5.27

∆VaccA =
∆pA · VaccAg0
naccA · pA0

(5.27)

where pA0 is the initial pressure in Line A, VaccAg0 is the gas volume in accumulator A

at the initial pressure pA0 and ∆pA is the change in pressure in order to accelerate or

decelerate the payload. ∆pA is calculated as shown in Equation 5.28.

∆pA =
θ̈ref · Jeff
Tstep · nstep

(5.28)

The feedback volume is calculated by Equation 5.29.

VFB = θerr · kp + θ̇err · kd +

∫
θerr · ki dt (5.29)

The decision of either pumping or idling the next cylinder is taken by evaluating Equation

5.30

Verr = Vdes − Vest ⇒


pumping if Verr > Vdp/2

idling if −Vdp/2 ≤ Verr ≤ Vdp/2

motoring if Verr < −Vdp/2
(5.30)
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5.4 Simulation Results

The simulation results are presented in two parts. The first part compares the conventional

winch drive system and the full digital displacement winch drive system from an energy

efficiency point of view. The second part examines the controllability of the full digital

displacement system. Recall that in this study, the wire elasticity is neglected. The

payload motion has therefore a linear relation to the drum motion. Hence, xload = θd · reff .
To get a clearer understanding of the simulation results, only the payload motion is plotted

and not the drum motion.

The simulation parameters can be found in paper A.

5.4.1 Energy Efficiency Considerations

The energy consumption of the two systems are evaluated for operation with two different

load cases. In the first load case, the mass of the payload is set to 18000 kg. The payload

is lifted 10 m. The velocity is ramped up to 1 m/s with a ramp time of 2 s. In the second

load case, the mass of the payload is set to 4000 kg and the payload’s velocity is ramped

up to 1.5 m/s with a ramp time of 3 s. The two load cases are summarized in Table 5.1.

Table 5.1: Load cases.

Load Case 1 Load Case 2

Mass of load 18000 kg 4000 kg

Hoisting distance 10 m 10 m

Max speed 1 m/s 1.5 m/s

Ramp time 2 s 3 s

The input and output power is calculated as shown below.

Pin = TEl · θ̇p (5.31)

Pout = Tdrive · θ̇d (5.32)

where TEl is the torque needed to drive the pump, θ̇p is the pump speed, Tdrive is the

driving torque acting on the winch drum and θ̇d is the drum speed. The losses are found

by subtracting the output power from the input power, Ploss = Pin − Pout.

Load Case 1

Figure 5.9 shows the simulation results of the payload position, payload speed and the

tracking error for the conventional winch drive system (CWD), left hand side, and the

full digital displacement winch drive system(FDWD), right hand side. The sub-plots from
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Figure 5.9: Simulation results for load case 1.

top to bottom show the simulated payload position together with the reference position,

the load speed and finally the position error. The simulated payload position follows its

reference position well, both for the CWD and the FDWD. The largest tracking error

occurs when accelerating the load and is 9 mm for the CWD and 5.4 mm for the FDWD.

The tracking error for both the CWD and the FDWD is close to zero when the winch

runs with constant speed.

Figure 5.10 shows the simulation result of the power and energy consumption. The

Figure 5.10: Simulation results for power and energy consumption in load case 1.

top sub-plots show the input power, output power and the power losses of the hydraulic

system and the bottom sub-plots show the input energy, output energy and the energy

losses. The purple line in the top right plot is a filtered version of the input power, blue

line.
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When driving with constant speed of 1 m/s and a payload equal to 18000 kg, the input

power to the CWD is approximately 234 kW and the output power is approximately 176

kW, resulting in a loss equal to 58 kW. The input power to the FDWD is heavily oscillating

because of the nature of the DDP. The DDP enables and disables pistons on a stroke by

stroke basis which results in the input power oscillations. The same peaks occur in the

pump flow, but the accumulators connected to line A and B smooth out the peaks. The

mean input power to the FDWD when operating at constant speed is 181 kW and the

mean loss is only 5 kW.

In the bottom sub-plots in Figure 5.10, it can be seen from the yellow line that the

energy losses are much larger for the CWD than for the FDWD. The total energy con-

sumed by the CWD is 2365 kJ and the loss is 599 kJ which results in a total system

efficiency equal to 75 %. The total system efficiency for the FDWD is 97 % where the

total consumed energy is 1813 kJ and the energy loss is only 47 kJ.

Load Case 2

Figure 5.11 shows the simulation results of the payload position, payload speed and track-

ing error for the CWD, left hand side, and the FDWD, right hand side. The results show

Figure 5.11: Simulation results for load case 2.

that both drive systems follow their position and speed references well. The position error

for the CWD tends to oscillate when accelerating and decelerating the load but stabilizes

around zero when running at constant speed. The largest tracking error for the CWD is

-8.4 mm and only -1.6 mm for the FDWD.

Figure 5.12 shows the power and energy consumption. The results show that the input
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Figure 5.12: Simulation results for power and energy consumption in load case 2.

power to the CWD is approximately 112 kW and the output power is 59 kW when driving

with a constant speed of 1.5 m/s. For the FDWD the input power is heavily oscillating,

but the mean value is approximately 61 kW. The total consumed energy for the simulated

trajectory is 769 kJ for the CWD and only 417 kJ for the FDWD. The losses are 377 kJ

for the CWD and only 25 kJ for the FDWD. This gives a total efficiency for the entire

simulated trajectory equal to 51 % for the CWD and 94 % for the FDWD.

Discussion

In this section, the presented results are summarized and further discussed. Some of the

most important results are summarized in Tab. 5.2 The total system efficiency for the

Table 5.2: Energy efficiency considerations summarized results.

Load case 1 Load case 2

CWD FDWD CWD FDWD

Input power at constant speed 234 kW 181 kW 112 kW 61 kW

Power losses at constant speed 58 kW 5 kW 50 kW 1 kW

Total energy consumed 2365 kJ 1813 kJ 769 kJ 417 kJ

Total energy losses 599 kJ 47 kJ 377 kJ 25 kJ

Total efficiency 75 % 97 % 51 % 94 %

Largest tracking error 9 mm 5.4 mm -8.4 mm -1.6 mm

CWD is 75 % in load case 1 and 51 % in load case 2 and the maximum position error is

9 mm and -8.4 mm respectively. The CWD has 24 percent points higher efficiency when

operating with the heavy load compared to the light load. The energy efficiency for the

FDWD is also higher when operating with the heavy load, but the change in efficiency is

not that big. When reducing the load from 18000 kg down to 4000 kg, the efficiency for

the FDWD is reduced by only 3 percent points. When operating with constant speed,
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the position error for the CWD tends to converge towards zero, while the position error

for the FDWD tends to oscillate with a small amplitude. These small oscillations are

affected by control parameters, accumulator properties and the number of pistons in the

DDP and the DDM.

The FDWD consumes approximately 550 kJ less than the CWD when operating load

case 1. If the same load was supposed to be hoisted 3000 m, the FDWD would use 165 MJ

less energy than the CWD. For one short lifting operation, the saved energy is not that

much, but for a winch that is frequently used over time and with long lifting distances,

the savings can be significant.

This study shows that there is a significant improvement in efficiency when using

the FDWD. Neither leakage and friction losses in the DDP and the DDM nor power

consumption of the on/off valves are included in this study. The real efficiency will

therefore be lower than for the simulated system. Because the increase in efficiency is

so high, especially when operating small loads, and knowing that previous studies show

that digital hydraulic units have high efficiency for a wide range of operations [15], it is

realistic to expect that the efficiency for the FDWD will remain significantly higher than

CWD even when all losses are included.

5.4.2 Feasibility study

The feasibility of the FDWD is evaluated by conducting various relevant test cases. For

a winch, it is obviously important to be able to hoist and lower a payload. The ability

to hoist a heavy and light payload has already been shown in Figure 5.9 and Figure 5.11.

The ability to lower a payload is shown in the first test case in this section. Since the

cylinders in the DDP and the DDM are activated and deactivated, the output flow and

output torque can be pulsating, especially when running with very low displacements.

Therefore, the second test case presents results where a light payload is hoisted at a very

low speed. In the third test case, an error in measurements of the mass of the payload

is introduced to investigate the robustness of the controller. Normally, the same motor

displacement can be used during short lifting operations, but for longer lifting operations

it can be appropriate to change displacement due to changes in the load acting on the

winch drum. The load acting on the winch drum can, for example, change when lifting

a payload into or out of the water. In the last test case, the simulation results show the

effect of changing motor displacement during a hoisting situation.

Lowering of a payload

Figure 5.13 shows the simulation results when lowering a payload equal to 18000 kg a

distance of 10 m. The velocity of the load is ramped down to -1 m/s with a ramp time of

87



Using Digital Hydraulics in Secondary Control of Motor Drive

2 s. When lowering the load, the DDP acts like a motor and the DDM acts like a pump.

Figure 5.13: Simulation results of lowering with mload = 18000 kg.

The simulation results show that the payload follows the reference position well. The

tracking error is kept below 1.5 mm for the entire test case.

Hoisting light payloads at low speed

Every single cylinder in the DDP is controlled individually on a stroke by stroke basis,

which results in flow ripples when running at partial displacements. In the closed circuit

system studied in this analysis, two accumulators are connected to Line A and Line B to

smooth out flow and pressure ripples. However, one critical scenario is when the required

pump flow is low. This scenario occurs when the speed and the payload’s mass is low.

Therefore, in this test, the payload is set to 4000 kg and maximum speed is set to 0.2 m/s.

The payload is hoisted 5 m and the speed is ramped up to 0.2 m/s in 2 s. Figure 5.14

shows the simulation results.

The results do not show any oscillations in the payload velocity. The payload follows

the reference trajectory well with the tracking error less than 2 mm. The tracking error

is close to 0 mm when the winch runs with constant speed. The simulated pump flow

shows that there are times where no cylinders are pumping, Qoutp = 0 l/min. The average

frequency of pumping cylinders is only 7 Hz.
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Figure 5.14: Simulation results of hoisting with a light payload at low speed, vmax = 0.2 m/s

and mLoad = 4000 kg.

Error in load measurement

The motor displacement is calculated based on a desired pressure drop across the motor

and measurements of the payload. In this test, an error in the payload measurements is

introduced to investigate the robustness of the control system. The actual payload is set

to 18000 kg, but the measured value used in the controller is only 80 % af the actual load.

The payload is hoisted 10 m and the velocity is ramped up to 1 m/s with a ramp time of

2 s. The simulation results are shown in Figure 5.15.

This test case is similar to the case shown in Figure 5.9 except for the error in the load

measurements. The simulation results show that an error in the payload measurements

gives almost the same results as in Figure 5.9 but the maximum tracking error is increased

to 7.4 mm. Due to the measurement error, the calculated motor displacement is only

nstep = 11 compared to nstep = 13 for the case without any measurements error. The

difference in motor displacement results in a higher pressure in Line A and a lower pump

flow, but the position tracking performance remains almost unchanged.
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Figure 5.15: Simulation results of hoisting a load with measured load equal 80 % of the real

load and where mLoad = 18000 kg.

Change of Motor Displacement

The studied winch has a capacity of 3600 m of wire. In cases where the load is lifted or

lowered several hundreds of meters, the load acting on the winch drum will vary. The

load can vary because the mass of the wire will act as an extra load when lowering or

because the load is lowered into water. In cases like this, the motor must be able to change

displacement during operation. Figure 5.16 shows results from hoisting of a constant load

equal to 15000 kg with a change in motor step from nstep = 11 to nstep = 14 after 4 s.

The motor starts to change displacement after 4 s. The time it takes to change motor

displacement depends on the motor speed. The motor has to rotate more than a half

shaft revolution to fully change displacement. When hoisting the payload with 1 m/s, the

motor response time is approximately 4.4 s.

When changing motor displacement, the tracking error drops to -3 mm, but approxi-

mates zero when the motor displacement is fully changed. In the pressure plot, it can be

seen that the pressure in Line A decreases when the motor displacement is increased. It

can also been seen that the pump flow and motor flow increase.
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Figure 5.16: Simulation results of hoisting a load when changing motor step from step 11 to

step 14 with mLoad = 15000 kg.

Summary

This simulation study investigates the feasibility of using a digital hydraulic winch drive

system on a 20000 kg hydraulic offshore winch. Handling of heavy and light payloads has

been investigated in addition to handling errors in load measurements and a change in

motor displacement during operation.

The simulation results show that DDPs and DDMs have the potential of driving a

winch with high precision and controllability in a wide range of speeds and loads. The

largest tracking error was 7.4 mm and occurred when an error in the measured load was

introduced. Even though the digital displacement machines are known to have pulsating

outputs, the winch motion was smooth and with high controllability.
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Chapter 6

Winch System

This chapter gives a general description of typical offshore winch operation systems,

typical subsea lifting operations, and requirements related to these operation systems

and lifting operations. Based on this description, a set of tests which can be used to test

new control systems is presented. Finally, the nonlinear simulation model of the winch

system is presented.

6.1 Offshore Winch Operation Modes

An offshore winch is normally controlled by a human operator that operates a joystick, as

illustrated in Figure 6.1. By actuating the joystick, the operator controls the winch drum

Vessel motion

Vessel motion

Joystick

Rope 

elongation

Motion acting

Vessel motion

Vessel motion

Joystick

Rope 

elongation

Motion acting

Figure 6.1: Schematic illustration of operator mode. The figure is inspired by [87].

motion. In harsh weather, the vessel will heave due to the waves and wind. This heave

motion puts high demands on the operator. The payload should be handled without any

dangerous motions or sway. In general, the payload should be lifted slowly and landed

slowly with small impact forces.
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Additional systems can be used to ease the operation and increase the weather window.

Recall that the weather window is a set of weather conditions, for example wind speed,

wave hight and wave period, that must not be exceeded during operation. Examples of

additional systems are active heave compensation, constant tension, and passive heave

compensation systems.

6.1.1 Active Heave Compensation System

Active heave compensation system (AHC) is a winch controller that compensates for the

unwanted vertical vessel motion. The payload motion is decoupled from the vessel motion

by paying in or out wire rope to oppose the vessel motion. This means that the winch

operator can use the joystick to control the payload motion relative to a ground fixed

point, which will ease the landing operation on, for example, a fixed platform or the

seabed. Figure 6.2 shows a schematic illustration of the working principle of the AHC

system.
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Figure 6.2: Schematic illustration of AHC system. The figure is inspired by [87].

The AHC system normally utilizes a MRU to measure the unwanted vessel motion

and actively controls the winch drum to counteract this motion. The MRU is located

at the floating vessel and utilizes information from an accelerometer and a gyroscope to

determine the motion of the vessel [88].

One of the advantages of AHC systems is that the feedback signal is not limited to

vessel heave motion. The feedback signal can also be based on the difference between the

motion of two vessels which can be used during vessel-to-vessel lifting operations. In that

case, the motion of both vessels needs to be measured.

The AHC system should optimally decouple all of the vessel’s heave motion from the

motion of the payload. In the literature there are simulation studies of AHC systems
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that show compensation efficiencies of 84 % [89], 90-95 % [90], 95 % [91], 97.5 % [92]

and 99 % [93]. The compensation efficiency is among other affected by the vessel motion,

payload shape and mass of the payload. It is therefore hard to compare compensation

performance and put a number on the required compensation efficiency. However, based

on input from offshore winch manufacturers, the AHC system should at least reduce the

payload motion down to ±5-10 cm, independent of the vessel motion, payload shape and

the mass of the payload.

The AHC system is typically used during subsea landing and to reduce dynamical

forces in case of resonance when lowering trough the water column. AHC systems can

also be used during lift-off from the seabed but should be used with caution. The payload

might sink into the soil resulting in a suction force during lift-off. This suction force may

lead to overloading of the lifting appliance during lift-off. AHC systems shall therefore

only be used during lift-off in combination with load measurements [87]. Also, caution

must be taken regarding wear and heating of the wire in bends around sheaves.

6.1.2 Constant Tensioning System

Constant tension (CT) system, also called active cable tension system, is a winch controller

that keeps the wire tension at a given pre-set value regardless of vessel motion. Figure

6.3 shows a schematic illustration of the working principle.
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Figure 6.3: Schematic illustration of CT system. The figure is inspired by [87].

A load cell is normally used to measure the wire tension and a control system is used

to keep the wire tension equal to the pre-set value. If the measured value deviates from

the pre-set value, the winch will pull in or pay out rope to maintain the pre-set value.

The CT system is not suited for use in combination with light payloads relative to the

maximum SWL due to low wire tension. Based on inputs from offshore winch manufac-
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turers, the compensation error should be below the force needed to overcome the friction

in the winch drum. The lowest friction force occurs when the mass of the payload is 0 kg.

For the system studied in this thesis, the error in wire tension should be below 8 kN.

The CT system is typically used during lift-down and lift-off at the seabed. In case

of suction forces during lift-off, the desired rope tension can be gradually increased until

lift-off. Since the rope tension is controlled, the risk of overloading the winch system is

at a minimum. In addition to subsea lifting operations, the CT system can also be used

during lift-off from another floating vessel and in buoy-laying and positioning operations

[87]. As for the AHC system, the CT system must be used with caution regards wear and

heating of the winch rope in bends around sheaves.

6.1.3 Passive Heave Compensation System

Passive heave compensation system (PHC) is not a control system, but an application

that can be used instead or in combination with an AHC and CT system. A PHC system

is basically a spring and damper system. One example of a PHC system is shown in

Figure 6.4 and consists of a hydraulic cylinder and an accumulator. The PHC is placed
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Figure 6.4: Schematic illustration of PHC system. The figure is inspired by [87].

between the crane hook and the payload. If the vessel heaves upwards, the cylinder fluid

will be pushed into the accumulator due to inertia forces and drag forces on the payload

and thereby extend the cylinder and compensate for the heave motion.

The PHC system must be tuned for the specific lifting operation. Spring and damping

characteristics can be changed by changing valves, oil level and accumulator pressure. In

some cases, the spring and damper characteristics may also be changed during the lifting

operation [87].

96



Chapter 6. Winch System

The PHC system is typically used to [87]:

• Prevent slack wire.

• Reduce peak loads during splash zone crossing.

• Protect the lifting appliance and the payload from forces caused by vessel motions

when lowering or hoisting through the water column.

• Avoid resonance in deep water operation.

• Maintain constant wire tension during lift-off.

The compensation efficiency is affected by the payload geometry, payload density, sea

state, and the surrounding medium of the payload. The PHC system is most efficient in

high heaves and for objects submerged in water with large drag forces and a low weight

in water. The compensation efficiency may vary from 0 % up to 95 % [94]

6.2 Subsea Lifting Operations

Subsea lifting operations can normally be divided into three main operations; deployment,

recovery and relocation of payloads on the seabed [87]. Each of those lifting operations

can be further broken down into phases or steps. When planning a lifting operation,

each step must be well defined and further divided into sub-steps. Figure 6.5 illustrates

the three main subsea lifting operations. The vessel position is controlled by a dynamic

positioning system that controls thrusters to keep the vessel at the desired location.
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Figure 6.5: Subsea operations.

In general, high variation of dynamic forces on the winch rope and payload should be

avoided. In case of lift-off, the rope should be gently tensioned and the payload should be

gently accelerated. In case of lift-down, the payload should be landed with a low speed

to avoid high impact forces and high variations in the rope tension. Further down in this

section, the challenges related to each lifting operation shown in Figure 6.5 are described

in detail. The descriptions are based on the work presented in [87] and inputs given from

offshore winch manufacturers. Note that the descriptions are not exhaustive, and not all

information may be relevant for all types of payloads.
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6.2.1 Deployment

In a deployment operation, a payload is moved from the deck and down to the seabed.

The deployment operation can be divided into four steps:

1: Lift-off from deck and over-boarding

The main challenges in a lift-off sequence from deck and over-boarding are to control the

horizontal movement of the payload and avoid collision with other objects. The operation

requires a skilled operator. In this case, the AHC and CT mode are normally not used. It

is very important to center the winch hook above the payload to avoid a horizontal shift

at lift-off. The operator must slowly tension the wire to ensure that the winch hook and

payload are aligned properly. Also, bumpers and guides may be used to avoid collision

with other equipment or the vessel itself. When maneuvering the payload overboard,

guide lines can be used to control the rotation of the object.

2: Entering and crossing the splash zone

The splash zone is defined as the part of the water column where the variation of the sea

surface level affects the payload. This zone extends from the sea surface and down to

approximately 50 m below the sea surface. It is in the splash zone that the highest forces

acting on the payload and the lifting appliance are expected to be found. Quick changes

of buoyancy, added mass and slamming loads caused by the interaction between payload

and waves, can result in high dynamic forces and slack slings or slack winch wire. Slack

slings or wire may be followed by high snap loads. The lowering speed through the splash

zone must, therefore, be carefully assessed.

When crossing the splash zone, the winch should be controlled by a highly skilled

operator. The AHC and CT system is normally not used. When the payload is close

to the sea surface, the crane operator tries to compensate for the vessel heave motion

and cross the sea surface at a low speed, typically in the range of 0.2-0.3 m/s. Once the

bottom of the payload has crossed the sea surface, it should be kept within the water to

avoid slamming loads and dampen any pendulum movements. A PHC system may be

used to reduce the dynamic forces and avoid slack slings.

When lowering through the splash zone, the load acting on the wire will change due

to buoyancy, drag force, wave induced loads and flooding of the payload. For hollow

payloads, there should be included time for free flooding. Unfortunately, a remotely ope-

rated underwater vehicle (ROV) has limited operation capability in the splash zone and

the visual observation capability is therefore limited. Flooding is sometimes conducted

through small vent holes, which makes the flooding time consuming. The payload should

therefore be lowered down to a depth of approximately 50 m, out of the wave zone, for
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visual inspection by a ROV to confirm that venting is fully completed before the load is

further lowered. In addition, care must be taken regarding tilting of the payload due to

trapped air and that the center of gravity and center of buoyancy may not be located

vertically above each other.

3: Lowering through the water column

This step involves lowering the payload from the splash zone and down to a safe distance

above the seabed or the structure the payload shall be landed on. The main challenges

related to this step are stable lowering and the risk of resonance. The payload should

be lowered at a pre-defined speed to avoid any wobbling motion and to ensure that the

payload has the strength to withstand the drag forces related to motion in water.

When lowering through the water column, the natural frequency of the lifting appliance

will change due to increasing wire length. If the natural frequency of the system is close

to or equal to the frequency of the vessel’s heave motion, the heave motion of the payload

will significantly increase, resulting in increased dynamic forces. If the payload and the

lifting appliance is sized to withstand the increased dynamical forces, the payload can be

lowered without taking any actions. If not, the winch can operate in AHC mode in the

period where the natural frequency of the lifting appliance is close to the heave frequency.

Another solution is to use a PHC system to change the natural frequency of the lifting

appliance and thereby fully avoid the risk of resonance. According to [95], the resonance

period of the lifting appliance can be calculated by

T0 = 2 · π ·
√
mload +ma + δ ·mw · L1

K
(6.1)

where mload is the mass of the payload, ma is an inertia included when the payload is

submerged in water, δ is an adjustment factor, mw is the mass of wire per meter, L1 is

the length of the payed out wire and K is the combined stiffness of the crane boom, wire

rope and other contributions if there are any.

When approaching the seabed, the payload should be stopped in a safe height above

the highest subsea installation or the seabed and in a vertical offset from the landing

position. Then, guide wires or clump weights might be used to control the orientation

and position of the payload during landing.

4: Landing

The payload can be landed directly on the seabed, or on a previously installed platform

or installation. The payload should be landed smoothly with low speeds, typically below

0.1-0.15 m/s, to avoid high impact forces. High impact forces may result in damage on the

payload or already installed equipment. In case of vessel heave motion, the payload may
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bounce up and down with high impact forces unless the heave motion is compensated.

The heave motion can be compensated for by using AHC, CT or PHC systems. When

using AHC system, the payload motion is decoupled from the vertical vessel motion and

the winch operator can control the payload motion relative to the seabed. The winch

operator should slowly lower the payload and keep attention to the wire tension. When

the payload touches the ground, the wire tension should be slowly reduced to zero. Fast

unloading of the wire may cause the vessel to roll backward and thereby snap the wire.

When using CT during landing, the desired wire tension is set slightly below the tension

needed to hold the weight of the payload in water. This will ensure a low impact force

during landing. When the payload is in contact with the seabed, the wire tension is slowly

decreased by reducing the set point of the wire tension.

Payloads placed at the seabed tend to sink into the soil. The lifting force needed to

free the structure depends on the content of the soil and also the impact force during

landing. The impact force should therefore be as low as possible.

During landing, a ROV is normally used for visual monitoring of the motion and

orientation of the payload. Guide wires connected by a ROV can be used to control the

orientation and position of the payload. Lift and guide equipment can be released by, e.g.,

acoustic release systems, ROV operable hook, ROV shackle or by ROV cutting tools.

6.2.2 Recovery

In a recovery operation, a payload is recovered from the seabed and lifted up to the deck.

The recovery operation can be divided into four steps:

1: Subsea lift-off

Lift-off from the seabed may be challenging due to suction forces and trapped mud in

the payload. Some seconds or minutes may be required to free the payload from suction.

Lift-off from the seabed is normally conducted in CT mode. The desired wire tension is

sett to, for example, 20 % above the payload’s weight in water. When the payload is lifted

to a safe distance above the seabed, the CT system is deactivated and the load motion is

controlled by the winch operator. AHC can also be used during lift-off. When using AHC

mode, the operator must slowly hoist the payload. Because of the motion controller, the

operator must keep attention to the wire tension measurements to avoid overloading the

lifting appliance because of suction loads or trapped mud.

2: Hoisting through the water column

In this step, the payload is lifted from a safe distance above the seabed and close to but

below the splash zone. As for lowering through the water column, care must be taken
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regarding resonance, stability, and drag forces acting on the payload. For more informa-

tion, see step 3 in Section 6.2.1.

3: Crossing and exiting the splash zone

When hoisting through the splash zone, special care must be taken when exiting the

water. Trapped water will increase the payload’s weight in the air which may result in

overloading of the lifting appliance. Therefore, time must be included for draining the

payload for water. The payload should be slowly lifted out of the water, but once the

payload is free, it should be hoisted to a safe height above the waves to avoid slamming

loads and slack slings. Exiting the splash zone is normally conducted by a skilled opera-

tor without the use of any additional modes. A PHC system may be used to reduce the

dynamic forces and avoid slack slings.

4: In-boarding and landing on deck

In-boarding and landing on deck can be described as demanding and brutal, and require

a highly skilled crane operator. In-boarding and landing on deck should be carried out

relatively fast. If the vessel rolls back and forth a few times, the load starts to build up

a pendulum movement which makes the landing operation even more demanding. Care

must be taken to avoid uncontrolled swinging of the payload and collision with other

objects. When the load is in the water, guide lines can be attached to the payload by

an ROV to control the orientation in the air. This step is normally carried out by the

operator without the use of AHC or CT.

6.2.3 Move

In a move operation, a payload is moved from one location to another. The move opera-

tion can be divided into three steps:

1: Subsea lift-off

This step is described in step 1 in Section 6.2.2.

2: Move

Movement covered in this step is typically horizontal movement of payloads located close

to but in a safe distance from the seabed. The move is normally conducted by relocating

the floating vessel. During relocation, the orientation and position of the load can be

controlled by guide wires attached to the payload. Care must be taken to avoid twisting

of the wires. The guide wire winches should be in CT mode, and the orientation and

position of the payload are controlled by the tension of the guide wires. For a move with-
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out the use of guide wires, the orientation of the payload may be controlled by the vessel

heading or by using more than one lifting appliance.

3: Landing

This step is described in step 4 in Section 6.2.1.

6.3 Safety

All lifting appliances should be provided with safety systems to reduce the risk of damaging

the payload, lifting appliance, other equipment or personnel within the working area.

Winches used offshore should generally be provided with at least but not limited to the

following features [96]:

− Brakes

− Overload protection systems

− Hook limiting switch

− Safety valves in the hydraulic system

− Emergency stop system

− Slack wire rope detection

Brakes

In normal operation, the braking energy during lowering is absorbed by the drive system,

either a hydraulic or electric motor. For safety reasons, the winch should also be equipped

with a mechanical brake. The mechanical break shall be designed to not introduce shock

loads on the system. Every time the joystick is in natural position, the brakes shall be

automatically activated unless AHC or CT is active. The braking system shall also be

activated upon failure of the power supply or control system.

When starting with a hanging load with the brakes activated, there should be no drop

before lift. A drop in the payload position before lift is an uncontrolled motion which can

result in damage of equipment, payload or personnel.

Overload protection system

Overload of a lifting appliance may result in disasters like crane structure collapse and

flipping of ships. The overload protection system shall protect against overloading by

reducing the load-carrying capacity and allowing the hook to be pulled away from the

winch. Overloading can occur due to hook being entangled to a moving object like a ship,

a load sucked to the seabed, heave compensation system that is not working properly or

other issues.

There are two types of overload protection systems; manual and automatic. Man-
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ual overload protection system is manually actuated by the winch operator and shall

reduce the lifting capacity to 10 % - 25 % of its rated capacity. The automatic overload

protection system shall be automatically actuated when the load exceeds the rated capac-

ity of the lifting appliance and shall keep the tension in the wire rope at the rated capacity.

Hook limiting switches

The winch shall be equipped with upper and lower switches in order to stop the winch

hook from collision with other parts of the lifting appliance and keeping the at least 3

turns of wire on the drum.

Safety valves in hydraulic system

The hydraulic system must be equipped with pressure relief or load holding valves to pre-

vent unwanted movement in case of hose rupture. The valves must be mounted directly

on the actuator.

Emergency stop

A manual operated emergency stop must be provided in order to stop dangerous winch

drum movements or unintended movements caused by a fault in the control system. Ac-

tivating the emergency stop shall stop the winch movement and activate the brakes in a

safe manner.

Slack wire rope detection

Slack wire rope at the drum can result in improper spooling and may occur due to high

rotational speed of the winch. The slack wire rope detection system shall stop the winch

such that the rope can be re-tightened before automatically returning to operation.

This is only a review of some of the safety functions that offshore winches can be

provided with. Other examples are load indicator, audible warning alarm, emergency

lowering of loads, etc.

6.4 Test Case Design

Based on the description given in Section 6.2, three critical steps are identified when

considering subsea lifting operations:

− Lift-down and lift-off from deck.

− Crossing the splash zone.

− Lift-down and lift-off from the seabed.

The dynamic characteristic of the lifting appliance is affected by the payload mass, the
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surrounding medium of the payload and the amount of payed out wire. During landing

and lift-off from the deck, the payload is operated in air with a low amount of the wire

payed out. Hence the lifting appliance is relatively stiff. During landing and lift-off at

deep waters, the dynamic characteristics are changed since a high amount of the wire is

payed out and the surrounding medium is water. Therefore, both performance of winch

operation in air with a small amount of the wire payed out and at deep waters with a

high amount of the wire payed out should be tested.

During landing and lift-off from the deck and crossing the splash zone, the winch is

normally operated by a skilled operator without the use of AHC or CT systems. High

motion control is therefore important. During landing and lift-off from the seabed, both

AHC and CT systems may be used, and both motion control and wire tension control

is important. In this section, three test cases are designed in order to test the required

performance of the winch system.

Test Case 1 imitates a lift in air without the use of AHC or CT system. Test Case

2 imitates a landing situation on the seabed with the use of the AHC system. Test

Case 3 imitates a landing situation on the seabed with the use of the CT system. In

the second and third test case, it is assumed that the vessel heaves up and down due to

waves. Wave motions are irregular and random in shape, height, length and speed. It

is assumed that the vessel has a similar motion and that the motion can be described

by the Pierson-Moskowitz wave spectrum [97]. The operation window is typically limited

by wave height and wave period. Normally, deck operations are not conducted in waves

higher than 2.5 m. In subsea lifting operations, the allowable wave hight depends on the

wave period and also the payload. In Test Case 2 and Test Case 3, it is assumed that the

vessel heaves with a significant wave height of Hs = 1.3 m and a typical wave period of

Tp = 9 s. The vessel motion is calculated using the method described in [98]. Figure 6.6

shows an example of the heave motion of the vessel with Hs = 1.3 m and Tp = 9 s.

Figure 6.6: Example of vessel motion described by Pierson-Moskowitz wave spectrum with

Hs = 1.3 m and Tp = 9 s. The left plot shows vessel position and the right plot shows vessel

velocity.
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6.4.1 Test Case 1: Motion Control at Deck with External Force

Disturbance

Test Case 1 imitates a lifting operation where the payload is lifted in the air. The payload

starts from a hanging load and is hoisted 10 m and then lowered back to its initial position

with a trapezoidal velocity profile. During the lifting operation, an external force is applied

to the payload in order to test the resistance to external force disturbance. In a real lifting

operation, such external force can typically occur during water exit and entry or in case

of collision with other objects. The external force is set to 50 % of the force needed to

hold the payload at rest.

This test case should be tested both with a payload mass equal to 75 % of max SWL

and equal to 5 % in order to test motion tracking performance both for heavy and light

payloads. The vessel motion is set to zero. The vessel motion will affect the control

performance and should also be tested. However, it is assumed that the vessel motion

will have small influence compared to the external load, so in this test case, the vessel

motion is assumed to be zero.

Figure 6.7 shows an example of the reference trajectory and the external force. The

external force, Fext, is shown in the upper plot, the payload position, xpl, is shown in the

middle plot and the payload speed, ẋpl, is shown in the bottom plot. The external force

is applied as a negative force, acting in the downward direction, in the hoisting phase and

as a positive force, acting in upward direction, in the lowering phase.

Figure 6.7: Illustration of Test Case 1.

6.4.2 Test Case 2: Landing on the Seabed in AHC Mode

Test Case 2 imitates a landing sequence on the seabed by using AHC. The water depth is

set to 1000 m. The purpose of this test case is to test motion tracking performance at deep
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waters. A landing situation is chosen in order to test the motion tracking performance

with heavy and light payloads. Heavy payloads are tested before landing and no payload

is tested after landing.

The mass of the payload is set to max SWL. The landing speed should be below 0.15

m/s and the maximum compensation error for the AHC system should be less than ±5

cm.

Figure 6.8 illustrates an example of the payload position, upper plot, and the drum

position, lower plot, during the landing sequence. First, the winch starts with zero velocity

Figure 6.8: Illustration of Test Case 2.

and the payload follows the heave motion of the vessel in a safe height above the seabed.

Then the AHC mode is activated and the payload is stabilized at a constant depth, or

payload motion smaller than ±5 cm. After the payload has stabilized, the crane operator

starts to lower the payload. When the payload touches the seabed, the wire tension is

slowly reduced by paying out more wire. Recall that a fast relief of wire tension may

cause the vessel to roll backwards which may result in a snap load in the wire. When the

wire tension is zero, the winch should continue operating in AHC mode in order to test

the motion tracking performance for zero payloads at deep waters.

6.4.3 Test Case 3: Landing on the Seabed in CT Mode

Test Case 3 imitates a landing sequence at the seabed by using CT mode. The purpose

is to test the wire tension control performance at deep waters. A landing situation is

chosen in order to test wire tension control at high tension and low tension. High tension

is tested before landing and low tension is tested after landing.

The mass of the payload is set to max SWL. The preset value of the tension is set

slightly below the weight of the payload in water. The wire tension error for the CT mode

should be less than 8 kN and the impact force during landing must be low.

Figure 6.9 illustrates an example of the desired wire tension, Fref , payload position,

xpl, and drum position, θd, during landing in CT mode. The drum will pay wire in and out

in order to compensate for the vessel heave motion and the payload will land smoothly.
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Figure 6.9: Illustration of Test Case 3.

The wire tension is kept constant until the load has landed. When the load has landed,

the wire tension is slowly reduced to avoid the vessel from rolling. When the wire tension

is reduced to 10 % of maximum SWL, the desired wire tension is kept constant in order

to test controllability at low wire tensions.

6.5 Simulation model of the winch

In this project, a winch with max SWL equal to 20000 kg is used as a case study. The

winch is a single drum winch type with a drum capacity of 3600 m of wire. The winch is

driven by a digital displacement winch drive system consisting of a digital displacement

motor with 42 cylinders directly connected to the winch drum through a pinion and gear

ring as described in Section 1.2. The 42 cylinders can be distributed on multiple motors

placed around the gear ring on the winch drum. For simplicity, in the simulation model,

it is assumed that all cylinders are placed on one motor with the cylinders uniformly

distributed around the motor shaft.

The simulated system is shown in Figure 6.10. rd is the drum radius, reff is the

effective radius of the outer wire layer, wd is the drum width and mload is the mass of the

payload. This section describes the nonlinear winch model. The DDM is simulated as

shown in Section 2.1.

6.5.1 Assumptions

The dynamics of the winch system depend on the payload’s position and mass. In ope-

ration, the wire rope is either payed out or in causing variations in the rotational inertia

and a variation in the effective drum radius due to switching between wire layers. For

the simulated winch, the inner wire layer, which has the smallest radius and therefore the
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Figure 6.10: Offshore winch simulation system.

smallest storing capacity, has a capacity of 186 m. This length is significant larger than

the distance the payload is moved in the three test cases. Hence, it is assumed that all

simulations are carried out without changing wire layer. Due to this the effective drum

radius is assumed to be constant in the test cases. Of course, the effective radius can vary

between different test cases, depending on the length of the payed out wire. However, the

rotational inertia of the drum is always modeled as a function of the length of the wire

payed out.

The wire will be stretched due to its own mass and the mass of the payload. The

wire and the payload will also be exposed to horizontal forces caused by sea currents

and wind loads, which again will result in horizontal movement. The difference between

the real vertical payload position and the unstretched condition has two contributions:

vertical geometric displacement due to curvature of the cable and the vertical elastic

displacement due to stretching of the cable [95]. The total vertical cable stiffness is

therefore a combination of the wire elastic stiffness and the geometric stiffness [95]. For

simplicity, the sea current and wind load are considered to be negligible in this study.

Hence, the horizontal drift of the payload is zero and the vertical payload position is only

affected by the wire elongation. The wire elongation is included in the simulation model

by simulating the wire as a mass-spring-damper system.

The floating vessel will move due to wave induced motion. In this study, only vertical

motion is considered. The dynamics of the payload is affected by the motion of the vessel,

but it is assumed that the motion of the vessel is not affected by the motion of the payload.

This simplification is based on the following assumptions [95]:

− Mass of the payload is much smaller than the displacement of the vessel.

− The payload’s contribution to the mass moment of inertia around center of gravity

is much smaller than the vessel moment of inertia.
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For heavy lifts where the weight of the payload is more than 1-2 % of the vessel dis-

placement, typically more than 1000 tonnes, the coupled dynamics of the vessel and the

payload must be considered [95].

Ocean waves are irregular and random in shape, height, length and velocity. It is

assumed that the vessel has an equal vertical motion and that the motion can be described

by the Pierson-Moskowitz wave spectrum [97] as described in [98] and discussed in Section

6.4.

The seabed dynamics are affected by the content of the soil. The main objective of

this thesis is to develop a control system for the proposed digital displacement winch drive

system. It is therefore assumed that modeling the seabed as a spring- and damper system

is sufficient to show the control performance of the winch. In case the landing or lift-off

phase is of special interests, a more realistic seabed model can be implemented.

When the load is submerged in water, an inertia is added to the payload. This inertia

is often referred to as added mass and occurs because the payload must accelerate some

volume of surrounding water as it moves. The added mass is affected by the payload

geometry, motion amplitude and the rate of submergence [95]. In this project, the payload

is either fully submerged or not submerged at all. For simplicity, the added mass is in

this work considered to be constant.

For simplicity, the simulation model is only valid for operations in air or when the

payload is fully submerged in water. Hence, the simulation model is not valid in the

splash zone. Forces that occurs during water entry or exit are:

− Varying buoyancy force.

− Varying drag force.

− Slamming force.

− Wave excitation force.

− Water exit force.

− Wave damping force.

− Varying added mass.

The non-linear winch model takes into account the following:

− Inertia of drum, wire and payload.

− Wire elongation.

− Heave motion of the floating vessel.

− Buoyancy of the wire and the payload.

− Viscous drag force in water.

− Friction in drum bearings.

− Seabed dynamics.
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6.5.2 Nonlinear winch model

The mechanical winch system consists of the winch drum, wire rope and the payload.

The simulation model is based on the model described in [93] and derived based on the

dynamic model schematic, the free body diagram and the kinetic diagram shown in Figure

6.11. The wire is modeled as a mass-spring-damper system and the seabed is modeled as
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Figure 6.11: System dynamics (left figure), free body diagram (middle figure) and kinetic

diagram (right figure).

a spring-damper system, shown in the dynamic model schematic. Note that the payload

position is calculated from the center of the drum when the vessel is at rest, marked by

the line of zero position in Figure 6.11. The payload position is negative when the payload

is below the line of zero position. The length down to the sea surface is Lss = 20 m and

the length down to the seabed is Lsb = 1000 m. Based on the free body diagram and the

kinetic diagram, Newton’s second law of motion is used to describe the rotational motion

of the drum and the vertical motion of the payload.∑
M = Jeff · θ̈d = Tdrive − Tf − Fw1 · reff (6.2)∑

Fx = (mc +ma) · ẍpl = Fw2 + Fb + FN − Fd −mc · g (6.3)

where Tdrive is the driving torque acting on the drum, Tf is the friction torque in the drum

bearings, Fw1 is the wire force in the upper wire section, Fw2 is the wire force in the lower

wire section, reff is the effective radius of the outer wire layer, Jeff is the effective mass

moment of inertia relative to the drum shaft, mc is the mass of the combined load, ma is
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the added mass, Fb is the buoyancy force, Fd is the drag force, FN is the interaction force

between the payload and the seabed and g is the acceleration of gravity.

The driving torque is given by the digital displacement winch drive system. It is

assumed that there is no slack and no friction between the pinion and the gear ring. The

driving torque can then be calculated as shown in Equation 6.4.

Tdrive = Tm ·Ngear (6.4)

where Ngear is the gear ratio between the pinion and the gear ring and Tm is the motor

torque.

The friction torque in the drum bearings, Tf , is assumed to be a combination of

coulomb and viscous friction and is calculated as shown in Equation 6.5.

Tf = (md · g + Fw1) · rb · µc · tanh(θ̇d · 1000 s)︸ ︷︷ ︸
Tcoulomb

+µv · rb · θ̇d︸ ︷︷ ︸
Tviscous

(6.5)

where md is the mass of the drum and the mass of the wire rolled onto the drum, rb

is the radius of the drum bearings, µc is the coulomb friction coefficient and µv is the

viscous friction coefficient. The coulomb friction coefficient is approximated as µc = 0.1

and the viscous friction coefficient is approximated as µv = 1000 Ns/rad. The term

tanh(θ̇d · 1000 s) is implemented to avoid a step in the coulomb friction torque when

passing through 0 rpm. However, this friction model is only an approximation and may

not reflect the exact friction characteristics.

From the dynamic model schematic shown in Figure 6.11, it can be seen that the wire

is divided into two point masses, mw1 and mw2, with a spring and damper in between.

The connection between the upper wire section and the winch drum, and the connection

between the lower wire section and the payload are assumed to be rigid. Hence, the

motion of the upper wire section is a combination of the vertical motion of the vessel and

the rotation of the drum, ẍw1 = θ̈d · reff + ẍd. The motion of the lower wire section is

equal to the payload motion, ẍw2 = ẍpl The upper wire forces, Fw1, is calculated by using

Newton’s second low of motion on the upper wire section as shown in Equation 6.6. The

lower wire force, Fw2 is calculated as the force from the spring-damper-system describing

the wire elasticity as shown in Equation 6.7.

Fw1 = mw1 · (θ̈d · reff + ẍd) +mw1 · g + Fw2 (6.6)

Fw2 = (θd · reff + xd − xpl) · kw︸ ︷︷ ︸
Fspring

+ (θ̇d · reff + ẋd − ẋpl) · Cw︸ ︷︷ ︸
Fdamper

(6.7)

where ẍd is the vertical acceleration of the vessel, kw is the spring stiffness of the wire and

Cw is the damping coefficient of the wire. Note that Equation 6.7 is only valid when the

wire is stretched. If the wire is slack, the wire force is Fw2 = 0 N. The spring stiffness is
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calculated based on the wire E-modulus, Ew, wire cross-section area, Aw, and the length

of the payed out wire, Lw, as shown in Equation 6.8. The damping force is introduced to

compensate for internal friction in the wire rope. The damping coefficient is defined as

10 % of the spring stiffness and calculated in Equation 6.9. However, this wire model is

only a rough estimation and may not reflect the exact characteristics of the wire.

kw =
Ew · Aw
Lw

(6.8)

Cw =
kw
10

(6.9)

Note that Equation 6.9 does not give the correct unit of the damping coefficient. The

correct unit is Ns/m.

The payload is exposed to buoyancy when submerged in water and a viscous drag

force during motion. The buoyancy force includes the buoyancy of the payload and the

submerged wire. The buoyancy force, Fb, and drag force, Fd, are calculated as shown in

Equation 6.10 and Equation 6.11 respectively.

Fb = ρsea · g · (Vpl + Vw) (6.10)

Fd =
1

2
· ρsea · Cd · Apl · ẋ2

pl · sign(ẋpl) (6.11)

where ρsea is the sea water density, Vpl is the volume of the payload, Vw is the volume of

the submerged wire, Cd is the drag force coefficient and Apl is the projected cross-section

area of the payload normal to the motion. Note that the buoyancy and drag force are

only applied when the payload is submerged in water. For the payload considered in this

project, shape shown in Figure 6.10, the drag coefficient is Cd = 0.85 [95]. The term

sign(ẋpl) is included to get the correct sign of the drag force.

The seabed is modeled as a spring-damper system. The seabed interaction force, FN ,

is calculated as shown below.

FN = (−xpl − Lsb) · ksb − ẋpl · Csb (6.12)

where ksb is the spring stiffness for the seabed, Csb is the damping coefficient for the seabed

and Lsb is the length from the line of zero payload position, shown in Figure 6.11, and

down to the seabed. The spring stiffness is set to ksb = 4000000 N/m and the damping

coefficient is set to Csb = 1000000 Ns/m. This results in an over damped system if the

mass of the payload is 20000 kg.

The effective mass moment of inertia varies as a function of the mass of the wire on

the drum. It is assumed that the wire is uniformly distributed around the drum. The

effective mass moment of inertia is calculated as shown in Equation 6.13.

Jeff = Jd +
1

2
·mwd · (r2

d + r2
eff )︸ ︷︷ ︸

Jwire

+Jm ·N2
gear (6.13)
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where Jd is the mass moment of inertia of the drum, mwd is the mass of the wire rolled

onto the drum, Jm is the mass moment of inertia of the DDM and Ngear is the gear ratio

of the pinion and gear ring.

The combined mass, mc, consists of the mass of the payload, mload, hook, mhook, and

the lower wire section, mw2. The combined mass is calculated as shown in Equation 6.14.

mc = mload +mhook +mw2 (6.14)

The added mass, ma, is calculated as shown in Equation 6.15.

ma = ρsea · CA · VR (6.15)

where CA is the added mass coefficient and VR is the reference volume. The added mass

coefficient is set to CA = 0.72 and the reference volume is VR = Vpl for the payload shape

considered in this project [95].
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Control design

This chapter presents controllers for the digital displacement winch drive system. The

winch should be able to operate both in operator mode, AHC mode and CT mode. The

operator mode and AHC mode require a motion controller while the CT mode requires a

tension controller.

Multiple motion controllers for hydraulic winch drive systems have been proposed in

the literature. The proposed controllers are often designed for use in open circuit systems.

In [99], the authors presented a combination of a position feedback and velocity feedfor-

ward AHC controller for an open circuit winch drive system. In [93], the authors proposed

a cascade controller to improve motion tracking performance for an open circuit systems.

The cascade controller used a PI controller in the inner velocity loop and a P controller

in the outer position loop. The nonlinearities in conventional open circuit winch drive sy-

stems reduce the tracking performance for linear controllers. Several nonlinear controllers

have been proposed to improve the tracking performance. Examples are: model predictive

controller [100], sliding mode controller [101, 102] and adaptive controller [103]. Other

approaches to increase the heave compensation performance are to use measurements of

the wave amplitude as a feed forward compensator within the AHC system [104] or to

predict the heave motion and use this prediction as a part of the control strategy for the

AHC system [105, 106].

Most of the designed tension controllers that can be found in the literature are also for

open circuit systems. In [99], the authors presented a closed loop wire tension feedback

loop with a P controller for an open circuit winch system. The designed controller was

experimentally tested by lifting a 400 kg payload from a moving platform. In [107], the

authors compared the performance of a PID controller to a fuzzy P + ID controller in a

towing winch. The controllers were implemented in an open circuit winch drive system.

The simulation results showed that the fuzzy P + ID controller was able to reduce the

mean squared error by 57 % and 39 % in a towing situation compared to the PID controller
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when the desired wire tension was set to 50 kN and 30 kN respectively. The peak error

was also reduced by 60 % and 58 % when the desired tension was set to 50 kN and 30

kN respectively. An alternative solution has been presented in [108]. In stead of actively

controlling the proportional valve in the CT mode, it was proposed to implement a short

cut valve that maintains a desired pressure drop across the motor. The desired pressure

drop can be controlled to meet a desired wire tension. The motor will pay out wire if the

load torque is greater than the available driving torque and pull in wire if the load torque

is lower than the available driving torque.

This chapter presents in all four motion controllers and one tension controller for the

digital displacement winch drive system. The designed controllers are then tested on the

test cases designed in Section 6.4 and their performances are evaluated. This chapter is

divided into six sections. The first section discloses the selection of the used displacement

strategy. The second section presents a simplified simulation model of the entire digital

displacement winch drive system. The simplified simulation model is further used in the

third section to design the motion controllers. The fourth section presents a simple PI

tension controller used in the CT mode. The fifth section presents the simulation results

of all designed controllers. Finally, the sixth section discusses the motion controllers

regarding performance, robustness and implementation issues. The presented work is

published in paper E and paper F.

7.1 Selection of displacement strategy

The choice of displacement strategy is important. Every displacement strategy has its

characteristics. The winch drive system must be able to operate at low speeds with

frequent starts and stops and frequent changes in the direction of rotation. Based on the

work presented in Chapter 4, both the PSDS 2 and the SPSDS are found to be suitable

for use in a winch drive system due to high controllability at low speeds. The SPSDS

is known to switch the valves and reactivate the cylinder chambers more often than the

PSDS 2. It is therefore assumed that the PSDS 2 has higher energy efficiency and is,

therefore, the selected displacement strategy.

Note that the focus of this project is to design a controller that can be used when high

controllability of the winch is important, e.g. landing, lift-off or crossing the splash zone.

When the controllability is of less importance, e.g. during deep water lowering, another

displacement strategy with higher energy efficiency, like the FSDS, may be used. It is out

of the scope for this project to develop controllers with optimal displacement strategies

for all phases in all lifting operations. However, the designed controller can be used in

all operation phases, but there may be more suitable displacement strategies that gives a
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higher energy efficiency.

One of the benefits of the DDM, is that the decompression and compression phase

can be optimized for all operation conditions. Developing an optimized compression and

decompression phase is not in the scope of this work and is, therefore, not implemented. In

this study, when changing state from active to inactive, the low pressure valve is opened

when the high pressure valve is fully closed. When reactivating a cylinder, the high

pressure valve and the low pressure valve are actuated at the same time. This strategy

will result in unnecessary high flow peaks and flow throttling losses. One technique of

optimizing the decompression and compression phase have been investigated in [79].

Winch operation requires a drive system that is able to operate in all four quadrants.

Normally, quadrant 1 is used during hoisting and quadrant 3 during lowering but in special

cases, like driving with an empty hook or in AHC mode, quadrant 2 and quadrant 4 may

also be used. The four quadrants are illustrated in Figure 7.1. The green arrows show
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Figure 7.1: Four quadrant operation.

the direction of rotation and the red arrows show the direction of the load torque. Q1 is

quadrant 1, Q2 is quadrant 2 and so on. In Q1 and Q2 the DDM is operating as a motor,

hence the load torque acts in the opposite direction of the speed. In Q3 and Q4 the DDM

is operating as a pump, hence the load torque and the speed act in the same direction.

In the PSDS 2, the valve timing strategy shown in Figure 2.7 in Section 2.2.2 is

only valid for operation in Q1. Each quadrant requires a unique valve timing strategy.

Figure 7.2 shows a simplified schematic illustration of the valve timing strategy for all four

quadrants. The top graph shows the piston position and the next four graphs show the

valve timing sequence for operation in quadrant 1 to 4 respectively. The red line shows
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Figure 7.2: Valve timing sequence for four quadrant operation.

the opening ratio of the high pressure valve and the blue line shows the opening ratio of

the low pressure valve. The black line with arrows shows the direction of rotation. Arrows

pointing to the right indicates positive direction and arrows pointing to the left indicates

negative direction of rotation. Note that in Q1 and Q3, the control angle, α1, is used to

switch cylinder state and in Q2 and Q4 the control angle, α2, is used to switch cylinder

state.

A schematic illustration of the motor controller is shown in Figure 7.3. The input to
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Figure 7.3: Motor controller.

the controller is the desired displacement ratio, Dm, and the output is the motor torque,

Tm. The state change angle, α, is calculated based on the desired displacement fraction

by using Equation 2.16. The valve timing strategy, Qj where j = 1...4, is selected by a

switching controller. Based on given conditions, the proper valve activation strategy is

selected. The given conditions are shown in Equation 7.1.

Q =


Q1 if α ≥ 0 ∧ θ̇m ≥ 0

Q2 if α < 0 ∧ θ̇m < 0

Q3 if α ≥ 0 ∧ θ̇m < 0

Q4 if α < 0 ∧ θ̇m ≥ 0

(7.1)
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where θ̇m is the motor velocity. The state change angle and the valve activation strategy

are then sent to the on/off valves on the DDM which results in an output torque of the

motor.

7.2 Model Simplification

In order to design model based controllers, the nonlinear models for the DDM, presented

in Section 2.1, and for the mechanical winch system, presented in Section 6.5, are sim-

plified. In the simplified model, the wire elasticity is neglected and the motor torque

is approximated to be linear to the motor displacement. The new simplified free body

diagram and the kinetic diagram, where the elasticity of the wire is neglected, are shown

in Figure 7.4.
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Figure 7.4: Simplified system dynamics, free body diagram and kinetic diagram.

The equation of motion for the winch drum is derived based on the free body diagram

and the kinetic diagram as shown in Equation 7.2.

Jeff · θ̈d = T drive − reff · (mc · g + Fd − Fb)− T f (7.2)

where overline indicates that the parameter is a simplified version of the real parameter.

The driving torque is given by the hydraulic motor. In this simplified model, the driving

torque is assumed to be linear to the input signal, Dm, and expressed by:

T drive =
∆pmotor · Vm

2 · π
·Ngear ·Dm (7.3)

where ∆pmotor = pH − pL is the pressure difference across the motor, Vm is the maximum

motor displacement, Ngear is the gear ratio between the pinion and the gear ring and Dm

is the displacement ratio ranging from -1 to 1.
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In order to validate the simplified driving torque, the driving torque from the simplified

model, T drive, is compared to the driving torque from the nonlinear model, Tdrive, when

a sinusoidal input signal with increasing frequency is given. The motor is running at 50

rpm and the results are shown in Figure 7.5. The blue line shows the driving torque from

Figure 7.5: Comparison between simple model and non-linear model of the driving torque.

the nonlinear model, and the red line shows the driving torque from the simplified model.

The simulation results show that the simplified model is a sufficient representation of the

nonlinear model, even at high input frequencies. However, the output torque from the

nonlinear model tends to oscillate, while the output torque from the simplified model is

smooth. This is best seen in the first 5 s of Figure 7.5 where the blue line looks thick

due to the oscillating output torque caused by fast switching between active and inactive

cylinder chambers.

The simplified friction torque is calculated as shown in Equation 7.4.

T f = (mtot · g + Fd − Fb) · rb · µc · sign
(
θ̇d

)
+ µv · rb · θ̇d (7.4)

where mtot is the mass of the winch drum, payload and the wire.

The simplified effective mass moment of inertia relative to the drum shaft, Jeff , is

calculated as shown in Equation 7.5

Jeff = Jd +
1

2
·mwd ·

(
r2
d + r2

eff

)
+ Jm ·N2

gear + (mload +mwout) · r2
eff (7.5)

where mwout is the mass of the payed out wire.

7.3 Motion controller

This section presents the design of the motion controllers. The goal of the motion con-

troller is to make the winch drum follow a given reference trajectory. In operator mode,

the reference trajectory is generated by operating the joystick. In AHC mode, the mea-

sured vessel motion is subtracted from the joystick signal. A schematic illustration of the

control strategy is shown in Figure 7.6.

The displacement controller transforms the reference trajectory into a desired dis-

placement ratio. The displacement strategy transforms the desired displacement ratio
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Figure 7.6: Schematic illustration of the control structure for the motion controller

into valve control signals. Then the valves activates and deactivates the cylinder cham-

bers which results in an output torque that drives the winch.

This section presents four displacement controllers. The first three controllers are also

presented in paper F and the fourth controller is presented in paper E.

7.3.1 Base Controller

The dynamical model of the winch system, shown in Equation 7.2, can be rearranged to

a more general form.

Jeff · θ̈d = T drive − reff · (mc · g + Fd − Fb)− T f ⇓

θ̈d =
∆pmotor·Vm

2·π ·Ngear

Jeff
·Dm −

reff · (mc · g + Fd − Fb)
Jeff

− T f

Jeff

= b ·Dm − f (7.6)

where

b =
∆pmotor·Vm

2·π ·Ngear

Ĵeff
(7.7)

f =
reff · (mc · g + Fd − Fb)

Jeff
+

T f

Jeff
(7.8)

If the parameters b and f were exactly known, the following control law would have given

optimal tracking performance.

Dm,opt =
un + f

b
(7.9)

with the nominal controller

un = θ̈ref − c2 · ė− c1 · e (7.10)

where e = θd−θref and θref is the reference position for the drum. c1 and c2 are controller

gains and must be positive. Inserting the optimal control law, given in Equation 7.9, into
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Equation 7.6 results in the following closed loop response.

θ̈d = b ·Dm,opt − f

= b · un + f

b
− f

= un ⇓ (7.11)

θ̈d = θ̈ref − c2 · ė− c1 · e

θ̈d − θ̈ref + c2 · ė+ c1 · e = 0

ë+ c2 · ė+ c1 · e = 0 (7.12)

where the position error, e, will converge to zero exponentially.

In reality, the parameters b and f are not known exactly because of unmodeled dyna-

mics, uncertainties in the simulation parameters and other disturbances. Therefore, only

an approximation of the control law can be implemented:

Dm =
un + f̂

b̂
(7.13)

where ˆ indicates that the parameter is estimated based on system knowledge and state

measurements. Inserting our best approximation of the control law, shown in Equation

7.13, into Equation 7.6 gives the following closed loop response:

θ̈d = b ·Dm − f

= b · un + f̂

b̂
− f

=
b

b̂
· un +

b

b̂
· f̂ − f

= un −
(
f − b

b̂
· f̂ + un ·

(
1− b

b̂

))
= un −∆b,f , where ∆b,f =

(
f − b

b̂
· f̂ + un ·

(
1− b

b̂

))
(7.14)

where ∆b,f is called the model error and represents the error dynamics between the esti-

mated model and the real system.

The control law presented in Equation 7.13 is referred to as the base controller (BC).

Assuming that the model error is small, the control performance will be good.

7.3.2 Sliding Mode Disturbance Controller

The base controller presented in the previous section is not optimal due to the model

error. The goal of this section is, therefore, to present a compensator, uc, that will

cancel the model error. The compensator is designed by using a sliding mode disturbance

compensator (SMDC).
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First, the control law in Equation 7.13 is modified to include the compensator, uc.

Dm,SMC =
un + uc + f̂

b̂
(7.15)

Inserting the new control law into Equation 7.6 gives the following closed loop dyna-

mics.

θ̈d = b ·Dm,SMC − f

= b · un + uc + f̂

b̂
− f

=
b

b̂
· un +

b

b̂
· uc +

b

b̂
· f̂ − f

= un + uc +

(
b

b̂
· f̂ − f + (un + uc) ·

(
b

b̂
− 1

))
= un + uc + ∆b,f,SMC (7.16)

where

∆b,f,SMC =

(
b

b̂
· f̂ − f + (un + uc) ·

(
b

b̂
− 1

))
(7.17)

∆b,f,SMC is the model error. The aim of the compensator, uc, is to compensate for the

model error such that

θ̈d = un, for uc → −∆b,f,SMC (7.18)

The compensator is designed by following the structure in [109]. The model parameters,

f and b, are unknown but assumed to be bounded. The bounds are given by the following

equations.

|f̂ − f | ≤ F (7.19)

and

0 < bmin ≤ b ≤ bmax (7.20)

⇓

β−1 ≤ b

b̂
≤ β (7.21)

where

β =
bmax
bmin

(7.22)

A time-varying sliding surface is defined by Equation 7.23 and its derivative by Equa-

tion 7.24

s = θ̇d − z (7.23)

ṡ = θ̈d − ż (7.24)
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where ż is chosen to ż = un + uc + νSMC and νSMC = L · sign(s). Inserting for θ̈d, given

in Equation 7.16, and ż into Equation 7.24 gives:

ṡ = un + uc + ∆b,f,SMC − un − uc − νSMC

= ∆b,f,SMC − L · sign(s) (7.25)

The condition for sliding mode is s = 0. A Lyapunov function is used to investigate

if sliding occurs. The Lyapunov function is chosen as shown in Equation 7.26 and its

derivative is shown in Equation 7.27.

V (s) = s2/2 (7.26)

V̇ (s) = s · ṡ (7.27)

Inserting Equation 7.25 for ṡ results in

V̇ (s) = s · (∆b,f,SMC − L · sign(s)) (7.28)

If the constraint V̇ (s) ≤ −η · |s| with η > 0 can be fulfilled, it may be concluded

that s → 0 as t → T < ∞, whereafter sliding occurs i.e. s = 0 for t ≥ T . The gain

L in Equation 7.28 must be chosen such that V̇ (s) ≤ −η · |s| will always apply. Based

on Equation 7.28 and knowing that s·sign(s) = |s|, the gain L must be chosen to satisfy

Equation 7.32.

V̇ (s) = s·(∆b,f,SMC − L · sign(s)) ≤ −η · |s| ⇓ (7.29)

L · |s| ≥ η · |s|+ |s| · |∆b,f,SMC |max ⇓ (7.30)

L ≥ η + |∆b,f,SMC |max ⇓ (7.31)

L ≥ η +

∣∣∣∣bb̂ · f̂ − f + (un + uc) ·
(
b

b̂
− 1

)∣∣∣∣
max

≥ η +

∣∣∣∣(f̂ − f)+
(
un + uc + f̂

)
·
(
b

b̂
− 1

)∣∣∣∣
max

(7.32)

From Equation 7.19 and Equation 7.21 it is known that |f̂ − f | ≤ F and
∣∣∣ b
b̂

∣∣∣
max
= β. Based

on those relations, Equation 7.32 can be rewritten as shown in Equation 7.33.

L ≥ η + F +
∣∣∣un + uc + f̂

∣∣∣·(β − 1) (7.33)

Choosing L large enough will ensure sliding mode within a finite time.

For sliding to occur, s = 0 for t > T , will also require that ṡ = 0, see [109]. By using

that ṡ = 0 for t ≥ T and Equation 7.25, an equivalent controller, ueq is designed as shown

below.

0 =∆b,f,SMC − L · sign(s) ⇓

ueq =L · sign(s) = ∆b,f,SMC (7.34)
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In the ideal case, the compensator controller, uc, should be chosen to uc = −ueq.
Inserting this controller will introduce a chattering problem due to the term sign(s).

Therefore, a continuous approximation, uav, of the equivalent controller is implemented.

The equivalent controller can be continuously approximated by use of, for example, a low

pass filter as shown in [102] or a tanh-function as shown in [110]. However, in this project,

the equivalent controller is approximated as shown in Equation 7.35.

uav = −L · sat(s, ε) (7.35)

where

sat(s, ε) =
s

|s|+ ε
, where ε > 0 (7.36)

The designed controller will give the following system response:

θ̈d = un + uc + ∆b,f,SMC ≈ un (7.37)

with

uc = −uav ≈ −∆b,f,SMC (7.38)

The control parameter L and ε shall be chosen based on a compromise between tracking

performance and control effort in addition to satisfying Equation 7.33.

7.3.3 Adaptive Controller

The adaptive controller (AC) is also based on the BC. Instead of compensating for the

model error, as done in the SMDC, the aim of the AC is to remove the model error by

adjusting the simulation parameters. Assuming that the estimated simulation parameters

f̂ and b̂ will adapt to f and b, the response shown in Equation 7.12 will occur. For the AC,

the control law given by Equation 7.13 is applied and the model parameters are adjusted

as described in this section.

A gradient based adaption law is used to adjust the model parameters. The controller

is designed by following the structure of a self-tuning controller described in [111]. First,

the winch system dynamics shown in Equation 7.6 is rewritten in vector form as shown

below.

θ̈d = b ·Dm − f

=
[
Dm −1

]
︸ ︷︷ ︸

W

·

[
b

f

]
︸︷︷︸

a

= W·a (7.39)
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The estimated system dynamics is calculated by Equation 7.40.

¨̂
θd = b̂ ·Dm − f̂

= W · â (7.40)

where â consists of the estimated parameters b̂ and f̂ . The prediction error is defined as

epre =
¨̂
θd − θ̈d

= W·â−W·a

= W·ã, where ã = â− a (7.41)

The implemented gradient based adaption law is shown in Equation 7.42.

˙̂a = −p0 ·WT ·epre (7.42)

where p0 is a positive controller gain.

The convergence of the estimated parameters is investigated by using a Lyapunov

function. The Lyapunov function is chosen as shown in Equation 7.43 and its derivative

is shown in Equation 7.44.

V = ãT ·ã (7.43)

V̇ = 2 · ãT · ˙̃a (7.44)

It is assumed that the real system parameters are constant, or at least varying very slowly

compared to the estimated parameters, hence ˙̂a ≈ ˙̃a. Using this relation and Equation

7.41, Equation 7.42 can be written as

˙̃a = −p0 ·WT ·W·ã (7.45)

Inserting this for ˙̃a in Equation 7.44 results in

V̇ = −2·p0 ·ãT ·WT ·W·ã (7.46)

Equation 7.46 shows that V̇ is at least negative semi-definite and implies that the gradient

based parameter estimator is always stable. V is the squared parameter error and is never

increasing, V̇ ≤ 0. The convergence of the estimated parameters to the true parameters

depends on the signals in W. Since the reference trajectory is a part of the signals in

W, the reference trajectory will affect the convergence of the estimated parameters. As

long as the signals in W are non-zero, the prediction error, epre, will converge to zero.

However, this does not mean that the estimated parameters, â, converges to the real

system parameters a. This only means that for the given input signal, both the model

and the real system gives the same output,
¨̂
θd = θ̈d. For example, for a constant input
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signal, Dm = constant, there may be several solutions for b̂ and f̂ that gives the same

output result. If a variable input signal is given, then there will be fewer solutions for b̂

and f̂ that gives the same output as the real system. This means that the probability for

the model parameters to converge to its real values is higher when a variable input signal

is given.

7.3.4 PID Controller

The last motion controller is a PID controller. This controller is included to examine if

the more advanced controllers designed can improve the tracking performance. The PID

controller is implemented as shown in Equation 7.47.

Dm,PID = −kd · ė− kp · e− ki · e (7.47)

where e = ė.

7.4 Tension controller

The tension controller is used in CT mode. The goal of the tension controller is to provide

a constant tension in the wire rope. Figure 7.7 shows a schematic illustration of the tension

controller.
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PI

ucon,xFerrFref

Fload

Load 

cell

Winch 

system

Displacement 

strategy

Dm
PI

ucon,xFerrFref

Fload

Load 

cell

Figure 7.7: Schematic illustration of the tension controller.

The desired displacement ratio, Dm, is controlled by a PI controller with a wire tension

feedback signal. The desired displacement is transformed into valve activation signals by

the displacement strategy. Then the cylinder chambers are activated and deactivated

according to the valve control signals in order to keep a constant tension in the winch

wire.

The displacement ratio is calculated as shown in Equation 7.48

Dm,CT = kp · Ferr + ki · F err (7.48)

where Ferr = Fref − Fload is the wire tension error and Ferr = Ḟ err.
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7.5 Simulation Results

The designed controllers are tested on the test cases described on Section 6.4. The motion

controllers are used in Test Case 1 and Test Case 2. The tension controller is used in Test

Case 3.

7.5.1 Test Case 1

Test Case 1 imitates a lift in air where the payload first is lifted 10 m and then lowered

back to its initial position. During the hoisting phase and lowering phase, an external

force is applied to the payload to test the controllers robustness against external force

disturbance. The test case is conducted with two different loads. In the first load case,

the payload’s mass is 15000 kg and in the second load case it is 1000 kg.

Figure 7.8 shows the simulation results from load case 1, mload = 15000 kg, when using

all motion controllers. Plot 1 shows the drum position and the reference trajectory, Plot

2 shows the tracking error, Plot 3 shows the payload position, Plot 4 shows the payload

speed and Plot 5 shows the lower wire force, Fw2, and the external force, Fext. Note

that the tracking error in Plot 2 is transformed from the rotation domain and into the

translation domain by multiplying the error in radians by the effective radius, θerr · reff .
This is done to get a better understanding of the magnitude of the tracking error.

In general, the simulation results in Plot 1, Plot 3, Plot 4 and Plot 5 are relatively

equal for all controllers. The payload is lifted and lowered 10 m with a trapezoidal velocity

profile. The external force is applied as a negative force, downwards direction, after 5 s

and as a positive force after 15 s. The load is applied in 5 s for each case. Plot 4 shows that

there is a small drop or peak in the payload velocity when the external force is applied

and removed.

The most interesting plot is Plot 2 where the tracking error is plotted. For the PID

controller, it can be seen that a tracking error occurs when accelerating and decelerating

the payload, driving through 0 rpm and when the external force is applied and removed.

The tracking performance of the BC is characterized with a steady-state error when

driving with constant speed and some small oscillations when accelerating and decelerating

the payload and driving through 0 rpm. The steady-state tracking error is very small and

hard to see when no external load is applied. When the external load is applied, the

steady-state error is increased. The SMDC and the AC have no steady-state error. The

tracking error have some small oscillations when accelerating and decelerating the payload

and when driving through 0 rpm. When the external force is applied or removed, only a

small peak can be seen in the tracking error for both the SMDC and the AC.

The simulation results of load case 2, mload = 1000 kg, is shown in Figure 7.9. As for
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Figure 7.8: Simulation results Test Case 1 and load case 1 (mload = 15000 kg).

load case 1, the simulation results in Plot 1, Plot 3, Plot 4 and Plot 5 are relatively equal

for all controllers. The most interesting plot is Plot 2. For the PID controller, a small

tracking error can be seen when accelerating and decelerating the payload, driving through

0 rpm and when the external load is applied and removed. For the BS, a steady-state error

can be seen when driving with constant speed. There is a step in the steady-state error

when the external force is applied. Also, a step in the steady-state error can be seen after

approximately 18 s. This step occurs because the motor changes operation quadrant. For

the SMDC and the AC, the tracking performance is very good with only small tracking

errors when accelerating and decelerating the payload, driving through 0 rpm and when

the external force is applied and removed.
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Figure 7.9: Simulation results Test Case 1 and load case 2 (mload = 1000 kg).

Discussion

Figure 7.10 shows the tracking error for all controllers in the same plot. The upper plot

shows the tracking error from load case 1 and the lower plot shows the tracking error for

load case 2. It can be seen that the tracking performance is better for the SMDC and

the AC compared to the PID and the BC. The SMDC and the AC is very robust against

external forces added to the payload. Only a small peak or drop can bee seen in the

tracking error. For the PID controller, the tracking error peaks are higher than for the

SMDC and the AC. The BC controller has also a higher tracking error than the SMDC

and the AC in addition to the steady-state error.
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Figure 7.10: Tracking error for load case 1 and load case 2.

7.5.2 Test Case 2

Test Case 2 imitates a landing situation at the seabed by using the AHC mode. The

simulation results for both the PID controller, the BC, the SMDC and the AC are shown

in Figure 7.11. Plot 1 shows the drum position and the reference trajectory, Plot 2 shows

the tracking error, Plot 3 shows the payload position, Plot 4 shows the payload velocity

together with the vessel velocity and Plot 5 shows the lower wire force, Fw2, together with

the seabed interaction force, FN . Note that the tracking error in Plot 2 is transformed

from the rotation domain into the translation domain by multiplying the error in radians

by the effective radius, θerr · reff .
The payload starts at approximately -995 m and is landed at the seabed at -1000 m.

In the first 10 s, the drum is at rest and the payload moves up and down with the vessel

motion. This can be seen in plot 4 where the payload speed matches the vessel speed.

After 10 s, the AHC system is activated and the payload is stabilized at a constant depth.

Hence, the payload speed approaches 0 m/s and the payload position is almost constant.

The zoomed window in Plot 3 shows the payload position in 15 s after the AHC system

is activated. After 30 s, the lowering phase starts. The payload touches the seabed after

approximately 52 s and the winch drum keeps paying out wire in order to slowly remove

the tension in the wire rope. The wire tension is fully removed after approximately 62 s.

The simulation results show that all controllers provide high controllability. The AHC

system is capable of reducing the payload motion to below ±1 cm for all controllers.

This can be seen in the zoomed window in Plot 3. The SMDC and the AC show the

best compensation efficiency. For the SMDC and the AC, the payload is stabilized at a

constant depth when the time approaches 30 s.

The tracking error is shown in Plot 2. All controllers have a step in the tracking error

when starting the AHC mode. This step occurs because the vessel motion is subtracted

instantaneously from the reference trajectory. This results in a step in the desired drum

position and therefore also a step in the tracking error. A smoother start-up of the AHC

131



Using Digital Hydraulics in Secondary Control of Motor Drive

FBL

SMDC AC

PID

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

FBL

SMDC AC

PID

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

Figure 7.11: Simulation results Test Case 2.

mode will reduce the tracking error when starting the AHC mode. After the AHC mode

is activated, the tracking performance is worst for the BC and best for the SMDC and

the AC. The tracking error is below ±2 mm for the PID controller and below ±1 mm for

the SMDC and the AC. The tracking error for the BC differs from the others controllers

when the payload touches the ground. This is because the estimated parameters b̂ and f̂

used in the BC do not include the interaction force between the payload and the seabed.

The model and the real system is therefore not the same after the payload touches the

ground which results in increased tracking error.

The payload is in all cases landed with a low landing speed, less than 0.1 m/s, resulting

in a low impact force.
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Discussion

Figure 7.12 shows the tracking error from all controllers plotted in the same plot. The

results show that the SMDC and the AC have the best controllability and that the BC

controller has the worst controllability due to the high error that occurs after the payload

touches the seabed. However, the high tracking performance for the SMDC and the
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Figure 7.12: Tracking error Test Case 2.

AC comes at the cost of high controller effort and more frequent reactivation of cylinder

chambers. This is shown in Figure 7.13 where the torque contribution from every single

cylinder is plotted for a selected time period, from 48 s to 50 s respectively. The plotted

cylinder contributions represent the typical characteristics. Multiple vertical lines with

the same color consecutively indicate that the cylinder is reactivated multiple times. It

can be seen that the cylinders for the PID controller and BC are reactivated less often

than the SMDC and the AC. The SMDC is the controller that reactivates cylinders most

often. Reactivation of cylinder chambers introduces losses in the system and should be

minimized.
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Figure 7.13: Torque contribution from each cylinder chamber in Test Case 2.

133



Using Digital Hydraulics in Secondary Control of Motor Drive

7.5.3 Test Case 3

Test Case 3 imitates landing of a 20000 kg payload at the seabed with the use of the CT

mode. Figure 7.14 shows the simulation results. The desired tension Fref is set to 99.5 %

of the payload’s weight in water. Plot 1 shows the lower wire force, Fw2, the desired wire
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Figure 7.14: Simulation result Test Case 3.

tension, Fref , and the seabed interaction force, FN , Plot 2 shows the tracking error, Plot 3

shows the drum position, Plot 4 shows the payload position and Plot 5 shows the payload

velocity together with the velocity of the vessel.

The simulation results show that the wire tension follows the desired wire tension

well. The tracking error is kept below 1 kN which is less than the 8 kN requirement. The

payload is landed after approximately 17 s at a velocity of approximately -0.5 m/s. This

is a relatively high speed, but the impact force, shown by the peak in the red line in Plot

1, is relatively low. After 20 s, the wire tension is slowly reduced. In Plot 4 and Plot 5

it can be seen that the payload has a smooth motion without any disturbance from the

vessel motion.

The desired wire tension is close to the wire tension needed to keep the payload at

rest in water. However, the payload’s landing speed is still quite high. This is because

the simulated payload is solid with a mass density of 6200 kg/m3. This results in a low

buoyancy and drag force relative to the mass of the payload. Also, if the payload had

been positioned closer to the seabed before starting the CT mode, the payload would not

reach the same high speed.
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If the diameter of the payload is doubled and the mass is kept constant, the mass

density will be reduced to 1550 kg/m3. This will result in a higher drag force and a

higher buoyancy force in addition to a lower wire tension and lower payload velocity.

This is shown in Figure 7.15 where the light colors show the simulation results when the

payload diameter is doubled. The desired wire tension is in both cases set to 99.5 % of
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Figure 7.15: Simulation result Test Case 3 where the dark colors show results from the original

system and the light colors show results when the payload diameter is doubled.

the wire tension needed to hold the payload in water. It can be seen that the landing

speed for the payload with double diameter is halved. The reduced landing speed results

in reduced impact force during landing. This can be seen by comparing the peak in the

dark red line, occurring after 17 s, to the peak in the light red line, occurring after 31 s,

in Plot 1.

The impact force during landing shown in Figure 7.14 is low, even though the landing

speed is relatively high. One of the reasons that the impact force is low, is that most

of the weight of the payload is held by the wire and the buoyancy force. However, the

seabed dynamics also affects the impact force. The seabed stiffness depends, off course,

on the content of the soil. In the simulated case, when the payload is placed at the seabed

with slack wire, the payload sinks 4 cm into the seabed. If the stiffness is increased by a

factor of 10, the impact force will be as shown by the light red color in Plot 1 in Figure

7.16. Note that the damping ratio is kept constant. It can be seen that the impact force

is increased. However, the impact force is still below the interaction force between the

payload and seabed when the wire is slack.

The damping ratio of the seabed will also affect the impact force during landing. If the

seabed is assumed to be underdamped, the payload may bounce back up when it hits the

ground. This situation is shown in Figure 7.17. The light colors show simulation results

when the damping ratio is set to 0.5 with the mass of the payload equal to 20000 kg. The

original damping ratio is 1.75 with a mass of the payload equal to 20000 kg. It can be
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Figure 7.16: Simulation result Test Case 3 where the dark colors show results from the original

system and the light colors show results when the seabed stiffness is increased by a factor of 10

and the damping ratio is kept constant.
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Figure 7.17: Simulation result Test Case 3 where the dark colors show results from the original

system and the light colors show results when the seabed dynamic is underdamped.

seen that the impact force during landing is higher when the damping ratio is reduced.

For the case where the damping ratio is reduced, light colors, it can also be seen that

the payload velocity becomes positive after the payload touches the ground. This means

that the payload is lifted from the ground. This can also be seen in Plot 2, where the

payload position increases after the payload hits the ground. The peak that occurs in the

interaction force between the payload and the seabed after 21 s, shown in the light red

line in Plot 1, is because the payload hits the ground for the second time.

The simulation results of the tension controller show that the controllability is high

and the tracking error is less than the requirement of 8 kN. The disturbance from the

vessel motion and the interaction force from the seabed have a small influence on the

tracking error. The impact force is also low. However, the impact force is affected by the

content of the soil and also the payload itself. A stiff seabed and payload will have higher
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interaction force than a more soft seabed and payload.

7.6 Discussion

This section discusses the motion controllers with respect to performance, robustness and

implementation challenges. The tension controller is not included in this section. The

results from the tension controller are shown in Section 7.5.3.

7.6.1 Performance

All motion controllers showed good controllability and good tracking performance, how-

ever there are some differences. The simulation results show that the tracking perfor-

mance for the SMDC and the AC is better than the tracking performance for the PID

and the BC controller. When operating with constant speed, the tracking error for the

SMDC, AC and PID controllers approached zero while the BC has a steady-state error.

The high tracking performance for the SMDC and the AC result in higher control effort

and thereby more frequent reactivation of cylinder chambers. The SMDC reactivates the

cylinders most often.

This simulation study shows that the digital displacement winch drive system can

achieve good tracking performance. The good tracking performance reduces the payload

motion below ± 1 cm for all controllers when the AHC system is activate. This motion

is below the requirement of ± 5 cm. However, a perfect tracking of the reference signal

does not necessarily result in perfect heave compensation. For successful implementation

of the AHC system, it is important to measure or estimate the vessel motion precisely

and in real time. The applied reference trajectory must reflect the real vessel motion. An

error in the reference signal will result in a compensation error.

7.6.2 Robustness

The robustness against external forces for the motion controllers is tested by applying an

external force in Test Case 1. The results show that the SMDC and AC are very robust

against external forces, while the PID controller and the BC are less robust. The SMDC

and the AC have a maximum tracking error below 2 mm when applying the external load

in load case 1. The PID and the BC have a maximum tracking error of 5.5 mm and

3.5 mm respectively.
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7.6.3 Implementation

All controllers require a reference trajectory of the drum position and velocity in addi-

tion to measurements of the drum position and velocity. The BC, SMDC and the AC

also need reference trajectory of the acceleration. Also, the BC and the SMDC require

measurements of the payload’s mass while the AC requires measurements of the drum

acceleration.

The BC requires only two control parameters while the PID controller requires three.

In addition, the BC requires system knowledge due to the estimation of the system param-

eters. On the other hand, the tracking performance of the PID controller is affected by

the mass of the payload, which may increase the complexity of tuning the PID controller.

The AC has three control parameters while the SMDC has four. The control parameter

p0 in the AC is relatively easy to tune by trial and error. However, p0 should not be

chosen too small or too large. A low value may result in a slow convergence of the model

parameters and a large value may result in an oscillatory behavior and slow convergence.

Tuning of the control parameters L and ε in the SMDC is also relatively simple. Several

combinations gives satisfactory results but one should remember that L must be chosen

to satisfy Equation 7.33. A large value of L and a small value of ε result in good tracking

performance but also high control effort with frequent reactivation of cylinder chambers.

L and ε should therefore be chosen based on a compromise between tracking performance

and control effort.

The convergence of the estimated parameters in the AC and also the stability of

the system is depending on the signals in the system, W, which consists of the desired

displacement ratio, Dm. For example, when lowering the load several thousand meters,

the desired displacement ratio will be relatively constant and the estimated parameters,

b̂ and f̂ may not converge to its real values. This may result in an unstable system. If

the AC controller is implemented in a real system, one should include a safety function

that resets the model parameters estimated by the gradient based adaption law, shown

in Equation 7.42, to the parameters estimated for the BC if the deviation becomes too

large.
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Conclusion

The work presented in this thesis focuses on the design of a control system for a digital

displacement winch drive system. The digital displacement winch drive system consists

of a high torque low speed DDM directly connected to the winch drum through a pinion

and gear ring. The DDM is supplied by a high and low pressure source, in a so called

secondary controlled system.

Objective A was to analyze the transient and steady-state response for the full stroke,

partial stroke and sequential partial stroke displacement strategy. During this work, the

partial stroke displacement strategy was further developed into a second version. This new

version was also included in the transient and steady steady-state response analysis. The

results of the analysis showed that the transient response of the full stroke displacement

strategy and partial stroke displacement strategy 1 are highly affected by the operation

speed. If high controllability is important, those two displacement strategies are most

suited for use in high speed motors. The transient response of both the partial stroke

displacement strategy 2 and the sequential partial stroke displacement strategy are not

affected by the shaft speed and provides high controllability at low speeds. The steady-

state response for all displacement strategies is affected by the number of cylinders, the

desired displacement ratio and the shaft speed.

Objective B was to design and build an experimental test setup that can be used

to validate simulation models and experimentally test displacement strategies in a high

torque low speed digital displacement motor. The experimental test setup consists of

a modified radial piston motor. The motor is modified to operate with the digital dis-

placement technology on a single cylinder. All the displacement strategies investigated in

Objective A have been experimentally tested, and the simulation model of the DDM has

been validated.

Objective C was to investigate requirements regarding valve timing accuracy. For

the DDM to operate with high energy efficiency and low pressure and torque peaks, it
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is essential with accurate switching of the on/off valves. A valve that opens too early

or too late will introduce unnecessarily high energy losses and pressure and flow peaks

in the system. The results showed that the required accuracy is stricter for high speed

operation compared to low speed operation. For example, the valves should be activated

within±0.3 ms when operating at 1000 rpm and within ±30 ms when operating at 10 rpm.

One of the reasons why control design of DDMs differs from traditional hydraulic

motors is that the same displacement ratio can be achieved by multiple displacement

strategies. Also, different displacement strategies have different characteristics. Objective

D was, therefore, to study subsea winch operations and design performance requirements

for the winch drive system. The presented work showed that a winch drive system must

handle frequent starts and stops, frequent change in the direction of rotation, full four

quadrant operation and low speed operation. In addition, the winch drive system must

provide good motion and tension control. Based on those requirements and the work

presented in Objective A, a suitable displacement strategy for use in a digital displacement

winch drive system was selected. Both the partial stroke displacement strategy 2 and

the sequential partial stroke displacement strategy can provide high controllability at

low speeds, four quadrant operations and frequently change the direction of rotation.

However, the partial stroke displacement strategy 2 was considered to be the most suited

displacement strategy because the sequential partial stroke displacement strategy is known

to switch the valves most often resulting in the lowest energy efficiency.

A displacement strategy converts the desired motor displacement into valve activation

signals. For the partial stroke displacement strategy 2, one unique valve timing strategy

is needed for each operation quadrant. A control system for switching between operation

quadrants has therefore been developed. The developed switching controller selects the

proper operation quadrant based on the direction of rotation of the DDM and the desired

displacement ratio.

Objective E was to design a full controller for the digital displacement winch drive

system. In all, four motion controllers and a wire tension controller have been designed.

All controllers utilize the partial stroke displacement strategy 2. The motion controllers

are a conventional PID controller, a PD controller with feedback linearization also called

the base controller, a sliding mode disturbance controller and an adaptive controller. The

PID controller and the base controller showed the lowest robustness to external force

disturbance and the poorest controllability performance. The sliding mode disturbance

controller and the adaptive controller showed very good motion tracking performance.

However, the high tracking performance resulted in increased controller effort in the form

of more often reactivation of cylinder chambers, especially for the sliding mode disturbance

compensator. The tension controller is a PI controller with wire tension feedback. The
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simulation results showed good controllability for the tension controller.

The work presented in this thesis shows that the proposed digital displacement winch

drive system is suited for driving offshore winches. The secondary controlled DDM has

shown good controllability, both for motion control and wire tension control. The pro-

posed digital displacement winch drive system includes the benefits from both the con-

ventional open and closed circuit hydraulic systems. Those benefits are the potential of

regenerating braking energy, the possibility of using one hydraulic power unit to supply

multiple actuators in addition to improve the energy efficiency of existing systems.

8.1 Future Work

The work presented in this thesis considers control development. The controllers have

been tested in simulations. The next step should be to modify all the cylinders on a

conventional hydraulic motor and experimentally test the designed controllers. Also, the

energy efficiency of the partial stroke displacement strategy 2 and the sequential partial

stroke displacement strategy should be examined.

The designed controller utilizes one displacement strategy during operation. However,

there might be cases where it is beneficial to utilize different displacement strategies in

different parts of a lift. For example, when hoisting through the water column controll-

ability may be of low importance and energy efficiency may be of high importance. In

that case, it may be beneficial to use the full stroke displacement strategy during the

hoisting phase and another displacement strategy when controllability is of high interest,

like for example, during landing. This is something that should be investigated in the

future in order to show the full potential of the digital displacement winch drive system.

Recently there has been a trend of replacing hydraulic drive systems with electric drive

systems. In the future, it will be interesting to compare an electric winch drive system to

a digital hydraulic winch drive system.
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Abstract – Digital hydraulic piston pumps and motors have shown the

potential of improving efficiency in hydraulic systems. Two independently

controlled fast switching on/off valves are connected to each piston chamber

and allows for optimal valve timing and independent piston control. Each pis-

ton chamber is only pressurized when necessary, resulting in losses that almost

scale with motor and pump displacement. This simulation study investigates

the potential of using digital hydraulic pumps and motors to increase efficiency

in a hydraulic offshore auxiliary winch with a safe working load equal to 20000

kg. One digital hydraulic winch drive system and one conventional hydraulic

winch drive system are simulated hoisting two different loads. The payload

in the first load case is 18000 kg and the payload in the second load case is

4000 kg. The efficiency and control performance of the two different winch

drive systems are then evaluated. The simulation results show that digital

hydraulic winch drive systems have the potential of increasing efficiency of

hydraulic offshore winches.

A.1 INTRODUCTION

Hydraulic winches are widely used for various offshore lifting operations. They are for

example used in cranes for deck to deck lifting operations, loading and unloading of supply

vessels and subsea lifting operations, but they can also be used at the drill floor for small

lifting operations.

The working environment on an offshore drilling unit is harsh and sets high require-

ments for all offshore equipment. The equipment should be light, small in volume and

have a minimum of downtime. For example, every extra pound of weight increases the
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cost of structural material by 1 - 5$, the platform deck area has a value of approximately

600 - 6 000 $/ft2 and the cost of a production shutdown ranges from 37500 $/h for small

Gulf of Mexico platforms to 187500 $/h for large North Sea platforms [1]. Hydraulic

actuation systems have normally been used, but because of environmental issues, more

energy efficient systems are now required. Electric solutions tend to replace hydraulic

solutions in rotational applications. Electrical solutions offer higher efficiency, no risk of

oil leakage, high position accuracy, and few maintenance tasks [2]. The benefits of electric

motors have to be weighed up against the key features of hydraulic systems. Key features

of hydraulic motors and systems are for example high torque density, they can operate in

stall conditions without damage, it is easy and efficient to store energy in accumulators,

they are tolerant of shock loads due to the compressibility of the hydraulic oil, and the

fluid carries away the generated heat to a heat exchanger placed at a convenient place [2].

New research has shown that in addition to the already mentioned benefits of hydraulic

motors, the new digital hydraulic pump and motor technology also has the potential of

designing highly efficient systems.

Digital hydraulic pump and motor technology can for example be applied to hydraulic

hybrid buses and cars [3, 4], tidal current energy converters [5], hydraulic actuated booms

[6, 7, 8], and wind turbines [9]. The piston chambers in a digital hydraulic pump (DHP)

or a digital hydraulic motor (DHM) can be controlled individually to operate in pump,

motor or idle mode. In idle mode, the low-pressure valve is kept open an entire shaft

revolution. Hence, a piston chamber in idle mode is never pressurized and leakage losses

and friction losses are therefore minimized. Displacement of a DHM is controlled by

changing the ratio of pistons running in motor mode and idle mode resulting in losses

that scales more with displacement compared to traditional variable displacement piston

machines and allowing for high efficiency even at partial displacement.

A.2 SIMULATION MODEL

In this paper, two different winch drive systems are simulated, one conventional hydraulic

winch drive system (CHWDS) and one digital hydraulic winch drive system (DHWDS).

Both winch drive systems are driving the same winch drum with two different load cases.

In the first load case, the payload is equal to 18000 kg and lifted 10 m. The velocity is

ramped up to 1 m/s with a ramp time of 2 s. For the second load case, the payload is

equal to 4000 kg and lifted 10 m. The velocity is ramped up to 1.5 m/s with a ramp time

of 3 s. The two load cases are summarized in Tab. A.1.
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Table A.1: Simulation parameters

Load Case 1 Load Case 2

Mass of load 18000 kg 4000 kg

Hoisting distance 10 m 10 m

Max speed 1 m/s 1.5 m/s

Ramp time 2 s 3 s

A.2.1 Modeling of the Winch

Figure A.1 shows all relevant winch elements. The winch has a drum capacity of 3600

m of wire and a safe working load of 20000 kg. In this study the inertia of the winch

and wire wound onto the drum is assumed to be constant because the simulated traveling

distance is small compared to the total wire length. It is also assumed that only the outer

wire layer is used. Hence the winch radius, rwinch, is considered to be constant. Neither

friction in the drum nor elasticity in the wire are included.

MLoad

Winch Drive 

System

TWDS

TWDS

xLoad

rwinch

Figure A.1: Mechanical system

The equation of motion for the winch is shown in Eq. A.1.

θ̈drum =
TWDS −MLoad · g · rwinch

Jeff
(A.1)

where TWDS is the torque from the winch drive system acting on the drum, MLoad

is the mass of the payload, g is acceleration of gravity, rwinch is the radius of the outer

winch layer, and Jeff is the effective mass moment of inertia. The effective mass moment

of inertia is calculated as shown in Eq. A.2.

Jeff = MLoad · r2
winch + Jwinch + JWDS (A.2)

where Jwinch includes the inertia of the drum and the wire wound onto the drum and JWDS

is the inertia of the drive system that is mechanically connected to the winch drum. The
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drive torque, TWDS, for the two different winch drive systems are given in the following

sections.

A.2.2 Modeling of the Conventional Hydraulic Winch Drive

System

The conventional hydraulic winch drive system is a closed circuit system with one vari-

able displacement over center axial piston pump delivering working fluid to two variable

displacement axial piston motors. Figure A.2 illustrates the simulated CHWDS. Line A

is the high-pressure side of the motor and line B is the low-pressure side. In addition

to the main pump, a smaller pump is installed to ensure that the pressure in line A and

line B stays above 25 bar. This external circuit is modeled as a constant pressure source

of 25 bar. The main axial piston pump has a displacement of 500 cc/rev and the two

axial piston motors have a displacement of 250 cc/rev. The pump is driven at a constant

velocity equal to 1800 rpm and can deliver pressure up to 350 bar.

pB

Qm1 Qm2

MLoad

TWDS

TWDS

xLoad

M Gear

pA

Qp

QCHV2

QCHV1

QPRV

Line A

Line B

25 bar

Figure A.2: Conventional hydraulic winch drive system

The torque delivered to the winch drum from the drive system is calculated as shown

in Eq. A.3.

TWDS = 2 · (pA − pB) · Vgm
2 · π

· igear · nhmm · ngear (A.3)

where pA is the pressure in line A, pB is the pressure in line B, Vgm is the common

displacement of the motors, igear is the gear ratio, nhmm is the hydromechanical efficiency

of the motors, and ngear is the efficiency of the gear box. The hydromechanical efficiency

is found by linear interpolation between measured data for a representative axial piston

motor. The pressure in line A and line B is calculated by integrating the pressure gradients

calculated as shown in Eq. A.4 and Eq. A.5 respectively.
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ṗA =
β

VA
· (Qp −QPRV +QCHV 1 −Qm) (A.4)

ṗB =
β

VB
· (Qm +QCHV 2 −Qp) (A.5)

where β is the bulk modulus of the oil, VA and VB are the volume in line A and B

respectively, Qp is the pump flow, Qm is the total motor flow (Qm = Qm1 +Qm2), QPRV

is the flow through the pressure relief valve connected to line A, QCHV 1 and QCHV 2 are

the flows through the two check valves.

The following equations describe the flow through the pump and the motors:

Qp =
θ̇p · Vgp

2 · π
· nvp (A.6)

Qm = 2 · θ̇m · Vgm
2 · π

· 1

nvm
(A.7)

where θ̇p is the speed of the pump, Vgp is the pump displacement, nvp is the volumetric

efficiency of the pump, nvm is the volumetric efficiency of the motors, and θ̇m is the speed

of the motors.

The dynamic response of the swash plate for the axial piston pump and motors is

described by a first order system as shown in Eq. A.8.

V̇g =
Vg − Vgc

τ
(A.8)

where Vg is the current displacement, Vgc is the desired displacement and τ is the time

constant.

A.2.2.1 Control system

The control system for the CHWDS is divided into two different control systems, one

for the motors and one for the pump. The motors have a simple open-loop controller,

and the pump has a feedforward controller and a feedback controller. The desired motor

displacement is calculated based on a measured value of the load, a reference acceleration

of the winch drum and a desired pressure drop across the motor as shown in Eq. A.9.

Vgmc =
(θ̈ref · Jeff + M̃Load · g · rwinch) · 2 · π

∆pm · igear
· 0.5 (A.9)

where θ̈ref is the reference acceleration for the winch drum, M̃Load is the measured value

of the payload and ∆pm is the desired pressure drop across the motors.
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Pump

+ +

Vgpc

PID
+

-

VgpFB

VgpFF

drumθ

refθ errθ

Figure A.3: Pump controller

The pump has a position feed-back controller and a flow feed-forward controller as

shown in Fig. A.3

Assuming that the volumetric efficiency for the pump is equal to one, the feed-forward

pump displacement is calculated by rearranging Eq. A.6 as shown in Eq. A.10.

Qref =
VgpFF · θ̇p

2 · π
⇓

VgpFF =
2 · π ·Qref

θ̇p

=
2 · π

(
θ̇ref ·igear·Vgmc

2·π

)
· 2

θ̇p

=
θ̇ref · igear · Vgmc · 2

θ̇p
(A.10)

where θ̇ref is the reference velocity of the winch drum and θ̇p is the pump speed. The

feed-back control signal is calculated as shown in Eq. A.11.

VgpFB = θerr · kp + θ̇err · kd +

∫
θerr · ki dt (A.11)

where θerr is the position error of the winch drum and kp, kd and ki are the controller gains

for the PID-controller. Finally the desired pump displacement is calculated as shown in

Eq. A.12.

Vgpc = VgpFF + VgpFB (A.12)

A.2.3 Modeling of the Digital Hydraulic Winch Drive System

The digital hydraulic winch drive system consists of a DHP, DHM, and two gas accumu-

lators connected in a closed circuit system, as shown in Fig. A.4. The DHP is driven
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by an electrical motor running at a constant velocity of 1800 rpm. The DHM is directly

connected to the winch drum without a gear box. The DHP and the DHM are two radial

piston units with respectively 9 and 42 cylinders. Both units are controlled by using se-

quential flow diverting strategy, meaning that the entire cylinder displacement has to be

used when selecting pump or motor mode. The on/off valves are only switched when the

piston is close to top dead center (TDC) and bottom dead center (BDC) when the flow

is low. The actuation is timed in conjunction with the piston movement to minimize the

pressure difference when switching the valves. This maximizes the efficiency and mini-

mizes pressure peaks and flow peaks. The two gas accumulators are used to smooth out

the pressure and flow peaks in line A and B.

pA

pB

Qp

B

Qm

MLoad

TWDS

TWDS

xLoad

M

A

DHMDHP

Line B

Line A

Figure A.4: Digital hydraulic winch drive system

A.2.3.1 Modeling of the Digital Hydraulic Pump and Motor

It is assumed that the cylinder configuration is the same for both the DHP and the DHM.

For simplicity, only calculations for one of the pistons in the DHM are shown in this

section, but the same method is used for all of the pistons, both for the DHM and DHP.

The contribution from all the cylinders are summed up in Eq. A.20 to Eq. A.22. The

on/off valves are assumed to be leak free, and the DHP and DHM models do not include

any friction or leakage.

Figure A.5 shows the cylinder configuration for one cylinder. The continuity equation

is used to calculate the pressure gradient in the cylinder as shown in Eq. A.13.

ṗcyl =
β

Vcyl
·
(
QA −QB − V̇cyl

)
(A.13)

where β is the effective bulk modulus of the oil, Vcyl is the cylinder volume, QA and QB
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pA pB

QA QB

= V0m

BDC
x

TDC

em

pcyl

Ap

mθ

Valve A Valve B

Figure A.5: Cylinder configuration of one cylinder with θm = π/4

is the flow through valve A and B, and V̇cyl is the rate of change in cylinder volume. V̇cyl

is positive if the volume is expanding. The cylinder volume is calculated as shown in Eq.

A.14 and the rate of change in cylinder volume is calculated as shown in Eq. A.15.

Vcyl = V0m +
Vdm

2
· (1− cos(θm)) (A.14)

V̇cyl =
Vdm

2
· sin(θm) · θ̇m (A.15)

where V0m is the dead volume in the cylinder and Vdm is the discharge volume of the

cylinder. The volume flow through the on/off valves, QA and QB, are calculated by Eq.

A.16 and Eq. A.17 respectively.

QA =
uA
kf
·
√
pA − pcyl · sign(pA − pcyl) (A.16)

QB =
uB
kf

√
pcyl − pB · sign(pcyl − pB) (A.17)

where kf is the flow coefficient of the valves, and uA and uB are the opening ratios of the

valves ranging from 0 to 1, where 0 is fully closed and 1 is fully open. Valve A and B

have the same flow coefficient and the same dynamic response. The dynamic response is

described by the second order system shown in Eq. A.18.

ü = ucon · ω2 − u · ω2 − 2 · ζ · ω · u̇ (A.18)

where ucon is the control signal, ζ is the damping ratio and ω is the natural frequency.

The control signal is either 0 or 1. The torque contribution from one cylinder is calculated

164



Paper A. The Potential of a Digital Hydraulic Winch Drive System

as shown in Eq. A.19

Tcyl = pcyl · Ap · em · sin(θm) (A.19)

Finally, the total motor torque and the total flow in and out of the DHM is calculated

as the sum of the contribution from all pistons, as shown below in Eq. A.20, A.21 and

A.22 respectively.

TWDS =
42∑
i=1

Tcyl,i (A.20)

Qinm =
42∑
i=1

QA,i (A.21)

Qoutm =
42∑
i=1

QB,i (A.22)

A.2.3.2 Valve Parameters

The fast switching on/off valve is by far the most critical element in digital hydraulic

machines. Some important features are; high durability, low cost, low power consump-

tion, zero or low leakage, and compact design [10]. Simulations and experimental results

presented in [11] show that valve throttling losses are one of the major energy dissipa-

tive sources for hydraulic motors and that valve timing has a significant impact on valve

throttling losses. The valves must, therefore, have high accuracy, high flow rate and low

switching time. In [12], Daniel B. Roemer et al. developed an expression for the efficiency

of a DHM as a function of a normalized valve switching time, ts, and a normalized valve

flow coefficient, kf . The normalized valve parameters were defined as shown in Eq. A.23

and A.24.

ts =
ts
Trev

with Trev =
2 · π
θ̇max

(A.23)

kf =
kf√

∆p/Qmean

with Qmean =
Vd

π/θ̇max
(A.24)

Figure A.6 shows the motor efficiency as a function of the normalized switching time

and the normalized flow coefficient.

Using the results from Fig. A.6 and selecting the normalized flow coefficient and the

normalized switching time to be 4 %, the target efficiency at 20 % displacement is 97 %.

By rearranging Eq. A.23 and A.24 the valve switching time and the valve flow coefficient
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Figure A.6: Motor efficiency as a function of normalized valve switching time and normalized

valve flow coefficient [13]

is calculated as shown below in Eq. A.25 and A.26 respectively.

ts =
ts
Trev

with Trev =
2 · π
θ̇max

⇓

ts = ts · Trev

= ts ·
2 · π
θ̇max

(A.25)

kf =
kf√

∆p/Qmean

with Qmean =
Vd

π/θ̇max

⇓

kf = kf ·
√

∆p/Qmean

= kf ·
√

∆p · π
Vd · θ̇max

(A.26)

The calculated flow coefficient and the switching time for the on/off valves for both the

DHP and DHM are listed in Tab. A.2.

Table A.2: Valve parameters

kf ts

DHM 251560
√

∆p
m3/s

240 ms

DHP 53666
√

∆p
m3/s

1.3 ms

A.2.3.3 Pressure dynamics in line A and line B

For simplicity, only the calculation for the pressure gradient in line A is shown, but the

pressure gradient in line B is calculated in the same manner. The pressure gradient in
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line A is calculated as shown in Eq. A.27

ṗA =
β

VA
· (Qoutp −Qinm − V̇accA) (A.27)

where VA is the volume in line A and accumulator A, Qoutp is the flow out of the pump,

Qinm is the flow into the motor and V̇accA is the rate of change of accumulator volume.

V̇accA is positive if the volume is expanding and is calculated as shown below in Eq. A.28.

V̇accA = ṗA ·
VaccAg

naccA · pA
(A.28)

where VaccAg is the gas volume in accumulator A and naccA is the polytropic exponent for

accumulator A. Eq. A.28 is substituted into Eq. A.27 and rearranged as shown in Eq.

A.29.

ṗA =
β

VA
· (Qoutp −Qinm)

1 +
β·VaccAg

VA·naccA·pA

(A.29)

A.2.3.4 Control System

The control system for the DHWDS is divided into two, one for the pump and one for the

motor. In general, the motor has an open loop torque controller which calculates motor

displacement based on load measurements and a desired pressure drop across the motor.

The pump has a displacement controller where the displacement is calculated based on

the winch drum reference position and the known motor displacement. The pump also

has a position feedback controller.

Motor Controller

To ensure a relatively smooth motor output torque, the 42 cylinder piston motor is di-

vided into 14 banks, each with 3 pistons spaced equally around the shaft. The number

of active banks, also called nstep, is calculated based on measurements of the payload,

M̃Load, and a desired pressure drop across the motor, ∆pref , as shown in Eq. A.30.

nstep ≈
M̃Load · g · rwinch

∆pref · Tstep
, round of to nearest integer (A.30)

nstep = 1 corresponds to one active bank, nstep = 2 corresponds to two active banks and

so on. ∆pref is the desired pressure drop across the motor and Tstep is the torque delivered

by one active bank with a pressure drop across the motor equal to 1 Pa.

Pump Controller
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The pump controller is based on the displacement controller first introduced in [14]. The

DHM is directly connected to the drum, and the position reference of the drum is con-

verted into a volume reference, Vref , according to the motor displacement. Then the

volume that already has been discharged from the pump, Vest, is calculated. The con-

troller also has a position feedback controller, Verr, and compensates for the change of

volume in accumulator A. Figure A.7 illustrates the DHP controller and the pump mode

decision, D, is calculated as shown in Eq. A.31.

Calculate Vref

+
-

PID

Calculate Vest

Vref

Vest

-

+
+

D > Vdp/2 then pumping

D    Vdp/2 then idling
Pump

D

Verrrefθ

refθ

drumθ

pAref Calculate VaccA

+

VaccA

errθ

nstep

Qoutp

Figure A.7: Pump controller

D = Vref + VaccA + Verr − Vest, →

{
pumping if D > Vdp/2

idling if D ≤ Vdp/2
(A.31)

where D > Vdp/2 means that the estimated volume discharged from the pump is a half

piston discharge volume smaller than the desired volume and that the next cylinder will

operate in pump mode. D ≤ Vdp/2 means that the estimated volume discharged from the

pump is greater then the needed volume and that the next cylinder will run in idle mode.

Vref is calculated by integrating Eq. A.32.

V̇ref =
Vdm · nstep · 3 · θ̇ref

2 · π
(A.32)

where θ̇ref is the speed reference of the winch drum. The estimated discharge volume,

Vest, is calculated by the following equation.

Vest = npump · Vdp (A.33)

where npump is the total number of cylinders that already have been pumping and Vdp

is the discharge volume of one of the pistons in the pump. The compression volume is

not taken into account in Eq. A.33, but can be included. The small error introduced by

excluding the compression volume will in this control system be compensated for in the
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PID-controller. VaccA is calculated in Eq. A.34.

VaccA =
(pAref − pA0) · VaccAg0

naccA · pA0

(A.34)

where pA0 is the initial pressure in line A, VgA0 is the gas volume in accumulator A at

the initial pressure pA0 and pAref is the reference pressure in line A. pAref is calculated as

shown below in Eq. A.35.

pAref =
θ̈ref · Jeff + M̃Load · g · rwinch

Tstep · nstep
+ pB0 (A.35)

where pB0 is the initial pressure in line B. Verr is the output signal from the PID-controller

and is calculated as shown in Eq. A.36

Verr = θerr · kp + θ̇err · kd +

∫
θerr · ki dt (A.36)

where θerr is the difference of the reference drum position and the actual drum position

and kp, kd and ki are the control parameters in the PID-controller.

A.3 SIMULATION RESULTS

In this section the simulation results are presented. The same control parameters are used

in the conventional winch drive controller and the digital hydraulic winch drive controller

for both load case 1 and load case 2. The control parameters for the CHWDS are as

follows: ∆pref = 225 bar, pB0 = 25 bar, kp = 7 · 10−4 m3, kd = 2 · 10−4 m3s and ki =

5 · 10−3 m3/s. The control parameters for the DHWDS are as follows: ∆pref = 225 bar,

pB0 = 25 bar, kp = 0.1 m3, kd = 0.025 m3s, and ki = 0.2 m3/s.

A.3.1 Load Case 1

In load case 1 the payload is equal to 18000 kg and the speed is ramped up to 1 m/s with a

ramp time of 2 s. Figure A.8 and A.9 show the simulation results of the CHWDS, left hand

side, and the DHWDS, right hand side. The sub-plots from top to bottom in Fig. A.8

show the simulated payload position together with the reference position, the load speed

together with the reference speed and finally the position error. The simulated payload

position and speed follow their references well, both for the CWDS and the DHWDS.

Maximum position error occurs when accelerating the load and is 9 mm for the CHWDS

and 5.4 mm for the DHWDS. The position error for the CHWDS converges toward zero

when the winch runs with constant speed and the error for the DHWDS oscillates around

zero with a small amplitude.
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Figure A.8: Simulation results position and velocity tracking in load case 1

The top sub-plots in Fig. A.9 show the input power, output power and the power

losses of the hydraulic system. On the right hand side, a moving average filter is also

included. The moving average filter takes the average of the input power during a period

of 0.2 s. The bottom sub-plots show the consumed energy together with the output energy

and energy losses.

When driving with constant speed of 1 m/s and a payload equal to 18000 kg, the input

power to the CHWDS is approximately 234 kW and the output power is approximately

176 kW , resulting in loss equal to 58 kW . The input power to the DHWDS is heavily

oscillating because of the nature of the DHP. The DHP enables and disables pistons on a

Figure A.9: Simulation results for power and energy consumption in load case 1
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stroke by stroke basis which results in input power oscillations. The same peaks occur in

the pump flow, but the accumulators connected to line A and B smooth out the peaks.

The mean input power to the DHWDS when operating at constant speed is 181 kW and

the mean loss is only 5 kW .

In the bottom sub-plots in Fig. A.9, it is easy to see that the energy losses are much

greater for the CHWDS than for the DHWDS. The total energy consumed by the CHWDS

is 2365 kJ and the loss is 599 kJ which results in a total system efficiency equal to 75 %.

The total system efficiency for the DHWDS is 97 % where the total consumed energy is

1813 kJ and the total energy loss is only 47 kJ .

A.3.2 Load Case 2

In load case 2 the payload is equal to 4000 kg and the speed is ramped up to 1.5 m/s with

a ramp time of 3 s. Figure A.10 and A.11 show the simulation results of the CHWDS,

left hand side, and the DHWDS, right hand side.

Figure A.10: Simulation results position and velocity tracking in load case 2

Figure A.10 shows that both drive systems follow their position and speed references

well. The position error for the CHWDS tends to oscillate when accelerating or deceler-

ating the load but stabilizes around zero when running at constant speed. The maximum

position error for the CHWDS is -8.4 mm and only -1.6 mm for the DHWDS. The small

oscillations shown in the position error for the DHWDS in load case 1 can also be seen in

load case 2.
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Figure A.11: Simulation results for power and energy consumption in load case 2

Figure A.11 shows that the input power to the CHWDS is approximately 112 kW

and the output power is 59 kW when driving with a constant speed of 1.5 m/s. For the

DHWDS the input power is heavily oscillating, but the mean value is approximately 61

kW . The total consumed energy for the simulated trajectory is 769 kJ for the CHWDS

and only 417 kJ for the DHWDS. The losses are 377 kJ for the CHWDS and only 25 kJ

for the DHWDS. This gives a total efficiency for the entire simulated trajectory equal to

51 % for the CHWDS and 94 % for the DHWDS.

A.3.3 Discussion

In this section, the presented results are summarized and further discussed. Some of the

most important results are summarized in Tab. A.3 The total system efficiency for the

Table A.3: Summarized results

Load case 1 Load case 2

CHWDS DHWDS CHWDS DHWDS

Input power at constant speed 234 kW 181 kW 112 kW 61 kW

Power losses at constant speed 58 kW 5 kW 50 kW 1 kW

Total energy consumed 2365 kJ 1813 kJ 769 kJ 417 kJ

Total energy losses 599 kJ 47 kJ 377 kJ 25 kJ

Total efficiency 75 % 97 % 51 % 94 %

Max position error 9 mm 5.4 mm -8.4 mm -1.6 mm

CHWDS is 75 % in load case 1 and 51 % in load case 2 and the maximum position error

is 9 mm and -8.4 mm respectively. The CHWDS has higher efficiency when operating

with higher loads. The same tendency can be observed for the DHWDS, but the change

in efficiency is not that big. When reducing the load from 18000 kg down to 4000 kg,
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the efficiency of the CHWDS is reduced by 32 % and for the DHWDS, the efficiency

is only reduced by 3 %. When operating with constant speed, the position error for

the CHWDS tends to converge towards zero, while the position error for the DHWDS

tends to oscillate with a small amplitude. These small oscillations are affected by control

parameters, accumulator properties and the number of pistons in the DHP and the DHM.

The DHWDS consumes approximately 550 kJ less than the CHWDS when operating

load case 1. If the same load were supposed to be hoisted 3000 m, the DHWDS would use

165 MJ less energy than the CHWDS. For one short lifting operation, the saved energy

is not that much, but for a winch that is frequently used over time and with high lifting

operations, the savings can be significant.

This study shows that there is a significant improvement in efficiency when using

the DHWDS. Neither leakage and friction losses in the DHP and the DHM nor power

consumption of the on/off valves are included in this study. The real efficiency will

therefore most likely be lower than for the simulated system. Because the increase in

efficiency is so high, especially when operating small loads, and knowing that previous

studies show that digital hydraulic units have high efficiency for a wide range of operations

[15], it is realistic to expect that the efficiency for the DHWDS will remain significantly

higher than CHWDS even when all losses are included.

A.4 CONCLUSION

This simulation study compares the efficiency and controllability of a CHWDS and a

DHWDS. Each winch drive system is simulated hoisting two different loads, one large

load and one small load. The simulation results show that the system efficiency for

the DHWDS was significantly higher than for the CHWDS, especially when operating

small loads. This study shows that DHWDS has the potential of increasing efficiency in

hydraulic winches while the controllability remains high.
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Table A.4: Simulation parameters

Symbol Value Description

Winch

rdrum 1.22 m Drum radius

Jwinch 22100 kgm2 Inertia of winch drum and wire

Lw 3600 m Drum capacity

SWL 20000 kg Safe working load

General

VA0 1 l Dead volume in line A

VB0 1 l Dead volume in line B

β 1.2 GPa Bulk modulus

g 9.81 m/s2 Acceleration of gravity

Table A.5: Simulation parameters conventional hydraulic winch drive system

Symbol Value Description

Motor

Vgm 250 cc/rev Max motor displacement

Jm 0.061 kg/m2 Mass moment of inertia motor

τm 0.01 s Time constant of the Swash plate response

Motor controller

∆pm 225 bar Desired differential pressure across motor

Pump

Vgp 500 cc/rev Max pump displacement

τm 0.01 s Time constant of the swash plate response

n 1800 rpm Pump speed

Pump controller

kp 7 · 10−4 Controller gain

kd 2 · 10−4 Controller gain

ki 5 · 10−3 Controller gain

Gearbox

igear 156 Gear ratio

ngear 95 % Efficiency gearbox
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Table A.6: Simulation parameters digital hydraulic winch drive system

Symbol Value Description

Digital Hydraulic Motor

Ncyl 42 Number of cylinders

Vdm 1600 cc/rev Discharge volume per cylinder

V0 1.6 l Dead volume in cylinder

em 46.6 mm Eccentricity of spherical motor shaft

Jm 10.2389 kg/m2 Inertia of digital hydraulic motor

Tstep 75.9286 · 10−5 Nm Torque from one active bank with 1 Pa pressure drop

On/off Valve Motor

kfm 251560
√
Pa

m3/s
Flow coefficient

ts 240 ms Valve transition time

ζ 0.8 Damping ratio valve dynamic

ω 17 rad/s Natural frequency valve dynamic

Motor Controller

∆pm 225 bar and 0 bar Desired differential pressure across motor

Digital Hydraulic Pump

Ncyl 9 Number of cylinders

Vdp 55.5 cc/rev Discharge volume per cylinder

V0p 0.0555 l Dead volume in cylinder

ep 46.6 mm Eccentricity of spherical motor shaft

n 1800 rpm Pump speed

On/off Valve Pump

kfp 53666
√
Pa

m3/s
Flow coefficient

ts 1.3 ms Valve transition time

ζ 0.8 Damping ratio valve dynamic

ω 3200 rad/s Natural frequency valve dynamic

Pump Controller

kp 0.1 Controller gain

kd 0.025 Controller gain

ki 0.2 Controller gain

Accumulator A

pmaxA 350 bar Max pressure in accumulator A

pminA 75 bar Min pressure in accumulator A

p0A 67.5 bar Preload pressure in accumulator A

VaccA 4.4 l Volume accumulator A

naccA 1.4 Polytropic exponent

Accumulator B

pmaxB 150 bar Max pressure in accumulator B

pminB 10 bar Min pressure in accumulator B

p0B 9 bar Preload pressure in accumulator B

VaccB 3.9 l Volume accumulator B

naccB 1.4 Polytropic exponent
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Abstract – The offshore oil and gas industry has traditionally used hy-

draulically driven applications. Hydraulic systems are known to suffer from

relatively low efficiency. Due to environmental issues, more efficient systems

are now required. Today, the offshore oil and gas industry is experiencing a

shift in driveline systems; high efficient electric motors tend to replace low

efficient hydraulic systems. In addition to the electric motors, a new alterna-

tive to the conventional hydraulic system is digital hydraulic machines. This

paper investigates the feasibility of using a digital hydraulic winch drive system

and presents a new digital hydraulic winch drive control system. The simu-

lated system is based on a 20000 kg hydraulic offshore auxiliary winch with a

drum capacity of 3600 m of wire. The digital hydraulic winch drive system is

a closed-circuit system with one high-speed digital pump and one low-speed

high-torque digital motor. One of the biggest challenges in digital hydraulic

pump/motor technology is the fast switching on/off valves. The valves must

have high durability, low power consumption, zero leakage and low response

time. The on/off valves in this study are modeled with an ideal behavior.

The simulation results show that the payload follows the reference trajectory

when using a digital hydraulic winch drive system for a wide range of loads

and speeds.

B.1 INTRODUCTION

Digital hydraulic pumps and motors differ from traditional variable displacement ma-

chines (typically piston type machines) in the way they achieve variable displacement.

Traditionally variable displacement machines change displacement by changing the piston
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stroke. Hence, every cylinder is pressurized and depressurized during one shaft revolution.

Leakage losses, friction losses and compressibility losses are therefore almost constant in-

dependent of displacement which results in poor efficiency at partial displacement. In

digital hydraulic machines, two fast switching on/off valves are connected to every single

cylinder, one between the high-pressure manifold and the cylinder, and the other one be-

tween the cylinder and the low-pressure manifold. By controlling the on/off valves, every

cylinder can be individually controlled. One cylinder can be active (operate in motor

mode or pump mode) or be idling. In idle mode, the low-pressure valve is kept open

during the entire shaft revolution. The displacement of the pump or motor is changed

by changing the ratio of active cylinders and idling cylinders. During idling, the cylinder

pressure is kept low resulting in a minimum of losses and high component efficiency even

at partial displacement.

Digital hydraulic machines have earlier been proposed to be used in hydrostatic trans-

missions for large wind turbines. The company Artemis Intelligent Power (Artemis IP) is

the leading pioneer in digital displacement technology and develops systems with digital

displacement technology for a wide range of applications. In 2010 Mitsubishi Heavy In-

dustries started developing a 7 MW wind turbine with a hydrostatic transmission using

the digital displacement technology from Artemis IP. This digital hydraulic transmission

consists of a 7 MW digital pump and two 3.5 MW digital motors driving two generators

[1]. The total efficiency of the transmission is approximately 94%, 98% for the digital

pump and 96% for the digital motors [2]. Artemis IP has with the hydrostatic transmis-

sion shown that digital hydraulic machines have the potential of converting slow rotational

movement with high torque into high and steady rotational speed appropriate for gener-

ating electricity. However, is it possible to use digital hydraulic machines to transform

high constant speed with low torque into variable high torque and low-speed movement?

The offshore oil and gas industry has several high torque low-speed applications, for

example, mud pumps, top drives, drawworks, and winches. In the offshore oil and gas

industry, winches are used in big cranes for heavy lifting operations but can also be used

for smaller lifting operations on the drill floor and at the moon pool. One drilling unit

can have several deck cranes for deck-to-deck lifting as well as loading and unloading of

supply vessels and subsea lifting operations. Deck cranes come in different types and

size, and at the moment the biggest cranes can have a safe working load up to 800

tons. Cranes on floating drilling units are often equipped with active heave compensation

systems to compensate for the vertical motion caused by the waves when landing loads at

the seabed. The hydraulic system on huge winches is often a closed circuit system with a

variable displacement pump providing fluid to one or several variable displacement high-

speed motors. A gearbox is connected between the motors and the winch drum. This
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system suffers from poor efficiency, especially when handling low loads. The present work

investigates the feasibility of using digital hydraulic machines in a closed circuit system

where the digital motor is directly connected to the drum.

B.2 SIMULATION MODEL

The simulated system is based on a 20000 kg hydraulic offshore auxiliary winch with a

capacity of 3600 m of wire. The digital hydraulic winch drive system consists of a digital

hydraulic pump (DHP), a digital hydraulic motor (DHM), and two gas accumulators

connected in a closed circuit system, as shown in Figure B.1. The DHP is driven by an

electrical motor running at a constant speed of 1800 rpm. The DHM is directly connected

to the winch drum without any gear box. The two gas accumulators are used to smooth

out pressure and flow peaks in line A and B.

MLoadxLoad

M

A

DHMDHP

B

Line A

Line B

Figure B.1: Simulated winch system

B.2.1 Modeling of the Mechanical System

The mechanical system consists of the load, wire and the drum. All relevant winch

parameters are shown in Figure B.2.

Assumptions made for the mechanical system:

• Winch has constant inertia. The winch inertia includes the inertia of the drum and

the inertia of 3600 m of wire wound onto the drum.

• Radius of the winch, rwinch, is constant

• No friction
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MLoad

Digital Hydraulic 

Winch Drive System

TDS

xLoad

rwinch

TDS

Figure B.2: Mechanical system

• No elasticity in wire

It is assumed that the winch has a constant inertia because no simulation hoists or

lowers the payload more than 10 m, which is very small compared to the total wire length.

The radius is also assumed to be constant because only the outer wire layer is used. The

equation of motion for the winch drum is shown in Eq. B.1.

θ̈drum =
TDS −MLoad · g · rwinch

Jeff
(B.1)

where TDS is the torque from the drive system acting on the drum, MLoad is the mass of

the payload, g is the acceleration of gravity, rwinch is the radius of the outer winch layer,

and Jeff is the effective mass moment of inertia. The effective mass moment of inertia

includes the inertia of the payload, wire, drum and the DHM and is calculated as shown

below in Eq. B.2.

Jeff = MLoad · r2
winch + Jwinch + JDS (B.2)

where Jwinch includes the inertia of the drum and the wire wound on the drum and JDS

is the inertia of the DHM. The drive torque, TDS, is given in the following section.

B.2.2 Modeling of the Digital Hydraulic Winch Drive System

The digital hydraulic winch drive system is a closed circuit system, see Figure B.3. The

DHP and the DHM are two radial piston units with respectively 9 and 42 cylinders. Each

one of the lines A and B are connected to an accumulator. The accumulator purpose is

to smooth out flow and pressure peaks in the closed circuit system.
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Figure B.3: Digital hydraulic winch drive system

B.2.2.1 Modeling of the Digital Hydraulic Pump and Motor

It is assumed that the cylinder configuration is the same for both the DHP and the DHM.

For simplicity, only calculations for one of the pistons in the DHM are shown in this

section, but the same method is used for all of the pistons, both for the DHM and the

DHP. The on/off valves are assumed to be leak free and the DHP and DHM models do

not include any friction or leakage.

Figure B.4 shows the cylinder configuration of one cylinder, note that a more complex

cylinder configuration may also be used. The continuity equation is used to calculate the

pressure gradient in the cylinder as shown in Eq. B.3.

ṗcyl =
β

Vcyl
·
(
QA −QB − V̇cyl

)
(B.3)

where β is the effective bulk modulus, Vcyl is the cylinder volume, QA and QB are the

flows through valve A and B, and V̇cyl is the rate of change in cylinder volume and is

positive if the volume is expanding. The cylinder volume is calculated as shown in Eq.

B.4 and the rate of change in cylinder volume is calculated as shown in Eq. B.5.

Vcyl = V0m +
Vdm

2
· (1− cos(θm)) (B.4)

V̇cyl =
Vdm

2
· sin(θm) · θ̇m (B.5)

where V0m is the dead volume in the cylinder and Vdm is the piston discharge volume.

The flow through the on/off valves, QA and QB, are calculate by Eq. B.6 and Eq. B.7
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pA pB

QA QB

= V0m

BDC
x

TDC
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pcyl
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mθ

Valve A Valve B

Figure B.4: Cylinder configuration of one cylinder with θm = π/4

respectively.

QA =
uA
kf
·
√
pA − pcyl · sign(pA − pcyl) (B.6)

QB =
uB
kf
·
√
pcyl − pB · sign(pcyl − pB) (B.7)

where kf is the flow coefficient of the valves, and uA and uB are the opening ratios of the

valves ranging from 0 to 1, where 0 is fully closed and 1 is fully open. Valve A and B

have the same flow coefficient and the same dynamic response. The dynamic response is

described by the second order system shown in Eq. B.8.

ü = ucon · ω2 − u · ω2 − 2 · ζ · ω · u̇ (B.8)

where ucon is the control signal, ζ is the damping ratio and ω is the natural frequency.

The control signal is either 0 or 1. The torque contribution from one cylinder is calculated

as shown in Equation B.9

Tcyl = pcyl · Ap · em · sin(θm) (B.9)

Finally, the total motor torque and the flow in and out of the DHM are calculated as

the sum of the contribution from all pistons, as shown below in Eq. B.10, B.11 and B.12
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respectively.

TDS =
42∑
i=1

Tcyl,i (B.10)

Qinm =
42∑
i=1

QA,i (B.11)

Qoutm =
42∑
i=1

QB,i (B.12)

B.2.2.2 Valve Control Strategy in Motor Mode

The timing of the valve actuation is important to achieve high efficiency and low pressure

and flow peaks. The activation angles when operating in motor mode are shown in the

simplified control sequence illustration in Fig. B.5. θAo and θAc are respectively the

opening and closing angles for valve A, θBo and θBc are respectively the opening and

closing angles for valve B and θmcm is the mode choice angel for the motor and is the

angle where it is decided if the motor shall run in motor or idle mode.

BDC

TDC

Pressure

Valve A
Closed

Open

Closed

Open

Line B

Line A 

Piston 

position

Decompression Compression

0

Motor mode

0 π 2π

Valve B

Aoθ Acθ
Boθ

Bcθ

mcmθ

mθ

2θ

cθ

cθ

1θ

Aoθ

Figure B.5: Control sequence motor mode

The opening angle and closing angle for valve A and B are calculated as shown in Eq.

B.13..B.16.

θAo = 0 (B.13)

θAc = π − θ1 − θc (B.14)

θBo = π (B.15)

θBc = 2 · π − θ2 − θc (B.16)
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where θ1 is the angle the motor have to rotate to decompress the cylinder fluid from

high-pressure level down to low-pressure level when the piston is close to and moving

towards BDC. θ2 is the angle the motor have to rotate to compress the cylinder fluid

from low-pressure level up to high-pressure level when the piston is close to and moving

towards TDC and θc is the angle the motor rotates while closing or opening the valve.

The closing angle, θc, is given by Eq. B.17

θc = θ̇m · ts (B.17)

where θ̇m is the motor speed and ts is the valve traveling time.

The change in cylinder volume to compress or decompress the cylinder fluid is calcu-

lated based on the continuity equation shown in Eq. B.3.

∆p =
β

Vcyl
·∆V

⇓

∆V =
Vcyl ·∆p

β
(B.18)

When calculating θ1, the piston is close to BDC and the cylinder volume, Vcyl is assumed

to be Vcyl1 = V0 + Vdm, and when calculating θ2 the piston is close to TDC and the

cylinder volume is assumed to be Vcyl2 = V0. The change in cylinder volume to compress

and decompress the cylinder fluid is calculated as:

∆V1 =
Vcyl1 · (pA − pB)

β
(B.19)

∆V2 =
Vcyl2 · (pA − pB)

β
(B.20)

Knowing the needed change in volume, θ1 and θ2 are calculated as shown below.

θ1 = cos−1

(
1− ∆V1 · 2

Vdm

)
(B.21)

θ2 = cos−1

(
1− ∆V2 · 2

Vdm

)
(B.22)

B.2.2.3 Valve Control Strategy in Pump Mode

The opening and closing angles for valve A and B in pump mode and the mode choice

angle for the pump, θmcp, are illustrated in Fig. B.6. The opening and closing angles for

the valves are calculated as shown in Eq. B.23..B.26.

θAo = π + θ1 (B.23)

θAc = 2 · π − θc (B.24)

θBo = θ2 (B.25)

θBc = π − θc (B.26)
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where θc, θ1 and θ2 are calculated as shown in Eq. B.17, B.21 and B.22 respectively.
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Figure B.6: Control sequence pump mode

B.2.2.4 Pressure dynamics in line A and line B

For simplicity, only the calculation for the pressure dynamics in line A is shown, but the

pressure dynamics in line B is calculated in the same manner. The pressure gradient in

line A is calculated as shown in Eq. B.27

ṗA =
β

VA
· (Qoutp −Qinm − V̇accA) (B.27)

where VA is the volume in line A and accumulator A, Qoutp is the flow out of the pump,

Qinm is the flow into the motor and V̇accA is the rate of changing of accumulator volume.

V̇accA is positive if the volume is expanding and is calculated as shown below in Eq. B.28

V̇accA = ṗA ·
VaccAg

naccA · pA
(B.28)

where VaccAg is the gas volume in accumulator A and naccA is the polytropic exponent for

accumulator A. Eq. B.28 is substituted into Eq. B.27 and rearranged as shown in Eq.

B.29.

ṗA =
β

VA
· (Qoutp −Qinm)

1 +
β·VaccAg

VA·naccA·pA

(B.29)

B.3 WINCH CONTROL SYSTEM

In conventional swash plate units, the displacement is controlled by changing the angle of

the swash plate. In digital hydraulic units, each piston has to be controlled individually
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resulting in an untraditional and complex control system. Section B.2.2.2 and B.2.2.3

describes the actuation sequence for the on/off valves when the piston runs in motor and

pump mode respectively. This section describes how to decide which mode the pistons

shall run in. Recall that θmcm shown in Fig. B.5 describes the angle where the decision

for motor mode is taken, and that θmcp shown in Fig. B.6 describes the angle where the

decision for pump mode is taken.

The control system for the winch is divided in two, one for the pump and one for

the motor. In general, the motor has an open loop torque controller which calculates the

displacement based on load measurements and a desired pressure drop across the motor.

The pump has a displacement controller where the displacement is calculated based on

the winch drum reference position and the known motor displacement. The pump also

has a position feedback controller.

B.3.1 Motor Controller

The DHM is a radial piston motor with 42 cylinders. To ensure relatively smooth output

torque, the motor is divided into 14 banks with three pistons in each bank that are evenly

distributed around the shaft. Figure B.7 illustrates the motor controller. Based on a

desired pressure drop across the motor, ∆pref , and measurements of the load, M̃Load.

The number of active banks, also called nstep, is calculated a shown in Eq. B.30.

Motor
nstep

ʃ ʃ Calculate nstep pref

mθmθ


mθ
LoadM

~

Figure B.7: Motor controller

nstep ≈
M̃Load · g · rwinch

∆pref · Tstep
, round of to nearest integer (B.30)

where nstep = 1 corresponds to 1 active bank, nstep = 2 corresponds to 2 active banks and

so on. Tstep is the torque one bank can provide with a pressure drop across the motor

equal to 1 Pa.

B.3.2 Pump Controller

The controller for the DHP is based on the displacement controller first introduced in [3].

This controller is mainly used in digital hydraulic power management systems, but can

also be used in DHPs. The controller calculates a desired volume, Vdes, which the DHP
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shall deliver. If the desired volume is more than a half piston displacement higher than

the volume the DHP already have delivered, Vest, the next piston will run in pump mode.

If the difference is less than a half piston displacement, the next piston will run in idle

mode. Figure B.8 shows an example of the control strategy.

Figure B.8: Example control strategy

In the control system used in this study, the desired volume consists of three different

parts, Vref , VaccA and Verr. Figure B.9 illustrate the DHP controller where the mode

choice, D, is calculated by Eq. B.31.

Calculate Vref

+
-

PID
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Vref

Vest
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+
+

D > Vdp/2 then pumping

D    Vdp/2 then idling
Pump

D

Verrrefθ

refθ

drumθ

pAref Calculate VaccA

+

VaccA

errθ

nstep

Qoutp

Figure B.9: Pump controller

D = Vref + VaccA + Verr − Vest, →

{
pumping if D > Vdp/2

idling if D ≤ Vdp/2
(B.31)

where Vref is the estimated volume that is needed to drive the DHM according to the

winch drum reference position and is calculated by integrating Eq. B.32

V̇ref =
Vdm · nstep · 3 · θ̇ref

2 · π
(B.32)

where θ̇ref is the velocity reference of the winch drum.

The DHM is running with constant displacement. In order to accelerate or decelerate

the payload, the pressure in line A has to be increased or decreased. When changing the
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pressure in line A, the fluid volume of accumulator A will also change. The estimated

change of fluid volume in accumulator A, VaccA, is also included in the controller. VaccA is

calculated as shown in Eq. B.33.

VaccA =
(pAref − pA0) · VaccAg0

naccA · pA0

(B.33)

where pA0 is the initial pressure in line A, VaccAg0 is the gas volume in accumulator A at

the initial pressure pA0, and pAref is the reference pressure in line A. pAref is calculated

as shown in Eq. B.34

pAref =
θ̈ref · Jeff + M̃Load · g · rwinch

Tstep · nstep
+ pB0 (B.34)

where θ̈ref is the acceleration reference for the winch drum and pB0 is the initial pressure

in line B. The output, Verr, is calculated as shown in Eq. B.35.

Verr = θerr · kp + θ̇err · kd +

∫
θerr · ki dt (B.35)

where θerr is the difference between the reference winch drum position and the actual

position and kp, kd and ki are the PID-controller gains.

Finally, the estimated discharge volume, Vest, is calculated by the following equation.

Vest = npump · Vdp (B.36)

where npump is the total number of pistons that already have been pumping. The com-

pression volume is not taken into account in Eq. B.36 but can be included. In this

control system, the small error introduced by excluding the compression volume will be

compensated for in the PID-controller.

B.4 Simulation results

This section presents the simulation results. In all, six different cases are simulated.

For a winch, it is obviously important to be able to hoist and lower a payload. These

properties are shown in the first two sections. Because of the nature of DHPs and DHMs,

the output flow or output torque can be pulsating, especially when running with very

low displacements. Therefore the third section presents results where a light payload is

hoisted with a very low velocity. Experience from the industry shows that it is hard to

control very light payloads. The fourth section presents, therefore, simulation results of

hoisting an empty hook. In the fifth section, an error in measurements of the payload

is introduced to investigate the robustness of the controller. Normally, the same motor

displacement can be used during short lifting operations, but for longer lifting operations
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it can be appropriate to change displacement due to changes in the load acting on the

winch drum. The load acting on the winch drum can for example change when lifting

a payload into or out of the water. In the last section, the simulation results show the

effect of changing motor displacement while hoisting a constant load. In all cases, the

feedback controller gains are the same and equal to kp = 0.1 m3, kd = 0.025 m3s and

ki = 0.2 m3/s.

B.4.1 Hoisting

This section presents the results of hoisting a payload equal to 18000 kg a distance of

10 m. The payload velocity is ramped up to 1 m/s with a ramp time of 2 s. Figure B.10

shows the simulation results. The initial pressure in line B is 25 bar, and the desired

pressure drop across the motor is 225 bar. The calculated motor step is nstep = 13.

Figure B.10: Simulation results of hoisting with MLoad = 18000 kg, ∆pref = 225 bar, pB0 = 25

bar, kp = 0.1 m3, kd = 0.025 m3s, and ki = 0.2 m3/s

The first and second plot show that the payload follows the position reference and the

velocity reference well. The third plot shows that maximum position error occurs when
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accelerating the load and is approximately 5 mm. When the winch runs with constant

speed, the position error is close to 0 mm. The fifth plot shows a flow peak in the

beginning of the motion. This flow peak is needed to increase the pressure in line A and

thereby increase the pressure drop across the motor and then accelerate the motor. The

pump flow and motor flow are also heavily oscillating due to the concept of DHPs and

DHMs. The pistons in DHPs and DHMs are enabled and disabled on a stroke by stroke

basis resulting in flow and pressure ripples.

B.4.2 Lowering

This section presents the results of lowering a payload equal to 18000 kg a distance of

10 m. The velocity of the load is ramped down to -1 m/s with a ramp time of 2 s.

Figure B.11 shows the simulation results. When lowering the load, the DHP acts like a

motor and the DHM acts like a pump, meaning that cylinders in the DHP can only run

in motor or idle mode and the pistons in the DHM can only run in pump or idle mode.

The same control strategy as described in Section B.3 is used for both the DHP and the

DHM. The initial pressure in line B is 25 bar and the desired pressure drop across the

motor is 225 bar. The calculated motor step is nstep = 13.

The simulation results show that the payload follows the reference position and velocity

well. Maximum position error is smaller than 1.5 mm.
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Figure B.11: Simulation results of lowering with MLoad = 18000 kg, ∆pref = 225 bar, pB0 = 25

bar, kp = 0.1 m3, kd = 0.025 m3s, and ki = 0.2 m3/s

B.4.3 Hoisting Small Load at Low Speed

Every single cylinder in the DHP is controlled individually on a stroke by stroke basis,

which results in flow ripples when running in partial displacement. In the closed circuit

system studied in this paper, two accumulators are connected to pressure line A and

pressure line B to smooth out flow and pressure ripples. One critical scenario is when the

required pump flow is low. This scenario occurs when the velocity reference and the load

is low. Therefore, in this test, the payload is set to 4000 kg and maximum velocity is set

to 0.2 m/s. The payload is hoisted 5 m and the ramp time for the velocity is 2 s. Figure

B.12 shows the results with the initial pressure in line B equal to 25 bar and the desired

pressure drop across the motor equal to 225 bar. The calculated motor step is nstep = 3.

The simulation results do not show any oscillations in velocity. The payload follows the

position reference well with a maximum position error less than 2 mm when accelerating

the load. The position error is close to 0 mm when the winch runs with constant speed.

The simulated pump flow shows that the pump is only using one cylinder at a time. The
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Figure B.12: Simulation results of hoisting with Vmax = 0.2 m/s, MLoad = 4000 kg, ∆pref =

225 bar, pB0 = 25 bar, kp = 0.1 m3, kd = 0.025 m3s, and ki = 0.2 m3/s

average frequency of pumping cylinders is only 7 hz.

B.4.4 Hoisting an Empty Hook

This case tests driving with a payload equal to 0 kg, which corresponds to operating with

an empty hook. The desired pressure drop across the motor is 0 bar. The empty hook is

hoisted 10 m and the velocity is ramped up to 1.5 m/s with a ramp time of 3 s. Because

of the low pressure drop across the motor and the high inertia of the winch drum and the

wire, the initial pressure in line B is set to 125 bar and the motor step is set to nstep = 3 to

ensure that the pressure in line A remains above the minimum pressure for accumulator

A while decelerating the load.

The simulation results show that the payload follows the reference position and velocity

well. The maximum position error is approximately 3.5 mm and occurs right after the

payload reaches maximum velocity. The position error converges towards 0 mm when the

winch drum runs with constant velocity.
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Figure B.13: Simulation results of hoisting with MLoad = 0kg, ∆pref = 0bar, pB0 = 125 bar,

kp = 0.1 m3, kd = 0.025 m3s, and ki = 0.2 m3/s

B.4.5 Error in Load Measurement

Motor displacement is calculated based on a desired pressure drop across the motor and

measurements of the payload. In this test, an error in the payload measurements is

introduced to investigate the robustness of the control system. The actual payload is set

to 18000 kg, but the measured value used in the controller is only 80 % af the actual load.

The payload is hoisted 10 m and the velocity is ramped up to 1 m/s with a ramp time

of 2 s. The simulation results are shown in Fig. B.14. The initial pressure in line B is

set to 25 bar and the desired pressure drop across the motor is 225 bar. The calculated

motor step is nstep = 11.

This case is similar to the case presented in Section B.4.1 except for the error in the load

measurements. The simulation results show that an error in the payload measurements

gives almost the same results as in Section B.4.1. The maximum position error is increased

to 7.4 mm. Due to the measurement error, the calculated motor displacement is only

nstep = 11 compared to nstep = 13 for the case without any measurements error. The
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Figure B.14: Simulation results of hoisting a load with measured load equal 80 % of the real

load and where MLoad = 18000 kg, ∆pref = 225 bar, pB0 = 25 bar, kp = 0.1 m3, kd = 0.025

m3s, and ki = 0.2 m3/s

difference in motor displacement results in a higher pressure in line A and a lower pump

flow, but the position tracking performance remains almost unchanged.

B.4.6 Change of Motor Displacement

The winch studied in this paper has a capacity of 3600 m of wire. In cases where the load

is lifted or lowered several hundreds of meters, the load acting on the winch drum will

vary. The load can vary because the weight of the wire will act as an extra load when

lowering or because the load is lowered into water. In cases like this, the motor must be

able to change displacement during operation. Figure B.15 shows results from hoisting

of a constant load equal to 15000 kg with a change in motor step from nstep = 11 to

nstep = 14, full displacement, after 4 s. The initial pressure in line B is 25 bar and the

desired pressure drop across the motor is 225 bar.

The motor starts to change displacement after 4 s. The time it takes to change motor
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Figure B.15: Simulation results of hoisting a load when changing motor step from step 11 to

step 14 with MLoad = 15000 kg, ∆pref = 225 bar, pB0 = 25 bar, kp = 0.1 m3, kd = 0.025 m3s,

and ki = 0.2 m3/s

displacement is dependent of the motor speed. The motor have to rotate more than a

half shaft revolution, (2 · π− θmcm + π), to fully change displacement. When hoisting the

payload with 1 m/s, the motor response time is approximately 4.4 s.

When changing motor displacement the position error increases to -3 mm, but approx-

imates zero when the motor displacement has reached full displacement. In the pressure

plot, it can be seen that the pressure in line A decreases when the motor displacement is

changed. It can also been seen that the pump flow and motor flow increase.
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[3] M Heikkilä and M Linjama. Direct connection of digital hydraulic power management

system and double acting cylinder-a simulation study. In The Fourth Workshop on

Digital Fluid Power, DFP, volume 11, 2011.

201

https://www.windpowermonthly.com/article/1109873/mitsubishi-launches-7mw-turbine
https://www.windpowermonthly.com/article/1109873/mitsubishi-launches-7mw-turbine




Paper C

Analysis of Requirements for Valve

Accuracy and Repeatability in High

Efficient Digital Displacement

Motors

Sondre Nord̊as, Morten Kjeld Ebbesen and Torben Ole Andersen

203



Using Digital Hydraulics in Secondary Control of Motor Drive

This paper has been published as:

S. Nord̊as, M. K. Ebbesen, and T. O. Andersen. Analysis of Requirements for

Valve Accuracy and Repeatability in High Efficient Digital Displacement Motors. In The

Proc. of the BATH/ASME 2018 Symposium on Fluid Power and Motion Control, Bath,

United Kingdom, 2018.

204



Analysis of Requirements for Valve
Accuracy and Repeatability in High

Efficient Digital Displacement Motors

Sondre Nord̊as*, Morten Kjeld Ebbesen* and Torben Ole Andersen**

*University of Agder

Faculty of Engineering and Science

Jon Lilletunsvei 9, 4879 Grimstad, Norway

** Aalborg University

Faculty of Engineering and Science

Pontoppidanstræde 101, 9220 Aalborg East, Denmark

Abstract – Traditional variable displacement piston machines achieve high

efficiency when operating at high displacements, but struggle with poor effi-

ciency at low displacements. The pistons are connected to high pressure and

low pressure in conjunction with the output shaft position and the displace-

ment is changed by changing the piston stroke, resulting in almost constant

friction, leakage, and compressibility losses independent of displacement. In

digital displacement machines, the rotary valve is replaced by two fast switch-

ing on/off valves connected to every cylinder. By controlling the fast switching

on/off valves, the cylinders can be controlled individually and friction, leakage

and compressibility losses can be minimized resulting in high efficiency even

at low displacements. Previous studies have shown that high efficiency digital

displacement machines require fast switching valves with high flow capacity

and optimal valve timing strategy. When the digital displacement motor is to

start, stop or be controlled at low speeds, the on/off valves must be able to

open against high pressure difference. When opening the valves actively, the

valve timing has to be conducted properly to minimize valve throttling losses

and flow and pressure peaks. First, this paper shortly describes a previously

developed method to estimate valve characteristics like transition time and

flow capacity for a digital displacement machine. Then the paper presents a

novel method of describing the required valve accuracy and repeatability to

keep the valve throttling losses low and machine efficiency high.
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C.1 BACKGROUND

Digital displacement machines are typically radial piston machines with two fast switching

on/off valves connected to each cylinder allowing for individual cylinder control. A sim-

plified illustration of a digital displacement machine is shown in Fig. C.1. By controlling

High pressure

Low pressure

θ  ˙ θ  ˙ 

Piston 

Connecting rod

CrankshaftOn/off valveHigh pressure

Low pressure

θ  ˙ 

Piston 

Connecting rod

CrankshaftOn/off valve

Figure C.1: Simplified illustration of a digital displacement machine running as a motor.

the on/off valves, each cylinder can be controlled to operate in motor mode, pump mode

or idle mode. The individual piston control makes it possible to only pressurize cylinders

when necessary, resulting in losses that scale with the displacement. Those losses are leak-

age losses, friction losses, and compressibility losses. In addition to increased efficiency at

partial displacement, the individual cylinder control makes the digital displacement ma-

chine very flexible and suited for secondary control systems and regeneration of braking

energy.

One of the most important components in digital displacement machines is the fast

switching on/off valve. The on/off valve must have suitable characteristics for the digital

displacement machine to achieve high efficiency for a wide range of operation conditions.

The required valve characteristics are affected by displacement strategy, motor speed,

and motor size. In addition to the valve characteristics, it is also highly important to

design the valve timing to fully recover the potential energy in the compressed oil [1].

The term ”valve timing” is used to describe the activation sequence of the valves when

pressurizing and depressurizing the cylinder oil. An optimal valve timing strategy will

in addition to low compressibility losses, result in low flow and pressure peaks in the

hydraulic system. In [2] a method of estimating the required valve characteristics for

full stroke displacement strategy and partial stroke displacement strategy is developed.

Further down in this section, a short summary of the method presented in [2] is given, and
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some aspects of optimal valve timing strategy are discussed. Note that the nomenclature

can be found in Appendix A.

C.1.1 Valve Requirements in Full Stroke Displacement Strategy

In full stroke displacement strategy (FSDS), the cylinders are enabled and disabled on

a stroke by stroke basis, and the fast switching on/off valves are only switched when

the piston is close to top dead center (TDC) and bottom dead center (BDC). In those

positions the piston speed and valve flow is low, and the valves can be timed to only

switch when the pressure drop across them is small, resulting in very low valve switching

losses. A more detailed description of FSDS can be found in [3].

Previous work shows that digital displacement motors running with FSDS can achieve

high efficiency even at partial displacements [4, 5, 6]. In [7], the authors have developed

a method of defining the required valve transition time and flow capacity. The presented

method has been further improved in [2]. The improvements were carried out by modifying

the valve movement and the valve timing strategy.

In [2] the author found that the motor efficiency can be generalized by introducing

the normalized valve transition time, T s, and normalized allowable valve pressure drop,

∆p. The normalized valve transition time, T s, describes the valve transition time, Ts, as a

percentage of the motor shaft revolution time, Trev, as shown in Eqn. C.1. The normalized

allowable valve pressure drop, ∆p, describes maximum valve pressure drop, ∆pvalve,max, as

a percentage of the pressure difference across the digital displacement machine, ∆pmachine,

as shown in Eqn. C.2. The efficiency map is shown in Fig. C.2.

T s =
Ts
Trev

where Trev =
2 · π
θ̇

(C.1)

∆p =
∆pvalve,max
∆pmachine

(C.2)
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Figure C.2: Generalized efficiency map for a digital displacement motor running with FSDS

where α indicates the relative displacement in FSDS [2].

The top plot maps the efficiency at 20% displacement and the bottom plot maps the

efficiency at 100% displacement. It can be seen from the efficiency map in the top plot

that maximum pressure drop across the valve should be less than approximately 0.5% of

the pressure drop across the digital displacement machine to achieve efficiency above 96%

at 20% displacement. The plotted span of valve transition time has a small influence on

efficiency when the pressure drop across the valve is low. By choosing a target efficiency,

the normalized valve parameters, T s and ∆p, can be found from Fig. C.2. The required

valve transition time, Ts, and flow capacity, Qref , for a motor with a given cylinder

displacement, Vd, maximum speed, θ̇max, and system pressure are given by:

Ts = T s · Trev (C.3)

Qref = Qvalve,max ·
√

∆pref√
∆pvalve,max

(C.4)

where Qvalve,max is the maximum flow through the valve, ∆pvalve,max is the maximum

allowable pressure drop across the valve, and ∆pref is a reference pressure set to 5 bar.

The maximum flow, Qvalve,max, is calculated as shown in Eqn. C.5 and the maximum

allowable pressure drop, ∆pvalve,max, is calculated by rearranging Eqn. C.2 as shown in

Eqn. C.6.

Qvalve,max =
Vd
2
· θ̇max (C.5)

∆pvalve,max = ∆p ·∆pmachine (C.6)
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C.1.2 Valve Requirements in Partial Stroke Displacement

Strategy

In partial stroke displacement strategy (PSDS), the cylinders are only active in a part

of the cylinder stroke and idling in the remaining part of the stroke. The displacement

is changed by increasing or decreasing the active part. In partial stroke displacement

strategy, the valves can be switched mid-stroke where the piston speed and valve flow is

high. This results in possible high flow throttling losses when switching the valves and

makes it hard to time the valves to only switch when the pressure drop across them is

small. A more detailed description of PSDS is given in [3].

Previous work shows that PSDS tends to achieve lower efficiency compared to FSDS,

especially at low displacements [4, 5, 6]. In [2] the author, in addition to describing the

valve requirements for FSDS, has used the same strategy to describe the valve require-

ments for PSDS. The result is shown in Fig. C.3, where the first plot shows the efficiency

map at 75% displacement, the second plot at 50% displacement and the third plot at 25%

displacement.

By comparing the efficiency map of FSDS shown in Fig. C.2 with the efficiency

map of PSDS shown in Fig. C.3, it can be seen that the valve requirements for PSDS are

more strict than for FSDS. The allowable maximum pressure drop across the valve has not

changed remarkably compared to FSDS, but the transition time has more influence on the

efficiency. To achieve efficiency above 96% at 20% displacement for FSDS, the normalized

allowable pressure drop, ∆p, should be below 0.5% and the normalized switching time

should be below 20% (maximum plotted value). In PSDS, the normalized allowable

pressure drop, ∆p, should be below 0.5% and the normalized switching time should be

below 1.67% in order to achieve approximately the same efficiency. In Tab. C.1, the

actual valve transition time and valve flow capacity are calculated at various speeds for a

digital displacement machine with Vd = 50 cc/rev and ∆pmachine = 200 bar.

Table C.1: Valve flow capacity and valve transition time for chosen speeds. Recall that

∆p = 0.5% and T s = 1.67% results in ηαPSDS=25% > 96% (see Fig. C.3) and ∆p = 0.5% and

T s = 20% results in ηα=20% > 96% (see Fig. C.2).

Motor speed 1000 rpm 100 rpm 10 rpm

Qref when ∆p = 0.5% 350 l/min 35 l/min 3.5 l/min

Ts when T s = 1.67% 1 ms 10 ms 100 ms

Ts when T s = 20% 12 ms 120 ms 1200 ms

Table C.1 shows that in order to achieve approximately same efficiency for both FSDS

and PSDS, the machine operating with PSDS need much faster on/off valves than the
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Figure C.3: Generalized efficiency map for a digital displacement motor running with PSDS

where αPFD indicates the relative displacement in PSDS [2]. The shaded areas in the right side

of the diagrams indicate operating cycles where the high pressure valve is closing before it is

fully opened [2].

machine operating with FSDS. It can also clearly be seen that when increasing the speed,

the required flow capacity is increased and faster valves are needed.

C.1.3 Timing Strategy

Pressurized oil contains potential energy. Independent of displacement strategy, the valve

timing strategy should be designed to recover the energy in the compressed oil fully.

Artemis IP is the pioneer in digital displacement technology and is using poppet valves

with electrical actuators [8, 9]. The poppet valve is passively opened, and the electrical

actuator only needs to keep the valve open against flow forces. The term ”passively open”

indicates that the valve is mainly opened by pressure forces. One major advantage of this

valve design is that the valve can only be actuated when the pressure on both sides of the

valve is equalized resulting in full recovery of the energy in the compressed oil and low

flow and pressure peaks. The disadvantages are that some additional means are required

when the motor is to be started, stopped or controlled at low speeds [10]. This valve

210



Paper C. Analysis of Requirements for Valve Accuracy and Repeatability in High
Efficient Digital Displacement Motors

configuration may therefore only be suited for high speed motors with infrequent starts

and stops. In low speed motors with frequent starts, stops and changes of direction of

rotation, the on/off valves should be able to switch independent of pressure difference [11].

Using valves that can be actively opened independent of the pressure difference across the

valve can still fully recover the compression energy in the oil, but the valve timing does not

get any help from the cylinder pressure, and optimal timing is more difficult to achieve.

An active valve is assumed to open at a certain time, but in fact, it may open a little

bit earlier or later. In [4] the authors found that an opening error of only ±2 ms in a

digital displacement machine running with partial stroke displacement strategy at 57%

displacement and 3000 rpm resulted in large valve throttling losses. This result shows

the importance of optimal valve timing and valves with high accuracy and repeatability.

The work presented in this paper aims to map the sensitivity of efficiency in digital

displacement motors running at various speeds to the repeatability and accuracy of the

fast switching on/off valve.

C.2 SIMULATION MODEL OF A SINGLE

CYLINDER DIGITAL DISPLACEMENT

MOTOR

The simulation model is implemented in MATLAB R2018a and developed to analyze

requirements for valve repeatability and accuracy. The requirements are evaluated by

investigating the motor efficiency and valve throttling losses at different displacements

and with different valve timing strategies. It is assumed that all cylinders in a digital dis-

placement motor have the same characteristics. The motor efficiency and valve throttling

losses are therefore only evaluated for one cylinder. The simulated system is illustrated in

Fig. C.4. The cylinder configuration shown in Fig. C.4 is chosen because of its relation

between motor shaft position, θ, and cylinder volume, Vcyl. The efficiency of the digital

displacement motor is calculated as shown in Eqn. C.7.

η =
Eout
Ein

(C.7)

where Ein is the input energy and Eout is the output energy. The input energy, Ein, and

output energy, Eout, is calculated by integrating the input and output power for one shaft

211



Using Digital Hydraulics in Secondary Control of Motor Drive

pHP pLP

QHP QLP

= V0

BDC

TDC
pcyl

HP valve LP valve

QHP

Piston 

Slider

Shaft

Cylinder

QHP

θ 

pHP pLP

QHP QLP

= V0

BDC

TDC
pcyl

HP valve LP valve

QHP

Piston 

Slider

Shaft

Cylinder

QHP

θ 

Figure C.4: Simulated system.

revolution,

Ein =

∫
Pin dt ⇓

=

∫
QHP ·pHP −QLP ·pLP +

Pcomp︷ ︸︸ ︷(
V̇cyl +QLP −QHP

)
·pcyl dt (C.8)

Eout =

∫
Pout dt =

∫
τcyl · θ̇ dt (C.9)

where Pin is the input power, Pout is the output power, QHP is the flow through the high

pressure valve, QLP is the flow through the low pressure valve, pHP is the pressure in the

high pressure source, pLP is the pressure in the low pressure source, V̇cyl is the rate of

change in cylinder volume and positive if the volume is expanding, pcyl is the chamber

pressure, τcyl is the cylinder torque and θ̇ is the shaft speed. Pressurized oil contains

potential energy. This energy is considered as an input energy and calculated as shown

in the pcomp-part in Eqn. C.8. When increasing the cylinder volume without any flow

entering or leaving the cylinder volume, QHP = 0 l/min and QLP = 0 l/min, the oil in the

cylinder chamber is decompressed and the potential energy in the oil is used, hence pcomp

is positive. If the cylinder is decompressed to much, cavitation will appear. Cavitation

should be avoided with proper valve timing. When reducing the cylinder volume with

both valves closed, the oil in the cylinder is compressed and potential energy is stored in

the oil, hence pcomp is negative.
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To calculate the needed parameters, several assumptions are made. The chosen cylin-

der configuration, shown in Fig. C.4, is not optimal considering losses. In this simulation,

friction between the shaft and the slider is neglected as well as the friction between the

slider and the piston and the friction between the piston and the cylinder. It is also

assumed that the cylinder is leak free. Friction and leakage will affect the efficiency, but

the main objective in this paper is to analyze how a deviation from optimal valve timing

affects motor efficiency and valve throttling losses. Neglecting friction and leakage losses

will not significantly affect the losses related to valve timing, but the calculated efficiency

will be higher than for a real system with all losses represented.

In this study, the dynamic performance of the motor is not of interest. The motor

inertia is therefore neglected and the motor speed, θ̇, is assumed to be constant. This

means that the rotation of the motor is described with a kinematic driver while the

dynamics of the oil is described with the ordinary pressure derivative and time integration.

The pressure derivative in the cylinder is calculated by using the continuity equation,

ṗcyl =
βeff
Vcyl
·
(
QHP −QLP − V̇cyl

)
(C.10)

where βeff is the effective bulk modulus of the oil. The cylinder volume, Vcyl, is calculated

as shown in Eqn. C.11 and V̇cyl is calculated as shown in Eqn. C.12.

Vcyl = V0 +
Vd
2
· (1− cos θ) (C.11)

V̇cyl =
Vd
2
· sin(θ) · θ̇ (C.12)

where V0 is the dead volume in the cylinder and Vd is the cylinder displacement. The

volume flows through the valves, QHP and QLP , are calculated as shown in Eqn. C.13

and Eqn. C.14 respectively.

QHP =
uHP
kf
·
√
|pHP − pcyl| · sign(pHP − pcyl) (C.13)

QLP =
uLP
kf
·
√
|pcyl − pLP | · sign(pcyl − pLP ) (C.14)

where uHP and uLP are the opening ratios of the high pressure and low pressure valves

ranging from 0 to 1, where 0 is fully closed and 1 is fully open. Both valves have the

same flow-pressure coefficient, kf , and the same dynamic response. The flow-pressure

coefficient, kf , is calculated as shown in Eqn. C.15.

kf =

√
∆pref

Qref

(C.15)

where Qref is the flow trough the valve when the valve is fully open and with a pressure

drop equal to ∆pref . Qref is called the valve flow capacity, and ∆pref is in this work set
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to 5 bar. The dynamic response of the valves are described by a second order system,

üHP = uconHP · ω2 − uHP · ω2 − 2 · ζ · ω · u̇HP (C.16)

üLP = uconLP · ω2 − uLP · ω2 − 2 · ζ · ω · u̇LP (C.17)

where uconHP and uconLP are the desired valve positions for the high pressure valve and low

pressure valve respectively, ω is the natural frequency of the valves and ζ is the damping

ratio. The desired valve positions, uconHP and uconLP , are either 0 or 1.

The output torque from one cylinder, τcyl, is calculated as shown in Eqn. C.18.

τcyl =
Vd
2

sin(θ) · pcyl (C.18)

The effective bulk modulus depends on a number of parameters like the fluid, the

pressure, the entrained air, the container and the temperature. In this study, Hoffmann’s

model is used to estimate the effective bulk modulus, βeff as shown in Eqn. C.19 [12].

βeff = βmax ·
[
1− exp

(
−0.4− 2 · 10−7 · pcyl

)]
(C.19)

where βmax is the bulk modulus at maximum pressure.

C.2.1 Valve Control Strategy

This section gives a detailed description of the valve timing strategy used to achieve partial

stroke displacement. An overview of the timing strategy is shown in Fig. C.5. The valve

opening ratios, uHP and uLP , are illustrated together with the cylinder pressure, pcyl, and

piston position as a function of the motor shaft position, θ.

θoHP and θcHP are the opening and closing angle for the high pressure valve, θoLP and

θcLP are the opening and closing angle for the low pressure valve, and φ is the control

angle and describes the motor shaft position where the high pressure valve starts to close,

θcHP = φ. In addition to describing the closing angle of the high pressure valve, φ is an

expression of the displacement of the motor.

At θ = 0◦, the piston is at TDC, the cylinder pressure, pcyl, is equal to the high

pressure level, pHP . The low pressure valve is closed and the high pressure valve starts

to open. The high pressure valve stays open until the motor shaft position, θ, is equal

to θcHP . When both the high pressure valve and the low pressure valve are closed, the

cylinder pressure is decompressed due to increasing cylinder volume. Ideally, the low

pressure valve will start to open at θoLP when the cylinder pressure is equal to the low

pressure level. The low pressure valve is kept open until the motor shaft angle, θ, is equal

to θcLP . The low pressure valve is fully closed right before the piston reaches TDC. The
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Figure C.5: Simplified illustration of valve timing strategy for partial stroke displacement

strategy.

last piston movement is used to pressurize the cylinder oil up to high pressure level. From

Fig. C.5, the opening and closing angles can be calculated as shown in Eqn. C.20 - C.23,

θoHP = 0◦ (C.20)

θcHP = φ (C.21)

θoLP = φ+ θdelay1 (C.22)

θcLP = 2 · π − θdelay2 (C.23)

where θdelay1 is the angle the motor shaft rotates between closing the high pressure valve

and opening the low pressure valve. θdelay2 is the angle the motor shaft rotates between

closing the low pressure valve and opening the high pressure valve. The optimal delay

angles, θdelay1 and θdelay2, are hard to calculate precisely and are affected by the oil stiffness,

dead volume in the cylinder, the pressure difference between the high pressure level and

low pressure level, the motor speed, the valve transition time, the valve flow capacity and

the opening profile of the valve [1, 13].

From Fig. C.5, it can be seen that θdelay1 can be calculated as shown in Eqn. C.24,

θdelay1 = θact + θdecomp (C.24)

where θact is the angle the motor shaft rotates while closing the valves and θdecomp is the

angle the motor shaft has to rotate to decompress the cylinder pressure from high pressure

level down to low pressure level. Knowing the valve transition time, Ts, and the motor

shaft speed, θ̇, θact is calculated as,

θact = Ts · θ̇ (C.25)
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The decompression angle, θdecomp can be calculated based on Fig. C.6 and the continuity

equation shown in Eqn. C.26. For simplicity, the bulk modulus of the oil is assumed to

be constant and equal to βmax.
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Figure C.6: Simplified illustration of the decompression phase used to calculate θdecomp.

∆p = −βmax
Vcyl1

·∆Vcyl (C.26)

where ∆p is the desired change in pressure shown in Eqn. C.27, Vcyl1 is the cylinder

volume at θ = θ1 and calculated using Eqn. C.11, and ∆Vcyl is the change in cylinder

volume and shown in Eqn. C.28. ∆Vcyl is positive if the volume is expanding.

∆p = pLP − pHP (C.27)

∆Vcyl = Vcyl2 − Vcyl1 (C.28)

Substituting Eqn. C.11 into Eqn. C.28, the change in cylinder volume can be expressed

as shown in Eqn. C.29.

∆Vcyl =
Vd
2
· (cos θ1 − cos θ2) (C.29)

Inserting Eqn. C.29 into Eqn. C.26 and solving for θ2 results in Eqn. C.30.

θ2 = cos−1

(
cos θ1 +

2

Vd
· Vcyl1
βmax

·∆p
)

(C.30)

Inserting Eqn. C.11 for Vcyl1 using that V0 = Vd, Eqn. C.30 can be simplified to

θ2 = cos−1

(
cos θ1 +

3− cos θ1

βmax
·∆p

)
(C.31)
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Finally, the decompression angle, θdecomp, is calculated as shown in Eqn. C.32 and the

result is plotted in Fig. C.7 for θ1 ranging from 0◦ to 159◦. The delay angle, θdelay2, can

be calculated by following the same procedure as for θdelay1.

θdecomp = θ2 − θ1 (C.32)
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Figure C.7: Plot of the decompression angle, θdecomp(θ1) with ∆p = 200 bar.

Assuming that no pressure build up occurs before the high pressure valve and low

pressure valve are fully closed, the closing and opening angle for the low pressure valve

can be calculated as shown in Eqn. C.23 and Eqn. C.22. In reality, when closing the

high pressure valve, the cylinder pressure will start to decompress when the high pressure

valve approaches closed position due to flow throttling. By using Eqn. C.22, the cylinder

pressure will be below the low pressure level when opening the low pressure valve at θoLP .

The same phenomena occurs when closing the low pressure valve. The pressure inside the

cylinder starts to build up before the low pressure valve is fully closed and the cylinder

pressure is therefore higher than the high pressure level when opening the high pressure

valve at θoHP . The pressure overshoots can be seen in Fig. C.8.

Figure C.8 shows simulation results from the valve timing strategy presented in this

section with φ = 140◦ and the parameters shown in Tab. C.2. The blue line is the cylinder

pressure, the red line is the high pressure valve opening ratio, the yellow line is the low

pressure valve opening ratio, the purple line is the volume flow through the high pressure

valve, and the green line is the volume flow through the low pressure valve. The cylinder

pressure is overshooting after decompressing the cylinder oil resulting in a small flow peak

through the low pressure valve.
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Figure C.8: Simulation results of described valve timing strategy.

C.3 RESULTS

The fixed simulation parameters are listed in Tab. C.2.

Table C.2: Fixed simulation parameters.

Parameter Value Description

Vd 50 cc/rev Cylinder displacement

V0 50 cc/rev Dead volume in cylinder

pHP 220 bar Constant high pressure source

pLP 20 bar Constant low pressure source

T s 1.67% Normalized valve transition time

∆p 0.5% Normalized pressure drop

βmax 1.2 MPa Bulk modulus at maximum pressure

ζ 0.8 Damping ratio

Describing the valve characteristics by T s and ∆p as shown in Eqn. C.1 and Eqn. C.2

respectively, the simulated motor efficiency and valve losses will yield for all speeds. The

real valve parameters, Ts and Qref , can be calculated as shown in Eqn. C.3 and Eqn.

C.4.

The sensitivity of the digital displacement motor to the valve accuracy and repeata-

bility is evaluated by performing a large number of simulations with different values of

the control angle, φ, and the timing delay angle, θdelay1. The efficiency is evaluated for

every simulation and saved together with the valve throttling losses. The control angle,

φ, is ranging from 40◦ to 154◦, where 154◦ corresponds to full displacement. The timing

delay angle, θdelay1, is ranging from 0◦ to θdelay,max, where θdelay,max is calculated as shown

in Eqn. C.33. Note that the delay angle, θdelay2 is kept constant.

θdelay,max = θact + θdecomp (C.33)
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Figure C.9 shows the efficiency map and the valve throttling losses. The first plot

Figure C.9: Efficiency and valve losses as a function of displacement and the delay angle with

valve characteristics described by; T s = 1.67% and ∆p = 0.5%.

shows the efficiency and the second plot shows the valve losses. It can be seen that the

efficiency is high and the valve throttling losses are low for high values of θdelay. At low

values of θdelay, the efficiency drops and the valve throttling losses increases significantly.

The blue line marks the highest efficiency and lowest valve losses as a function of the

control angle, φ, and describes the optimal delay angle. It can be seen that the optimal

delay angle, θdelay1, varies with the control angle, φ. In this simulation, the best delay

angle, θdelay1, is between 75% and 95% of θdelay,max. Note that a change in dead volume,

valve flow capacity, valve transition time, valve lift profile or oil stiffness will change the

optimal delay angle.

In the area below the green line, the low pressure valve starts to open before the

high pressure valve is fully closed, resulting in increased flow throttling losses due to flow

running directly from the high pressure source into the low pressure source. By further

reducing the normalized delay angle, θdelay, below the green line, the time where both

valves are open simultaneously will increase and result in a significant increase of flow

throttling losses.

Figure C.10 shows simulated results of switching the valves with three different delay
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angles and φ = 100◦. These three situations are also marked in Fig. C.9 with red rings.

Figure C.10: Simulation results valve timing with φ = 100◦ and three different values of the

delay angle: θdelay = 80%, θdelay = 70.75% and θdelay = 20%.

In the first plot, the delay angle is 60% of θdelay,max. In this situation, the low pressure

valve starts to open right after the high pressure valve has reached closed position. Hence

the decompression phase is not fully completed before opening the low pressure valve,

resulting in poor utilization of the potential energy in the pressurized oil and a flow peak

in the low pressure valve. In the second plot, the timing delay angle is 80% of θdelay,max

and is close to optimal delay angle, blue line. It can be seen from the figure that the

low pressure valve starts to open when the cylinder pressure is equal to the low pressure

level, resulting in good recovery of the potential energy in the pressurized oil and only low

flow and pressure peaks. In the last plot, the timing delay angle is 100% of θdelay,max and

above the optimal delay angle. This results in an overshoot in the cylinder pressure when

decompressing the cylinder oil and a flow peak in the low pressure valve. The cylinder

cavitates, but this can be avoided by including an anti-cavitation valve in the cylinder.

Even though the optimal low pressure valve opening angle is known, blue line in

Fig. C.9, it is not possible to actuate the valve at the exact optimal position every time.

Some times it may open a little too earl or too late. Simplifying the optimal normalized

delay angle to be θdelay = 80%, marked with the cyan dotted line, the flow throttling

losses will stay low, and the motor efficiency will stay high. Even though there is a

delay in the timing of ±20%, marked with the white transparent area inside a red box in

Fig. C.9, the valve throttling losses will remain low and the motor efficiency will remain

high. Switching the low pressure valve within ±20% of the simplified optimal normalized

delay angle is more demanding in high speed motors than low speed motors. By knowing

the motor speed, θ̇, the delay in time can be calculated as shown in Eqn. C.34 for various

speeds.

Tdelay =
±20% · θdelay,max

θ̇
(C.34)

In Fig. C.11, Eqn. C.34 is used to calculate the allowable delay in time at different

displacements and speeds. Note that the y-axis is scaled logarithmically. It can be seen
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Figure C.11: Acceptable deviation from optimal valve timing.

that the required accuracy and repeatability is more strict in high speed motors than

in low speed motors. The requirements are also more strict when switching mid stroke

compared to close to BDC. When operating at 1000 rpm, the low pressure valve should

be opened within approximately ±0.3 ms from optimal opening time. When operating

at 10 rpm, the requirements is not that strict, and the low pressure valve should open

within approximately ±30 ms from the optimal opening time.

C.3.1 Example Of Using Results

This section presents an example of how one can use the results presented in this paper

to decide the parameters of the fast switching on/off valves used in a digital displacement

motor. First, some motor parameters have to be decided. In this example, the cylinder

displacement is chosen to be, Vd = 50 cc/rev, the dead volume is V0 = Vd, maximum mo-

tor speed is 100 rpm and the target efficiency at 25% displacement is 96% when operating

with partial stroke displacement strategy. Using Fig. C.3, it can be seen that by using

T s = 1.67% and ∆p = 0.5% the target efficiency is approximately 96% at 25% displace-

ment. By using Eqn. C.3 and Eqn. C.4, the valve transition time, Ts, and valve flow

capacity, Qref , can be calculated to be 10 ms and 35 l/min respectively. Since T s = 1.67%

and ∆p = 0.5% is the same values that are used in Fig. C.9, the plotted results can be

used directly. The simplified normalized delay angle is chosen to be θdelay = 80%. Ac-

cepting that the low pressure valve can open within ±20% from the simplified normalized

delay angle, Fig. C.11 can also be used directly. When running at 100 rpm, the low

pressure valve should open within approximately ±3 ms from the optimal opening time.

In [14], a table presenting the ready to marked valves for digital hydraulic applications
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is shown. One of the presented valves is the Bosch Rexroth WES type valve. This valve

has the following characteristics; Ts = 5 ms and Qref = 45 l/min. Those characteris-

tics are better than the requirements estimated earlier in this section (Ts = 10 ms and

Qref = 35 l/min) menaing that the WES type valve can be used to achieve high efficiency

for a digital displacement machine running at 100 rpm and with a cylinder displacement

of 50 cc/rev. The WES type valve is a spool type valve and can open against high pres-

sure differences, which makes it possible to start in motor mode without any additional

systems. The valve must therefore be actively controlled. At 100 rpm, the valve should be

opened within ±3 ms from optimal opening time to avoid unnecessary high valve throt-

tling losses. One disadvantage is that a spool type valve may suffer from leakage when it

is fully closed.

C.4 CONCLUSION

Efficiency in digital displacement motors is affected by displacement strategy, valve char-

acteristics, and valve timing strategy. This paper presents a short summary of how the

motor efficiency is affected by displacement strategy and valve characteristics based on

previous work. Then a method of describing the required valve repeatability and accuracy

is presented.

Generally, partial stroke displacement strategy has more strict valve requirements

than full stroke displacement strategy, and high speed motors have also stricter valve

requirements than low speed motors. When starting, stopping and controlling digital

motors at low speeds, it is desirable to have valves that can open against high pressure

difference. Those types of valves have to be actively opened, without any help from the

cylinder chamber pressure. Optimal valve timing is, therefore, more difficult to achieve.

The work presented in this paper shows that it is important with valves that have high

repeatability and accuracy. Opening the low pressure valve too early or too late will

result in pressure and flow peaks in the system in addition to increased flow throttling

losses and reduced efficiency. The low pressure valve should start to open in less than

±0.3 ms from the optimal opening time when operating at high speeds above 1000 rpm.

This results in high requirements for the controller and valve repeatability and accuracy.

When operating at speeds below 10 rpm, the low pressure valve should open in less than

±30 ms from the optimal time, and the requirements of repeatability and accuracy are

significantly reduced.

It has also been shown that the commercially available WES type valve from Bosch

Rexroth can be used in small low speed motors running with PSDS.
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Appendix A: NOMENCLATURE

Table C.3: Nomenclature

Symbol Description

Ein Input energy
Eout Output energy
kf Flow-pressure coefficient
Pin Input power
Pout Output power
pHP Pressure level in high pressure source
pLP Pressure level in low pressure source
pcyl Cylinder pressure
QHP Flow through the high pressure valve
QLP Flow through the low the pressure valve
Qref Valve flow capacity
Qvalve,max Max flow through valve
Ts Valve transition time
Trev Time for one shaft revolution
V0 Dead volume in the cylinder
Vcyl Cylinder volume
Vcyl1 Cylinder volume at θ1

Vcyl2 Cylinder volume at θ2

Vd Cylinder displacement
uHP Opening ratio high pressure valve
uLP Opening ratio low pressure valve
uconHP Desired valve position high pressure valve
uconLP Desired valve position low pressure valve
ω Natural frequency
ζ Damping ratio
τcyl Cylinder torque
βeff Effective bulk modulus
βmax Bulk modulus at maximum pressure
η Total efficiency
φ Control angle (θcHP = φ)
θ Motor shaft position
θoHP Opening angle high pressure valve
θoLP Opening angle low pressure valve
θcHP Closing angle high pressure valve (θcHP = φ)
θcLP Closing angle low pressure valve
θdelay1 Rotation angle between θcHP and θoLP
θdelay2 Rotation angle between θcLP and θoHP
θdelay,max Maximum value of θdelay1

θact Rotation angle while switching the valve
θdecomp Decompression angle
θ1 Shaft position, start decompression phase
θ2 Shaft position, end decompression phase
∆pref Reference pressure drop across valve
∆p Desired change in cylinder pressure

227



Using Digital Hydraulics in Secondary Control of Motor Drive

Symbol Description

∆Vcyl Desired change in cylinder volume
∆pmachine Pressure drop across the machine
∆pvalve,max Pressure drop across valve at max flow
T s Normalized valve transition time
∆p Normalized allowable valve pressure drop
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Abstract – Digital displacement technology has the potential of revolu-

tionizing the performance of hydraulic piston pumps and motors. Instead of

connecting each cylinder chamber to high and low pressure in conjunction with

the shaft position, two electrically-controlled on/off valves are connected to

each chamber. This allows for individual cylinder chamber control. Variable

displacement can be achieved by using different displacement strategies, like

for example the full stroke, partial stroke, or sequential partial stroke displace-

ment strategy. Each displacement strategy has its transient and steady-state

characteristics. This paper provides a detailed simulation analysis of the tran-

sient and steady-state response of a digital displacement motor running with

various displacement strategies. The non-linear digital displacement motor

model is verified by experimental work on a radial piston motor.

D.1 Introduction

Digital displacement machines are experiencing increased interest due to their high energy

efficiency. Traditional variable displacement piston machines suffer from low energy effici-

ency when operating at partial displacements. They change displacement by changing the

piston stroke. During one shaft revolution, every single cylinder chamber is pressurized,

resulting in almost constant friction, leakage, and compressibility losses independent of

displacement. In digital displacement machines, each cylinder chamber is connected to

two electrically-operated on/off valves. By controlling the on/off valves, each cylinder

chamber can be controlled individually. The chambers are only pressurized when neces-
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sary, resulting in losses that scale with the displacement, providing high energy efficiency

even at partial displacements. A more detailed description of the digital displacement

motor and pump technology can be found in [1, 2, 3, 4].

Control of digital displacement machines is complicated and non-conventional. Due

to the individual cylinder chamber control, it is hard to develop models that can be used

for model-based design of feedback controllers. Both continuous, discrete, and hybrid

dynamical system approximations have been investigated. The continuous and discrete

approximations are sufficient to describe the fundamental dynamics if the number of

cylinders and displacement fraction is sufficiently high [5, 6, 7, 8, 9, 10, 11]. In the case

of applying linear control theory on a variable speed unit, the shaft speed of the machine

should not be lower than the speed used during linearization of the system. The hybrid

dynamic approximation has high accuracy, but is quite complex and, therefore not suitable

for use in stability analyses and control design [12, 13, 14]. This is due to a large number

of states and multiple jump maps and sets.

Since it is hard to develop models that can be used for control design purposes, it is

highly relevant to know the dynamic behavior of digital displacement machines. Different

displacement strategies give different transient and steady-state behavior in addition to

different energy efficiency characteristics. The chosen displacement strategy should be de-

cided based on operation requirements related to the driven application. Furthermore, one

application may use different displacement strategies in different parts of the operation.

The energy efficiency of different displacement strategies has been investigated in several

papers [15, 16, 17], but the transient and steady-state characteristics have only been in-

vestigated in a limited number of papers. In Reference [18], the authors showed that the

full stroke displacement strategy can achieve smooth system output if a proper cylinder

chamber actuation sequence is used. A proper cylinder chamber actuation sequence is for

example when every second chamber is actuated. The number of smooth output rates in-

creases rapidly when the total number of pistons increases. In Reference [19], the authors

compared the output ripples from full stroke to the output ripples from the partial stroke

displacement strategy. The result showed that the full stroke displacement strategy has

the lowest output ripples when the displacement is greater than 50%. When operating

down at 20% displacement, the partial stroke displacement strategy had the lowest output

ripples. At this time, the work done in [20] may be the most comprehensive description of

the transient and steady-state characteristics of digital displacement machines. The work

included both the full stroke, partial stroke, and sequential partial stroke displacement

strategy. The results showed that the full stroke displacement strategy is most suited for

high speed machines where energy efficiency is important. The partial stroke displace-

ment strategy is most suited for low speed machines where both tracking performance
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and energy efficiency are important. The sequential partial stroke displacement strategy

is most suited for very low-speed machines where control tracking performance is impor-

tant and energy efficiency is of less importance. Still, a more detailed analysis of the

dynamic behavior of digital displacement machines is missing.

This paper aims to compensate for the lack of knowledge regarding transient and

steady-state characteristics for a digital displacement motor (DDM) operating with dif-

ferent displacement strategies. In all, three displacement strategies are analyzed: the full

stroke displacement strategy (FSDS), the partial stroke displacement strategy (PSDS),

and the sequential partial stroke displacement strategy (SPSDS). The analysis is con-

ducted on a non-linear simulation model that is experimentally validated. The result

shows that the transient response is highly affected by the shaft speed for some dis-

placement strategies, but not for all. The steady-state response tends to oscillate due to

switching between active and inactive cylinder chambers. The oscillations are affected

by the chosen displacement strategy, the current displacement fraction, the number of

pistons, and the shaft speed. The results of this analysis can be used to choose the most

suitable displacement strategy when designing new controllers for DDMs.

The work presented in this paper is structured as follows: In Section D.2, the non-

linear DDM model is described. In Section D.3, the analyzed displacement strategies are

presented. The non-linear simulation model is validated in Section D.4. In Section D.5,

the validated simulation model is used to analyze the transient and steady-state char-

acteristics of the described displacement strategies. The results are then discussed in

Section D.6, and a conclusion is given in Section D.7.

D.2 Simulation Model

This section describes the simulation model of the DDM. The simulated motor is a radial

piston type with 15 pistons uniformly distributed around the shaft. The model was

inspired by the model presented in [21]. A schematic representation of the DDM is shown

to the right in Figure D.1.

For simplicity, the governing equations are only derived for a single cylinder chamber,

but the same method is used for all chambers. The governing equations are derived

based on the single cylinder chamber shown to the left in Figure D.1. It is assumed that

each cylinder chamber is connected to a constant high and low pressure source and that

friction and leakage are negligible. The main purpose of this study is to investigate the

transient and steady-state response of the DDM. Neglecting the friction and leakage will

not significantly influence the transient and steady-state response. Neglecting friction may

result in a slightly higher magnitude of the output torque, but the main characteristics
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can still be analyzed.
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Figure D.1: Sketch of a single cylinder chamber (left ) and a 15-piston DDM (right).

The pressure dynamics in cylinder chamber i is calculated by using the continuity

equation,

ṗcyl,i =
βeff,i
Vcyl,i

·
(
QH,i −QL,i − V̇cyl,i

)
(D.1)

where βeff,i is the effective bulk modulus of the hydraulic fluid, Vcyl,i is the cylinder cham-

ber volume, QH,i is the flow through the high pressure valve, and QL,i is the flow through

the low pressure valve. The cylinder chamber volume, Vcyl,i, and its time derivative are

given by:

Vcyl,i = V0 +
Vd
2
· (1− cos θcyl,i) (D.2)

V̇cyl,i =
Vd
2
· sin(θcyl,i) · θ̇ (D.3)

where V0 is the dead volume in the cylinder chamber, Vd is the piston displacement, θcyl,i is

the local shaft position relative to the piston position, and θ̇ is the shaft speed. The local

shaft position is 0 rad when the piston is at top dead center (TDC). Due to the phase

shift between the cylinders, the local shaft position, θi, is given by:

θi = θ +
2 · π
Nc

· (i− 1) i ∈ {1, ..., Nc} (D.4)

where θ is the shaft position and Nc is the number of cylinders. The volume flow through

the valves, QH,i and QL,i, is described by the orifice equation given by:

QH,i =
uH,i
kf
·
√
|pH − pcyl,i| · sign(pH − pcyl,i) (D.5)

QL,i =
uL,i
kf
·
√
|pcyl,i − pL| · sign(pcyl,i − pL) (D.6)
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where uH,i and uL,i are the opening ratios of the high pressure valve and low pressure

valve ranging from 0–1, where zero is fully closed and one is fully open. Both valves have

the same flow-pressure coefficient, kf , and the same transient response. The transient

response of the fast switching valves is described by a second-order system,

üH,i = uconH,i · ω2 − uH,i · ω2 − 2 · ζ · ω · u̇H,i (D.7)

üL,i = uconL,i · ω2 − uL,i · ω2 − 2 · ζ · ω · u̇L,i (D.8)

where uconH,i and uconL,i are the desired valve positions for the high pressure and low

pressure valves, ω is the natural frequency of the valves, and ζ is the damping ratio.

The desired valve positions, uconH,i and uconL,i, are either zero or one and are given by the

chosen valve actuation sequence. The valve actuation sequence is described in detail for

each displacement strategy in Section D.3.

The effective bulk modulus is calculated according to [22] as shown below:

βeff,i =
1

1
βL

+ εg

p
(abs)
cyl,i

(D.9)

where βL is the bulk modulus of the liquid and εg is the volume fraction of undissolved

gas. The volume fraction of undissolved gas is calculated by:

εg =
1.0(

1.0−εg0
εg0

)
·
(
p
(abs)
atm

p
(abs)
cyl,i

)− 1
κ

+ 1.0

(D.10)

where εg0 is the volume fraction of undissolved gas at atmospheric pressure, p
(abs)
atm is the

atmospheric pressure, and κ is the specific heat ratio.

The cylinder torque is given by:

Tcyl,i =
Vd
2
· sin(θi) · pcyl,i (D.11)

and the DDM output torque is the sum of the torque contribution from all pistons:

Tm =

Npis∑
i=1

Tcyl,i (D.12)

Unless stated otherwise, the simulation parameters shown in Table D.1 apply.
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Table D.1: Simulation parameters.

Parameter Symbol Value Unit

Piston chamber displacement Vd 50 cc/rev

Cylinder chamber dead volume V0 50 cc

Number of pistons Npis 15 −
Motor speed θ̇ 100 rpm

Switching time on/off valves Ts 5 ms

Flow-pressure coefficient kf 1.2 · 106
√

Pa · s /m3

High pressure pH 220 bar

Low pressure pL 20 bar

Bulk modulus liquid βL 1.2 GPa

Volume fraction of undissolved gas at p
(abs)
atm εg0 0.01 −

D.3 Displacement Strategies

The motor displacement can be changed by using different displacement strategies. This

section describes the valve activation sequence for the displacement strategies analyzed in

this paper. Note that only motor operation is described, but the same strategy can also

be used for pumping operation.

D.3.1 Full Stroke Displacement Strategy

Full stroke is considered to be the simplest displacement strategy. The cylinder chambers

are activated and deactivated for entire piston strokes. The fast switching on/off valves are

only switched when the pistons are close to top dead center (TDC) or bottom dead center

(BDC). In those piston positions, the valve flow is low, minimizing the valve throttling

losses when switching the valves. Furthermore, the valves are timed only to be actuated

when the pressure drop across them is small. The displacement of the motor is changed

by changing the number of active cylinder chambers.

Figure D.2 illustrates the valve timing strategy for a single cylinder chamber. Through

the first shaft revolution, the chamber is deactivated, and through the second revolution,

the chamber is activated. Plot 1 shows the piston position, Plot 2 the opening ratios of

the valves, Plot 3 the chamber pressure, and Plot 4 the cylinder torque. For an inactive

cylinder chamber, the high pressure valve is kept closed and the low pressure valve is kept

open, resulting in only a very small torque contribution in the downstroke piston motion

due to low chamber pressure. For an active cylinder chamber, the valves are switched

close to TDC and BDC with the high pressure valve open during the downstroke piston
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motion and the low pressure valve open during the upstroke piston motion. The torque

contribution is high due to the high chamber pressure in the downstroke motion. It can

be seen that for the active cycle, the high pressure valve and low pressure valve are in the

closed position at the same time. This is to compress and decompress the chamber oil in

order only to switch the valves when the pressure drop across them is small, resulting in

a minimum of flow peaks, pressure peaks, and valve throttling losses.
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Figure D.2: Valve timing schematics for the full stroke displacement strategy.

For each cylinder, the decision of activating or deactivating the cylinder chamber is

taken at a fixed angle once every shaft revolution. This position is illustrated in Fig-

ure D.2 with the decision angle αd. The desired displacement fraction, D, is a continuous

signal ranging from 0–1, which corresponds to zero and full displacement, respectively.

The displacement fraction is converted into a cylinder actuation sequence by a first-order

delta-sigma modulator, which determines whether the current cylinder shall be active or

inactive. This method was first proposed by Johansen et al. [23] and later used in several

control papers [5, 8, 9, 7]. A block diagram of the controller is shown in Figure D.3.

Figure D.3: Schematic of the open loop control system for FSDS.

Since the decision of activating or deactivating is made at a fixed shaft position ahead

of TDC, the sampling time, Tsample, for the delta-sigma modulator is dependent on the

number of cylinders and the rotational speed.

Tsample =
2 · π
θ̇ ·Nc

(D.13)

where θ̇ is the shaft speed and Nc is the number of cylinders. If the shaft speed is varying,

the sampling time is also varying.
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D.3.2 Partial Stroke Displacement Strategy

In PSDS, all cylinder chambers are activated during every shaft revolution, but only in

a portion of the downstroke piston motion. The displacement of the motor is changed

by increasing or decreasing the active part. In this study, two versions of PSDS were

investigated. In Version 1, the cylinder chamber can only have one active period during

the downstroke piston motion. In Version 2, the cylinder chamber can be reactivated and

have more than one active period.

D.3.2.1 Version 1 of the Partial Stroke Displacement Strategy

Figure D.4 shows the valve timing strategy for a single cylinder chamber operating with

PSDS Version 1. The red dotted line in the bottom plot shows the state change angle α.

The state change angle, α, describes at which local shaft position angle, θcyl,i, the cylinder

shall change state from active to inactive. If θcyl,i ≤ α, the cylinder is active, else the

cylinder is inactive.
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Figure D.4: Valve timing schematics for partial stroke displacement strategy Version 1.

For the illustrated situation shown in Figure D.4, the cylinder is active in the first half

of the downstroke piston motion and deactivated in the remaining part, α1 = π/2. This

situation corresponds to 50% displacement. Increasing the state change angle after the

cylinder has been deactivated will not result in a reactivation of the cylinder due to the

nature of the PSDS Version 1. Once the cylinder is deactivated, it cannot be re-actuated

before the next shaft revolution.

As for the FSDS, PSDS Version 1 also has a decompression phase and a compression

phase in order only to switch the valves when the pressure difference across them is small,

resulting in a minimum of pressure and flow peaks. Switching the valves mid-stroke will

result in higher flow throttling losses during switching compared to switching the valves

closer to TDC or BDC due to higher piston velocity and, therefore, higher valve flow.
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Hence, on/off valves used in PSDS should be faster compared to on/off valves used in

FSDS to achieve the same energy efficiency at partial displacement [24].

The state change angle, α, is calculated based on the desired displacement ratio, D.

The desired displacement ratio is defined as the ratio between the intake volume during the

active motoring period and the maximum intake volume [20]. Based on the calculation of

the cylinder volume shown in Equation D.2, the displacement ratio is calculated as shown

below.

D =
Vcyl(α)

Vcyl(π)
=

Vd
2
· (1− cosα)

Vd
2
· (1− cosπ)

=
(1− cosα)

2
(D.14)

where Vcyl(α) is the intake volume during the active motoring period and Vcyl(π) is the

maximum intake volume. The state changing angle, α, is then calculated by rearranging

Equation (2.15) as:

α = cos−1 (1− 2 ·D) (D.15)

The state change angle, α, is updated continuously until the state change is carried

out. Figure D.5 shows the block diagram of the open loop system. Note that due to the

decompression phase shown in Figure D.4, the displacement fraction needs to be less than

0.95 to use the last piston movement to decompress the cylinder.

Figure D.5: Schematic of open loop control for PSDS (equal for Version 1 and Version 2).

D.3.2.2 Version 2 of the Partial Stroke Displacement Strategy

In PSDS Version 2, the cylinder is capable of being reactivated. Instead of only having

one active period during the downstroke piston motion, the cylinder can be reactivated if

the desired displacement ratio is changed; see Figure D.6. First, the desired displacement

ratio was set to D = 0.5, giving a state change angle of α1 = π/2 rad. When θcyl,i = α1,

the cylinder chamber changed state from active to inactive. After a small period, the de-

sired displacement ratio was stepped up to D = 0.85 which gave a state change angle of

α2 = 3π/4 rad. Since θcyl,i < α, the cylinder was reactivated in the remaining rotation

up to θcyl,i = α2.
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Figure D.6: Valve timing schematics for partial stroke displacement strategy Version 2.

It is not possible to compress the cylinder oil before reactivating the cylinder due to

downwards piston motion. The high pressure valve must therefore open against a high

pressure difference. To avoid cavitation in the cylinder chamber, both the high and low

pressure valves were actuated at the same time, opening the high pressure and closing the

low pressure valve. Reactivation of a cylinder chamber may result in high flow throttling

losses due to flow running directly from the high pressure source to the low pressure source

until the low pressure valve is fully closed. An anti-cavitation valve can be included to

avoid the risk of cavitation in the case of poor timing of the valves.

D.3.3 Sequential Partial Stroke Displacement Strategy

In SPSDS, one combination of active and inactive cylinders was used in a limited amount

of time before a new cylinder combination was activated. The best cylinder combination

can, for example, be found by an optimization algorithm or a search routine. This dis-

placement strategy is characterized by frequent switchings and therefore lower efficiency

compared to, for example, FSDS. In this section, only a short description of the SPSDS

is given. A more detailed description can be found in [25].

For simplicity, a five-cylinder motor will be used as an example when describing the

concept of the SPSDS. For a five-cylinder motor, the cylinder states can be described by a

5-bit binary word, where “1” indicates that the cylinder is active and connected to the high

pressure source and “0” indicates that the cylinder is inactive and connected to the low

pressure source. The left plot in Figure D.7 shows the cylinder torque contribution from a

five-cylinder motor when all cylinders are activated for an entire shaft revolution. When

θ = 4π/7 rad, three chambers provided a positive torque, and two chambers provided

a negative torque. For a five-piston motor, there are in all 2Nc = 32 possible cylinder

configurations. At θ = 4π/7 rad, the 32 possible cylinder configurations gave only 31
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distinct output torques because all cylinders connected to the high pressure source and all

cylinders connected to the low pressure source gave the same output torque, Tm = 0 Nm.

The 31 distinct output torques when θ = 4π/7 are shown in the right plot in Figure D.7.

The red point corresponds to activation of Cylinder Numbers 1 and 2 (Uc = [1 1 0 0 0]).

Figure D.7: Cylinder torque (left plot) and possible torque levels at θ = 4π/7 (right plot).

Rotating the motor shaft one revolution with the same cylinder configuration will

result in sinusoidal output torque. The cylinder configuration was therefore changed

after a short period in order to meet the desired output torque. In this work, a search

routine was used to find the best cylinder configuration. Figure D.8 shows the block

diagram of the controller. The input to the system was the desired motor torque, and the

output was the actual motor torque. A search routine was used to find the best cylinder

configuration based on the desired motor torque Tdes, the current motor shaft position θ,

the motor shaft speed θ̇, and a look-up table. The look-up table was estimated offline

and described the output torque T11...nm, for all possible cylinder configurations Uc1...cm

at given shaft positions θ1...n. In this work, the cylinder configuration, Uc, was updated

every Tupdate = 20 ms and given by:

Uc(k) = arg

(
min
Uc

(∣∣TLuT (θ, Uc)− Tdes
∣∣)) (D.16)

where k is the sample index and TLuT is the average output torque estimated from the

look-up table over the interval of rotation to which the valve configuration, Uc(k), will be

applied. The applied interval is defined as [θ, θ + ∆θ] where ∆θ = θ̇ · Tupdate.
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Figure D.8: Schematic of open loop control for SPSDS.

Figure D.9 shows the result of the described controller for a five-cylinder motor. The

red line in the left plot shows the desired motor torque, Tdes, and the blue line shows the

actual motor torque, Tm. The right plot shows the torque contribution from every single

cylinder. It can be seen that the cylinder configuration was frequently switched and that

the best cylinder configuration included both motoring and pumping cylinders.

TmTm

TdesTdes

Tm

Tdes

Tm

Tdes

Figure D.9: Example of DDM operation with SPSDS.

D.4 Experimental Test Rig

In order to validate the simulation model of the DDM, a test rig has been developed.

The test rig was designed to facilitate digital displacement operation on a single cylinder.

It was assumed that all cylinders in the same motor had the same characteristics. There-

fore, if the operation of one cylinder can be validated, the entire motor model is valid.

The test rig was based on a previously-developed test rig at Aalborg University,

Denmark [24]. The previously-developed test rig was mainly developed to test the per-

formance, durability, and power losses of novel prototype on/off valves used in digital

displacement machine operation. The prototype valves were moving coil, moving magnet,

and solenoid actuated poppet valves. Those poppet valves were designed to be passively

opened. This limits the selection of displacement strategies. The test rig was therefore

modified to operate with commercially-available valves that were able to open against high

pressure difference in order to test the displacement strategies described in Section D.3.
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The following sections present the test rig, hydraulic diagram, and validation of the

simulation model.

D.4.1 Test Rig Description

A test rig for testing different displacement strategies has been designed and built. The test

rig is shown in Figure D.10. The test rig was based on a five-cylinder Calzoni MR250 radial

piston motor, which has been modified to operate with digital displacement technology

on one cylinder. A permanent magnet synchronous electric machine was used to control

the rotational speed. The control block was used to supply the modified radial piston

motor with appropriate pressures and volume flows. The control block was supplied by a

250-kW variable displacement pump station, not shown in the picture. The power cabinet

contained power supplies, valve drivers, a data acquisition system, and control systems.

Modified radial 

piston motor

Permanent magnet synchronous 

electrical machine

Frequency converter for 

electrical machine

Power cabinet contaning: power 

supplies, valve drivers, control 

and data acquisition systemControl block

Connection to 

external pump

Torque transducer

Modified radial 

piston motor

Permanent magnet synchronous 

electrical machine

Frequency converter for 

electrical machine

Power cabinet contaning: power 

supplies, valve drivers, control 

and data acquisition systemControl block

Connection to 

external pump

Torque transducer

Figure D.10: Test rig.

D.4.1.1 Modification of the Hydraulic Motor

The hydraulic motor was modified to operate with digital displacement technology on a

single cylinder. Figure D.11 shows the modified hydraulic motor with the custom-made

valve block. The valve block consisted of two on/off valves, two accumulators, three

pressure sensors, and a pressure relief valve with anti-cavitation function. The on/off

valves (1) and (2) were normally open WES-type valves from Bosch Rexroth. The flow

capacity was approximately 45 L/min with a pressure drop of 5 bar. The switching time

was below 5 ms. The hydraulic accumulators were 0.7-L diaphragm types from Bosch

Rexroth. The low pressure accumulator (3) was pre-pressurized with 5 bar, and the high

pressure accumulator (4) was pre-pressurized with 80 bar. There were in all three pressure
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transmitters mounted on the valve block. They measured the pressure in the low pressure

source (5), high pressure source (6), and in the cylinder chamber (7). For safety reasons,

a pressure relief valve with anti-cavitation function (8) was connected to the cylinder

chamber to avoid very high cylinder chamber pressure and cavitation. A new top cover

(10) for the modified cylinder has been designed and manufactured. This was done to

block the original oil connection (12) between the port plate and the cylinder chamber

and to create a new connection to the valve block. Also connected was an encoder on the

motor shaft for shaft position measurements (not shown in Figure D.11). Table D.2 lists

all parts used in the valve block.

1

2

3

4

5
7

6

8

9

11

10

12

1) LP valve

2) HP valve

3) LP accumulator

4) HP accumulator

5) Pressure transducer, pL

6) Pressure transducer, pH

7) Pressure transducer, pcyl

8) Pressure relief valve

9) Drain line

10) New top cover

11) Connection to port plate

12) Blocked connection to port plate

13) Connection LP source

14) Connection HP source

15) Valve block

16) Hydraulic motor

13

14

15

16

1

2

3

4

5
7

6

8

9

11

10

12

1) LP valve

2) HP valve

3) LP accumulator

4) HP accumulator

5) Pressure transducer, pL

6) Pressure transducer, pH

7) Pressure transducer, pcyl

8) Pressure relief valve

9) Drain line

10) New top cover

11) Connection to port plate

12) Blocked connection to port plate

13) Connection LP source

14) Connection HP source

15) Valve block

16) Hydraulic motor

13

14

15

16

Figure D.11: Illustration of the modified radial piston motor.
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Table D.2: Part list of the modified motor.

Description Part Number Ordering Code Manufacturer

On/off valve 1 and 2 3WES 8 P1XK/AG24CK50/V Bosch Rexroth

Accumulator 3 and 4 HAD-0.7-250-1x/50Z06A-1N111-BA Bosch Rexroth

Pressure transducer 5 HM 20-2x-100-H-K35 Bosch Rexroth

Pressure transducer 6 and 7 HM 20-2x-400-H-K35 Bosch Rexroth

Pressure relief valve 8 PLC053 393000K179 Parker

Hydraulic motor 16 MR250D-P1Q1N1C1N07 00 Delivered by Parker

Position encoder - SCH32F-5000-D-08-26-65-00-S-C8-S3 Scancon

D.4.1.2 Hydraulic Diagram

The hydraulic diagram for the test rig is shown in Figure D.12. The hydraulic diagram

was divided into three main parts; control block, valve block, and the non-modified cylin-

ders. The control block delivered desired pressures and flows to the valve block and the

non-modified cylinder chambers. The control block was designed to facilitate pumping,

motoring, and idling (inactive) operation on the modified cylinder. In this study, only

motor operation was used, and therefore, only motor operation will be described in this

section. Pump operation was described in [26].

1L2.5L 2.5L

1

2

3

4

5

6

7
8

9

10

11

12

13

14 15 16ppump

preturn

pint
pint,reg

pflush

Control block

100 

bar

400 

bar

400 

bar

100 

bar

100 

bar

pH

pcyl

pL

Valve block

17

18

19

20
21

0.7L

0.7L
400 

bar

400 

bar

100 

bar

flushing

Non-modified 

cylinder chambers

flushing

Non-modified 

cylinder chambers

1L2.5L 2.5L

1

2

3

4

5

6

7
8

9

10

11

12

13

14 15 16ppump

preturn

pint
pint,reg

pflush

Control block

100 

bar

400 

bar

400 

bar

100 

bar

100 

bar

pH

pcyl

pL

Valve block

17

18

19

20
21

0.7L

0.7L
400 

bar

400 

bar

100 

bar

flushing

Non-modified 

cylinder chambers

Figure D.12: Hydraulic diagram of the test rig [26].

The pressure reducing valves (1, 3) were used to control the pressure in the high

pressure line, pH , and in the intermediate pressure line, pint,reg. The high pressure line was

used to supply the modified cylinder chamber, and the intermediate pressure line was used
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to supply the four remaining cylinder chambers and for flushing of the machine casing by

using the flow control valve (9). During motor operation, the 4/2 directional control valve

(2) was set opposite of drawn, the gate valve (11) was open, the pressure relief valve (5)

was set to high pressure level, and the remaining cylinder chambers were short circuited

by setting the 3/2 directional control valve (7) opposite of drawn. The accumulators were

used to reduce the pressure oscillations introduced by the digital displacement operation.

D.4.1.3 Sensors

In addition to measuring pressures, as shown in the hydraulic diagram in Figure D.12,

the shaft position and output torque were measured. An incremental Scancon encoder

with 5000 ppr measured the shaft position, and an HBM T12 inductive torque transducer

measured the output torque. The output torque was measured on the shaft connecting

the radial piston motor to the permanent magnet synchronous electric machine.

D.4.2 Results from Experimental Work and Model Validation

The test rig has been used to validate the simulation model. The modified cylinder

has been operated with FSDS, PSDS, and SPSDS. The experimental results have been

compared to the simulation results. Table D.3 shows the opening and closing angles

used in both the experimental work and in the simulation model. Table D.4 shows the

operation conditions. The cylinder chamber dead volume Vd in the simulation model has

been increased from V0 = 5.0 · 10−5 m3 (shown in Table D.1) to V0 = 1.308 · 10−4 m3 in

order to use the same dead volume as in the experimental test setup.

Table D.3: Activation angles.

FSDS PSDS SPSDS

Open HPV 0◦ 0◦ 60◦

Close HPV 154◦ 90◦ 120◦

Open LPV 180◦ 94◦ 125◦

Close LPV 338◦ 338◦ 60◦

Table D.4: Operation conditions.

Description Symbol Value

Operation speed θ̇ 100 rpm

High pressure level pH 110 bar

Low pressure level pL 10 bar
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D.4.2.1 Full Stroke Operation

Figure D.13 shows measured and simulated results of the cylinder pressure pcyl (red line)

and cylinder torque Tcyl (blue line) during full stroke operation as a function of the shaft

position. Note that the cylinder was at TDC when θ = 0 rad and at BDC when θ = π rad.

The left plot shows an inactive cylinder operation, and the right plot shows an active full

stroke motor operation. The light colors show the experimental results, and the dark

colors show the simulation results.
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Figure D.13: Experimental and simulation results for idling and full stroke motor operation

(light color is experimental results, and dark color is simulation results).

For the deactivated cylinder, the simulated chamber pressure matched the measured

pressure. The simulated output torque matched the measured torque in the upstroke

phase, but deviated in the downstroke phase. Some of the negative measured torque may

be due to friction in the motor, but the non-modified cylinder chambers introduced most

of it. As mentioned earlier, the four non-modified cylinder chambers were short circuited

with a 1-L accumulator (15) connected to the short circuit line as shown in the hydraulic

diagram in Figure D.12. If all five cylinders had been short-circuited, the fluid volume

in the short-circuited line would be relatively constant when rotating the radial piston

motor. Since one cylinder was disconnected, the pressure in the non-modified cylinders

would be higher in the downstroke phase than the upstroke phase. The black line in the

left plot in Figure D.14 shows the measured pressure in the short circuit line. The high

pressure in the downstroke phase resulted in a negative torque contribution from the

non-modified cylinders. This torque contribution was simulated by using the measured

pressure. The green line, Tcyl,sim, shows the simulated torque from the non-modified

cylinders added to the simulated cylinder torque, Tcyl. By including the negative torque,

the simulated and experimental measured torques had a close fit, seen by the green- and

light blue-colored lines. The pre-charge pressure of the accumulator (15) was 20 bar.

A pre-charge pressure of 20 bar was unnecessarily high and should have been reduced to

reduce the torque contribution from the non-modified cylinders.
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In the active full stroke motor cycle, shown to the right in Figure D.13, the measured

and simulated torque had the same trends. The simulated torque was a good match in

the upstroke phase, but the measured torque had a lower magnitude in the downstroke

phase due to the negative torque produced by the non-modified cylinders. The green

line in the right plot in Figure D.14 shows the simulated cylinder torque when the torque

contribution from the non-modified cylinders was included, Tcyl,sim. The results show that

the simulated and measured torques were a good match, seen by comparing the green- and

light blue-colored lines. The simulated cylinder pressure matched the measured pressure

quite well, except for small deviations in the compression and decompression phase, seen

in the right plot in Figure D.13. It can be seen that in the experimental work, the cylinder

chamber fluid did not compress fully up to the high pressure level in the compression phase

and decompressed slightly faster in the decompression phase. This may be due to leakage

in the modified cylinder. In the simulation model, it was assumed that the cylinder

was leak free. This assumption does not reflect reality. Some leakage was expected in

order to reduce friction between moving parts in the cylinder. By including some leakage

in the simulation model, the simulated pressure matched very well with the measured.

The improvement can be seen in the compression and decompression phase in the right

plot in Figure D.14.
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Figure D.14: Experimental and simulated results for full stroke motor operation when leakage

was introduced in the simulation model (light color is experimental results, and dark color is

simulation results).

The leakage was included as shown in Equation (3.1).

QL =
w · h3

12 · µ · L
· (pcyl − pd) (D.17)

where w is the width of the leakage path, h is the height of the leakage path, L is the

length of the leakage path, µ is the viscosity of the hydraulic fluid, and pd is the drain

pressure. The width of the leakage path was calculated as w = π · dcyl, where dcyl is the

diameter of the cylinder chamber. The height of the leakage path was adjusted until the
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simulated pressure matched the measured pressure and kept within reasonable values.

The drain pressure was set to pd = 5 bar.

D.4.2.2 Partial Stroke and Sequential Partial Stroke Operation

Figure D.15 shows measured and simulated results of the chamber pressure pcyl (red line)

and the cylinder torque Tcyl (blue line) when motoring with PSDS Version 1 and SPSDS

operation. In PSDS Version 1, shown to the left in Figure D.15, the cylinder chamber

was deactivated at θ = π/2 rad. This corresponds to the most critical switching posi-

tion due to maximum piston velocity. It can be seen that the measured and simulated

chamber pressure matched quite well, except in the compression phase due to some leak-

age in the cylinder and some small oscillations right after θ = 0 rad and θ = 2π rad.

In the downstroke phase, the measured and simulated cylinder torque had the same char-

acteristics, but with a different magnitude due to the negative torque introduced by the

non-modified cylinder chambers. In the upstroke phase, the measured and simulated

output torque matched well.
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Figure D.15: Experimental and simulated results for partial stroke and sequential partial

stroke motor operation (light color is experimental results, and dark color is simulation results).

In the sequential partial stroke operation sequence, shown to the right in Figure D.15,

there was no compression phase, because the cylinder chamber was activated during the

downstroke piston motion. Hence, the cylinder volume was increasing, and the cylinder

fluid can therefore not be compressed. The high pressure valve was opened at the same

angle as the low pressure valve was closed. The measured and simulated pressure matched

very well. The measured and simulated output torques matched very well in the upstroke

phase, but deviated in the downstroke phase due to the negative torque introduced by

the four non-modified cylinder chambers. However, the torque characteristics were the

same, except for some small oscillations in the measured torque.

PSDS Version 1 was quite similar to PSDS Version 2, except that in Version 2,

the cylinder can be reactivated. Reactivation of a cylinder was shown in SPSDS ope-

ration. The PSDS Version 2 was therefore considered as a combination of PSDS Version
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1 and SPSDS. If the simulation model was valid for PSDS Version 1 and SPSDS, it was

also assumed that it was valid for PSDS Version 2.

D.4.3 Discussion

In the experimental measurements, there was some insecurity due to sensor accuracy and

alignment of shaft position and piston position. The piston position was not measured,

but estimated based on the shaft position measurements. The piston position was an

essential parameter considering proper activation of the on/off valves. The piston position

was aligned with the shaft position measurements by comparing measured and simulated

results of the output torque and cylinder pressure. A deviation in the range of a few

degrees was therefore assumed.

There was also insecurity in the valve switchings. The valve position was not measured,

and we can therefore not know exactly when the valves are switched. However, since we are

operating at a low speed, approximately 100 rpm corresponding to 600 ms per revolution,

a valve that opens a few milliseconds too late or too early will not significantly affect

the result.

By comparing the measured and simulated results, it has been shown that the results

matched quite well except for some deviation in the pressure due to leakage in the cylinder

and some deviation in the torque due to negative torque introduced by the four non-

modified cylinder chambers. The main purpose of this work was to analyze the output

torque. By modifying all cylinders, it was assumed that the measured output torque

would be closer to the simulated output torque. The deviation between measured and

simulated pressure was great in the compression phase, but small in the decompression

phase. Since the compression phase occurred close to TDC, an error in the chamber

pressure would have very small influence on the total motor torque, because the torque

contribution at this point was low. The simulation model was therefore assumed to be a

valid model of the digital displacement motor.

D.5 Dynamic Response Analysis

This analysis describes the transient and steady-state characteristics for a DDM operating

with different displacement strategies. This section is divided into three subsections. Each

subsection covers the transient and steady-state analysis of one displacement strategy.
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D.5.1 Full Stroke Displacement Strategy

In FSDS, the cylinders were enabled and disabled on a stroke-by-stroke basis. This

subsection describes the transient and steady-state characteristics of the DDM operating

with FSDS.

D.5.1.1 Transient Response for the Full Stroke Displacement Strategy

The decision of either activating or deactivating the cylinder chamber was made ahead of

TDC, marked by αd in Figure D.2. This decision would affect the output torque until the

piston reached BDC. Hence, the motor shaft had to rotate more than a half revolution

to change displacement fully. As a result, the response time was affected by the shaft

speed. Therefore, this analysis started by analyzing the transient behavior in the shaft

position domain.

Figure D.16 shows the step response in the shaft position domain. The left plot

shows the step-up response when the displacement fraction, D, was stepped from zero

up to 0.25, 0.5, 0.75, and 1. The right plot shows the step-down response when the

displacement fraction, D, was stepped from one down to 0.75, 0.5, 0.25, and 0. The step

was applied at θ = 0 rad. When stepping up, there was a small delay before the torque

started to rise. This delay angle occurred since the decision of activating or deactivating

the cylinder was made ahead of the compression phase. Right before the torque started

to rise, there was a small drop in the torque due to the compression phase in the first

activated cylinder. The response angle when stepping up was θFSup = θd + π. The delay

angle, θd, was calculated as: θd = 2 · π − αd.
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D = 0.5D = 0.5
D = 0.25D = 0.25
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Figure D.16: Step-up response (left plot) and step-down response (right plot) using FSDS

in the position domain.

When stepping down, there is also a delay before reducing the motor torque. When

stepping down to zero displacement, the delay occurred because the decision of activating

or deactivating the cylinder was made ahead of the decompression phase, similar to the

step-up case. The extended delay that occurred when stepping down to D > 0 was due
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to the nature of the delta-sigma modulator. The response angle when stepping down was

θFSdown = θd −∆θ + π, where ∆θ is the phase shift between the cylinders and given by

∆θ = 2 · π/Nc.

Due to the nature of the delta-sigma modulator and the actuation sequence of previous

cylinders, the step-up and step-down response angles were in some cases less than the max-

imum response angles, θFSup and θFSdown. This phenomenon can be seen in Figure D.17.

For the simulated case, it can be seen that the response angle when stepping up deviated

from the normal for the green and purple line. When stepping down, the step response

angle deviated from the normal for the blue and red line.

D = 0.5D = 0.5
D = 0.25D = 0.25
D = 0D = 0

D = 0.8D = 0.8
D = 0.6D = 0.6
D = 0.5
D = 0.25
D = 0

D = 0.8
D = 0.6
D = 0.5
D = 0.25
D = 0

D = 0.8
D = 0.6

D = 0.6D = 0.6
D = 0.5D = 0.5
D = 0.25D = 0.25

D = 1D = 1
D = 0.8D = 0.8
D = 0.6
D = 0.5
D = 0.25

D = 1
D = 0.8
D = 0.6
D = 0.5
D = 0.25

D = 1
D = 0.8

D = 0.5
D = 0.25
D = 0

D = 0.8
D = 0.6

D = 0.6
D = 0.5
D = 0.25

D = 1
D = 0.8

Figure D.17: Step-up response (left plot) and step-down response (right plot) using FSDS

with variable response angles.

In Figure D.18, the step response is plotted in the time domain when stepping the

displacement fraction from zero up to one at various speeds. It can clearly be seen that

the response time was affected by the shaft speed. Assuming that the response angle was

always at maximum, the response time was inversely proportional to the shaft speed.

50 rpm50 rpm
100 rpm100 rpm
200 rpm200 rpm

25 rpm25 rpm
50 rpm
100 rpm
200 rpm

25 rpm
50 rpm
100 rpm
200 rpm

25 rpm

Figure D.18: Transient response FSDS in the time domain operating at various speeds.

D.5.1.2 Steady-State Response for the Full Stroke Displacement Strategy

The steady-state characteristics depend on the number of cylinders, the displacement

fraction, and the shaft speed. Already in Figure D.16, it can be seen that the steady-

state torque tended to oscillate. This section will discuss how the number of cylinders,

the shaft speed, and the displacement fraction affected the steady-state torque.

The left plot in Figure D.19 shows the steady-state torque in the shaft position domain

for motors with various numbers of cylinders and equal motor displacement. The right plot
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shows the steady-state torque from a 15-cylinder motor operating at various displacement

fractions. From the left plot, it can be seen that the amplitude of the torque oscillations

can be reduced by increasing the number of cylinders. From the right plot, it can be

seen that for some selected displacements, for example D = 1, D = 0.5, and D = 0.2,

the output torque was relatively smooth. On the other hand, only a small change in

the displacement may change the cylinder actuation sequence and result in a significant

torque peak or drop; see D = 0.1, D = 0.462, and D = 0.9. A significant torque peak or

drop may not be very critical in high speed motors due to a very short duration, but more

critical in very low speed motors where the exposure time is much longer. Off course,

the inertia of the load will also affect the impact of a torque peak or drop. The number

of smooth outputs can be increased by increasing the number of cylinders.

Nc = 15Nc = 15Nc = 12Nc = 12Nc = 5Nc = 5 Nc = 15Nc = 12Nc = 5 Nc = 15Nc = 12Nc = 5
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Figure D.19: Steady-state response FSDS with various numbers of cylinders (left plot) and

at various displacements (right plot).

The frequency of the torque oscillations is affected by the rotational shaft speed. This

can be seen in Figure D.18 where the frequency of the steady-state oscillations was clearly

increased when increasing the speed.

D.5.2 Partial Stroke Displacement Strategy

In PSDS, the cylinders were activated in only a portion of the downstroke piston motion.

This section describes the transient and steady-state characteristics for both PSDS Version

1 and PSDS Version 2. Note that the steady-state characteristics were the same in Version

1 and Version 2.

D.5.2.1 Transient Response Version 1 of the Partial Stroke Displacement

Strategy

In PSDS Version 1, the cylinders can only have one active period during the downstroke

motion. Hence, the motor needs to rotate in order to increase displacement, similar to

the FSDS. Therefore, the step response is constant in the shaft position domain, but will

vary with shaft speed in the time domain. Figure D.20 shows the step response in the
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shaft position domain. In the left plot, the displacement fraction was stepped up from 0.1

to 0.25, 0.5. 0.75, and 0.95. In the right plot, the displacement was stepped down from

0.95 to 0.75, 0.5, 0.25, and 0.1. The step was applied at θ = 0 rad.
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Figure D.20: Step-up response (left plot) and step-down response (right plot) using PSDS

Version 1 in the position domain.

From the left plot, it can be seen that there was no delay before increasing the torque,

but the step-up response angle was affected by the magnitude of the applied step. A small

step gave a small response angle. In fact, the relation between the change in the state

change angle (∆α) and the response angle (θPSup) was 1:1, or ∆α = θPSup.

It can be seen that the step-down response angle was much lower than the step-up

response angle. The step-down response angle was affected both by the response time of

the valves and the angle the shaft needed to rotate in order to decompress the cylinders.

Assuming that the valve was fast compared to the time it took for the shaft to rotate

the distance needed to decompress the oil, the response angle was approximately equal

to θPSdown ≈ θdecomp, where θdecomp is the decompression angle.

Figure D.21 shows the step response in the time domain at various speeds. The left

plot shows the step-up response when the displacement ratio was stepped from 0.1–0.95.

The right plot shows the step-down response when the displacement ratio was stepped

down from 0.95–0.1. It can be seen that the step-down response time was much faster than

the step-up response time. It can also bee seen that the response time was proportional to

the speed. The step-up response time was equal to the time it took to rotate the step-up

response angle (θPSup), and the step-down response time was equal to the time it took to

rotate the step-down response angle (θPSdown).
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Figure D.21: Step-up response (left plot) and step-down response (right plot) using PSDS

Version 1 in the time domain operating at various speeds.

D.5.2.2 Transient Response Version 2 of the Partial Stroke Displacement

Strategy

In PSDS Version 1, the step-up response time was much larger than the step-down re-

sponse time. The step-up response time can be improved by using valves that can reacti-

vate an already deactivated cylinder chamber. In PSDS Version 2, the step-up response

time was constant and no longer affected by the motor speed, nor the magnitude of the

step. This is shown in Figure D.22. The left plot shows the step response in the time

domain when stepping up at various speeds, and the right plot shows the step response in

the time domain when stepping up to various displacement ratios with shaft speed kept

constant. The left plot shows that the step-up response time was equal at various speeds.

The step response was approximately equal to the response time of the on/off valves,

which in this simulation was Ts = 5 ms. The right plot shows that the response time was

equal regardless of the magnitude of the displacement step, unlike PSDS Version 1.
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50 rpm50 rpm
25 rpm25 rpm
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Figure D.22: Transient response PSDS Version 2 in the time domain at various speeds (left

plot) and displacement step up to various displacements (right plot).

D.5.2.3 Steady-State Response Partial Stroke Displacement Strategy

The steady-state response was characterized by small ripples and was equal for PSDS

Version 1 and Version 2. The shape was constant in the shaft position domain, but the

frequency would vary with the speed in the time domain. Therefore, the steady-state

torque shape was analyzed in the position domain.
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The amplitude of the ripples was affected by the used displacement ratio and the

displacement of the cylinders. The left plot in Figure D.23 shows the steady-state torque

at different displacement ratios, and the right plot shows the steady-state torque for

DDMs with various numbers of cylinders and equal motor displacement. The left plot

shows that the maximum amplitude occurred when operating at 50% displacement. Fifty

percent displacement corresponds to changing the cylinder state from active to inactive

when θcyl,i = π/2. From Equation (2.12), it can be seen that at this shaft position,

the torque contribution is at its highest. The smoothest output torque occurred when

operating with very high or very low displacement ratios, meaning that the valves were

switched close to TDC or BDC where the torque contribution from each cylinder was low.

From the right plot, it can be seen that the amplitude was reduced when the number of

cylinders was increased; meaning that the cylinder displacement was reduced and therefore

also the torque contribution from each cylinder was reduced. The frequency of the ripples

was also increased when the number of cylinders was increased. The shaft speed would

also affect the frequency of the output torque ripples.
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Figure D.23: Steady-state response PSDS at various displacements (left plot) and with

various numbers of cylinders (right plot).

D.5.3 Sequential Partial Stroke Displacement Strategy

In SPSDS, the cylinders are activated for limited periods. The activation sequence was

found by a search routine. In this section, the transient and steady-state characteristics

of the SPSDS operation is analyzed.

D.5.3.1 Transient Response Sequential Partial Stroke Displacement Strategy

The step-up and step-down response in the time domain is shown in Figure D.24. The

step-up and step-down responses had no delay and were equal and independent of the

magnitude of the step and the shaft speed. The response time was mostly affected by the

response time of the on/off valves.
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Figure D.24: Step-up response (left plot) and step-down response (right plot) using SPSDS

in the time domain.

D.5.3.2 Steady-State Response Sequential Partial Stroke Displacement

Strategy

The steady-state torque tends to oscillate. The torque ripples are affected by the motor

speed, the number of cylinders, and also the update frequency of the controller. In Fig-

ure D.25, the desired torque was set to 2000 Nm. In the left plot, the motor was operated

at various speeds, 100 rpm, 50 rpm, and 25 rpm, respectively. It can be seen that the

torque ripples tended to decrease with shaft speed.
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Figure D.25: Steady-state response SPSDS at various shaft speeds (left plot), with various

numbers of cylinders (mid plot) and various controller update frequencies (right plot).

The middle plot shows the steady-state torque for two motors with equal motor dis-

placement, but a different number of cylinders. The red line shows the output torque

from a seven-piston motor, and the blue line shows the output torque from a 15-piston

motor. It can be seen that the torque ripples were reduced when the number of cylinders

was increased. This is because the number of possible cylinder configurations was affected

by the number of cylinders (2Nc). By increasing the number of cylinders, the number of

distinctive output levels would also be increased. Hence, the probability of finding a valve

configuration that meets the desired output torque was increased.

The right plot in Figure D.25 shows the motor output torque when the controller

update frequency varied. The controller update time was set to 80 ms for the black line,

40 ms for the blue line, and 20 ms for the red line. A reduction in the torque ripples can

be seen when the controller update time was changed from 80 ms and down to 40 ms.
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A further reduction in the torque ripples can be seen when the update time was decreased

down to 20 ms.

The search routine used in this work is shown in Equation (2.17). Another search

routine may also affect the torque ripples. It is not in the scope of this work to further

investigate other search routines.

D.6 Discussion

In this section, the transient and steady-state response of the presented displacement

strategies will be discussed. In Figure D.26, both the input signal and the output torque

are plotted when a sinusoidal input signal with increasing frequency is given. In order to

be able to compare the output torque to the input signal, the values on the y-axis were

normalized. The DDM was operating with FSDS in the first plot, PSDS Version 1 in the

second plot, PSDS Version 2 in the third plot, and SPSDS in the last plot. The motor

was operating at 50 rpm in all cases.
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Figure D.26: DDM torque response with a sinusoidal input signal operating at 50 rpm.
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As shown earlier, the transient response when operating with FSDS is known to have

a delay and is highly affected by the operation speed. This can clearly bee seen in the

top plot. At low frequencies, the output torque was phase shifted to the input signal due

to the delay. When increasing the frequency, the amplitude of the output torque started

to decrease because of the high response time at low operation speeds. By increasing the

operation speed, the time delay would be reduced and the amplitude would reach one for

a higher input frequency. The FSDS is most suited for use in high speed operations due to

the delay in the transient response and the fact that the response time is highly affected

by the speed. The FSDS is also considered to be the most energy efficient displacement

strategy due to few valve switchings and only actuating the valves close to TDC and BDC

where the volume flow is low.

Both in FSDS and PSDS 1, the response time was highly affected by the operation

speed. However, the response of PSDS Version 1 shown in the second plot in Figure D.26

was much better than for FSDS, especially at low frequencies. This is because in PSDS

Version 1, there was no delay, and the step up response time was affected by the magnitude

of the step. A small step has a low response time. PSDS Version 1 is also known to have

much faster response time when stepping down compared to stepping up. This is clearly

seen when increasing the input frequency. The output torque followed the input signal in

the torque reduction phase, but rose too slow in the torque increasing phase. The output

torque tended to oscillate with small ripples. The magnitude of the ripples can be reduced

by increasing the number of cylinders. The frequency was affected both by the number

of cylinders and the operation speed. A small number of cylinders will result in a large

magnitude of the ripples and should be avoided. Since the step-up response time is

highly affected by the operation speed, this displacement strategy should only be used for

medium and high speed operations. The controllability is considered to be higher than

for FSDS, but the energy efficiency is considered to be lower due to activating all cylinder

chambers and switching valves mid-stroke when the flow is high.

PSDS Version 2 can have more than one active period in one downstroke piston motion.

This results in a response time that no longer is affected by the operation speed, but is

closer to the response time of the on/off valves. The third plot in Figure D.26 shows

that the PSDS Version 2 had high controllability and followed the input signal very well,

also at higher frequencies. The small torque ripples seen for the PSDS Version 1 can also

be seen for the PSDS Version 2 (best seen at low frequencies). Due to reactivation of

cylinder chambers, the energy efficiency will be lower than for PSDS Version 1 and FSDS.

Because of the high controllability, also at low speeds, the PSDS Version 2 is most suited

for low speed operations.

The SPSDS is characterized by frequently switchings. From the fourth plot in Figure D.26,

259



Using Digital Hydraulics in Secondary Control of Motor Drive

it can bee seen that the output torque followed the input signal very well. The output

torque had some small ripples. Those ripples were smaller than for the PSDS, but will

be increased if the speed increases, the number of cylinders is reduced, or the controller

update frequency decreases. Due to the frequent switchings, the energy efficiency was the

lowest of the investigated displacement strategies. SPSDS should only be used in very

low speed operations because the torque ripples are increased at higher speeds.

The main characteristics of the investigated displacement strategies are summarized

in Table D.5.

Table D.5: Summary of transient and steady-state characteristics

FSDS PSDS 1 PSDS 2 SPSDS

T
ra

n
si

en
t

re
sp

on
se Delay-time

Some delay due
to decision angle
ahead of TDC

No delay No delay No delay

Response
time

Affected by shaft
speed

Affected by shaft
speed and
displacement step

Affected by valve
response time

Affected by valve
response time

Overshoot No overshoot No overshoot No overshoot No overshoot

S
te

ad
y
-s

ta
te

re
sp

on
se

Magnitude
of torque
ripples

Affected by displa-
cement ratio &
number of cylinders

Affected by displa-
cement ratio &
number of cylinders

Affected by displa-
cement ratio &
number of cylinders

Affected by shaft
speed, controller
update rate &
number of cylinders

Frequency
of torque
ripples

Affected by shaft
speed & number
of cylinders

Affected by shaft
speed & number
of cylinders

Affected by shaft
speed & number
of cylinders

Affected by contr-
oller update rate

D.7 Conclusions

In this paper, the transient and steady-state characteristics of a DDM operating with

FSDS, PSDS Version 1, PSDS Version 2, and SPSDS have been investigated by simula-

tions. The simulation model has been verified by experimental work.

The FSDS is characterized by a response time that is proportional to the velocity of

the motor. Generally, the motor has to rotate approximately a half shaft revolution to

change displacement fully. Due to the nature of the delta-sigma modulator, the response

angle may vary in some cases. The output torque is relatively smooth, but for some dis-

placements, a significant peak or drop in the output torque may occur. By increasing the

number of cylinders, the number of smooth output torques will be increased. The FSDS

struggles to follow a sinusoidal input signal when the motor speed is low. Therefore,

if controllability is important, this displacement strategy should only be used in high

speed units.

In this paper, two different versions of the partial stroke displacement strategy have

been investigated. In Version 1, the cylinders can only have one active period during
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the downstroke piston motion. For this version, the motor had to rotate to increase the

displacement. Therefore, the step-up response time was affected by the motor speed.

The step-up response time was also affected by the magnitude of the step because the

response angle was equal to the change of the state change angle, ∆α. The response

time when stepping down was equal to the time it took to close the high pressure valve

and decompress the deactivated cylinders, which was much faster than the response time

when stepping up. The output torque tended to oscillate. The highest peaks occurred

when operating at D = 50%, which corresponds to the switching state when the torque

contribution from each cylinder is at its highest. The magnitude of the torque ripples

will be reduced when operating with displacements closer to full or zero displacements.

The magnitude can also be reduced by increasing the number of cylinders.

In PSDS Version 2, the step-up response time has been reduced by allowing the cylin-

ders to be reactivated. Reactivating a cylinder will result in higher valve throttling losses

and flow and pressure peaks in the system, but will also improve the controllability at low

speeds. The step-up response time is no longer affected by the speed or the magnitude of

the step, but by the response time of the on/off valves. When giving a sinusoidal input

signal, the PSDS Version 1 struggles to increase the output torque fast enough at higher

frequencies and should therefore only be used in medium and high speed operations.

The PSDS Version 2 follows the input signal well even at high input frequencies and low

speed. The controllability for Version 2 is, therefore, better than for PSDS Version 1 and

is suitable for operation at low and medium speeds.

The SPSDS is characterized by frequent switching. The response time was approxi-

mately equal to the response time of the on/off valves. The output torque was smoother

when operating at low speeds compared to high speeds. Increasing the number of cylin-

ders will increase the number of possible output torques and thereby reduce the torque

ripples. The SPSDS has high controllability and follows a sinusoidal input signal smoothly

when operating at low speeds. SPSDS is suited for use in very low speed operations, but

should be avoided in high speed operations due to increased torque, flow, and pressure

ripples at higher speeds.
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Abbreviations

DDM Digital displacement motor

FSDS Full stroke displacement strategy

PSDS Partial stroke displacement strategy

SPSDS Sequential partial stroke displacement strategy

TDC Top dead center

BDC Bottom dead center
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Abstract – A subsea crane is normally mounted on a floating vessel and

equipped with a winch system. The crane can operate in water down to

3000 m. The vessel tends to move up and down due to waves. This heave

motion makes offshore lifting operations challenging. In order to ease the

winch operation in rough sea, the winch can be equipped with additional

systems like active heave compensation and constant tension. In active heave

compensation and constant tension system, both motion and force control of

the winch are important. This paper presents a digital displacement winch

drive system and gives a description of challenges related to subsea lifting

operations. The operation challenges are used to design a set of test cases for

evaluating the performance of the digital displacement winch drive system.

E.1 INTRODUCTION

The digital displacement technology is experiencing increased interest due to its flexibility

and promising results regarding energy efficiency. In a piston-type digital displacement

machine, each cylinder chamber is connected to two fast switching on/off valves. By

controlling the on/off valves, the cylinder chambers can be connected to either high or

low pressure. This means that each cylinder can be controlled individually and only

pressurized when necessary resulting in losses that scales with the motor displacement.

A detailed description of the digital displacement technology can be found in [1, 2, 3, 4].

Digital displacement machines have earlier been proposed to be used in various appli-

cations like on- and off-road vehicles and in large power take-off systems in the renewable

energy industry [5, 6, 7, 8, 9, 10, 11, 12]. Lately, the company Diinef AS proposed to use
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the digital displacement technology in large offshore winches and presented a displacement

strategy for use in very low speed operations [13].

Offshore winches intended for use in subsea cranes are normally single drum winches

actuated by one or more high speed hydraulic motors and gearboxes. The driving torque

is transferred to the winch drum through a pinion and gear ring mounted on the drum.

Figure E.1 shows an example of a subsea crane with a winch actuated by 12 hydraulic

motors.

Winch

Hydraulic 

motors
Winch

Hydraulic 

motors

Figure E.1: Subsea crane equipped with a hydraulic winch system [14].

One of the main concerns during subsea lifting operations from a floating vessel is

the disturbance from the sea waves. The lifting operation needs to be carried out within

a specified weather window. A weather window is a period where the weather forecast

indicates that a given set of activities can be performed within there required environ-

mental conditions, for example within given wave heights and wave frequencies. The

weather window is affected by the lifting operation, size of the vessel and type of pay-

load. Waiting for suitable weather conditions is costly. Increasing this weather window

will therefore result in cost reductions. One way of increasing the weather window is to

include operation modes like active heave compensation (AHC) and constant wire tension

(CT) systems. An AHC system is used to decouple the vertical vessel motion from the

payload motion. This means that the winch operator can control the payload relative to

a fixed surface, for example the sea bed. The AHC system, normally utilizes a motion

reference unit (MRU) to measure the unwanted vessel motion and actively activate the

winch to counteract this motion. The CT system is used to keep the wire tension at a

given pre-set value regardless of motion. A load cell is normally used to measure the wire

tension. If the measured value deviates from the pre-set value, the winch will pull in or

pay out wire rope to maintain the pre-set value.

Several papers present control systems for both AHC and CT systems. In [15], the au-

270



Paper E. Definition of Performance Requirements and Test Cases for Offshore/Subsea
Winch Drive Systems with Digital Hydraulic Motors

thors proposed a position feedback with a velocity and acceleration feedforward controller

for the motion controller and a closed feedback loop with a P controller for the force

controller. In [16], the authors proposed a cascade controller to improve motion tracking

performance. The cascade controller has an inner velocity loop with a velocity feedfor-

ward and an outer position loop. The outer position loop has a P controller and the inner

velocity loop has a PI controller. The non-linearity of hydraulic winch systems decreases

the motion tracking performance for linear controllers. The motion tracking performance

can be improved by utilizing an adaptive feedforward controller [17], by using a backstep-

ping sliding mode controller [18] or using predictive control where the winch parameters

are estimated real-time [19]. An approach of damping the payload in active heave com-

pensation has successfully been implemented in simulations by Yuan [20]. The novelty in

[20] is to include the cable dynamics in the compensation system. Work presented in [21]

proposes using measurements of wave amplitude as a feedforward compensator within an

active heave compensation system to improve operation performance during the water

entry phase.

Digital displacement motors are known to have pulsating output torque and to be com-

plicated to control. Despite of these characteristics, we have in this paper chosen to show

their control performance in an offshore winch drive system. The second section presents

the simulation model of the mechanical winch system and the digital displacement mo-

tor. The third section describes the controller and gives a description of the displacement

strategy used on the digital displacement motor. The fourth section presents challenges

in subsea lifting operations and test the digital displacement winch drive system in three

relevant test cases.

E.2 SIMULATION MODEL

In this study, a winch with max safe working load (SWL) equal to 20000 kg is used as

a case study. The winch is a single drum winch type with a drum capacity of 3660 m

of wire. The winch is driven by a digital displacement winch drive system consisting of

several high torque low speed digital displacement motors (DDMs) with a total of 42

pistons. The motor torque is transfered to the winch drum through a pinion and gear

ring. The pistons can be distributed on several motors placed around the gear ring on

the winch drum. For simplicity, in the simulation model, it is assumed that all pistons

are placed on one motor with the pistons uniformly distributed around the motor shaft.

The simulated system is shown in Figure E.2. rd is the drum radius, reff is the effective

radius of the outer wire layer, wd is the drum width and mload is the mass of the payload.

The simulation model is divided into two main parts: the mechanical winch system and
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Figure E.2: Simulation system.

the digital displacement winch drive system.

E.2.1 Mechanical Winch System

The mechanical winch system consists of the winch drum, wire rope and the payload. The

simulation model is based on the winch model described in [16]. It is assumed that the

payload is either located in air or fully submerged in water. Hence, the transition phase

between water and air is not included in this simulation model.

The simulation model is derived based on the dynamic model schematic, the free body

diagram and the kinetic diagram shown in Figure E.3. The wire is modeled as a mass-

spring-damper system and the seabed is modeled as a spring-damper system, shown in

the dynamic model schematic. Based on the free body diagram and the kinetic diagram,

Newton’s second law of motion is used to describe the rotational motion of the drum and

the vertical motion of the payload.∑
τ = Jeff · θ̈d = Tdrive − Tf − Fw1 · reff (E.1)∑

Fx = (mc +ma) · ẍpl = Fw2 + Fb + FN − Fd −mc · g (E.2)

where Tdrive is the driving torque acting on the drum, Tf is the friction torque in the

drum bearings, Fw1 is the wire force in the upper wire section, Fw2 is the wire force in the

lower wire section, reff is the effective radius of the outer wire layer, Jeff is the effective

mass moment of inertia relative to the drum axis, mc is the mass of the combined load,

ma is the added mass, Fb is the buoyancy force, Fd is the drag force, FN is the seabed

interaction force and g is the acceleration of gravity. The driving torque is given by the

motor torque and calculated in Section E.2.2.

The friction torque in the drum bearings, Tf , is assumed to be a combination of
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Figure E.3: System dynamics (left figure), free body diagram (middle figure) and kinetic

diagram (right figure).

coulomb and viscous friction and it is calculated as shown in Equation E.3.

Tf = (md · g + Fw1) · rb · µc · tanh(θ̇d · 1000)︸ ︷︷ ︸
Tcoulomb

+µv · rb · θ̇d︸ ︷︷ ︸
Tviscous

(E.3)

where md is the mass of the drum and the mass of the wire rolled onto the drum, rb is the

radius of the drum bearings, µc is the coulomb friction coefficient and µv is the viscous

friction coefficient. The coulomb friction coefficient is approximated as µc = 0.1 and the

viscous friction coefficient is approximated as µv = 1000 Ns. The term tanh(θ̇d · 1000)

is used to avoid a step change of the coulomb friction torque when passing through

0 rpm, and to make the transition as steep as practical possible in the simulation model.

However, this friction model is only an approximation and may not reflect the exact

friction characteristics.

From the dynamic model schematic shown in Figure E.3, it can be seen that the wire

is divided into two point masses, mw1 and mw2, with a spring and damper in between.

The connection between the upper wire section and the winch drum, and the connection

between the lower wire section and the payload are assumed to be rigid. Hence, the

motion of the upper wire section is a combination of the vertical motion of the vessel and

the rotation of the drum, ẍw1 = θ̈d ·reff + ẍd. The motion of the lower wire section is equal

to the payload motion, ẍw2 = ẍpl. The wire forces, Fw1 and Fw2, can then be calculated
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as shown in Equation E.4 and Equation E.5.

Fw1 = mw1 · (θ̈d · reff + ẍd) +mw1 · g + Fw2 (E.4)

Fw2 = (θd · reff + xd − xpl) · kw︸ ︷︷ ︸
Fspring

+ (θ̇d · reff + ẋd − ẋpl) · Cw︸ ︷︷ ︸
Fdamper

(E.5)

where ẍd is the vertical acceleration of the vessel, kw is the spring stiffness of the wire

and Cw is the damping coefficient. Note that Equation E.5 is only valid when the wire is

stretched. If the wire is slack, then the wire force is Fw2 = 0 N . The spring stiffness is

calculated based on the wire elasticity, Ew, wire cross-section area, Aw, and the length of

the payed out wire, Lw, as shown in Equation E.6. The damping force is introduced to

compensate for internal friction in the wire rope. The damping coefficient is defined as

10% of the spring stiffness [16] and calculated in Equation E.7. However, this wire model

is only a rough estimation and may not reflect the exact characteristics of the wire.

kw =
Ew · Aw
Lw

(E.6)

Cw =
kw
10

(E.7)

Note that Equation E.7 does not give the correct unit of the damping coefficient. The

correct unit is Ns/m.

The payload is exposed to buoyancy when submerged in water and a viscous drag

force during motion. The buoyancy force includes the buoyancy of the payload and the

submerged wire. The buoyancy force, Fb, and drag force, Fd, is calculated as shown in

Equation E.8 and Equation E.9 [22].

Fb = ρsea · g · (Vpl + Vw) (E.8)

Fd =
1

2
· ρsea · Cd · Apl · ẋpl · |ẋpl| (E.9)

where ρsea is the sea water density, Vpl is the volume of the payload, Vw is the volume of

the submerged wire, Cd is the drag force coefficient and Apl is the projected cross-section

area of the payload normal to the motion. Note that the buoyancy and drag force are

only applied when the payload is submerged in water. For the payload considered in this

work, see Figure E.2, the drag coefficient is Cd = 0.85 [22].

The seabed is normally modeled as a spring-damper system [16]. The seabed interac-

tion force, FN , is calculated as shown in Equation E.10.

FN = (−xpl − Lsb) · ksb − ẋpl · Csb (E.10)

where ksb is the spring stiffness for the seabed, Csb is the damping coefficient for the seabed

and Lsb is the length down to the seabed. The spring stiffness is set to ksb = 4000000
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N/m and the damping coefficient is Csb = 1000000 Ns/m. FN only acts if the payload

is in contact with the seabed. In reality the damping and stiffness coefficient will depend

on the contact area of the payload.

During winch operation, the wire rope is either payed in or out, causing variation in

the mass moment of inertia and a stepwise variation of the effective drum radius due to

switching between wire layers. In this study, it is assumed that each test case can be

carried out on only one wire layer. The effective drum radius, reff , is therefore constant

during the operation. The effective mass moment of inertia varies as a function of the

mass of the wire on the drum. It is assumed that the wire is uniformly distributed around

the drum. The effective mass moment of inertia is calculated as shown in Equation E.11.

Jeff = Jd +
1

2
·mwd · (r2

d + r2
eff )︸ ︷︷ ︸

Jwire

+Jm ·N2
gear (E.11)

where Jd is the mass moement of inertia of the drum, mwd is the mass of the wire rolled

onto the drum, Jm is the mass moment of inertia of the DDM and Ngear is the gear ratio

of the pinion and gear ring.

The combined mass, mc, consists of the mass of the payload, mload, hook, mhook, and

the lower wire section, mw2. The combined mass is calculated as shown in Equation E.12.

mc = mload +mhook +mw2 (E.12)

The added mass, ma, is inertia included when the load is submerged in water because

the payload must move some volume of surrounding water as it moves through it. The

added mass is in reality affected by the payload geometry, motion amplitude and the

depth of submergence, but is normally calculated as shown in Equation E.13 [22].

ma = ρsea · CA · VR (E.13)

where CA is the added mass coefficient and VR is the reference volume. The added mass

coefficient is set to CA = 0.72 and the reference volume is VR = Vpl for the load considered

in this work [22].

The vessel will heave due to wave motion. Ocean waves are irregular and random

in shape, height, length and speed propagation. It is assumed that the vessel has a

similar motion and that the heave motion can be described by the Pierson-Moskowitz

wave spectrum [23]. The vessel motion is calculated using the method shown in [24]. An

example of the heave motion of the vessel is shown in Figure E.4. In this figure, the

significant wave height is set to Hs = 1.3 m and the typical wave period is Tp = 9 s.

Equation E.4 and Equation E.5 show that the dynamics of the payload is affected by

the vessel motion, but it is assumed that the motion of the payload will not affect the
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Figure E.4: Example of vessel motion described by Pierson-Moskowitz wave spectrum,

Hs = 1.3 m and Tp = 9 s.

motion of the vessel. This simplification is based on the following: the payload mass is

much smaller then the mass of the vessel and the payload contribution to mass moment

of inertia around the center of gravity is much smaller than the mass moment of inertia

of the vessel.

E.2.2 Digital Displacement Winch Drive System

The digital displacement winch drive system consists of a high torque low speed DDM

directly connected to a high pressure source and a low pressure source. The right side in

Figure E.5 shows a schematic illustration of a 5 cylinder DDM and the left side shows the

schematics of a single cylinder.
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Figure E.5: Sketch of single cylinder (left side) and a 5 cylinder DDM (right side).

The output torque of the DDM is transfered to the winch drum through a pinion and

gear ring. It is assumed that there are no friction losses between the pinion and the gear

ring and that there is no slack. Hence, the following linear relations are applicable.

Tdrive = Tm ·Ngear (E.14)

θm = θd ·Ngear (E.15)

where Tm is the DDM torque and θm is the rotational shaft position. The DDM output

torque is the sum of the torque contribution from every single cylinder.
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The simulation model of the DDM is based on the model described and experimental

validated in [25]. For simplicity, the governing equations are derived for a single cylin-

der, cylinder number i, but the same procedure is used for all cylinders. The following

assumptions are made for the DDM model:

− Constant pressure in the high and low pressure source.

− Valve dynamics can be described by a second order system.

− Leakage in valves and cylinders is negligible.

− Friction in the DDM is negligible.

− The combined inertia of the shaft and pistons is constant (Jm = constant)

The continuity equation is used to calculate the pressure dynamics in cylinder chamber

i.

ṗcyl,i =
βeff,i
Vcyl,i

·
(
QH,i −QL,i − V̇cyl,i

)
(E.16)

where βeff,i is the effective bulk modulus of the hydraulic fluid, Vcyl,i is the cylinder

volume, QH,i is the volume flow through the high pressure valve and QL,i is the volume

flow through the low pressure valve.

The cylinder chamber volume and its rate of change are given by

Vcyl,i = V0 +
Vd
2
· (1− cos(θcyl,i)) (E.17)

V̇cyl,i =
Vd
2
· sin(θcyl,i) · θ̇m (E.18)

where V0 is the dead volume in the cylinder chamber, Vd is the piston displacement, θcyl,i

is the local shaft position relative to the piston position, and θ̇m is the shaft speed. The

dead volume is set to V0 = Vd and the piston displacement is Vd = 260 cc/rev. The local

shaft position is 0 rad when the piston is at top dead center. Due to phase shift between

the cylinders, the local shaft position is given by

θcyl,i = θm +
2 · π
Nc

· (i− 1) i ∈ {1..Nc} (E.19)

where Nc = 42 and is the number of cylinders.

The volume flows through the valves, QH,i and QL,i, are described by the orifice

equation as shown below.

QH,i =
uH,i
kf
·
√
|pH − pcyl,i| · sign(pH − pcyl,i) (E.20)

QL,i =
uL,i
kf
·
√
|pcyl,i − pL| · sign(pcyl,i − pL) (E.21)

where uH,i is the opening ratio of the high pressure valve, uL,i is the opening ratio of the

low pressure valve and kf is the flow pressure coefficient. The opening ratios of the valves
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range from 0 to 1, where 0 corresponds to fully closed and 1 to fully open. The transition

time of the valves is Ts = 5 ms.

The opening ratios of the valves are described by second order systems,

üH,i = uconH,i · ω2 − uH,i · ω2 − 2 · ζ · ω · u̇H,i (E.22)

üL,i = uconL,i · ω2 − uL,i · ω2 − 2 · ζ · ω · u̇L,i (E.23)

where uconH,i is the desired position for the high pressure valve, uconL,i is the desired

position for the low pressure valve, ω is the natural frequency of the valves and ζ is the

damping ratio. The desired valve positions are either 0 or 1 and are given by the chosen

displacement strategy. The displacement strategy is described in Section E.3.1.

The pressure dependent bulk modulus is calculated according to [26] as shown below.

βeff,i =
1

1
βL

+ εg

p
(abs)
cyl,i

(E.24)

where βL is the bulk modulus of the hydraulic liquid and εg is the volume fraction of

undissolved gas. The volume fraction of undissolved gas is calculated by

εg =
1.0(

1.0−εg0
εg0

)
·
(
p
(abs)
atm

p
(abs)
cyl,i

)− 1
κ

+ 1.0

(E.25)

where εg0 is the volume fraction of undissolved gas at atmospheric pressure, p
(abs)
atm is the

atmospheric pressure and κ is the specific heat ratio. The volume fraction of undissolved

gas at atmospheric pressure is set to εg0 = 0.01 and the specific heat ratio is κ = 1.4.

Finally, the torque contribution from cylinder i is calculated as shown in Equation

E.26 and the total motor torque is the sum of the torque contribution from every single

cylinder and calculated in Equation E.27.

Tcyl,i =
Vd
2
· sin(θcyl,i) · pcyl,i (E.26)

Tm =
Nc∑
i=1

Tcyl,i (E.27)

E.3 CONTROL DESIGN

The controller is designed to facilitate operation by joystick, operation with AHC system

and operation with CT system. The designed controller is shown in Figure E.6. The

controller consists of a motion controller (Dmotion) and a wire tension controller (Dtension).

The motion controller is a PID controller with drum position feedback. When operating

without AHC, the reference position is created by moving the joystick. When operating
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Figure E.6: Principal block diagram for winch controller.

with AHC, the vessel motion is subtracted from the joystick signal in order to decouple

the vessel motion from the payload motion. The motion controller gains are kp,m = 50,

ki,m = 100 and kd,m = 5. The wire tension controller is a PI controller with wire tension

feedback. The wire tension controller is enabled in CT mode. The controller gains are

kp,t = 0.0001 and ki,t = 0.001.

The desired displacement, D, is transformed into valve control signals by a displace-

ment strategy. Different displacement strategies have different characteristics, like en-

ergy efficiency characteristics, transient response characteristics and steady-state response

characteristics [25, 27]. Therefore, the displacement strategy should be designed or chosen

based on the desired features of the driven application. An offshore winch system is known

to operate at low speeds, with frequent start and stop and frequently change direction of

rotation. Based on the work presented in [25] it is found that partial stroke displacement

strategy is a good choice for winch operations due to its high controllability at low speeds.

The chosen displacement strategy is referred to as partial stroke displacement strategy

version 2 in [25].

E.3.1 Partial stroke displacement strategy

This section describes the operation principle of partial stroke displacement strategy based

on operation in the first quadrant, hence positive load and positive speed. In partial

stroke displacement strategy, the cylinders are only activated in a portion of the down

stroke piston motion. The term ”active” means that the cylinder is connected to the

high pressure source and contributes with a positive output torque. The displacement

is changed by increasing or decreasing the active part. Figure E.7 shows the schematics

of the valve actuation sequence for one cylinder. Note that the cylinder is able to be

reactivated if the displacement reference is increased. Plot 1 shows the piston position,

Plot 2 shows the opening ratios of the valves, Plot 3 shows the chamber pressure, Plot
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Figure E.7: Principal valve timing schematics for partial stroke displacement strategy.

4 shows the cylinder torque and Plot 5 shows the local shaft position ranging from 0 to

2π rad. The red dotted line in Plot 5 shows the state change angle or the control angle

α. The control angle, α, describes at which local shaft position, θcyl,i, the cylinder shall

change state from active to inactive. If θcyl,i ≤ α the cylinder is active, else the cylinder

is inactive.

For the illustrated situation shown in Figure E.7, the state change angle is first set to

α1 = π/2. When θcyl,i = α1, the cylinder is deactivated. After a short period of time, the

state change angle is stepped up to α2 = 3π/4. Since the local cylinder angle is smaller

then the new state change angle, θcyl,i < α2, the cylinder is reactivated in the remaining

shaft rotation up to θcyl,i = α2.

The state change angle, α, is calculated based on the desired displacement ratio, D.

Where D is defined as the displaced volume during the active period divided by the

maximum piston displacement [27]. Based on the calculation of the cylinder chamber

volume shown in Equation E.17, the displacement ratio is calculated by:

D =
Vcyl(α)

Vcyl(π)
=

1

2
· (1− cos(α)) (E.28)

where Vcyl(α) is the intake volume during the active period and Vcyl(π) is the maximum

intake volume. The state change angle is calculated by rearranging Equation E.28.

α = cos−1 (1− 2 ·D) (E.29)

E.3.2 Four Quadrant Operation

Winch operation requires an actuation system that is able to operate in all four quadrants,

see Figure E.8. The green arrow shows the direction of the shaft speed and the red arrow

shows the direction of the load.
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In partial stroke displacement strategy, the valve timing strategy shown in Figure E.7

is only valid for operation in quadrant 1. Each quadrant require a unique valve timing

strategy. Figure E.9 shows a simplified schematic of the valve timing strategy for all

four quadrants. The top graph shows the piston position and the next four graphs shows
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Figure E.9: Principal valve timing schematics for four quadrant operation.

the valve timing sequence for operation in quadrant 1 to 4 respectively. The red line is

the opening ratio of the high pressure valve and the blue line is the opening ratio of the

low pressure valve. The black line with arrows shows the direction of rotation. Arrows

pointing to the right indicates positive direction and arrows pointing to the left indicates

negative direction of rotation. Note that in quadrant 1 and quadrant 3, α1 is used to

switch cylinder state and in quadrant 2 and quadrant 4, α2 is used to switch cylinder

state.

The schematic of the motor controller is shown in Figure E.10. The input signal is the
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Figure E.10: Principal block diagram for motor controller.

desired displacement ratio, D, and the output is the motor torque, Tm. The state change

angle, α, is calculated based on the desired displacement fraction by using Equation E.29.

The valve timing strategy, Qj, is selected by a switching controller. Based on given

conditions, the proper valve timing strategy is selected. The given conditions are shown

in Equation E.30.

Q =


Q1 if α ≥ 0 ∧ θ̇m ≥ 0

Q2 if α < 0 ∧ θ̇m < 0

Q3 if α ≥ 0 ∧ θ̇m < 0

Q4 if α < 0 ∧ θ̇m ≥ 0

(E.30)

where θ̇m is the motor shaft speed.

E.4 SIMULATION RESULTS

Subsea lifting operations can normally be divided into three main operations: deployment,

recovery, and relocation of payloads on the seabed [28]. Each of these lifting operations

can be further broken down to phases or steps. The most critical steps are:

− Landing or lift-off from deck.

− Entering or exiting the splash zone.

− Landing or lift-off from the seabed.

During landing and lift-off from the deck and crossing the splash zone, the winch is

normally operated by a skilled operator without the use of any additional operation modes.

During landing and lift-off from the seabed, the winch operator can use CT or AHC to

ease the operation. Therefore, both motion control and wire tension control is important.

In order to test the motion controller and tension controller, three test cases are designed.

For the first and second test case, it is assumed that the vessel heaves up and down

due to the waves with a typical wave hight of Hs = 1.3 m and a typical wave period

of Tp = 9 s. The first test case simulates a landing sequence at the seabed when using

AHC. The purpose is to test motion tracking performance at deep waters. A landing

282



Paper E. Definition of Performance Requirements and Test Cases for Offshore/Subsea
Winch Drive Systems with Digital Hydraulic Motors

situation is chosen in order to test the motion tracking performance with heavy and light

payloads. Heavy payloads are tested before landing and light payloads are tested after

landing. The weight of the payload is set to max SWL. The landing speed should be

< 0.15 m/s and the maximum variation in payload position should be < 5 cm when AHC

system is activated.

The second test case simulates a landing sequence on the seabed by using CT. The

purpose is to test the wire tension control performance. A landing situation is chosen in

order to test wire tension control at high tension and low tension. High tension is tested

before landing and low tension is tested after landing. The weight of the payload is set to

max SWL. The preset value of the tension is set slightly below the weight of the payload

in water. The compensation error for the CT system should be < 5 % of maximum SWL

and the impact force during landing must be low.

The third test case simulates a lifting operation where the payload is lifted in the air.

During the lifting operation, external forces are applied to the payload in order to test

the resistance to external force disturbance. In a real lifting operation, external forces

can typically occur during water exit or water entry. This test case should be tested both

with a payload mass equal to 75 % of max SWL and equal to 10 % of max SWL in order

to test motion tracking performance of heavy and light payloads. The external force is

set to 50 % of the force needed to hold the payload at rest and is applied as a step. The

vessel motion is set to zero.

E.4.1 Test Case 1: Landing on the seabed with AHC

Figure E.11 shows the simulation results of landing a 20000 kg payload at the seabed by

using AHC. The water depth is set to 1000 m. Plot 1 shows the drum position and the

reference position, Plot 2 shows the tracking error, Plot 3 shows the payload position,

Plot 4 shows the payload speed and Plot 5 shows the lower wire force, Fw2, and the

seabed interaction force, FN . Note that in Plot 2, the tracking error, θerr = θref − θd, is

multiplied with the effective radius, reff , to convert the error from rotation to translation.

This conversion is done to get a better understanding of the magnitude of the error.

In the first 10 s the AHC is deactivated, the drum position is kept constant and the

payload moves due to vessel motion. After 10 s, the AHC is activated, the winch drum

starts to compensate for the vessel motion and the payload stabilizes at a constant depth

with a variation of ±1 cm. This results is better than the requirements of 5 cm, but may

not be correct. In the simulation model, the slack between the pinion and the gear ring is

not included. Including slack may increase the payload motion. In addition, it is assumed

that the MRU can measure the exact motion of the vessel in real time. In reality, the

measured vessel motion is not exactly equal the real vessel motion.
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Figure E.11: Simulation result test case 1.

After 25 s, the lowering of the payload starts. The payload touches the seabed after

approximately 47 s and at approximately 0.1 m/s, resulting in low impact forces and a

slow reduction of the wire tension. The wire is fully un-tensioned after 58 s. The position

error of the drum is kept within ±3 mm except when turning on the AHC system. This

peak occurs due to a step in the reference signal and can be avoided by including a

more gentle start of the AHC mode. However, the simulation results show high tracking

performance.

E.4.2 Test Case 2: Landing on the seabed with CT

Figure E.12 shows the simulation results of landing a 20000 kg payload at the seabed

by using CT mode. The desired tension Fref is set to 99.5 % of the payload’s weight in

water. Plot 1 shows the lower wire force, Fw2, the desired wire tension, Fref , and the

seabed interaction force, FN , Plot 2 shows the tracking error, Plot 3 shows the drum

position, Plot 4 shows the payload position and Plot 5 shows the payload velocity.

The result shows that the tracking error is kept below 1 kN . This force corresponds

to an error of approximately 0.5 % of max SWL and is within the requirements of 5 %.

The payload is landed after 17 s at a speed of approximately 0.5 m/s. This is a relatively
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Figure E.12: Simulation result test case 2.

high speed, but the impact force is relatively low, see the peak in the red line in Plot 1,

because most of the payload’s weight is held by the winch. After 20 s, the wire tension is

slowly reduced.

E.4.3 Test case 3: Motion control at deck with external force

disturbance

In this test case, the vessel motion is set to zero and the payload is lifted in the air and

exposed to external forces. The lifting operation is tested both with a heavy payload,

mload = 15000 kg, and a light payload, mload = 1000 kg. The simulation results for the

heavy payload is shown in Figure E.13 and for the light payload in Figure E.14.

The external force is set to Fext = 0.5 ·mload · g. Plot 1 shows the drum position and

the reference position, Plot 2 shows the tracking error, Plot 3 shows the payload position,

Plot 4 shows the payload velocity and Plot 5 shows the lower wire force, Fw2, and the

external force, Fext.

The results show that the tracking error is close to 0 mm when operating with constant

speed. When applying an external force, the tracking error gets a peak. However, after
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Figure E.13: Simulation result test case 3 with mload = 15000 kg.

a short time, the error approaches 0 mm again. The peak is bigger when handling high

loads. This is because the external force depends on the weight of the payload and is bigger

when handling heavier payloads. There are also oscillations in the position error when

accelerating and when passing through 0 rpm. Overall, the motion tracking performance

is good, also when applying external forces.

286



Paper E. Definition of Performance Requirements and Test Cases for Offshore/Subsea
Winch Drive Systems with Digital Hydraulic Motors

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

P
lo

t 
1

P
lo

t 
2

P
lo

t 
3

P
lo

t 
4

P
lo

t 
5

Figure E.14: Simulation result test case 3 with mload = 1000 kg.

E.5 CONCLUSION

This paper presents a digital displacement winch drive system. The digital displacement

winch drive system consists of a high torque low speed digital displacement motor directly

connected to the winch drum through a pinion and gear ring. Subsea lifting operations are

challenging due to heave motion of the vessel and requires a highly skilled operator. Lift-

off and landing at the deck, crossing the splash zone and lift-off and landing on the seabed

are all challenging operations and require a winch with high motion tracking performance

and wire tension tracking performance. When the AHC system is active, the variation in

payload position should be below 5 cm and when the CT system is active the wire tension

error should be below 5% of max SWL. The presented requirements are based on inputs

from offshore winch manufacturers and the performance of systems used today.

Three different test cases have been used to evaluate the performance of the digital

displacement winch drive system. The simulation results show that the proposed winch

drive system can operate with high controllability. The presented simulation model and

the test cases will in the future be used to test new controllers.
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Abstract – Conventional hydraulic winch drive systems are known to suffer

from low energy efficiency when operating at partial loads. In recent years, a

new pump and motor technology have experienced increased interest due to

their potential of achieving high energy efficiency in a wide range of operation

conditions. This new technology is called digital displacement machine tech-

nology. Nowadays, there is a desire from the offshore oil and gas industry to

use this digital displacement machine technology to design high efficient hy-

draulic winch drive systems. One part of the work needed to realize a digital

displacement winch drive system is to design a controller and show that the

digital winch drive system meets the required controllability. This paper aims

to examine three different controllers. The first controller is called the base

controller and is a PD controller with feedback linearization. The second

controller is a sliding mode controller and the third controller is an adaptive

controller. The first part of this paper presents the digital displacement winch

drive system and the nonlinear simulation model. The digital displacement

winch drive system consists of a secondary controlled digital displacement mo-

tor that is directly connected to the winch drum through a pinion and gear

ring. The second part of the paper presents the controllers and the simula-

tion results. In the end, the simulation results are discussed with respect to

performance, robustness and implementation challenges.

F.1 INTRODUCTION

In recent years, the interest for digital displacement machines has increased due to their

promising results regarding energy efficiency and flexibility. In a piston type digital dis-
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placement machine, each cylinder chamber is connected to two fast switching on/off valves.

The on/off valves connect the cylinder chamber to either the high or low pressure source.

A chamber connected to high pressure is referred to as an active chamber and a chamber

connected to low pressure is referred to as an inactive or deactivated chamber. By control-

ling the on/off valves, each cylinder chamber can be controlled individually. The output

of the digital displacement machine is controlled by controlling the activation sequence of

the cylinder chambers. Different activation sequences, also called displacement strategies,

can be used to achieve the same displacement. With proper valve timing, the efficiency

remains high even at low displacements [1], and the individual cylinder control makes

the machine flexible and suited for novel system design options, like the digital hydraulic

power management system [2, 3]. Detailed information regarding the digital displacement

machine technology can be found in several publications [4, 5, 6, 7, 8].

The digital displacement technology has been proposed to be used in various applica-

tions like on- and off-road vehicles and in large power take-off systems in the renewable

energy industry [6, 9, 10, 11, 12, 13, 14]. Lately, the digital displacement technology

has also been proposed by Diinef AS to be used to drive large winches in offshore and

maritime applications [15].

A hydraulic winch is normally driven by one or multiple high speed motors connected

to the winch drum through a gearbox, pinion and a gear ring mounted on the drum.

Figure F.1 shows an example of a hydraulic winch with 12 hydraulic motors mounted on

a subsea crane.
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Figure F.1: Offshore crane with hydraulic winch [16].

The winch is normally controlled by a human operator that operates a joystick. In

harsh weather, the vessel will heave up and down and make lifting operations, like for

example deployment, recovery and relocation of payloads on the seabed, challenging.

Additional systems like active heave compensation (AHC) is normally implemented in

order to ease the lifting operation. The AHC system is used to decouple the payload’s
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motion from the vertical vessel motion. This means that the operator can use the joystick

to control the payload’s motion relative to a fixed surface, for example the seabed. The

AHC system normally utilizes a motion reference unit to measure the vessel motion and

actively operates the winch drum to counteract the measured movement.

Multiple controllers for hydraulic winch drive systems have been proposed in the lit-

erature. The proposed controllers are often limited to use in open circuit systems. In

[17], the authors presented a combination of a position feedback and velocity feedforward

AHC controller for an open circuit winch drive system. In [18], the authors proposed a

cascade controller to improve motion tracking performance of an open circuit system. The

cascade controller used a PI controller in the inner velocity loop and a P controller in the

outer position loop. The nonlinearities in conventional open circuit winch drive systems

reduce the tracking performance for linear controllers. Several nonlinear controllers have

been proposed to improve the tracking performance. Examples are: model predictive

controller [19], sliding mode controller [20, 21] and adaptive controller [22]. Other ap-

proaches to increase the heave compensation performance are to use measurements of the

wave amplitude as a feed forward compensator within the AHC system [23] or to predict

the heave motion and use this prediction as a part of the control strategy for the AHC

system [24, 25].

The aim of this paper is to design and examine the performance of three controllers

for a secondary controlled digital displacement winch drive system. The control of digital

displacement machines is complicated and non-conventional. Each cylinder is activated

and deactivated resulting in a non-continuous output signal. Also, multiple displacement

strategies can be used to achieve the same displacement. Each displacement strategy has

its dynamic response characteristics and energy efficiency characteristics. The dynamic

response characteristics of the drive system are highly relevant when designing control

systems. Therefore, in addition to the conventional classical controller, also a suitable

displacement strategy must be designed. Designing controllers for digital displacement

machines is therefore more complex than designing controllers for conventional hydraulic

machines.

In [26], the authors examined the steady state and transient response characteristics of

various displacement strategies and in [27], the authors revealed control challenges related

to operations with various displacement strategies. In [28], the author developed models

that can be used for model based design of digital displacement machines. These models

include continuous [29], discrete [30, 31] and hybrid model approximation [32, 33]. The

choice of model approximation depends on the used displacement strategy.

In this project, one version of the partial stroke displacement strategy is used to

control the displacement of the digital displacement machine. The digital displacement
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winch drive system and its nonlinear simulation model are described in Section F.2. The

chosen displacement strategy is described in detail in Section F.3. Section F.4 presents a

simplified model of the winch system that is used to design the controllers as shown in

Section F.5. Section F.6 presents the simulation results when the designed controllers are

tested on the non-linear simulation model presented in Section F.2. At the end of this

paper, the results are discussed.

F.2 Digital Displacement Winch Drive System

The digital displacement winch drive system consists of a digital displacement pump

(DDP) directly connected to a digital displacement motor (DDM) without any throttling

valves, in a so called secondary control system. Figure F.2 shows a schematic illustration

of the proposed winch drive system. The stepped arrows on the pump and motor symbol

indicates that the pump and motor is a digital displacement unit.
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Figure F.2: Schematic illustration of the digital displacement winch drive system

The main task of the pressure controlled DDP is to maintain a minimum pressure in

the high pressure line, pH . The DDM is directly connected to the winch drum through

a pinion and gear ring. The output torque is controlled by controlling the displacement

of the DDM. The purpose of the accumulators is to store energy whenever the DDM

operates in pump mode. The stored energy can later be used when the DDM operates in

motor mode.

This paper is limited to examine control strategies for the DDM. It is therefore assumed

that the DDP and the accumulator bank will provide a constant pressure in the high and
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low pressure line. The secondary winch drive system can then be simplified to the system

shown in Figure F.3. The simulated winch system is based on a 20000 kg winch system
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Figure F.3: Simulated winch system.

with a drum capacity of 3600 m. The winch is intended for use in subsea operations. rd

is the radius of the winch drum, reff is the effective radius of the outer wire layer, wd is

the width of the drum, and mload is the mass of the payload. The payload is cylindrical

shaped and its length is twice as long as the diameter. The simulation model is divided

into two parts, the mechanical winch model and the digital displacement winch drive

system.

F.2.1 Winch Model

The mechanical winch model consists of the winch drum, wire rope and payload. The

simulation model is based on the winch model described in [18] and also used in [34]. It

is assumed that the payload is either located in the air or fully submerged in water. The

transition phase between air and water is not simulated. The following is included in the

simulation model:

• Buoyancy force.

• Viscous drag force in water.

• Friction in drum bearings.

• Seabed dynamics.

• Wire elongation.

• Vertical heave motion of vessel.

• Inertia of winch drum, hydraulic drive system, wire rope and payload.

The winch model is set up based on the dynamic model schematic, free body diagram

and the kinetic diagram shown in Figure F.4.

299



Using Digital Hydraulics in Secondary Control of Motor Drive

Waves

Seabed

Vessel 

motion

Line of zero 

position

x

y

x

y

Water

Air
Waves

Seabed

Vessel 

motion

Line of zero 

position

x

y

Water

Air

Figure F.4: System dynamics, free body diagram and kinetic diagram.

Note that the payload position is calculated from the center of the drum when the

vessel is at rest with no vertical motion, marked by the line of zero position in Figure

F.4. The payload position is negative when the payload is below the line of zero position.

The length from the line of zero position and down to the sea surface is Lss = 20 m and

the length down to the seabed is Lsb = 1000 m.

The winch drum’s rotational motion and the payload’s vertical motion is described by

using Newton’s second low of motion as shown below.∑
τ = Jeff · θ̈d = Tdrive − Tf − Fw1 · reff (F.1)∑
Fx=(mc+ma)·ẍpl=Fw2+Fb+FN−Fd−mc ·g (F.2)

where Tdrive is the driving torque acting on the drum, Tf is the friction torque in the drum

bearings, Fw1 is the wire force between the winch drum and the upper wire section, Fw2 is

the wire force between the upper and lower wire section, reff is the effective radius of the

outer wire layer, Jeff is the effective mass moment of inertia relative to the drum shaft,

mc is the combined mass of the payload, winch hook and the lower wire section, ma is

the added mass, Fb is the buoyancy force, Fd is the viscous drag force, FN is the seabed

interaction force and g is the acceleration of gravity. The driving torque is given by the

DDM and calculated in section F.2.2.

The friction torque in the drum bearings, Tf , is assumed to be a combination of
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coulomb and viscous friction and calculated as shown in Equation (F.3).

Tf =(md ·g+Fw1)·rb ·µc ·tanh(θ̇d ·1000)︸ ︷︷ ︸
Tcoulomb

+µv ·rb ·θ̇d︸ ︷︷ ︸
Tviscous

(F.3)

where md is the mass of the winch drum and the wire rolled onto it, rb is the radius of the

bearings, µc is the coulomb friction coefficient and µv is the viscous friction coefficient.

The coulomb friction coefficient is approximated as µc = 0.1 and the viscous friction

coefficient is approximated as µv = 1000 Ns/rad. The term tanh(θ̇d·1000) is used to avoid

a step in the coulomb friction torque when passing through 0 rpm. However, this friction

model is only a rough approximation and may not reflect the exact friction characteristics.

The wire is divided into two point masses, mw1 and mw2, with a spring and damper

in between, as illustrated in Figure F.4. The connection between the upper wire section

and the winch drum, and the connection between the lower wire section and the payload

are assumed to be rigid. Hence, the motion of the upper wire section is a combination of

the vertical motion of the vessel and the rotation of the drum, ẍw1 = θ̈d · reff + ẍd. The

motion of the lower wire section is equal to the motion of the payload, ẍw2 = ẍpl. Based

on those relations, the wire forces, Fw1 and Fw2, can be calculated as shown below.

Fw1 =mw1 ·(θ̈d ·reff+ẍd)+mw1 ·g+Fw2 (F.4)

Fw2 =(θd ·reff+xd−xpl)·kw︸ ︷︷ ︸
Fspring

+(θ̇d ·reff+ẋd−ẋpl)·Cw︸ ︷︷ ︸
Fdamper

(F.5)

where ẍd is the vertical acceleration of the vessel, kw is the spring stiffness of the wire

and Cw is the damping coefficient. Note that Equation (F.5) is only valid when the wire

is stretched. For slack wires, the wire force is set to Fw2 = 0 N. The spring stiffness is

calculated based on the wire E-modulus, Ew, wire cross-section area, Aw, and the length

of the payed out wire, Lw, as shown in Equation (F.6). The damping force is introduced

to compensate for internal friction in the wire rope. The damping coefficient is defined

as 10 % of the spring stiffness and calculated as shown in Equation (F.7). Note that

Equation (F.7) does not give the correct unit of the damping coefficient. The correct unit

is Ns/m.

kw =
Ew · Aw
Lw

(F.6)

Cw =
kw
10

(F.7)

The spring stiffness and the damping coefficient is only a rough estimation and may not

reflect the exact values.

The payload and wire rope are exposed to buoyancy when submerged in water and a

viscous drag force during motion. The buoyancy force, Fb, and drag force, Fd is calculated
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according to [35] as shown below.

Fb = ρsea · g · (Vpl + Vw) (F.8)

Fd =
1

2
· ρsea · Cd · Apl · ẋ2

pl · sign(ẋpl) (F.9)

where ρsea is the sea water density, Vpl is the volume of the payload, Vw is the volume

of the wire, Cd is the drag force coefficient and Apl is the projected cross-section area of

the payload normal to the motion. For a circular cylinder shaped payload with a length

twice as long as the diameter, the drag coefficient is Cd = 0.85 [35].

The seabed is modeled as a spring-damper system [18]. The seabed interaction force

is modeled as shown in Equation (F.10).

FN =

{
0 xpl ≥ −Lsb

(−xpl−Lsb)·ksb − ẋpl ·Csb xpl < −Lsb
(F.10)

where ksb is the spring stiffness and Csb is the damping coefficient for the seabed. The

seabed spring stiffness and damping coefficient is set to ksb = 4000000 N/m and Csb =

1000000 Ns/m respectively.

During operation, the wire rope is either payed in or out causing variations in the

effective mass moment of inertia. Also, the effective radius will change when changing

from one wire layer to another. For the simulated winch system, one wire layer can

accommodate more than 180 m of wire on the inner wire layer. This length is significantly

larger than the distance the payload is moved in the test cases used in this work. It is

therefore assumed that the simulations are carried out without changing wire layer and

that the effective radius, reff , is constant. However, the effective mass moment of inertia

will vary with the amount of payed out wire. It is assumed that the wire is uniformly

distributed around the drum. The effective mass moment of inertia is calculated as shown

in Equation (F.11)

Jeff = Jd +
1

2
·mwd · (r2

d + r2
eff )︸ ︷︷ ︸

Jwire

+Jm ·N2
gear (F.11)

where Jd is the mass moment of inertia of the drum, mwd is the mass of the wire rolled

onto the drum, Jm is the mass moment of inertia of the digital displacement motor and

Ngear is the gear ratio of the pinion and gear ring.

The combined mass, mc, consists of the mass of the payload, mload, hook, mhook, and

the lower wire section mw2. The combined mass is calculated as shown in Equation (F.12)

mc = mload +mhook +mw2 (F.12)

The added mass, ma, is an inertia that is included to the payload when the payload

is submerged in water. The extra inertia occurs because the payload must move some
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volume of surrounding water as it moves through it. The added mass is affected by the

payload geometry, motion amplitude and the depth of submergence [35]. A reasonable

approximation of the added mass can be calculated as shown in Equation (F.13) [35].

ma = ρsea · CA · VR (F.13)

where CA is the added mass coefficient and VR is the reference volume. For a circular

cylinder shaped payload with the length twice as long as the diameter, the added mass

coefficient is CA = 0.72 and the reference volume is VR = Vpl [35].

The winch model parameters are listed in Table F.1 which can be found in Appendix

A.

F.2.2 Digital Displacement Winch Drive Model

The digital displacement winch drive system consists of a high torque low speed DDM

directly connected to the winch drum through a pinion and a gear ring. It is assumed

that there are no friction losses and no slack between the pinion and the gear ring. Hence,

the following linear relations are applicable.

Tdrive = Tm ·Ngear (F.14)

θm = θd ·Ngear (F.15)

where Tm is the output torque of the DDM and θm is the DDM’s shaft position.

The simulation model of the DDM is based on the model derived in [36] and has earlier

been used and experimentally validated in [26]. For simplicity, the simulation model is

derived based on single cylinder, but the same method is used for all cylinders. Figure

F.5 illustrates a 15 cylinder radial piston DDM, left side, and a single cylinder, right side.

The illustration of the single cylinder is used to derive the equations for the simulation

model. The following assumptions are made for the DDM model:

• Constant pressure in the high and low pressure line.

• Valve dynamics can be described by a second order system.

• Leakage in valves and cylinders are negligible.

• Friction in motor is negligible.

• The effective mass moment of inertia of the DDM is assumed to be constant (Jm =

constant).

The continuity equation is used to calculate the pressure dynamics in cylinder number

i.

ṗcyl,i =
βeff,i
Vcyl,i

·
(
QH,i −QL,i − V̇cyl,i

)
(F.16)
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Figure F.5: Schematics illustration of a radial DDM, left side, and a single cylinder, right side

where βeff,i is the effective bulk modulus of the hydraulic fluid, Vcyl,i is the cylinder

volume, QH,i is the volume flow through the high pressure valve and QL,i is the volume

flow through the low pressure valve.

The cylinder volume and its time derivative are calculated as shown in Equation (F.17)

and Equation (F.18) respectively.

Vcyl,i = V0 +
Vd
2
· (1− cos (θcyl,i)) (F.17)

V̇cyl,i =
Vd
2
· sin(θcyl,i) · θ̇m (F.18)

where V0 is the dead volume in the cylinder, Vd is the piston displacement, θcyl,i is the

local shaft position relative to the piston position and θ̇m is the rotational shaft speed.

Note that θ̇m = θ̇cyl,i. The local shaft position is defined to be θcyl,i = 0 rad when the

piston is at top dead center (TDC), as shown on the single cylinder in Figure F.5. Due

to the phase shift between the cylinders, the local shaft position can be calculated as

θcyl,i = θm +
2 · π
Nc

· (i− 1) i ∈ {1, ..., Nc} (F.19)

where Nc is the number of pistons in the DDM.

The valve flows, QH,i and QL,i, are calculated by the orifices equation as shown in

Equation (F.20) and Equation (F.21) respectively.

QH,i =
uH,i
kf
·
√
|pH − pcyl,i| · sign(pH − pcyl,i) (F.20)

QL,i =
uL,i
kf
·
√
|pcyl,i − pL| · sign(pcyl,i − pL) (F.21)

where uH,i is the opening ratio of the high pressure valve, uL,i is the opening ratio of the

low pressure valve, kf is the valve flow coefficient, pH and pL are the pressures in the high

and low pressure line respectively and pcyl,i is the pressure in the cylinder chamber. The
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opening ratio of the valves is ranging from 0 to 1, where 0 corresponds to fully closed and

1 to fully open.

The valve dynamics are described by a second order system as shown in Equation

(F.22) and Equation (F.23)

üH,i = uconH,i · ω2 − uH,i · ω2 − 2 · ζ · ω · u̇H,i (F.22)

üL,i = uconL,i · ω2 − uL,i · ω2 − 2 · ζ · ω · u̇L,i (F.23)

where uconH,i is the control signal for the high pressure valve, uconL,i is the control signal for

the low pressure valve, ω is the natural frequency of the valves and ζ is the damping ratio.

Due to the nature of the on/off valves, the control signals are either 0 or 1, corresponding

to fully closed and fully open respectively. The valve control signals are given by the

motor controller and the chosen displacement strategy. A detailed description of the

chosen displacement strategy is given in Section F.3.

The pressure dependent bulk modulus is calculated according to [37] as shown below.

βeff,i =
1

1
βL

+ εg

p
(abs)
cyl,i

(F.24)

where βL is the bulk modulus of the hydraulic liquid and εg is the volume fraction of

undissolved gas. The volume fraction of undissolved gas is calculated by

εg =
1(

1−εg0
εg0

)
·
(
p
(abs)
atm

p
(abs)
cyl,i

)− 1
κ

+ 1

(F.25)

where εg0 is the volume fraction of undissolved gas at atmospheric pressure, p
(abs)
atm is the

atmospheric pressure and κ is the specific heat ratio. The specific heat ratio is assumed

to be 1.4.

Finally, the torque contribution from cylinder number i is calculated by

Tcyl,i =
Vd
2
· sin(θcyl,i) · pcyl,i (F.26)

and the total motor torque is the sum of the torque contribution from every single cylinder.

Tm =
Nc∑
i=1

Tcyl,i (F.27)

The digital displacement motor model parameters are listed in Table F.2 which can

be found in Appendix A.
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F.3 Displacement Strategy

The design of the displacement strategy is important and is one of the things that makes

the design of controllers for DDMs more challenging than for conventional hydraulic mo-

tors. The displacement strategy can be of a new design or be chosen from already designed

displacement strategies. All displacement strategies have their own characteristics. The

winch drive system must be able to operate at low speeds with frequent starts and stops

and frequent changes in direction of rotation. Based on the work presented in [26], both

the partial stroke displacement strategy and the sequential partial stroke displacement

strategy are found to be suitable for use in a winch drive system due to high controllability

at low operation speeds. The sequential partial stroke displacement strategy is known to

switch the valves and reactivate cylinders more often than the partial stroke displacement

strategy. It is therefore assumed that the partial stroke displacement strategy has higher

energy efficiency and is, therefore, the selected displacement strategy. Note that the se-

lected displacement strategy is referred to as partial stroke displacement strategy version

2 in [26] but is in this paper referred to as the partial stroke displacement strategy.

F.3.1 Partial Stroke Displacement Strategy

This section describes the displacement strategy based on operation in motor mode with

positive speed.

In partial stroke displacement strategy, the cylinders are only activated in a portion of

the down stroke piston motion. The term ”active” means that the cylinder is connected

to the high pressure line and contributes with a positive or negative output torque. The

displacement is changed by increasing or decreasing the active period. Figure F.6 shows

the schematics of the valve actuation sequence for a single cylinder chamber. Plot 1 shows

the cylinder position, Plot 2 shows the opening ratio for the high and low pressure valve,

Plot 3 shows the cylinder pressure, Plot 4 shows the cylinder torque contribution and Plot

5 shows the local shaft position. The red dashed line in Plot 5 shows the state change

angle, also called the control angle, α. The control angle describes at which local shaft

position, θcyl,i, the cylinder shall change state from active to inactive. If θcyl,i ≤ α then

the cylinder shall be active, else the cylinder is inactive.

First in Figure F.6, the state change angle is set to α = α1 = π/2 rad, which corre-

sponds to 50 % displacement. When θcyl,i = α1, the cylinder is deactivated. After a short

period of time, the state change angle is stepped up to α = α2 = 3π/4 rad. Since the local

cylinder angle is smaller than the new state change angle, θcyl,i < α2, then the cylinder is

reactivated in the remaining shaft rotation up to θcyl,i = α2.

The state change angle, α, is calculated based on the desired displacement ratio Dm.
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Figure F.6: Schematic illustration of the valve timing strategy in partial stroke displacement

strategy.

Dm is defined as the displaced volume during the active period divided by the maximum

piston displacement. Based on the calculation of the cylinder chamber volume shown in

Equation (F.17), the displacement ratio can be calculated by:

Dm =
Vcyl(α)

Vcyl(π)

=
1

2
· (1− cos(α)) (F.28)

where Vcyl(α) is the intake volume during the active period and Vcyl(π) is the maximum

intake volume. The state change angle is then calculated by rearranging Equation (F.28).

α = cos−1(1− 2 ·Dm) (F.29)

One of the benefits of the DDM, is that the decompression and compression phase

can be optimized for every operation condition. Optimizing the compression and decom-

pression phase is not in the scope of this work and a routine for calculating the optimal

compression and decompression phase are therefore not implemented. In this study, when

changing state from active to inactive, the low pressure valve is opened when the high

pressure valve is fully closed. When reactivating a cylinder, the high pressure valve and

the low pressure valve are actuated at the same time. This strategy will result in un-

necessary high flow peaks and flow throttling losses. One technique of optimizing the

decompression and compression phase have been investigated in [38].
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F.3.2 Four Quadrant Operation

Winch operation requires a drive system that is able to operate in all four quadrants.

Four quadrant operation is illustrated in Figure F.7. The green arrow shows the direction
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Figure F.7: Four quadrant operation.

of rotation of the motor shaft and the red arrow shows the direction of the load torque.

Normally, the drive system operates in quadrant 1 during hoisting and quadrant 3 during

lowering. However, in special cases, as for example in AHC mode or operation with an

empty hook, all four quadrants may be used.

In partial stroke displacement strategy, the valve timing strategy shown in Figure F.6

is only valid for operation in quadrant 1. Each quadrant requires a unique valve timing

strategy. Figure F.8 shows a simplified schematic illustration of the valve timing strategy

for all four quadrants. The top graph shows the piston position and the next four graphs

show the valve timing sequence for operation in quadrant 1 to 4 respectively. The red line

shows the opening ratio of the high pressure valve and the blue line shows the opening

ratio of the low pressure valve. The black line with arrows shows the direction of rotation.

Arrows pointing to the right indicates positive direction and arrows pointing to the left

indicates negative direction of rotation. Note that in quadrant 1 (Q1) and quadrant 3

(Q3), the control angle, α1, is used to switch cylinder state and in quadrant 2 (Q2) and

quadrant 4 (Q4) the control angle, α2, is used to switch cylinder state.

The schematic of the motor controller is shown in Figure F.9. The input signal is the

desired displacement ratio, Dm, and the output is the motor torque, Tm. The state change

angle, α, is calculated based on the desired displacement fraction by using Equation (F.29).

The valve timing strategy, Qj where j = 1...4, is selected by a switching controller. Based

on given conditions, the proper valve activation strategy is selected. The given conditions
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Figure F.8: Schematic illustration of the valve timing strategy for four quadrant operation
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Figure F.9: Motor controller

are shown in Equation (F.30).

Q =


Q1 if α ≥ 0 ∧ θ̇m ≥ 0

Q2 if α < 0 ∧ θ̇m < 0

Q3 if α ≥ 0 ∧ θ̇m < 0

Q4 if α < 0 ∧ θ̇m ≥ 0

(F.30)

The state change angle and the valve timing strategy is then sent to the on/off valves

on the DDM which activates and deactivates cylinder chambers resulting in an output

torque.

F.4 Model Simplification

In order to design model based feedback controllers, the nonlinear simulation model pre-

sented in Section F.2 is simplified. In the simplified model it is assumed that the wire
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elasticity can be neglected and the motor torque is linear to the desired displacement.

The new simplified dynamic model schematic, free body diagram and the kinetic diagram

are shown in Figure F.10.
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Figure F.10: Simplified system dynamics, free body diagram and kinetic diagram.

The equation of motion for the winch drum is derived based on the free body diagram

and the kinetic diagram and shown in Equation (F.31).

Jeff ·θ̈d = T drive−reff ·(mc ·g+Fd−Fb)−T f (F.31)

where overline indicates that the parameter is a simplified version of the real parameter.

The driving torque is given by the hydraulic motor. In this simplified model, the driving

torque is assumed to be linear to the input signal, Dm, and expressed by:

T drive =
∆pmotor · Vm

2 · π
·Ngear ·Dm (F.32)

where ∆pmotor = pH − pL is the pressure difference across the motor, Vm is the maximum

motor displacement, Ngear is the gear ratio between the pinion and the gear ring and Dm

is the displacement ratio ranging from -1 to 1. In order to validate the simplified driving

torque, the driving torque from the simplified model, T drive, is compared to the driving

torque from the nonlinear model, Tdrive, when a sinusoidal input signal with increasing

frequency is given. The motor is running at 50 rpm and the results are shown in Figure

F.11. The blue line shows the driving torque from the nonlinear model, and the red line

shows the driving torque from the simplified model. The simulation results show that the

simplified model is a sufficient representation of the nonlinear model, even at high input

frequencies. However, the output torque from the nonlinear model tends to oscillate, while

the output torque from the simplified model is smooth. This is best seen in the first 5 s

of Figure F.11 where the blue line looks thick due to the oscillating output torque caused

by fast switchings between active and inactive cylinder chambers.

310



Paper F. Control of a Digital Displacement Winch Drive System

Figure F.11: Comparison between simple model and non-linear model of the driving torque.

The friction torque is calculated by

T f = (mtot · g + Fd − Fb) · rb · µc · sign
(
θ̇d

)
+ µv · rb · θ̇d (F.33)

where mtot is the mass of the winch drum, payload and the wire.

The effective mass moment of inertia, Jeff , is calculated as shown in Equation (F.34).

Jeff =Jd +
1

2
·mwd ·

(
r2
d + r2

eff

)
+ Jm ·N2

gear

+ (mload +mwout)·r2
eff (F.34)

where mwout is the mass of the wire that is payed out.

F.5 Control Design

A schematic illustration of the control structure is shown in Figure F.12. The reference
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Figure F.12: Schematic illustration of the control system

trajectory is created by a joystick. In case of activating the AHC system, the vessel

motion is subtracted from the reference signal created by the joystick. The displacement

controller transforms the reference trajectory into a desired motor displacement ratio.
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The displacement controller is a classic controller and can be of any type, with or without

feedback signals. The motor controller transforms the desired motor displacement ratio

into an output torque that drives the winch. The motor controller is shown in Figure F.9.

In this section, three different displacement controllers are designed. The designed

controllers are referred to as the base controller, the sliding mode disturbance controller

and the adaptive controller.

F.5.1 Base Controller

The base controller is designed based on the simplified model presented in Section F.4.

The equation of motion, shown in Equation (F.31), is first rewritten to a more general

form.

Jeff · θ̈d = T drive − reff · (mc · g + Fd − Fb)− T f ⇒

θ̈d =
∆pmotor·Vm

2·π ·Ngear

Jeff
·Dm

− reff · (mc · g + Fd − Fb)
Jeff

− T f

Jeff

= b ·Dm − f (F.35)

where

b =
∆pmotor·Vm

2·π ·Ngear

Ĵeff
(F.36)

f =
reff · (mc · g + Fd − Fb)

Jeff
+

T f

Jeff
(F.37)

If the parameters b and f are exactly known, the following control law will give optimal

tracking performance.

Dm,opt =
un + f

b
(F.38)

with the nominal controller

un = θ̈ref − c2 · ė− c1 · e (F.39)

where e = θd−θref and θref is the reference position for the drum. c1 and c2 are controller

gains and must be positive. Inserting the optimal control law, given in Equation (F.38),
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into Equation (F.35) results in the following closed loop response.

θ̈d = b ·Dm,opt − f

= b · un + f

b
− f

= un ⇓ (F.40)

θ̈d = θ̈ref − c2 · ė− c1 · e

θ̈d − θ̈ref + c2 · ė+ c1 · e = 0

ë+ c2 · ė+ c1 · e = 0 (F.41)

where the position error, e, will converge to zero exponentially.

In reality, the parameters b and f are not known exactly because of unmodeled dyna-

mics, uncertainties in the simulation parameters and other disturbances. Therefore, only

an approximation of the control law can be implemented:

Dm =
un + f̂

b̂
(F.42)

where ˆ indicates that the parameter is estimated based on system knowledge and state

measurements. Inserting the best approximation of the control law, shown in Equation

(F.42), into Equation (F.35) gives the following closed loop response:

θ̈d = b ·Dm − f

= b · un + f̂

b̂
− f

=
b

b̂
· un +

b

b̂
· f̂ − f

= un −
(
f − b

b̂
· f̂ + un ·

(
1− b

b̂

))
= un −∆b,f (F.43)

where

∆b,f = f − b

b̂
· f̂ + un ·

(
1− b

b̂

)
(F.44)

∆b,f is called the model error and represents the error dynamics between the estimated

model and the real system.

The control law presented in Equation (F.42) is referred to as the base controller

(BC). Assuming that the model error is low and negligible, the control performance will

be good. In the second controller, it is assumed that the model error may be of significant

impact on the system. In order to handle the model error, a compensator is designed to

compensate for the model error. The compensator, uc, is designed by using a sliding mode
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disturbance controller. In the third controller, it is also assumed that the model error

may affect the system. Instead of designing a compensator, the simulation parameters

are adapted to their real values by an adaptive controller.

F.5.2 Sliding Mode Disturbance Controller

The BC presented in the previous section is not optimal due to the model error. This

section presents therefore a compensator, uc, that shall cancel out the model error. The

designed compensator is a sliding mode disturbance compensator (SMDC). First, the

control law in Equation (F.42) is modified to include the compensator, uc.

Dm,SMC =
un + uc + f̂

b̂
(F.45)

Inserting the new control law into Equation (F.35) gives the following closed loop

dynamics.

θ̈d = b ·Dm,SMC − f

= b · un + uc + f̂

b̂
− f

=
b

b̂
· un +

b

b̂
· uc +

b

b̂
· f̂ − f

= un + uc +

(
b

b̂
· f̂ − f + (un + uc)·

(
b

b̂
− 1

))
= un + uc + ∆b,f,SMC (F.46)

where

∆b,f,SMC =

(
b

b̂
·f̂−f+(un+uc)·

(
b

b̂
−1

))
(F.47)

∆b,f,SMC is the model error. The aim of the compensator is to compensate for the model

error such that

θ̈d = un, for uc → −∆b,f,SMC (F.48)

The compensator is designed by following the structure in [39]. The model parameters,

b and f , are unknown but are assumed to be bounded. The bounds are given by the

following equations.

|f̂ − f | ≤ F (F.49)

and

0 < bmin ≤ b ≤ bmax (F.50)

⇓

β−1 ≤ b

b̂
≤ β (F.51)
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where

β =
bmax
bmin

(F.52)

A time-varying sliding surface is defined by Equation (F.53) and its derivative by

Equation (F.54).

s = θ̇d − z (F.53)

ṡ = θ̈d − ż (F.54)

where ż is chosen to ż = un + uc + νSMC and νSMC = L · sign(s). Inserting for θ̈d, given

in Equation (F.46), and ż into Equation (F.54) gives:

ṡ = un + uc + ∆b,f,SMC − un − uc − νSMC

= ∆b,f,SMC − L · sign(s) (F.55)

The condition for sliding mode is s = 0. A Lyapunov function is used to investigate if

sliding occurs. The Lyapunov function is chosen as shown in Equation (F.56) and its

derivative is shown in Equation (F.57).

V (s) =
1

2
· s2 (F.56)

V̇ (s) = s · ṡ (F.57)

Inserting Equation (F.55) for ṡ results in

V̇ (s) = s · (∆b,f,SMC − L · sign(s)) (F.58)

If the constraint V̇ (s) ≤ −η · |s| with η > 0 can be fulfilled, it may be concluded that

s → 0 as t→ T <∞, whereafter sliding occurs i.e. s = 0 for t ≥ T . The gain L in

Equation (F.58) must be chosen such that V̇ (s) ≤ −η · |s| will always apply. Based on

Equation (F.58) and knowing that s·sign(s) = |s|, the gain L must be chosen to satisfy

Equation (F.59).

V̇ (s) = s·(∆b,f,SMC − L · sign(s)) ≤ −η · |s| ⇓

L · |s| ≥ η · |s|+ |s| · |∆b,f,SMC |max ⇓

L ≥ η + |∆b,f,SMC |max ⇓

L ≥ η +

∣∣∣∣bb̂ · f̂ − f + (un + uc) ·
(
b

b̂
− 1

)∣∣∣∣
max

≥ η +

∣∣∣∣(f̂−f)+
(
un+uc+f̂

)
·
(
b

b̂
−1

)∣∣∣∣
max

(F.59)
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From Equation (F.49) and Equation (F.51) it is known that |f̂ − f | ≤ F and
∣∣∣ b
b̂

∣∣∣
max
= β.

Based on those relations, Equation (F.59) can be rewritten as shown in Equation (F.60).

L ≥ η + F +
∣∣∣un + uc + f̂

∣∣∣·(β − 1) (F.60)

Choosing L large enough will ensure sliding mode within a finite time.

For sliding to occur, s = 0 for t > T , will also require that ṡ = 0 [39]. By using that

ṡ = 0 for t ≥ T and Equation (F.55), an equivalent controller, ueq is designed as shown

below.

0 =∆b,f,SMC − L · sign(s) ⇓

ueq =L · sign(s) = ∆b,f,SMC (F.61)

In the ideal case, the compensator controller, uc, should be chosen such that uc = −ueq.
Inserting this controller will introduce a chattering problem due to the term sign(s).

Therefore, a continuous approximation, uav, of the equivalent controller is implemented.

The equivalent controller can be continuously approximated by use of, for example, a low

pass filter as shown in [21] or a tanh-function as shown in [40]. However, in this project,

the equivalent controller is approximated as shown in Equation (F.62).

uav = −L · sat(s, ε) (F.62)

where

sat(s, ε) =
s

|s|+ ε
, where ε > 0 (F.63)

The designed controller will give the following system response:

θ̈d = un + uc + ∆b,f,SMC ≈ un (F.64)

with

uc = −uav ≈ −∆b,f,SMC (F.65)

The control parameter L and ε shall be chosen based on a compromise between tracking

performance and control effort in addition to satisfying Equation (F.60).

F.5.3 Adaptive Controller

The purpose of the sliding mode controller was to compensate for the model error by de-

signing a compensator controller. In stead of compensating for the model error, the main

idea of the adaptive controller (AC) is to adjust the model parameters to cancel out the
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model error. The AC utilizes the same control law as used for the BC, shown in Equation

(F.42). Instead of estimating b̂ and f̂ based on system knowledge and measurements, the

model parameters are adjusted to its real value by a gradient based adaption law. The

adaption law is designed by following the structure for a self-tuning controller described

in [41].

First, the equation of motion shown in Equation (F.35) is rewritten in vector form.

θ̈d = b·Dm − f

=
[
Dm −1

]
︸ ︷︷ ︸

W

·

[
b

f

]
︸︷︷︸

a

= W·a (F.66)

The estimated system dynamics is calculated by Equation (F.67).

¨̂
θd = W · â (F.67)

where â consists of the estimated parameters b̂ and f̂ . The prediction error is defined as

epre =
¨̂
θd − θ̈d

= W·â−W·a

= W·ã, where ã = â− a (F.68)

A gradient based adaption law is used to estimate the model parameters. The imple-

mented adaption law is shown in Equation (F.69).

˙̂a = −p0 ·WT ·e (F.69)

where p0 is a positive controller gain. The convergence of the model parameters is ex-

amined by using a Lyapunov function. The Lyapunov function is chosen as shown in

Equation (F.70) and its derivative is shown in Equation (F.71).

V = ãT ·ã (F.70)

V̇ = 2 · ãT · ˙̃a (F.71)

It is assumed that the real system parameters are constant, or at least varying very slowly

compared to the estimated parameters, hence ˙̃a ≈ ˙̂a. Using this relation and Equation

(F.68), Equation (F.69) can be written as

˙̃a = −p0 ·WT ·W·ã (F.72)
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Inserting this into Equation (F.71) results in

V̇ = −2·p0 ·ãT ·WT ·W·ã (F.73)

Equation (F.73) shows that V̇ is at least negative semi-definite and implies that the

gradient based parameter estimator is always stable. V is the squared parameter error

and is never increasing, V̇ ≤ 0. The convergence of the estimated parameters to the true

parameters depends on the signals in W. Since the reference signal is a part of the signals

in W, the reference trajectory will affect the convergence of the model parameters. As

long as the signals in W are non-zero, the prediction error, epre, will converge to zero.

This does not necessarily mean that the estimated parameters, â, will converge to the real

parameters, a. This only means that for the given input signal, Dm, both the model and

the real system gives the same output,
¨̂
θd = θ̈d. For example, for a constant input signal,

Dm = constant, there may be several solutions for b̂ and f̂ that gives the same output,
¨̂
θd. If a variable input signal is given, then there will be fewer solutions for b̂ and f̂ that

gives the same output as the real system. This means that the probability for the model

parameters to converge to its real values is higher when a variable input signal is given.

F.6 Simulation Results

High controllability of the winch is especially important during lift-off and lift-down at

the deck, crossing the splash zone and lift-off and lift-down at the seabed. During lift-

off and lift-down at deck and crossing the splash zone, the amount of payed out wire

is small, resulting in a stiff lifting appliance. When landing the payload at the seabed,

maybe, several thousand meters below the sea surface, the amount of payed out wire

is large resulting in completely different dynamic characteristics of the lifting appliance.

Therefore, two different test cases are used to test the designed controllers. The first test

case imitates a lifting operation in the air with a small amount of the wire payed out.

The second test case imitates a landing situation at the seabed. In test case 1, the vessel

has no vertical heave motion but in test case 2, the vessel heaves up and down due to

waves. In test case 2 the AHC system is used to stabilize the payload during landing.

F.6.1 Test Case 1: Motion Control in Air with External Force

Disturbance

The first test case simulates a lift operation in air. The payload starts in a hanging posi-

tion and is hoisted 10 m and then lowered back to the initial position with a trapezoidal

velocity profile. During the lifting operation, an external force is applied to the payload
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in order to test the controller’s robustness to unmodeled external forces. In a real lifting

operation, such external force may occur during water exit or entry, or in case of collision

with other objects. The external force is set to 50 % of the force needed to hold the pay-

load at rest. This test case is tested both with a payload equal to 15000 kg and 1000 kg

in order to test the controllability with both heavy and light payloads.

Load case 1

In load case 1, the payload is set to 15000 kg. The simulation results are shown in Figure

F.13. Plot 1 shows the drum position and the reference position, Plot 2 shows the tracking

error, Plot 3 shows the payload position, Plot 4 shows the payload speed and Plot 5 shows

the external force, Fext, together with the wire force in the lower wire section, Fw2. Note

that the tracking error in Plot 2 is transformed from the rotation domain and into the

translation domain by multiplying the error in radians by the effective radius, θerr ·reff .
This transformation is done to get a better understanding of the magnitude of the error.
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Figure F.13: Simulation results of test case 1 and load case 1 using the base controller (BC),

the sliding mode disturbance controller (SMDC) and the adaptive controller (AC).

The external force is applied as a negative force, acting in downward direction, in the

hoisting phase and as a positive force, acting in upward direction, in the lowering phase.

The external force is applied as a step and lasts for 5 s. The left plots show the simulation

results for the BC, the middle plots show the results for the SMDC and the right plots

show the results for the AC.

The simulation results are relatively equal for all controllers in Plot 1, Plot 3, Plot 4

and Plot 5. Generally, the winch drum follows the reference trajectory well with small

peaks in the payload speed when applying and removing the external force, after 5 s, 10 s,

15 s and 20 s respectively. In Plot 2, it can be seen that the tracking performance of the

BC is characterized by a small steady state error when driving with constant speed and
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some small oscillations when accelerating and decelerating the payload. The steady state

error is very small when no external load is applied but gets a step when the external

force is applied.

The SMDC and the AC has no steady state error. The tracking error have some small

oscillations when accelerating and decelerating the payload. When the external force is

applied, only a small peak in the tracking error can be seen.

Load case 2

In load case 2, the payload is set to 1000 kg. The simulation results are shown in Figure

F.14. Compared to load case 1, the tracking performance is even better for light payloads.

A step in the tracking error can be seen after 18 s in Plot 2 for the BC. This step occurs

because the DDM changes operation quadrant.
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Figure F.14: Simulation results of test case 1 and load case 2 using the base controller (BC),

the sliding mode disturbance controller (SMDC) and the adaptive controller (AC).

F.6.2 Test Case 2: Deep Water Landing

Test case 2 imitates a landing operation at the seabed. It is assumed that the vessel heaves

up and down due to waves. Waves are irregular and random in shape, height, length and

speed. It is assumed that the vessel has a similar motion and that the motion can be

described by a Pierson-Moskowitz wave spectrum [42]. The heave motion is calculated

by using the method described in [43] with a significant wave height of Hs = 1.3 m and

a typical wave period of Tp = 9 s. An example of the vessel position when using this

method is shown in Figure F.15. In order to compare the controllers, the same vessel

motion is used for all three controllers.

A landing situation is chosen in order to test the tracking performance in AHC with a
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Figure F.15: Example of the vessel position described by the Pierson-Moskowitz wave spectrum

with Hs = 1.3 m and Tp = 9 s.

heavy and light load and when a high amount of wire is payed out. Tracking performance

with a heavy load is tested before landing and with a light load after landing. The mass

of the payload is set to 20000 kg and the water depth is set to Lsb = 1000 m.

In general, the landing speed should be low in order to avoid high impact forces. A

high impact force may damage the payload. Also, payloads placed at the seabed tend

to sink into the soil. The lifting force needed to free the structure is dependent on the

content of the soil and the impact force. Higher impact force results in higher suction

force.

The AHC system should optimally cancel all of the vertical motion of the payload. In

the literature there are simulation studies of AHC systems that shows compensation effi-

ciencies of 84 % [44], 90-95 % [45], 95 % [46], 97.5 % [47] and 99 % [18]. The compensation

efficiency is among other affected by the vessel motion, the surrounding medium and the

payload. It is therefore hard to compare compensation performance and set a required

compensation efficiency. However, based on input from offshore winch manufactures, the

AHC system should at least reduce the payload motion below ±5 cm.

The simulation results for test case 2 are shown in Figure F.16. Plot 1 shows the
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Figure F.16: Simulation results of test case 2 using the base controller (BC), the sliding mode

disturbance controller (SMDC) and the adaptive controller (AC).
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drum position and the reference position, Plot 2 shows the tracking error, Plot 3 shows

the payload position, Plot 4 shows the vertical vessel velocity together with the payload

velocity and and Plot 5 shows the lower wire force, Fw2, together with the seabed inter-

action force, FN . The payload starts at approximately -995 m and is lowered down to the

seabed at -1000 m. In the first 10 s, the winch drum is stopped and the payload moves up

and down with the vessel motion. This can be seen in Plot 4 where the payload velocity

matches the vessel velocity. After 10 s, the AHC system is activated and the payload is

stabilized at a constant depth. Hence, the payload velocity approaches 0 m/s and the

payload position is almost constant. This can be seen in the zoomed window in Plot 3.

After 30 s, the lowering phase starts. The payload touches the seabed after approximately

52 s and the winch drum keeps paying out wire in order to slowly remove the tension in

the wire rope. The wire tension is fully removed after approximately 62 s.

The simulation results shows that all controllers provides high controllability. The

AHC system is capable of reducing the payload motion below ±1 cm with the BC and

even lower with the AC and the SMDC. This payload motion is within the requirements

of ±5 cm.

All controllers have a step in the tracking error when starting the AHC mode, see

Plot 2 at 10 s. This occurs because the vessel motion is subtracted instantaneously from

the reference trajectory when the AHC system is turned on. This results in a step in the

desired drum position and therefore also a step in the tracking error. A smoother start-up

of the AHC mode will reduce the tracking error when starting the AHC mode. After the

AHC mode is activated, the tracking performance is best for the SMDC and the AC. The

tracking error for the BC increases when the payload touches the ground. This is because

the estimated parameters b̂ and f̂ used in the BC do not include the interaction force

between the payload and the seabed. The model and the real system is therefore not the

same after the payload touches the ground which results in increased tracking error.

All controllers provide a low landing speed, below 0.1 m/s, resulting in a low impact

forces.

F.7 Discussion

This section compares all controllers regarding tracking performance, robustness and im-

plementation issues.

F.7.1 Performance

All controllers showed high controllability and high tracking performance, however there

are some differences. Figure F.17 shows the tracking error for all test cases and all
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controllers. The upper plot shows the tracking error for test case 1 with load case 1, the

middle plot shows the tracking error for test case 1 with load case 2 and the bottom plot

shows the tracking error for test case 2. The results show that the tracking performance for
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Figure F.17: Tracking error in test case 1 load case 1 (top plot), test case 1 load case 2 (middle

plot) and test case 2 (bottom plot).

the SMDC and the AC is better than for the BC. The tracking performance for the SMDC

and the AC is characterized by zero tracking error when driving with constant speed and

only small peaks or oscillations in the tracking error when accelerating and decelerating

the load, driving through 0 rpm and when an external load is applied or removed. The

BC is characterized by a steady state error when driving with constant speed. Also, the

steady state error is changed if an external force is applied to the system. This change

in steady state error can be seen in test case 1 when the external load is applied and

removed, after 5 s, 10 s, 20 s and 25 s respectively, and in test case 2 when the payload

is in contact with the seabed, after 52 s.

The good tracking performance results in good compensation performance of the AHC

system. For all controllers, the payload motion is reduced below ± 1 cm, which is below

the requirement of ± 5 cm. However, a perfect tracking of the reference signal does not

necessarily result in perfect heave compensation. For successful implementation of the

AHC system, it is important to measure or estimate the vessel motion precisely and in

real time. The applied reference trajectory must reflect the real vessel motion. An error

in the reference signal will result in a compensation error.

The good tracking performance for the SMDC and the AC has some disadvantages. In

order to achieve the high controllability, the cylinders in the DDM are reactivated more

often when using the SMDC and AC compared to the BC. Figure F.18 shows the torque

contribution from every single cylinder in test case 2 for a selected time period, 48 s to
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50 s respectively.
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Figure F.18: Torque contribution from all cylinders in a limited period, 48 s to 50 s, in test

case 2.

The upper plot shows the results for the BC, the middle plot shows the results for the

SMDC and the bottom plot shows the results for the AC. Multiple vertical lines with the

same color consecutively indicates that one cylinder is reactivated multiple times. It can

be seen that the cylinders in the middle plot are reactivated more often then in the top and

bottom plot. This means that the SMDC reactivates the cylinder chambers more often

than the AC and the BC. The BC reactivates the cylinders fewest times. Reactivation of

cylinders are undesirable because it introduces losses in the system.

F.7.2 Robustness

The robustness of the controllers is tested by applying an external force in test case 1.

The results show that the SMDC and AC are very robust. The SMDC and the AC have

a maximum tracking error below ±2.5 mm when applying the external load in load case

1. The BC has a steady state error with maximum value below ±3.5 mm in test case

1. Comparing the tracking error from load case 1 to the tracking error in load case 2

shows that the tracking performance when using the SMDC and the AC are almost the

same and therefore not affected by the mass of the payload. For the BC, the steady state

tracking error when operating with constant speed and without any external force is also

almost equal in load case 1 and load case 2. However, the tracking error that occurs when

the external load is applied is greater for load case 1 compared to load case 2 because the

external force is higher.
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F.7.3 Implementation

All controllers require a reference trajectory of the drum position, velocity and acceleration

in addition to measurements of the drum position and velocity. The BC and the SMDC

also require measurements of the payload mass while the AC requires measurement of the

drum acceleration.

The BC has only two control parameters while the AC has three control parameters

and the SMDC has four. The control parameter p0 in the AC is relatively easy to tune by

trial and error. However, p0 should not be chosen too small or too large. A low value may

result in a slow convergence of the model parameters and a too high value may result in

an oscillatory behavior and slow convergence. Tuning of the control parameters L and ε

in the SMDC is also relatively simple. Several combinations give satisfactory results. But

one should remember that L must be chosen to satisfy Equation (F.60). A large value of

L and a small value of ε result in good tracking performance but also high control effort

with frequent reactivation of cylinder chambers. L and ε should therefore be chosen based

on a compromise between tracking performance and control effort.

The convergence of the estimated parameters in the AC and also the stability of the

system is depending on the desired displacement ratio, Dm. For example when lowering

the load several thousand meters, the desired displacement ratio will be relatively constant

and the estimated parameters, b̂ and f̂ , may not converge to its real values. This may

result in an unstable system. If the AC controller is implemented in a real system,

one should include a safety function that resets the model parameters estimated by the

gradient based adaption law to the parameters estimated for the BC if the deviation

becomes too large.

F.8 Conclusion

This paper presents a digital displacement winch drive system and three controllers for

the secondary controlled digital displacement motor. The main motivation for using

digital displacement machines in a winch drive systems is to increase the energy efficiency

compared to conventional hydraulic winch drive systems, especially when operating at

low loads. One step to realize the digital displacement winch drive system is to design

controllers that provide acceptable control performance of the winch system. The designed

controllers are in this study evaluated regarding control performance, robustness and

implementation issues. The simulation study shows that all controllers have good control

performance. The SMDC and the AC have better controllability than the BC. However

the good controllability for the SMDC and the AC requires more reactivations of the

cylinder champers, which will result in increased energy losses. The BC has fewest control
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parameters while the SMDC has the most. All controllers needs the reference trajectory

of the drum position, velocity and acceleration in addition to measurements of the drum

position and velocity. Only the AC needs measurements of the acceleration. All examined

controllers have advantages and disadvantages. It is therefore important to consider all

performance requirements and operation conditions before selecting a control strategy.
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Table F.1: Winch model parameters

Symbol Value Description

Aw 9.1e-4 m2 wire rope cross-section area

CA 0.72 added mass coefficient

Cd 0.85 drag force coefficient

Csb 1000000 N/m damping coefficient seabed

dload 0.18/0.69/0.8 m diameter payload

Ew 200 GPa E-modulus wire rope

g 9.81 m/s2 acceleration of gravity

Jd 1111 kgm2 mass moment of inertia drum

Jm 0.378 kgm2 mass moment of inertia DDM

ksb 4000000 N/m spring stiffness of the seabed

Lsb 1000 m length to seabed

Lss 20 m length to sea surface

mload 1/15/20 tonne mass of the payload

Ngear 10 gear ratio pinion and gear ring

rb 0.5 m radius bearing

rd 0.8 m radius of drum

wd 1.26 m width of the drum

µc 0.1 coulomb friction coefficient

µv 1000 Ns/rad viscous friction coefficient

ρsea 1024 kg/m3 density sea water

ρw 5.66 kg/m density of the wire rope
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Table F.2: Digital displacement winch drive system parameters

Sym. Value Description

kf 2.3·105 s
√

Pa/m3 valve flow coefficient

Nc 42 number of cylinders

p
(abs)
atm 101325 Pa atmospheric pressure

pH 220 bar pressure in high pressure line

pL 20 bar pressure in low pressure line

V0 2.6·10−4 m3 dead volume in cylinder chamber

Vd 2.6·10−4 m3/rev cylinder displacement

βL 1.2 GPa
bulk modulus of the hydraulic

fluid

εg0 0.01
volume fraction of undissolved

gas at p
(abs)
atm

ζ 0.8 is the damping ratio

κ 1.4 specific heat ratio

ω 833 Hz
is the natural frequency of

the valves

Table F.3: Controller gains

Symbol Value Description

c1 385 s−2 controller gain BC, SMDC and AC

c2 38.5 s−1 controller gain BC, SMDC and AC

L 80 s−2 controller gain SMDC

ε 5 s−1 controller gain SMDC

p0 50 s−1 controller gain AC

328



Bibliography

[1] W. H. S. Rampen. Gearless transmissions for large wind turbines - the history and

future of hydraulic drives. Artemis Intelligent Power Ltd., 2006.

[2] Mikko Heikkila, Jyrki Tammisto, Mikko Huova, M Huhtala, and Matti Linjama.

Experimental evaluation of a piston-type digital pump-motor-transformer with two

independent outlets. Fluid Power and Motion Control, Bath, England, pages 83–98,

2010.
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