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Abstract
The	salmonid	fish	Brown	trout	is	iconic	as	a	model	for	the	application	of	conservation	
genetics	to	understand	and	manage	 local	 interspecific	variation.	However,	 there	 is	
still	scant	information	about	relationships	between	local	and	large‐scale	population	
structure,	 and	 to	what	 extent	 geographical	 and	environmental	 variables	 are	 asso‐
ciated	with	barriers	 to	gene	 flow.	We	used	 information	 from	3,782	mapped	SNPs	
developed	 for	 the	 present	 study	 and	 conducted	 outlier	 tests	 and	 gene–environ‐
ment	association	(GEA)	analyses	in	order	to	examine	drivers	of	population	structure.	
Analyses	comprised	>2,600	fish	from	72	riverine	populations	spanning	a	central	part	
of	the	species'	distribution	in	northern	Europe.	We	report	hitherto	unidentified	ge‐
netic	breaks	in	population	structure,	indicating	strong	barriers	to	gene	flow.	GEA	loci	
were	widely	spread	across	genomic	regions	and	showed	correlations	with	climatic,	
abiotic	and	geographical	parameters.	In	some	cases,	individual	loci	showed	consistent	
GEA	across	the	geographical	regions	Britain,	Europe	and	Scandinavia.	In	other	cases,	
correlations	were	observed	only	within	a	sub‐set	of	regions,	suggesting	that	locus‐
specific	variation	was	associated	with	local	processes.	A	paired‐population	sampling	
design	allowed	us	to	evaluate	sampling	effects	on	detection	of	outlier	loci	and	GEA.	
Two	widely	applied	methods	for	outlier	detection	(pcadapt and bayescan)	showed	low	
overlap	in	loci	identified	as	statistical	outliers	across	sub‐sets	of	data.	Two	GEA	ana‐
lytical	approaches	(LFMM	and	RDA)	showed	good	correspondence	concerning	loci	
associated	with	specific	variables,	but	LFMM	identified	five	times	more	statistically	
significant	associations	than	RDA.	Our	results	emphasize	the	importance	of	carefully	
considering	the	statistical	methods	applied	for	the	hypotheses	being	tested	in	out‐
lier	analysis.	Sampling	design	may	have	lower	impact	on	results	if	the	objective	is	to	
identify	GEA	loci	and	their	population	distribution.	Our	study	provides	new	insights	
into	trout	populations,	and	results	have	direct	management	implications	in	serving	as	
a	tool	for	identification	of	conservation	units.
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1  | INTRODUC TION

Improving	our	understanding	of	 the	genetic	basis	of	 local	 adapta‐
tion	is	a	main	aim	in	evolutionary	biology	and	is	also	of	significance	
in	 applied	 research	 because	 of	 its	 relevance	 to	 the	 conservation	
of	 genetic	 resources,	 management	 of	 exploited	 populations	 and	
for	predicting	 impacts	of	climate	change	 (Allendorf,	Hohenlohe,	&	
Luikart,	2010;	Lehnert	et	al.,	2019).	Traits	that	confer	local	adapta‐
tion	are	typically	polygenic	quantitative	traits,	and	identification	of	
the	loci	that	determine	variation	in	such	traits	is	usually	challenging	
(Savolainen,	Lascoux,	&	Merilä,	2015).	Testing	hypotheses	of	 local	
selective	 sweeps	 and	 their	 association	with	 environmental	 drivers	
by	means	of	scanning	genomic	profiles	across	diverged	populations	
provides	novel	insights	but	has	also	been	criticized,	as	a	range	of	fac‐
tors	may	obscure	or	lead	to	false‐positive	inference	about	adaptive	
processes	and	the	ecological	mechanisms	that	structure	populations	
(Ahrens	et	al.,	2018).	Demographic	processes	may	for	instance	ob‐
scure	inference	about	selection	and	the	role	of	the	environment	in	
driving	spatial	patterns	of	adaptation	(de	Villemereuil,	Frichot,	Bazin,	
Francois,	&	Gaggiotti,	 2014).	There	 is	 a	general	 call	 for	evaluation	
of	 statistical	methods	 (Vatsiou,	Bazin,	&	Gaggiotti,	 2016),	 particu‐
larly	 for	 populations	 connected	 by	 gene	 flow	 (Bradburd,	 Coop,	 &	
Ralph,	2018;	Luu,	Bazin,	&	Blum,	2017).	It	has	been	suggested	that	
in	analyses	of	gene–environment	associations	(GEA),	sampling	mul‐
tiple	 populations	 exposed	 to	 similar	 environmental	 conditions	 is	 a	
means	 to	 increase	 detection	 power	 of	 true	 positives,	 especially	
for	 associations	 with	 weakly	 selected	 loci	 (Lotterhos	 &	Whitlock,	
2015).	However,	studies	applying	such	sampling	design	are	still	rare	
(Roschanski	et	al.,	2016)	and	tend	to	be	restricted	to	local	geograph‐
ical	scales	(Ahrens	et	al.,	2018).

Brown	trout,	Salmo trutta	(in	its	anadromous	form	known	as	sea	
trout),	is	an	ecologically	and	socioeconomically	important	salmonid	
fish	species	that	allows	for	testing	sampling	effects	on	detection	of	
local	selective	sweeps.	Owing	to	its	extreme	ecological	adaptability,	
it	shows	a	widespread	distribution	throughout	freshwater	systems	
in	most	north‐east	Atlantic	and	western	Asian	regions	(Klemetsen	et	
al.,	2003).	The	species	is	considered	as	an	indicator	of	habitat	quality	
in	 its	native	range	 (Imhof,	Fitzgibbon,	&	Annable,	1994),	and	there	
are	concerns	about	its	conservation	status	under	a	range	of	anthro‐
pogenic	stressors	and	climate	change	(Ayllón	et	al.,	2016).	Since	the	
first	paper	by	Allendorf,	Ryman,	Stennek,	and	Stahl	(1976),	four	de‐
cades	 of	 genetic	 marker‐based	 studies	 have	 identified	 genetically	
differentiated	local	populations	of	brown	trout,	sometimes	even	at	
small	 (<1	km)	 spatial	 scales	 (Ferguson,	1989;	 see	Andersson	et	al.,	
2017	for	a	recent	example).	Although	sea	trout	is	renowned	for	natal	
homing,	 straying	between	 rivers	maintains	gene	 flow	and	 reduces	
the	 impact	 of	 genetic	 drift	 on	 population	 demographics	 (Hansen,	
2002;	Hansen,	Fraser,	Meier,	&	Mensberg,	2009).	A	 suite	of	 stud‐
ies	 has	 suggested	 that	 local	 adaptation	 plays	 a	 role	 in	 population	

structuring	and	dynamics	(see	Meier,	Hansen,	Bekkevold,	Skaala,	&	
Mensberg,	2011	and	references	herein).	As	a	poikilotherm,	tempera‐
ture	directly	affects	the	rate	of	biological	processes	and	trout	is	ex‐
pected	to	display	evolutionary	adaptations	to	reach	homoeostasis.	
Coupled	with	an	anadromous	 life	 cycle,	which	 for	 the	 iteroparous	
brown	trout	may	entail	several	repeated	movements	between	fresh,	
brackish	and	marine	waters,	trout	is	required	to	both	adapt	to	local	
conditions	while	still	retaining	the	capability	for	coping	with	strongly	
varying	environments.	Altogether,	 these	characteristics	render	the	
species	an	optimal	model	for	testing	ecological	and	evolutionary	pa‐
rameters,	including	local	adaptation	and	its	association	with	specific	
environments	(Jensen	et	al.,	2008).

In	spite	of	brown	trout	being	among	the	best	studied	fish	species	
(Klemetsen	et	al.,	2003),	genomic	resources	have	until	recently	been	
scarce	compared	to	other	salmonids,	such	as	Atlantic	salmon	(S. salar 
L.)	and	rainbow	trout	(Oncorhynchus mykiss	W.),	which	has	hampered	
the	study	of	GEA.	Genomic	resources	for	brown	trout	are	develop‐
ing	rapidly.	Nonetheless,	genome‐wide	SNP	analyses	have	hitherto	
not	been	applied	to	examine	broadscale	population	genetic	relation‐
ships	and	associations	between	genomic	variation	and	evolutionary	
drivers	across	spatial	scales.	Thus,	to	date	there	has	been	no	assess‐
ment	of	genome‐wide	population	structure	beyond	geographically	
restricted	populations,	limiting	our	understanding	of	the	processes	
determining	large‐scale	population	connectivity.	Evidence	for	 local	
adaptation	is	commonly	based	on	comparisons	of	populations	at	local	
scales	(Andersson	et	al.,	2017;	Lemopoulos,	Uusi‐Heikkilä,	Huusko,	
Vasemägi,	&	Vainikki,	2018;	Meier	et	al.,	2011),	while	assessments	
rarely	concomitantly	address	small‐	and	large‐scale	patterns.	Lack	of	
knowledge	about	ecological	drivers	of	population	processes	is	espe‐
cially	problematic	given	that	many	trout	populations	are	considered	
under	threat	due	to	disturbances	acting	on	both	large	scale,	for	ex‐
ample	climate	change	(Jacquin	et	al.,	2017;	Pujolar,	Vincenzi,	Zane,	
&	Crivelli,	2016;	Vera,	Martinez,	&	Bouza,	2018),	and	local	scale.	For	
example,	anthropogenic	habitat	destruction,	creation	of	impassable	
dams	preventing	gene	flow	(Hansen,	Limborg,	Ferchaud,	&	Pujolar,	
2014)	and	genetic	introgression	from	widespread	stocking	with	non‐
native	strains	(Gil,	Labonne,	&	Caudron,	2016;	Hansen	et	al.,	2009)	is	
expected	to	affect	a	wide	number	of	populations.

In	 order	 to	 investigate	 population	 differentiation	 and	 its	 po‐
tential	 environmental	 drivers	 in	 brown	 trout	 using	 genome‐wide	
analysis,	we	here	developed	and	applied	a	SNP	array	encompassing	
ca.	3.8K	mapped	SNPs.	 In	GEA	analyses,	populations	showing	hi‐
erarchically	structured	levels	of	gene	flow	(as	in	brown	trout)	can	
lead	 to	 obscured	 or	 false‐positive	 inference	 about	 adaptive	 pro‐
cesses	and	 the	ecological	drivers	of	diversification	 (Ahrens	et	al.,	
2018;	 Bradburd	 et	 al.,	 2018;	 Forester,	 Lasky,	 Wagner,	 &	 Urban,	
2018;	Luu	et	al.,	2017).	Following	Lotterhos	and	Whitlock	(2015),	
we	 therefore	 applied	 a	 paired‐population	 sampling	 approach	 in	
order	to	analyse	72	S. trutta	populations,	spanning	a	central	part	of	
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the	distribution	of	anadromous	populations	 in	Europe	 in	order	 to	
first,	describe	regional	scale	population	structure,	and	second,	de‐
termine	whether	population	divergence	was	associated	with	GEA	
and	 selective	 sweeps.	Concomitantly,	 our	 study	was	 designed	 to	
evaluate	effects	of	sampling	design	and	analytical	approach	on	de‐
tection	of	outlier	loci	and	GEA	in	a	hierarchical	population	scenario.	
The	aim	was	to	contribute	new	insights	on	environmental	selection	
pressures	 in	general	and	 in	anadromous	fish	species	 in	particular,	
and	at	the	same	time	add	to	the	knowledge	of	population	structure	
of	S. trutta,	a	key	indicator	species	for	the	health	and	conservation	
of	rivers	and	streams.

2  | MATERIAL S AND METHODS

2.1 | Population samples

A	 SNP	 development	 panel	 was	 built	 using	 genomic	 DNA	 from	 2	
to	 3	 fish	 from	each	 of	 seven	 ascertainment	 populations	 (Table	 1).	
Populations	were	spread	out	geographically	so	as	to	span	the	region	
from	the	British	Isles	in	west	to	the	Baltic	Sea	in	east	(>1,500	km),	
and	from	Norway	in	north	to	the	Wadden	Sea	in	the	southern	North	
Sea	(>1,000	km).	All	ascertainment	samples	represented	the	species'	
Atlantic	clade	(Bernatchez,	2001)	and	covered	the	geographical	area	
represented	by	population	collections	in	the	present	study.

To	describe	population	genomic	patterns,	 trout	were	collected	
from	74	spawning	locations	in	72	rivers	(on	average	36	fish	collected	
per	river;	Table	1)	draining	into	the	North	Sea,	Skagerrak,	Kattegat	
and	the	Western	Baltic	Sea	(Figure	1).	In	analyses	of	GEA,	sampling	
multiple	 populations	 exposed	 to	 similar	 environmental	 conditions	
represents	a	means	 to	 increase	detection	power	of	 true	positives,	
especially	for	associations	including	weakly	selected	loci	(Lotterhos	
&	Whitlock,	 2015).	We	 therefore	 aimed	 to	 sample	 a	 minimum	 of	
two	 rivers	 from	 each	 geographical	 sub‐area.	 Sub‐areas	were	 here	
defined	as	geographically	proximate	river	systems	expected	to	share	
environmental	drivers.	When	individual	rivers	show	some	degree	of	
demographic	isolation,	as	is	the	assumption	in	a	natal‐homing	anad‐
romous	fish,	the	paired‐sampling	approach	thus	represents	a	way	to	
cross‐validate	identified	GEA	loci.	Sampling	multiple	rivers	per	sub‐
area	was	not	possible	in	all	cases.	Data	therefore	included	four	col‐
lections	each	representing	only	a	single	sub‐region.	Eight	locations	
were	sampled	twice,	5–14	years	apart,	to	examine	temporal	stability.	
Collections	consisted	of	adipose	fin	clips	from	electrofished,	anaes‐
thetized	adults	caught	on	spawning	sites,	or	of	0–1	year	 juveniles,	
depending	on	 availability	 (Table	1;	 Table	 S1).	 The	River	Ätran	was	
represented	 by	 two	 collections,	 one	 from	 the	main	 stem	 and	 one	
from	 its	 tributary	Högvadsån.	 For	 the	 River	Weser,	 collections	 of	
5–9	 fish	 from	 each	 of	 three	 neighbouring	 tributaries	 were	 com‐
bined.	Sampling	was	aimed	at	natural	populations	with	gene	pools	
presumed	to	be	 relatively	weakly	affected	by	human‐mediated	 in‐
trogression	 from	 farmed	 or	 foreign	 populations.	However,	 several	
of	the	Danish	populations	were	previously	stocked	with	two	closely	
related	 hatchery	 strains,	 leading	 to	 admixture	 and	 introgression	
(Hansen	 et	 al.,	 2009).	 Samples	 from	 the	 stocked	 hatchery	 strains	

were	therefore	also	included	in	analyses	in	order	to	identify	poten‐
tial	impact	of	introgression	(Table	1).

To	compare	 regional	 structuring	with	patterns	at	broader	geo‐
graphical	 scales,	 collections	 also	 included	 three	geographically	 re‐
mote	 populations:	 the	 Estonian	 Vainupea	 River	 (draining	 into	 the	
Gulf	of	Finland	in	the	eastern	Baltic	Sea),	River	Tamar	 in	Cornwall,	
UK	(draining	into	the	western	English	Channel),	and	from	les	Usses	
River,	draining	 into	 the	River	Rhone	 in	 the	Haute‐Savoie	 in	south‐
ern	France.	The	latter	representing	the	species'	Mediterranean	clade	
(Bernatchez,	2001).	DNA	from	all	samples	was	extracted	from	adi‐
pose	fin	clips	using	a	commercial	kit	(E.Z.N.A.™	kit;	Omega	BioTek).

2.2 | SNP array development, genotyping and 
linkage analysis

A	custom	Illumina	 iSelect	SNP	array	 (with	6,000	SNPs)	was	devel‐
oped	by	aligning	 reads	 in	16	male	and	 female	ascertainment	 sam‐
ples	against	a	draft	genome	assembly.	Nextera	sequencing	libraries	
were	prepared	from	genomic	DNA	and	sequenced	using	a	Illumina	
HiSeq	2000	to	generate	paired‐end	reads	(2	×	100	bp);	between	5	
and	13	Gb	of	sequence	was	generated	for	each	individual	(average	
6.9	Gb,	 see	Table	S2).	After	 filtering	 to	 remove	adapter	 sequence,	
low‐quality	sequence	and	any	reads	less	than	60	bp,	SOAPdenovo	(Li	
et	al.,	2010)	was	used	to	generate	a	de	novo	assembly.	Ignoring	con‐
tigs	<150	bp,	the	resulting	fragmented	assembly	included	1,131,000	
contigs	 (N50	=	2,281)	 and	contained	1.4	Gb	of	 sequence.	The	as‐
sembly	 was	 repeat	 masked	 using	 RepeatMasker	 software	 (http://
www.repea	tmask	er.org/)	and	a	locally	developed	salmonid‐specific	
repeat	 library	developed	with	the	RepeatModeler	software.	Reads	
from	the	16	individuals	were	aligned	to	the	reference	using	BWA	(Li	
&	Durbin,	2009);	putative	SNPs	within	each	individual	were	identi‐
fied	using	SAMtools	(Li	et	al.,	2009).	Selection	criteria	required	that	
heterozygous	SNPs	should	be	supported	by	minimum	of	two	reads	
in	two	individuals	for	the	minor	allele,	across	all	samples	at	least	one	
individual	should	be	homozygous	with	a	minimum	of	four	reads,	and	
only	bi‐allelic	SNPs	separated	by	>60bp	to	the	nearest	indel	or	SNP	
were	considered.	A	list	of	47,380	putative	SNPs	was	initially	reduced	
by	considering	factors	such	as	read	depth,	proximity	to	repeats	and	
Illumina's	Assay	Design	Score.	Subsequent	filtering	prioritized	SNPs	
based	on	whether	they	mapped	to	full‐length	cDNA	sequences/con‐
tigs	from	Atlantic	salmon	(Lien	et	al.,	2011)	were	distributed	across	
larger	 (>7,750	bp)	brown	trout	contigs	or	 fell	within	specific	genes	
of	interest.

To	 order	 SNPs	 by	 linkage	 group	 (LG)	 and	 generate	 a	 linkage	
map,	we	used	the	6K	SNP	array	to	genotype	both	the	2,606	pop‐
ulation	samples	and	family	material	consisting	of	320	 individuals	
applying	 the	manufacturers'	 recommended	protocol	 and	by	 call‐
ing	genotypes	using	GenomeStudio	V2	(Illumina).	Family	material	
came	 from	 a	 study	 by	 Jensen	 et	 al.	 (2008)	 and	 consisted	 of	 10	
F1	offspring	 from	each	of	30	 full‐	and	half‐sib	 families	based	on	
a	total	of	10	females	and	10	males	from	two	Danish	populations	
also	sampled	separately	 for	 the	current	 study	 (Lilleå	and	Karup).	
A	modified	version	of	 the	CRIMAP	2.4	software	 (Green,	Falls,	&	

http://www.repeatmasker.org/
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Crooks,	1990),	including	added	utilities	provided	by	Xuelu	Liu	and	
Michael	Grosz	(Monsanto,	St.	Louis,	MO,	USA),	was	used	for	the	
map	 construction.	 Initially,	 SNPs	were	 assigned	 to	 LG	 based	 on	
pairwise	linkages	and	the	grouping	algorithm	implemented	in	the	
AUTOGROUP	 option	 of	 the	 programme.	 The	 analysis	 assigned	
3,894	SNPs	to	40	LGs	which	correspond	to	the	expected	karyotype	

of	brown	trout	(Martínez	et	al.,	1991).	After	their	initial	grouping,	
SNPs	were	ordered	within	LGs	using	the	BUILD and FLIPSN	options	
in	CRIMAP.	The	CHROMPIC	option	 in	CRIMAP	was	 then	used	to	
phase	genotypes	within	LGs,	and	a	custom‐made	script	was	used	
to	correct	or	remove	erroneous	genotypes	based	on	unlikely	tight	
double	recombination	events.	Finally,	multipoint	linkage	maps	for	

Country Region (Sea) Rivers (number in Figure 1)

Norway W	Scandinavian	peninsula	
(Hardangerfjord,	North	Sea)

1.	Granvina,	2.	Guddal

United	Kingdom Britain,	northeast	(North	Sea) 3.	Spey,	4.	Deveron,	5.	Eyewater,	
6.	Tweed,	7.	Aln,	8.	Coquet,	9.	
Tyne,	10.	Wear,	11.	Tees,	12.	Esk,	
13.	Ure

Britain,	southeast	(North	Sea) 14.	Stiffkey,	15.	Glaven,	16.	Nar

Britain,	Cornwall	(English	Channel) Tamara

Germany Continental	Europe,	Jutland	
Peninsula,	Wadden	Sea	(North	
Sea)

17.	Weser,	18.	Elbe

Denmark  19. Ribea,b,	20.	Kongeåb,	21.	
Sneumb,	22.	Vardeb

Continental	Europe,	Jutland	
Peninsula	(North	Sea)

23. Skjernb,	24.	Storåb,	25.	Liverb

Continental	Europe,	Jutland	
Peninsula	(Limfjord,	Kattegat)

26.	Simested,	27.	Jordbro,	28.	Skals,	
29.	Karupa

Norway E	Scandinavian	Peninsula	
(Skagerrak)

30.	Sonsbeck

Sweden  31.	Krokstrand,	32.	Hogar/
Strommeå,	33.	Anråsälv,	34.	
Bärfendalsbäcken,	35.	Broälv,	36.	
Taskeå,	37.	Karraå,	38.	Bodelå,	
39.	Henån,	40.	Bratteforsan,	
41.	Norumsån,	42.	Säbyån,	43.	
Grannebyån,	44.	Sörån

E	Scandinavian	Peninsula	
(Kattegat)

45.	Krogarebäcken,	46.	
Hallebäcken,	47.	Himleån,	48.	
Ätran	&	Högvadsån,	49.	Fylleån

Denmark Continental	Europe,	Jutland	
Peninsula	(Kattegat)

50.	Elling,	51.	Villestrup	å,	52.	
Lilleåa,	53.	Hevring,	54.	Grenå,	55.	
Lake	Hald,	56.	Lake	Mossø,	57.	
Giber	åb

Continental	Europe,	Jutland	
Peninsula	(W	Belt	Sea)

58.	Kolding,	59.	Tapså,	60.	Adsbøl

Continental	Europe,	Belt	Sea	
Islands	(Belt	Sea)

61.	Stokkebækb,	62.	Saltøb,	63.	
Fladsåb,	64.	Mern,	65.	Krobæk

Continental	Europe,	Bornholm	
Island	(W	Baltic	Sea)

66.	Tejna,	67.	Læså

Estonia Continental	Europe,	Gulf	of	
Finland	(E	Baltic	Sea)

Vainupea

France Haute‐Savoie,	Continental	
Europe,	Mediterranean	Sea

Rhone	tributary	Les	Usses

Denmark Domesticated	hatchery	strains HAT1,	HAT2

Note: Rivers	with	temporal	replicates	are	underlined.	Detailed	sample	information	is	given	in	Table	
S1.
aSamples	included	in	the	SNP	development	ascertainment	panel.	
bPopulations	exhibiting	introgression	from	one	or	both	partially	domesticated	hatchery	strains.	

TA B L E  1  Collections	of	Salmo trutta 
indicating	country,	geographical	region	
and	river,	where	number	refers	to	map	
location	in	Figure	1
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the	40	LGs	were	constructed	using	the	FIXED	option	of	CRIMAP.	
SNPs	 that	 could	 be	 mapped	 to	 LG	 and	 that	 showed	Mendelian	
segregation	of	genotypes	in	pedigree	material	were	selected	(ex‐
cluding	SNPs	statistically	deviating	from	expected	proportions	in	
chi‐square	tests	across	>10%	individuals).	This	resulted	in	the	re‐
tention	of	information	for	3,782	SNPs.

2.3 | Population analyses

Global	and	per	SNP	observed	and	expected	heterozygosity	(HO and 
HE)	were	determined	for	each	of	the	84	collections	(samples	from	74	
rivers,	two	hatchery	strains	and	eight	temporal	replicates)	using	the	
R	 package	 adegenet	 (Jombart,	 2008).	 Samples	 comprising	 siblings	

may	 bias	 allele	 frequency	 estimates	 (Hansen	 &	 Jensen,	 2005).	 To	
avoid	 this,	 we	 used	 the	 maximum‐likelihood‐based	 method	 de‐
scribed	in	Wang	(2013)	to	analyse	genetic	relationships	 in	samples	
exhibiting	statistically	significant	FIS	estimates.	Individuals	exhibiting	
relatedness	levels	corresponding	with	half‐	and	full‐sib	relationships	
were	 recorded,	 and	 data	 were	 subsequently	 trimmed	 to	 exclude	
any	 such	 related	 individuals.	 This	meant	 that	 19	of	 40,	mostly	 ju‐
venile,	fish	from	the	River	Ure	were	excluded	from	further	analysis.	
Using	adegenet,	locus‐specific	FST	values	were	calculated	across	all	
samples	and	deviation	from	HWE	within	samples	was	tested	using	
chi‐square	 testing.	Linkage	disequilibrium	was	estimated	using	 the	
squared	correlation	between	alleles	at	two	loci,	both	per	sample	and	
averaging	 across	 samples,	 using	 the	 R	 package	 genetics	 (Warnes,	

F I G U R E  1   (a)	Salmo trutta	populations	
in	the	analysis	(extant	collections	from	
France,	Estonia	and	Cornwall	are	not	
shown	on	map)	indicated	by	individual	
rivers'	confluence	with	the	sea,	except	for	
lake	trout	samples	55	and	56.	Numbers	
refer	to	Table	1.	Symbol	colours	reflect	
genetic	clustering,	where	RGB	colour	
code	is	determined	by	the	first	three	
axes	in	the	principal	component	analysis.	
(b)	Discriminant	analysis	of	principal	
components	clustering	of	individual	
genotypes	at	k	=	10	for	Discriminant	
functions	1	and	2,	describing,	respectively,	
37%	and	20%	of	the	variance.	
Geographical	areas	corresponding	to	
genotype	clusters	are	indicated	by	symbol	
colour	and	text.	Geographically	distant	
collections	are	indicated	by	#.	Estonia	
forms	a	separate	cluster	(black),	whereas	
the	collection	from	Cornwall	clustered	
with	SE	British	samples
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2013).	p‐values	of	HWE	tests	were	adjusted	for	multiple	compari‐
sons	using	false	discovery	rate	(FDR;	Benjamini	&	Hochberg,	1995).	
All	loci	were	retained	in	initial	analyses,	but	in	GEA	and	outlier	analy‐
ses	only	one	SNP	was	retained	when	pairs	of	SNPs	showed	very	high	
LD	(r2	>	.8)	across	samples.

Estimates	of	 population	 structure	 and	detection	of	outlier	 loci	
may	 be	 downwardly	 biased	 if	 markers	 are	 selected	 using	 specific	
criteria	about	the	numbers	of	times	they	occur	in	the	SNP	develop‐
ment	sample	(Rosenblum	&	Novembre,	2007).	Here,	ascertainment	
bias	 (AB)	was	potentially	non‐negligible	due	to	the	relatively	strict	
criteria	 applied	when	 selecting	 candidates	 for	 the	 SNP	 array,	 par‐
ticularly	 the	 criterion	 that	 at	 least	 two	 individuals	 from	 the	 ascer‐
tainment	panel	had	to	have	the	alternate	allele	in	at	least	two	reads.	
Potential	effects	of	AB	were	assessed	by	inspection	of	minor	allele	
frequencies	per	population	sample,	where	the	expected	nonbiased	
distribution	describes	 a	beta	distribution	with	high	proportions	of	
low‐frequency	markers	rapidly	decreasing	towards	low	proportions	
of	high‐frequency	markers.

Sample	differentiation	was	described	using	pairwise	ϴ	 (Weir	&	
Cockerham,	 1984).	 Isolation‐by‐distance	 (IBD)	 relationships	 were	
examined	using	a	Mantel	test	and	999	randomizations	in	adegenet,	
including	information	for	least	waterway	distance	to	river	mouth	in	
all	spatial	samples	for	all	loci.	Including	all	loci,	clustering	of	samples	
was	visualized	using	principal	component	analysis	(PCA)	and	discrim‐
inant	 analysis	 of	 principal	 components	 (DAPC),	 following	 Jombart	
and	 Ahmed	 (2011).	 The	 French	 sample	 was	 excluded	 from	 these	
and	subsequent	analyses	due	to	its	highly	divergent	(Mediterranean	
lineage)	 origin.	 Bayesian	 information	 criterion	 (BIC)	 was	 used	 for	
evaluation	 of	 the	 partitioning	 of	 individuals	 into	 different	 number	
of	clusters	(k)	in	DAPC.	Based	on	discriminant	functions,	individual	
posterior	membership	probabilities	were	subsequently	evaluated	to	
assess	 the	 suitability	of	 the	approach	 in	 terms	of	 capturing	corre‐
spondence	between	capture	locality	and	genetic	clustering.

2.4 | Genome scan

A	 genome	 scan	 approach	 was	 used	 to	 distinguish	 genome‐wide	
processes	 expected	 to	 mainly	 reflect	 demographic	 histories,	 from	
processes	at	individual	loci	potentially	reflecting	local	processes,	par‐
ticularly	selection.	Genome	scans	may	suffer	from	inflated	numbers	
of	 false	positives	under	hierarchical	 spatial	 structure	 coupled	with	
isolation‐by‐distance	dynamics	 (Excoffier,	Hofer,	&	Foll,	2009).	We	
therefore	used	a	principal	 component	analysis	with	a	Mahalanobis	
distance‐based	 approach	 to	 identify	 outlier	 loci	 (Luu	 et	 al.,	 2017).	
This	method,	 implemented	 in	the	R	package	pcadapt,	allows	for	an	
examination	of	how	different	 levels	of	population	clustering	affect	
outlier	detection.	It	 is	reported	to	yield	increased	power	compared	
to	Bayesian	models,	especially	when	there	is	hierarchical	population	
structure	under	divergence	and	 range	expansion	 scenarios	 (Luu	et	
al.,	2017).	Initially,	50	principal	components	(PC)	were	used	to	assess	
the	 best	 supported	 genetic	 clustering	 among	 sampled	 individuals,	
where	 the	optimal	 number	 (or	 range)	 of	PC	was	determined	using	
Cattell's	graphical	rule,	following	Luu	et	al.	(2017).	Outliers	were	then	

detected	applying	different	 levels	of	sample	clustering	and	FDR	to	
control	error.	Throughout,	loci	with	global	MAF	<0.05	were	excluded.	
To	examine	effects	of	sampling	specific	populations	on	outlier	detec‐
tion,	analyses	were	finally	repeated	for	sub‐sets	of	data:	(a)	including	
one	half	of	the	geographically	paired	collections	selected	at	random	
(N	=	34),	(b)	including	the	other	half	of	paired	samples	(N	=	34)	and	
(c)	combining	these	two	sets	of	data	(N	=	68;	Table	1).	In	all	three	lat‐
ter	cases,	information	was	excluded	for	temporal	replicates	and	for	
the	four	sub‐regions	for	which	only	a	single	collection	was	available,	
including	 extant	 populations	 Tamar,	 Vainupea	 and	 Haute‐Savoie	
(Table	1).	pcadapt	results	were	compared	with	results	generated	with	
the	often	used	Bayesian	bayescan	method	(Foll	&	Gaggiotti,	2008).	
This	method	is	expected	to	exhibit	low	false‐positive	rates,	particu‐
larly	when	many	population	samples	can	be	included	(Narum	&	Hess,	
2011),	which	was	the	case	here.	Settings	followed	recommendations	
in	Foll	and	Gaggiotti	(2008),	excluding	information	for	66	SNPs	ex‐
hibiting	global	MAF	below	0.05.	Following	Foll	and	Gaggiotti	(2008),	
we	used	Jeffrey's	scale	of	evidence	and	defined	potentially	selected	
loci	as	markers	having	log10	(PO)	above	1,	but	excluded	loci	with	Q‐
values	above	0.01,	to	minimize	FDR	bias.

2.5 | Genotype‐environment association

Signatures	indicative	of	local	adaptation	to	environmental	variables	
were	investigated	using	the	univariate	GEA	method	implemented	in	
LFMM	v.	1.5	(Frichot,	Schoville,	Bouchard,	&	François,	2013).	The	ap‐
proach	uses	latent	factor	mixed	models	that	take	into	account	neu‐
tral	 population	 structure	when	 testing	 associations	between	gene	
variation	 and	 candidate	 environmental	 variables.	 Environmental	
variables	are	entered	into	the	model	as	fixed	effects	while	popula‐
tion	structure	is	modelled	using	latent	factors.	We	used	population	
clustering	results	from	DAPC	and	pcadapt	to	guide	the	choice	of	k 
latent	factors,	varying	k	9–14,	and	running	10	replicates	per	factor	
level,	with	Gibbs	sampling	algorithm	with	20K	iterations,	discarding	
the	first	5K	iterations	as	burn‐in.	In	the	LFMM	model,	a	matrix	term	
models	the	part	of	genetic	variation	that	cannot	be	explained	by	the	
environmental	variables.	Selective	responses	in	anadromous	brown	
trout	populations	are	expected	to	be	mainly	governed	by	regional,	
rather	 than	 by	 small‐scale	 environmental	 drivers	 (Hansen,	 2002).	
Accordingly,	we	examined	variables	 expected	 to	 reflect	 effects	of	
different	types	of	drivers	on	genetic	variation.	Firstly,	to	control	for	
IBD	dynamics	 and	 postglacial	 founder	 events,	we	 entered	 sample	
latitude	 and	 longitude,	 and	 whether	 origin	 was	 either	 the	 British	
Isles,	European	continent	or	Scandinavian	Peninsula	(as	a	categorical	
variable).	 Secondly,	 potential	 relationships	 with	 abiotic	 conditions	
on	spawning	sites	were	examined	by	entering	data	on	geochemis‐
try	(using	soil	type	and	soil	pH),	annual	average	water	temperature,	
minimum	winter	 temperature	and	maximum	summer	 temperature,	
annual	temperature	range,	average	annual	precipitation	and	precipi‐
tation	in	driest	month	at	collection	site.	Climate	data	were	obtained	
from	 https	://esdac.jrc.ec.europa.eu/.	 Data	 on	 soil	 type	 (entered	
as	categorical	variable),	and	pH	values	were	obtained	 from	http://
euros	oils.jrc.ec.europa.eu/.	Finally,	to	test	for	relationships	between	

https://esdac.jrc.ec.europa.eu/
http://eurosoils.jrc.ec.europa.eu/
http://eurosoils.jrc.ec.europa.eu/
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genetic	variation	and	abiotic	environment	first	encountered	during	
smolt	sea‐migrating	stage,	information	was	included	on	average	am‐
bient	water	temperature	and	salinity	1	km	from	river	confluence	with	
the	sea	(from	http://marine.coper	nicus.eu/).	Thirdly,	we	entered	alti‐
tude	at	collection	site	as	a	proxy	for	both	upstream	spawning	run	and	
smolt	downstream	migration	barrier.	Fourthly,	to	examine	effects	of	
genetic	introgression	from	stocked	hatchery	strains,	we	entered	cat‐
egorical	information	about	whether	populations	had	previously	been	
stocked	with	either	of	the	two	hatchery	strains	(pertains	to	Danish	
populations).	 Associations	 among	 variables	 were	 tested	 using	 the	
function	PCAMIX	 in	 the	R	package	PCAmixdata	 (Chavent,	Kuentz‐
Simonet,	Labenne,	&	Saracco,	2014)	allowing	for	PCA	of	mixed	quali‐
tative	and	quantitative	data.	Based	on	eigenvalues	for	24	dimensions	
and	using	Cattell's	graphical	rule,	the	first	five	principal	components	
from	that	analysis	were	used	to	reduce	variables	tested	in	the	model.	
Following	Frichot	et	al.	(2013),	p‐values	<	10–5	obtained	after	apply‐
ing	a	Bonferroni	correction	for	a	type	I	error	at	α	=	.01	and	~10–4	loci,	
z‐scores	>4.7	were	considered	to	show	GEA.

Recent	simulation	analyses	suggest	that	multivariate	GEA	meth‐
ods,	 such	 as	 redundancy	 analysis	 (RDA),	 under	 some	 conditions	
may	 perform	better	 than	PCA‐based	methods	 in	 identifying	 envi‐
ronmental	predictors	of	genotype	variation	and	in	selective	outliers	
(Capblancq,	 Luu,	Blum,	&	Bazin,	2018;	Forester	et	 al.,	 2018).	RDA	
is	a	multivariate	ordination	approach	that	combines	PCs	from	allele	
frequency	and	multivariate	environmental	distance	matrices	to	pro‐
duce	canonical	axes	predicting	relationships	between	environments	
and	particular	loci.	We	therefore	compared	results	from	LFMM	with	
an	RDA	analysis	using	the	vegan	package	(Oksanen	et	al.,	2015)	fol‐
lowing	the	procedure	detailed	in	Forester	et	al.	(2018).	Missing	data	
were	 imputed	 using	 the	most	 common	 genotype	 observed	within	
samples.	As	for	the	LFMM	analysis,	the	five	environmental	PCs	were	
tested	against	SNP	data	in	68	sample	collections.	The	function	vif.
cca	was	used	to	ascertain	lack	of	multi‐collinearity	among	variables,	
as	 expected	 from	 the	 use	 of	 composite	 environmental	 variables,	
which	alleviated	the	need	for	variable	reduction.	There	was	no	a	pri‐
ori	control	for	population	structure.	Following	Forester	et	al.	(2018),	
we	 classified	 SNPs	 as	 showing	 statistically	 significant	 association	
with	 individual	 environmental	 parameters	when	 they	 loaded	with	
more	than	three	standard	deviations	from	the	mean.	We	estimated	
correlations	between	these	SNPs	and	their	most	strongly	associated	
environmental	variable	following	Forester	et	al.	(2018).

3  | RESULTS

3.1 | SNP array performance

All	SNP	clusters	were	visually	inspected	using	Genome	Studio	and	all	
markers	subjectively	classified	according	to	sample	data	point	clus‐
tering	precision	and	accuracy.	A	total	of	around	4,000	markers	(72%)	
displayed	tight	grouping	into	three	well	separated	genotype	clusters,	
1,106	(20%)	appeared	to	be	monomorphic	in	the	examined	samples,	
and	the	remainder	displayed	clustering	patterns	making	SNP	geno‐
type	calling	unreliable.

The	 40	 brown	 trout	 LGs	with	 3,894	 SNPs	 represent,	 on	 aver‐
age,	95	SNPs	per	LG	(range	13–173)	and	adds	up	to	a	male	map	of	
1,316	 cM	 and	 a	 female	map	 of	 2,494	 cM	 (Table	 S2	 for	 details	 on	
linkage	 map,	 assembly	 and	 annotation).	 Relative	 to	 the	 expected	
beta	 distribution,	MAFs	were	 skewed	 towards	 high	 values	 (Figure	
S1).	Average	MAF	was	0.28,	and	1.5%	of	loci	had	global	MAF	<0.05	
(Table	S3).	In	total,	153	pairs	of	loci	showed	evidence	of	linkage	dis‐
equilibrium	with	genotype	associations	at	R2	>	.8.

3.2 | Genetic relationships within and among 
populations

The	3,782	SNPs	contained	within	 the	 linkage	map	and	conform‐
ing	to	Mendelian	segregation	rules	were	typed	across	>95%	of	the	
2,536	individuals	in	the	84	sample	collections.	HE varied 0.31–0.37 
across	collections	(average	=	0.35)	and	tended	to	be	slightly	lower	
in	collections	from	Britain	(average	±	SD	=	0.33	±	0.01)	than	in	conti‐
nental	and	Scandinavian	populations	(average	±	SD	=	0.36	±	0.01;	t 
test	=	9.259,	df	=	79,	p	<	.001).	No	other	trends	in	HE	were	observed	
among	 geographical	 regions.	 Excluding	 information	 from	 extant	
populations,	global,	locus‐specific	Ɵ	values	ranged	between	0.007	
and	0.237,	with	a	 slightly	 lower	median	 (0.061)	 than	mean	value	
(0.067)	(Table	S4).	Evidence	for	departure	from	HWE	(at	α	=	 .05)	
was	found	in	4,541	of	150,066	tests,	whereof	nine	remained	sig‐
nificant	after	correction	for	multiple	testing,	none	of	which	were	
particular	 to	 specific	 collections	 or	 loci.	 Global	 differentiation	
among	sample	collections	was	estimated	at	0.068.	The	geographi‐
cally	 distant	 sample	 collections	 Tamar	 in	 west	 and	 Vainupea	 in	
east	both	showed	relatively	strong	differentiation	from	their	geo‐
graphically	closest	collections	(Tamar‐Stiffkey	Ɵ	=	0.10;	Vainupea‐
Tejn	Ɵ	=	0.11).	As	expected,	the	les	Usses	sample	representing	the	
Mediterranean	lineage	showed	the	strongest	differentiation	of	all,	
varying	between	0.36	and	0.46	in	pairwise	comparisons	(Table	S4).	
Relatively	 low	 differentiation	 was	 observed	 between	 les	 Usses	
and	 the	Danish	 hatchery	 strain	 #1,	 corresponding	with	 the	 fact	
that	this	strain	has	been	exported	to	France	and	is	represented	in	
brood	stock	used	for	stocking	in	the	region.	Hence,	this	strain	has	
now	introgressed	into	several	French	Mediterranean	populations	
(Gil	et	al.,	2016).

Average	 Ɵ	 between	 temporal	 replicates	 within	 location	 was	
0.011,	ranging	from	0.001	to	0.052	(Table	S4).	None	exhibited	sta‐
tistically	significant	differentiation,	except	for	the	River	Skals,	where	
one	 replicate	 sample	 consisted	of	 only	10	 individuals,	which	may	
have	 biased	 allele	 frequency	 estimates.	 Forty‐three	 comparisons	
between	 spatial	 collections	did	not	exhibit	 statistically	 significant	
differentiation	(Table	S4).	In	all	cases,	they	represented	collections	
from	either	neighbouring	rivers	or	rivers	from	the	same	geograph‐
ical	area	separated	by	less	than	70	km.	These	included	(a)	Wadden	
Sea	 rivers	Ribe,	Kongeå	and	Sneum;	Elbe	and	Weser,	 (b)	Western	
Baltic	 rivers	Krobæk	 and	Mern,	 (c)	British	 rivers	Aln	 and	Coquet,	
(d)	 Swedish	Kattegat	 rivers	Himleån	 and	 Fylleån,	 and	 (e)	 Swedish	
river	Ätran	and	its	tributary	Högvadsån.	Finally,	Swedish	Skagerrak	
collections	spanning	from	River	Hogarälv	in	north	to	Grannebyån	in	

http://marine.copernicus.eu/
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south	generally	exhibited	lack	of	allele	frequency	differences	(nos.	
33–44	in	Table	1).	Pairwise	differentiation	between	collections	was	
positively	associated	with	geographical	distance	(Monte	Carlo	ran‐
domization	test;	999	randomizations:	observed	=	0.7157,	p	<	.001,	
observed	standard	deviation	=	12.868,	expectation	=	−0.0002,	vari‐
ance	=	0.0031).	However,	density	analysis	also	suggested	that	IBD	
dynamics	differed	across	geographical	regions,	as	evidenced	by	the	
presence	of	at	least	two	distinct	clusters	in	the	data	(Figure	2).	One	
of	 the	 clusters	 corresponded	 with	 comparisons	 between	 British	
and	European/Scandinavian	samples,	as	shown	by	the	fact	that	one	
of	 two	main	 clusters	 disappeared	when	British	 samples	were	 ex‐
cluded	from	analyses	(Figure	S2).	When	British	samples	were	tested	
alone,	 two	distinct	 clusters	were	 suggested	 (Figure	S3).	Although	
sample	 size	 was	 somewhat	 limited	 encompassing	 15	 British	 col‐
lections	 in	 total,	 this	 suggested	 disjoint	 IBD	 dynamics	 with	 one	
strong	north–south	genetic	break	within	this	geographical	region.	
A	distinct	 separation	between	northern	and	 southern	British	and	
all	other	populations	was	also	evident	in	the	PCA.	Here,	the	three	
first	 principal	 components	 (PCs)	 described	 5.3%	 of	 the	 variation,	
accounting	for	2.4%,	1.6%	and	1.3%,	respectively	(Figure	S4).	PC1	
differentiated	populations	from	continental	Europe	from	all	others,	
and	PC2	separated	SE	British	from	NE	British	populations	and	Baltic	
Sea	 samples	 from	 other	 European	 samples,	 whereas	 PC3	mainly	
separated	 SE	 British	 samples	 from	 all	 others.	 In	 correspondence	
with	a	general	 IBD	relationship,	population	sub‐structure	was	ev‐
ident	within	 each	 of	 the	 three	main	 geographical	 regions,	 where	
individual	genotype	clustering	to	a	large	extent	followed	geograph‐
ical	relationships	(Figures	S5–S7).	Genetic	relationships	within	and	
between	geographical	regions	are	visualized	in	Figure	1a.

Using	 DAPC	 to	 determine	 population	 groupings	 returned	most	
likely	 k	 =	 10,	 with	 relatively	 similar	 BIC	 for	 k	 =	 10–14,	 and	 geno‐
type	 clustering	 strongly	 corresponding	 with	 geographical	 regions	
(Figure	 1b).	 Expanding	 beyond	 10	 clusters	 identified	 increasing	

sub‐clustering	 within	 geographical	 areas,	 but	 with	 correspondingly	
decreasing	 posterior	 membership	 probabilities	 of	 individuals	 (not	
shown).	DAPC	 returned	overall	 good	proportions	of	 correct	 poste‐
rior	assignment	of	individuals	to	the	10	clusters.	Thus,	between	0.50	
and	1.00	(average	=	0.91)	of	individuals	per	sample	were	assigned	to	
a	cluster	including	their	collection	origin.	Hatchery	admixed	popula‐
tions	generally	exhibited	below‐average	assignment	to	cluster	origin	
(posterior	 assignment	 to	 cluster	 of	 origin	 in	 introgressed	 samples	
0.50–0.91,	average	=	0.69),	and	when	samples	from	introgressed	pop‐
ulations	were	removed	from	analyses,	average	posterior	assignment	
to	cluster	of	origin	increased	to	0.95.	A	post	hoc	clustering	analyses	
excluding	all	SNPs	exhibiting	positive	outlier	behaviour	(see	below)	re‐
turned	the	same	number	of,	and	individual	genotype	affiliations	with,	
population	clusters	as	did	analysis	including	all	SNPs	(not	shown).

3.3 | Identification of SNP outliers

The pcadapt	 analyses	 comprising	 all	 samples	 showed	 agreement	
with	the	results	using	adegenet	by	providing	the	optimal	model	reso‐
lution	when	grouping	genotypes	into	10	clusters	(Figure	S8).	When	
controlling	 for	 population	 clustering,	 pcadapt	 identified	 24	 outlier	
SNPs	distributed	across	13	LGs,	which	was	considerable	lower	than	
the	global	 result	 from	bayescan,	which	 identified	576	outlier	SNPs	
(183	 with	 lower	 and	 393	 with	 higher	 than	 expected	 divergence,	
Table	S3).	Seventeen	outlier	SNPs	were	identified	with	both	meth‐
ods.	Comparing	pcadapt	outliers	detected	in	paired	sub‐sets	of	data,	
11,	11	and	17	outliers	were	identified	in	sub‐set	1,	sub‐set	2	and	sub‐
set	1	and	2	combined,	respectively.	There	was	good	correspondence	
in	the	numbers	of	geographical	clusters	identified	for	the	three	data	
sets	(Figure	S9),	but	relatively	little	overlap	between	loci	identified	
as	outliers	in	the	sub‐sets	1	and	2	(four	of	11	outlier	loci,	Table	S3,	
Figure	S10).	The	low	overlap	in	outliers	detected	with	different	sub‐
sets	of	samples	was	also	evident	with	the	bayescan	approach,	where	
just	137	of	401	outlier	loci	(34%)	were	identified	in	both	sub‐sets	1	
and	2	(Table	S3,	Figure	S11).	Outlier	SNPs	identified	with	bayescan 
were	distributed	across	all	 LGs	 (Figure	3,	Table	S3).	There	was	no	
trend	for	covariance	between	LG	size	and	numbers	of	outliers	identi‐
fied	and	no	apparent	clustering	of	outliers	within	LG.

3.4 | Genotype associations with environment

Principal	component	analysis	of	spatial	and	environmental	variables	
showed	that	the	five	top	PCs	explained	69%	of	the	variation	(Figure	
S12).	 PC1	 (32%	 variation	 explained)	 described	 parameters	 distin‐
guishing	the	three	main	geographical	regions,	Britain,	Continental	
Europe	and	Scandinavian	Peninsula,	including	temperature	(higher	
for	Britain)	and	salinity	 (lower	for	Continental	European	samples).	
PC2	(15%)	was	associated	primarily	with	climatic	variables	related	
to	precipitation.	PC3	(10%)	was	associated	with	soil	pH.	PC4	(6%)	
was	associated	with	high	summer	temperatures,	and	PC5	(5%)	was	
associated	with	soil	type	(Tables	S5	and	S6).	Varying	the	number	of	
latent	factors	in	the	GEA	model	affects	identification	of	loci	associ‐
ated	with	parameters	(Frichot	et	al.,	2013),	which	may	particularly	

F I G U R E  2  Relationship	between	geographical	distance	(Dgeo)	
between	river	mouths	(in	kilometres)	and	genetic	differentiation	
(Dgen)	estimated	by	Nei's	distance,	between	pairwise	collections	
of	Salmo trutta.	Colour	contours	indicate	local	kernel	density	
estimates,	where	higher	densities	are	shown	by	increasing	degrees	
of	red.	The	line	indicating	the	least	squares	linear	relationship	
between	parameters	is	included	for	visual	representation
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influence	 inference	 if	 population	 structure	 follows	 an	 IBD	model	
and	 number	 of	 population	 clusters	 is	 ambiguous.	 In	 our	 analysis,	
997	loci	showed	GEA	when	K	was	set	to	14	population	clusters,	all	
of	which	were	a	sub‐set	of	loci	identified	at	K	=	9–13.	We	therefore	
report	GEA	results	for	K	=	14	to	reduce	rates	of	false	positives.	The	
majority	of	loci	(89%)	showed	association	(at	z	>	4.7)	with	a	single	
variable.	 There	 was	 generally	 low	 overlap	 between	 loci	 showing	
GEA	with	 the	 tested	 variables	 and	 loci	 identified	 as	 outliers,	 and	
just	13	loci	were	identified	in	all	three	tests.	All	LGs	contained	GEA	
loci	 (ranging	4–50	 loci,	 average	25,	 per	 LG;	 Figure	3).	 The	major‐
ity	of	GEA	were	observed	with	variables	differing	among	the	three	
geographical	regions	(421	PC1	associations)	and	with	temperature/
soil	 variables	 (371	 PC2	 associations).	 GEA	was	 less	 often	 related	
to	 geochemistry	 (207	 PC3	 associations),	 maximum	 temperature/
precipitation	(172	PC4	associations)	and	soil	type	(33	PC5	associa‐
tions).	 There	were	 several	 instances	 of	 interaction	 between	GEA	
and	geographical	region.	Thus,	for	11	loci	coming	out	as	statistical	
outliers	in	pcadapt	and	showing	GEA,	there	was	a	strong	effect	of	
geographical	region	on	relationships	between	allele	frequencies	and	
environmental	variables.	This	suggests	that	associations	are	lineage	
specific	and	potentially	confounded	by	the	phylogenetic	history	of	
populations.	An	example	of	a	typical	region‐specific	GEA	relation‐
ship	is	shown	in	Figure	4a.	In	other	cases,	GEA	was	observed	across	
all	 three	main	 geographical	 regions,	 suggesting	 that	 loci	were	 af‐
fected	in	the	same	direction	by	specific	selective	pressures	across	
demographic	 lineages	 (exemplified	 in	Figure	4b).	The	 locus	show‐
ing	 the	 strongest	 association	 with	 salinity	 exhibited	 concurrent	
relationships	in	the	two	geographical	regions	bordering	the	North	
Sea–Baltic	Sea	transition	zone	describing	a	salinity	gradient	varying	

from	fully	saline	waters	(34	ppt)	to	brackish	conditions	(8	ppt),	but	
also	large	allele	frequency	variation	within	the	more	salinity‐invari‐
ant	British	populations	(Figure	4c).

In	 the	 RDA,	 the	 first	 three	 components	 explained,	 respec‐
tively,	40%,	27%	and	18%	of	the	variation,	and	the	five	compos‐
ite	 environmental	 parameters	 all	 showed	 statistically	 significant	
variation	with	genotypes	(all	p	<	.001).	The	first	three	axes	sepa‐
rated,	 respectively,	 (a)	 British	 and	West	Norwegian	 populations,	
(b)	Scandinavian	populations	and	(c)	SE	British	populations.	As	in	
LFMM	analyses,	PC1	(mainly	associated	with	geography	and	tem‐
perature	variables)	showed	the	strongest	association,	followed	by	
PC2,	associated	with	precipitation	and	soil	type	(Figure	5).	When	
testing	which	SNPs	were	most	strongly	associated	with	each	of	the	
five	parameters,	respectively,	6,	12,	10,	19	and	8	SNPs	(55	SNPs	
in	total)	came	out	with	high	loading	values	for	PC1–5.	Correlations	
between	these	SNPs	and	their	most	strongly	associated	environ‐
mental	parameters	were	not	marked	 (average	r	=	 .29,	 range	 .15–
.49).	Thirty‐nine	of	the	55	SNPs	(71%)	identified	as	showing	GEA	
in	RDA	also	showed	GEA	in	LFMM	(Table	S3).

4  | DISCUSSION

Our	 study	 has	 two	 main	 merits.	 Firstly,	 by	 taking	 advantage	 of	
genomic	 resources	developed	 for	S. trutta,	 this	 study	provides	 the	
most	detailed	examination	of	large‐scale	genetic	structure	in	a	cen‐
tral	part	of	the	species'	native	range.	We	identified	very	strong	sam‐
ple	clustering	corresponding	with	broad	geographical	regions,	as	well	
as	clear	genetic	breaks	among	samples	within	regions,	that	in	several	

F I G U R E  3  Manhattan	plot	showing	z‐values	from	gene–environment	association	(GEA)	analyses	for	3,629	SNP	loci	aligned	by	position	
in	LG	1–40.	Individual	plots	a–e	show	z‐values	associated	with	each	SNP	for	each	of	the	five	composite	environmental	variables	Dim1‐5.	
SNPs	above	the	blue	horizontal	line	show	statistically	significant	GEA.	Green	symbols	indicate	138	positive	outlier	SNPs	identified	in	both	
population	sub‐sets	with	pcadapt and/or bayescan.	SNP	loci	showing	association	with	individual	variables	in	RDA	are	circled	in	red
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cases	 were	 associated	 with	 climatic	 variables.	 Secondly,	 we	 con‐
tribute	 to	 the	 evaluation	 of	 state‐of‐the‐art	 statistical	 approaches	
for	 identifying	genetic	signatures	of	selection	and	their	association	
with	environments,	through	reporting	on	genome‐wide	detection	of	
loci	exhibiting	GEA	and	showing	that	discovery	 in	some	cases	was	
strongly	dependent	on	statistical	method	and	sampling	design.

4.1 | Inference from genome‐wide SNP variation in 
S. trutta

Genomic	 resources	 are	 rapidly	 growing	 for	 S. trutta	 (Carruthers	
et	 al.,	 2018;	 Leitwein	 et	 al.,	 2017;	 Lemopoulos	 et	 al.,	 2018),	 but	

our	study	is	the	first	to	apply	genome‐wide	SNP	data	to	examine	
broadscale	population	 relationships	and	associations	with	evolu‐
tionary	 drivers	 across	 regional	 scales.	 The	 stringent	 criteria	 for	
selecting	SNPs	are	likely	to	have	caused	some	ascertainment	bias,	
thereby	skewing	MAF	towards	higher	values	and	lowering	power	
to	 disentangle	 effects	 of	 neutral	 versus	 selective	 processes.	
Ascertainment	bias	in	SNP	selection	may	bias	inferences	of	popu‐
lation	demography	(Guillot	&	Foll,	2009,	but	see	also	Albrechtsen,	
Nielsen,	&	Nielsen,	2010).	In	this	study,	individuals	from	all	major	
genetic	clusters	detected	were	represented	in	the	ascertainment	
panel,	 suggesting	 that	our	assessment	of	 spatial	 structure	 is	un‐
likely	to	suffer	substantial	bias	with	respect	to	the	magnitude	of	

F I G U R E  4  Association	between	environmental	variables	and	frequency	of	major	allele	for	populations	in	the	three	geographical	
regions	Britain	(open	symbols,	dotted	line),	Scandinavian	peninsula	(black	symbols,	solid	line)	and	Continental	Europe	(grey	symbols,	
stippled	line),	exemplifying	gene–environment	association	relationships	that	are	as	follows:	(a)	specific	to	geographical	regions;	locus	
“Gdist_S82886_3406,”	identified	as	selective	outlier	in	both	pcadapt and bayescan,	(b)	general	across	regions;	locus	“cDNA_S415600_5145,”	
showing	no	outlier	behaviour	but	association	with	temperature	parameters	and	latitude	(shown	here)	or	(c)	general	across	regions	
characterized	by	salinity	gradients,	but	not	in	the	salinity‐invariant	region	Britain;	locus	“cDNA_S84920_5746.”	None	of	the	three	loci	
exhibited	statistically	significant	outlier	behaviour	in	RDA	(see	text).	Least	squares	regression	lines	are	shown	to	guide	inference
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genetic	differences	among	populations,	at	least	across	larger	geo‐
graphical	 scales.	 Individuals	 in	 the	 SNP	 development	 ascertain‐
ment	 panel	 represented	 both	 the	 NE	 British	 and	 the	 SE	 British	
population	clusters.	The	lower	overall	genetic	diversity	observed	
in	samples	from	Britain	was	thus	unlikely	an	artefact	of	ascertain‐
ment	bias.	Although	methods	have	been	proposed	to	correct	for	
ascertainment	bias	 (Guillot	&	Foll,	 2009),	most	 require	 some	as‐
sumption	 about	 allele	 frequency	 distributions	 under	 un‐biased	
conditions.	 Lacking	 such	 information,	 we	 therefore	 refrained	
from	 estimating	 demographic	 parameters,	 such	 as	 phylogenetic	
relationships	and	divergence	times.	Yet,	we	emphasize	that	given	
the	genomic	coverage	and	quantity	of	markers,	the	relative	mag‐
nitudes	of	differentiation	detected	among	samples	are	expected	
to	be	robust.

4.2 | Geographical breaks in population structure

Our	 results	 support	 previous	 inference	 based	 on	 smaller	 marker	
panels	 and	 samples	 with	 more	 restricted	 geographical	 coverage.	
Accordingly,	 this	 study	 reinforces	 the	notion	 that	 trout	 commonly	
show	temporally	 stable	 (at	 least	on	a	decadal	 scale)	genetic	 struc‐
ture	 on	 local	 river	 or	 neighbouring	watershed	 scales	 and	 that	 the	
distribution	 of	 genetic	 variation	 can	 often	 be	 described	 by	 isola‐
tion‐by‐distance	 dynamics,	 attributed	 to	 the	 species'	 homing	 in‐
stinct	(Griffiths,	Koizumi,	Bright,	&	Stevens,	2009;	Meier	et	al.,	2011;	
Stelkens,	Jaffuel,	Escher,	&	Wedekind,	2012).	Although	our	sampling	
scheme	 was	 not	 exhaustive,	 we	 benefitted	 from	 substantial	 geo‐
graphical	sample	coverage	allowing	fine‐scale	inference	about	struc‐
tural	relationships	from	wide	to	small	geographical	scales.	First,	we	
identified	 strong	genetic	breaks	 among	populations	 inhabiting	 the	

landmasses	 Britain,	 the	 European	 continent	 and	 the	 Scandinavian	
Peninsula,	most	 likely	 reflecting	 allopatric	 divergence	during	post‐
glacial	 colonization	events	 (Bernatchez,	2001;	Cortey,	Vera,	Pla,	&	
García‐marín,	2009;	Hewitt,	2000).

A	 novel	 result	was	 the	 identification	 of	 strong	 divergence	 be‐
tween	northern	and	southern	British	populations.	Our	sampling	de‐
sign	did	not	 allow	 for	precise	definition	of	 the	geographical	break	
between	the	two	clusters	of	samples,	nor	whether	geographically	in‐
termediate	populations	constituted	a	hybrid	zone	between	clusters.	
Analyses	of	mitochondrial	DNA	markers	have	not	identified	genetic	
breaks	between	populations	sampled	in	south	and	north	(McKeown,	
Hynes,	Duguid,	Ferguson,	&	Prodohl,	2010).	However,	complex	phy‐
logeographical	processes	and	incomplete	lineage	sorting	could	have	
affected	this	result	(McKeown	et	al.,	2010)	masking	the	divergence	
observed	with	nuclear	markers.	In	contrast	to	Northern	Britain,	the	
area	spanning	from	Wales	in	west	to	east	Anglia	in	east	was	ice‐free	
during	the	last	glaciation	and	thus	has	a	different	geological	history	
from	that	of	the	north.	Moreover,	the	entire	Southeast	Britain	pre‐
viously	constituted	the	catchment	area	for	the	River	Thames	drain‐
ing	into	the	southern	North	Sea	(Rose,	1994).	Analyses	of	additional	
samples	 from	 the	 River	 Thames	 and	 from	 rivers	 draining	 into	 the	
English	 Channel	 support	 the	 existence	 of	 close	 genetic	 relation‐
ships	among	SE	British	trout	populations	(D.	Bekkevold,	A.	King,	J.	
Stevens,	 unpublished	 results).	 Trout	 populations	 in	 SE	 Britain	 are	
generally	characterized	by	inhabiting	short,	lowland	rivers,	whereas	
NE	British	populations	included	in	our	study	generally	inhabit	larger	
upland	rivers	with	stronger	gradients	and	higher	water	flow.	The	ge‐
netic	discontinuity	identified	in	our	study	is	hence	in	agreement	with	
expectations	 for	 two	population	clusters	 inhabiting	different	envi‐
ronments	and	having	discrete	evolutionary	histories	potentially	as‐
sociated	with	selective	sweeps	that	maintain	separate	demographics	
to	present	day.

We	identified	another	prominent	genetic	break	between	popu‐
lations	from	the	Scandinavian	Peninsula	and	Continental	Europe	(in‐
cluding	the	Danish	Belt	Sea	islands).	There	was	apparently	a	strong	
barrier	 to	 genetic	 exchange	between	 rivers	 draining	 into	 east	 and	
west	of	the	Skagerrak	and	Kattegat	seas,	in	some	places	separated	
by	less	than	60‐km	waterway.	Such	strong	genetic	separation	is	re‐
markable,	 given	 the	 species'	 propensity	 for	 long	 distance	 feeding	
migrations	 (Koljonen,	Gross,	&	Koskiniemi,	 2014),	 including	within	
the	Kattegat	 area	 (D.	Bekkevold,	 unpublished	data),	 and	points	 to	
accurate	homing	to	specific	geographical	regions.

As	expected,	genetic	structure	was	also	evident	within	regional	
population	 clusters.	 In	 most	 cases,	 genome‐wide	 differentiation	
followed	geographies	in	correspondence	with	founder	events	com‐
bined	with	 isolation‐by‐distance	dynamics.	Nonetheless,	we	stress	
that	 although	 inference	 about	overall	 genetic	 relationships	 among	
populations	 should	 be	 robust,	 the	 potential	 ascertainment	 bias	 of	
the	applied	markers	could	somewhat	influence	the	inference	of	the	
underlying	demographic	processes.	Even	so,	 the	markers	analysed	
here	will	be	useful	for	delineating	conservation	units	and	their	dis‐
tributions	in	time	and	space,	as	well	as	for	individual	assignment	and	
identification	of	population	admixture	(Nielsen	et	al.,	2012).

F I G U R E  5  Redundancy	analysis	results	showing	the	first	two	
axes,	explaining,	respectively,	40%	and	27%	variation.	Grey	points	
indicate	individual	SNPs,	and	dots	indicate	individual	fish	colour	
coded	by	their	geographical	region	following	notation	in	Figure	1	
(Continental	Europe:	blues	and	greens;	E	Scandinavian	Peninsula:	
purples;	W	Scandinavian	Peninsula:	pink;	NE	Britain:	light	yellow;	
SE	Britain:	brown).	Blue	vectors	represent	the	environmental	
predictors	represented	by	the	five	composite	environmental	PCs.	
Both	SNP	and	individual	fish	scores	are	scaled	symmetrically	by	the	
square	root	of	the	eigenvalues
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4.3 | Contrasting results from different genome 
scan approaches

We	 used	 one	 of	 the,	 to	 our	 knowledge,	 largest	 sample	 sizes	 to	
date	 for	 outlier	 analysis	 across	 a	 large	 number	 of	 geographically	
widespread	 populations	 and	 typed	more	 than	 3,000	 SNPs,	which	
is	 the	 suggested	 threshold	 to	 limit	 false	discovery	bias	 (Ahrens	 et	
al.,	 2018).	 The	 application	of	 two	different	 genome	 scan	method‐
ologies	allowed	further	insights	into	the	processes	hypothesized	to	
drive	population	differentiation.	 The	overarching	 result	 from	both	
methodologies	was	 the	 finding	 of	 statistical	 outliers	 across	 broad	
expanses	of	the	trout	genome.	Large	blocks	of	highly	divergent	loci	
positioned	in	one	or	a	few	linkage	groups	(sometimes	referred	to	as	
“genomic	islands”	often	attributed	to	chromosomal	structures	such	
as	inversions)	have	been	identified	to	differentiate	ecotypes	in	fish	
(Bradbury	et	al.,	2013;	Hemmer‐Hansen	et	al.,	2013;	Lamichhaney	
et	al.,	2017).	However,	unless	a	population	has	undergone	a	recent	
selective	sweep,	local	selection	is	unlikely	to	act	on	only	a	few	large‐
effect	 loci	 or	 genomic	 regions	 (Rockman,	 2012).	Although	 the	 ge‐
netic	structures	we	observe	likely	also	reflect	drift	and,	potentially,	
postglacial	secondary	contact	between	lineages,	our	results	are	thus	
in	line	with	the	pattern	from	other	salmonids	(Bourret	et	al.,	2013;	
Pritchard	et	al.,	2018)	that	populations	exhibit	genomic	variation	in‐
dicative	of	multiple	sweeps	and	divergent	selection	acting	on	broad	
expanses	of	the	genome.

When	all	collections	were	included	in	global	analyses,	the	two	
methodologies	 returned	 large	 numerical	 differences	 in	 detected	
outlier	loci.	Thus,	bayescan	identified	11%	outliers,	whereas	when	
controlling	 for	 regional	 population	 clustering,	 pcadapt	 identified	
less	 than	one	per	 cent	outliers.	Albeit	 both	 figures	 at	 face	value	
differ	from	estimates	of	~5%	outlier	loci	seen	in	other	species,	they	
are	still	within	the	reported	range	(reviewed	in	Ahrens	et	al.,	2018).	
Our	 analysis	 is	 also	 consistent	 with	 results	 being	 dependent	 on	
both	statistical	methods	used	(Bradbury	et	al.,	2013)	and	the	type	
of	genetic	variation	studied	(de	Villemereuil	et	al.,	2014;	Vasemägi,	
Nilsson,	&	Primmer,	2005;	but	see	Ahrens	et	al.,	2018).	The	bayes-
can	 approach	may	yield	 low	detection	power	under	an	 “isolation	
with	migration”	model,	as	is	expected	for	brown	trout	populations,	
and	sampling	large	numbers	of	genotypes	may	concurrently	inflate	
numbers	of	false	positives	(de	Villemereuil	et	al.,	2014).	The	popu‐
lation	clustering	parameter	(k)	applied	in	our	pcadapt	analysis	was	
based	on	all	loci,	rather	than	restricted	to	sub‐sets	of	loci	presumed	
to	 reflect	 neutral	 demographic	 processes.	 This	 could	 potentially	
have	 reduced	 number	 of	 outliers	 detected	with	 the	 pcadapt	 ap‐
proach,	compared	to	the	“demography‐naïve”	bayescan	approach.	
Conversely,	in	a	minor	number	of	cases,	paired	rivers	did	not	exhibit	
statistically	significant	divergence,	which	could	have	led	to	slightly	
increased	numbers	of	false	positives	identified	across	sub‐set	anal‐
yses.	All	of	 these	error	 sources	may	have	contributed	 to	 the	ob‐
served	discrepancy	between	the	two	outlier	analysis	approaches.	
The	inference	gained	in	our	study	from	comparing	methods	is	that	
outliers	may	be	highly	specific	to	hierarchical	population	clusters,	
as	 evidenced	 by	 the	much	 lower	 number	 loci	 detected	with	 the	

pcadapt	approach	incorporating	demography	than	in	the	approach	
not	incorporating	demography.	The	relatively	low	overlap	in	outli‐
ers	identified	in	sample	sub‐sets	corroborates	the	view	that	sam‐
pling	 design	 may	 have	 a	 strong	 effect	 on	 detection	 of	 genomic	
regions	 underlying	 selection.	However,	when	 comparing	 outliers	
identified	 across	 both	 sample	 sub‐sets,	 all	 four	 pcadapt	 outliers	
and	90%	of	137	bayescan	outliers	also	showed	GEA.	This	supports	
the	notions	that	comparing	results	from	different	statistical	meth‐
ods	(de	Villemereuil	et	al.,	2014)	and	applying	a	paired‐population	
sampling	design	 (Lotterhos	&	Whitlock,	2015)	can	strengthen	 in‐
ference	about	selective	processes	under	a	hierarchical	population	
scenario.

4.4 | Genotype‐environment associations 
within and among clusters

We	identified	several	GEA	related	to	climatic	variables	temperature	
and	precipitation,	which	is	consistent	with	results	in	other	fish	spe‐
cies,	 including	other	salmonids	 (Bourret	et	al.,	2013;	Chen,	Farrell,	
Matala,	 &	 Narum,	 2018;	 Hecht,	 Matala,	 Hess,	 &	 Narum,	 2015;	
Matala,	Ackerman,	Campbell,	&	Narum,	2014;	Perrier,	Bourret,	Kent,	
&	Bernatchez,	2013).	Such	general	 relationships	are	not	surprising	
given	that	 in	fishes,	temperature	 is	 linked	to	key	physiological,	de‐
velopmental	and	behavioural	processes,	rendering	fish	highly	sensi‐
tive	to	climatic	and	thermal	conditions	(Crozier	&	Hutchings,	2014;	
Eliason	 et	 al.,	 2011).	Climatic	 drivers	 are	 hence	 expected	 to	 exert	
selection	pressures	on	local	populations,	also	in	trout	(Jensen	et	al.,	
2008),	although	some	salmonid	studies	 indicate	stronger	effect	of	
phenotypic	plasticity	rather	than	adaptation	to	specific	temperatures	
(Solberg,	Dyrhovden,	Matre,	&	Glover,	2016).	Nonetheless,	tempera‐
ture	and	precipitation	are	likely	to	be	correlated	with	other,	untested,	
environmental	 variables,	 and	 short	of	experimental	manipulations,	
GEA	studies	can	only	be	indicative	of	drivers	underlying	local	adap‐
tation	(McCairns,	Smith,	Sasaki,	Bernatchez,	&	Beheregaray,	2016).	
LD,	 especially	 high	 within	 salmonids,	 is	 likely	 to	 show	 low	 decay	
across	broad	genomic	regions,	also	obscuring	the	direct	relationship	
between	specific	SNP's	and	environmental	variables.	Thus,	 confir‐
mation	of	functional	and	adaptive	significance	of	post	hoc	identified	
genes	 requires	 rigorous	 testing,	and	although	several	GEA	studies	
report	 annotation	 of	 SNPs	 found	 to	 be	 associated	 with	 environ‐
mental	 variables,	we	 follow	 the	argumentation	 in	Pavlidis,	 Jensen,	
Stephan,	and	Stamatakis	(2012)	and	refrain	from	mining	for	annota‐
tion	of	GEA	markers.	In	GEA	testing,	both	the	univariate	latent	fac‐
tor	mixed	model	approach	LFMM	and	the	ordination‐based	method	
RDA	identified	loci	associated	with	environmental	parameters,	but	
the	 latter	method	 identified	 less	 than	5%	of	 the	numbers	of	SNPs	
as	the	former.	This	differs	from	results	of	a	recent	study	in	Populus,	
where	RDA	had	superior	statistical	power	and	showed	 lower	non‐
detection	rates	than	LFMM	(Capblancq	et	al.,	2018).	That	study	also	
found	that	the	two	approaches	did	not	consistently	identify	known	
QTLs,	whereas	 in	our	 study,	 SNPs	 showing	GEA	with	RDA	gener‐
ally	also	were	 identified	with	LFMM.	 Interestingly,	 there	was	 rela‐
tively	stronger	consistency	 in	 loci	 identified	with	both	methods	to	
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be	associated	with	the	variable	Dim1	that	comprised	the	main	differ‐
ences	among	geographical	regions	than	across	analyses	for	Dim2‐5,	
associated	with	 environmental	 variables	 that	were	 less	 specific	 to	
individual	 geographical	 regions.	 This	 indicates	 that	 GEA	 methods	
were	most	consistent	for	variables	showing	the	strongest	 inter‐re‐
gional	divergence.	Numbers	of	GEA	identified	with	LFMM	were	high	
(totalling	almost	30%	of	all	loci)	and	spread	across	all	LGs.	Although	
results	were	controlled	for	inflation	of	false	positives,	this	suggests	
that	absolute	numbers	of	GEA	identified	may	have	been	upwardly	
biased.	Irrespective	of	a	potential	bias,	the	identification	GEA	across	
broad	expanses	of	the	trout	genome	with	both	methods	is	sugges‐
tive	of	locally	adapted	variation	being	pervasive	throughout	multiple	
genomic	regions.	Our	results	may	also	reflect	the	expectation	that	
locally	adapted	traits	often	are	polygenic	and	governed	by	loci	that	
individually	exhibit	low	effect	that	are	difficult	to	detect	statistically	
(Savolainen	et	al.,	2015).

A	strength	of	our	sampling	design	is	that	it	represents	a	paired‐
gradient	 design,	 in	 the	 sense	 that	 it	 allowed	 for	 an	 assessment	of	
whether	 the	 same	 loci	 were	 associated	 with	 climatic	 gradients	
across	presumably	allopatric	population	clusters.	Although	several	
loci	 showed	consistent	 relationships	with	environmental	variables,	
there	 were	 also	 several	 cases	 where	 relationships	 were	 evident	
within	only	one	or	two	population	clusters.	This	was	exemplified	by	
the	locus	showing	maximal	association	with	salinity.	Here,	both	the	
Scandinavian	and	the	European	mainland	population	clusters,	which	
co‐habit	the	North	Sea–Baltic	Sea	salinity	gradient,	were	found	to	
display	 increasing	 allele	 frequencies	 with	 decreasing	 salinity,	 al‐
though	variance	among	populations	was	pronounced.	For	the	same	
locus,	allele	frequencies	also	varied	greatly	across	the	British	popu‐
lations	that	 invariantly	 inhabit	rivers,	which	drain	 into	high‐salinity	
coastal	environments.	This	result	could	indicate	that	salinity	condi‐
tions,	 rather	 than	demography	alone,	drive	dynamics	 in	 that	 locus	
in	Scandinavian	and	European	mainland	populations,	and	that	neu‐
tral,	or	at	least	dissimilar,	dynamics	drive	allele	frequencies	in	British	
populations.	The	application	of	composite	environmental	variables	
in	 the	GEA	models,	 rather	 than	 examining	 single,	 in	 several	 cases	
inter‐correlated	 variables	 individually	 may	 have	 obscured	 identifi‐
cation	of	strong	relationships	between	specific	variables	and	SNPs.	
However,	in	the	present	context	association	between	environments	
and	genomic	regions	suggests	that	adaptation	to	local	environments	
may	be	complex	but	is	pervasive	across	populations.

4.5 | Genetic management of brown trout

Although	genomic	analysis	and	identification	of	adaptive	variation	is	
not	a	requirement	for	conservation	per	se	(Flanagan,	Forester,	Latch,	
Aitken,	&	Hoban,	2018),	our	results	have	direct	management	impli‐
cations.	First,	our	results	can	be	applied	to	define	conservation	units	
and	 to	 prioritize	 management	 actions	 (Funk,	 McKay,	 Hohenlohe,	
&	 Allendorf,	 2012;	 also	 see	 discussion	 in	Mee,	 Bernatchez,	 Reist,	
Rogers,	 &	 Taylor,	 2015).	 Specifically	 in	 salmonids,	 supplementary	
stocking	 has	 been	 a	 popular	 management	 tool	 to	 mitigate	 dwin‐
dling	populations	 in	 the	 face	of	habitat	deterioration	and	 fisheries	

exploitation.	 A	 substantial	 body	 of	 literature	 has	 addressed	 po‐
tential	genetic	effects	of	stocking	non‐native	genetic	material	 into	
wild	populations	(Laikre,	Schwartz,	Waples,	&	Ryman,	2010)	where	
effects	 on	 population	 fitness	 are	mainly	 expected	 to	 be	 negative	
(Edmands,	 2007).	Our	 SNP	data	 represent	 a	 valuable	 genomic	 re‐
source	for	assessment	and	monitoring	of	introgression	in	local	popu‐
lations	(Glover	et	al.,	2013;	Vera	et	al.,	2018)	and	as	a	tool	to	design	
experimental	tests	of	fitness	effects	of	 introgression	(Hagen	et	al.,	
2019).	 A	 practical	 advantage	 of	 our	 SNP	 array	 approach,	 in	 com‐
parison	with,	 for	example	RAD	and	other	genotyping‐by‐sequenc‐
ing‐based	approaches	(Andrews,	Good,	Miller,	Luikart,	&	Hohenlohe,	
2016),	is	that	our	markers	are	directly	transferrable	between	geno‐
typing	platforms	and	that	information	can	be	used	to	tailor	analyses	
addressing	 specific	 management	 objectives.	 To	 maximize	 the	 ef‐
ficiency	of	conservation	efforts,	 there	 is	 increasing	effort	 to	tailor	
releases	 by	 using	 the	 genetically	 most	 suitable	 stocking	 material	
(Caudron,	Champigneulle,	Guyomard,	&	Largiader,	2011).	Genomic	
coverage	was	relatively	low	in	our	study,	and	the	knowledge	gained	
here	is	unlikely	to	fully	reflect	functionally	significant	differentiation	
within	and	among	populations.	It	is	therefore	possible	that	some	of	
the	populations	exhibiting	no	genetic	differentiation	in	fact	are	 lo‐
cally	adapted.	Moreover,	our	sampling	design	was	not	equally	com‐
prehensive	across	all	geographical	regions.	Although	our	study	thus	
has	shortcomings,	it	nonetheless	provides	essential	information	on	
the	 geographical	 distribution	 of	 populations	 more	 likely	 to	 share	
evolutionary	 histories	 that	 would	 allow	 for	 successful	 reintroduc‐
tions,	 where	 needed.	 We	 identified	 geographical	 regions	 exhibit‐
ing	overall	weak	genetic	differentiation	among	neighbouring	rivers,	
as,	for	example,	was	the	case	for	several	Swedish	Skagerrak	rivers.	
Where	 human‐mediated	 gene	 flow	 can	 be	 discounted,	 genetically	
similar	populations	are	inferred	to	also	display	stronger	demographic	
connectivity.	 Results	 could	 indicate	 that	 population	 dynamics	 can	
be	 described	 in	 a	 meta‐population	 context,	 where	 demographic	
stability	may	be	dependent	on	regional,	rather	than	local	processes	
(Østergaard,	 Hansen,	 Loeschcke,	 &	 Nielsen,	 2003).	 Especially	 in	
systems	 consisting	 of	 small,	 temporally	 unpredictable	 streams	 (in	
terms	of	discharge),	straying	between	neighbouring	rivers	might	be	a	
strategy	that	has	been	favoured	by	natural	selection.	Conversely,	in	
a	number	of	cases,	river	populations	within	a	relatively	constrained	
geographical	area	exhibited	marked	genetic	divergence,	suggestive	
of	selection	against	interbreeding.	In	such	cases,	restocking	activities	
should	refrain	from	mixing	gene	pools,	which	could	result	 in	 intro‐
gression	and	outbreeding	depression.	Although	extensive	genomic	
and	experimental	analyses	are	required	to	predict	the	suitability	of	
directed	releases	of	specific	non‐native	strains,	most	applied	conser‐
vation	work	relies	on	the	establishment	of	practical	guidelines	that	
do	not	require	detailed	case‐by‐case	study.	An	applied	conservation	
guideline	adhered	to	in	Denmark	is	that	restocking	material	should	
represent	fish	of	the	genetically	closest	related	population	and	from	
the	geographically	closest	population	if	that	information	is	not	avail‐
able	(Berg	&	Hansen,	1998).	Governance	of	salmonid	stocking	var‐
ies	 strongly	 among	 north‐east	Atlantic	 legislative	 units,	 and	 there	
is	a	call	 for	 increased	attention	 to	halt	unsustainable	management	
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practises	(Aas	et	al.,	2018).	Our	results	serve	as	a	tool	that	can	be	
directly	 implemented	 in	outlining	conservation	units	and	to	advice	
on	the	geographical	distribution	of	genetic	populations	that	can	be	
expected	to	be	suitable	for	preserving	adaptive	state,	for	example	
under	local	restocking	activities.
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