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Two-dimensional materials such as graphene or hexagonal boron nitride are indispensable in in-
dustry. The recently discovered 2D ferromagnetic materials also promise to be vital for applications.
In this work, we develop a phenomenological description of non-centrosymmetric 2D ferromagnets
with trigonal prismatic crystal structure. We chose to study this special symmetry group since these
materials do break inversion symmetry and therefore, in principle, allow for chiral spin structures
such as magnetic helices and skyrmions. However, unlike all non-centrosymmetric magnets known
so far, we show that the symmetry of magnetic trigonal prismatic monolayers neither allow for
an internal relativistic Dzyaloshinskii-Moriya interaction (DMI) nor a reactive spin-orbit torque.
We demonstrate that the DMI only becomes important at the boundaries, where it modifies the
boundary conditions of the magnetization and leads to a helical equilibrium state with a helical
wavevector that is inherently linked to the internal spin orientation. Furthermore, we find that
the helical wavevector can be electrically manipulated via dissipative spin-torque mechanisms. Our
results reveal that 2D magnets offer a large potential for unexplored magnetic effects.

The successful fabrication of isolated graphene in
2004 [1] initiated an intense interest in manufacturing
and exploring two-dimensional (2D) materials [2]. The
last ten years' rapid progress within material engineer-
ing has revealed that graphene is just one of a whole
family of stable 2D materials, which includes insulators,
semiconductors as well as semimetals [3, 4]. In addition
to graphene, other important examples are hexagonal
boron nitride, transition metal dichalcogenides (TMDs),
and phosphorene [3]. Recent experiments have demon-
strated that the TMDs even become superconducting at
low temperatures [5]. The unique tunable electronic and
optical properties of the 2D materials, combined with
their mechanical flexibility and stretchability, make them
particularly attractive as building blocks to create novel
quantum materials with the potential for integration in
the next generation of electronic devices.

A novel member of this family is the 2D ferromagnets.
In 2017, two independent research groups experimen-
tally demonstrated long-range ferromagnetic ordering in
monolayers and bilayers of CrI3 and Cr2Ge2Te6 at tem-
peratures below 61 K and 30 K respectively [6, 7]. The
experiments showed only a weak coupling of the spins to
the adjacent substrates, thus indicating that the ordered
spins could be regarded as purely 2D ferromagnetic sys-
tems. Furthermore, a recent experiment reported strong
ferromagnetic ordering in monolayers of the TMD VSe2

at temperatures far above 300 K [8] . The observed room-
temperature ferromagnetism in TMDs makes this class of
materials particularly promising for spintronics applica-
tions. In particular, it is believed that their remarkable
2D properties will unlock a multitude of new exotic spin
phenomena with potential applications in the develop-
ment of novel ultra-compact spin-based devices.

The TMDs crystallize in two different phases, either
in the 1T-phase or in the 2H-phase [3]. The 1T-phase is
characterized by the octahedral point groupD3d, whereas
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FIG. 1: (color online). (a) Ferromagnets with 2H structure
lack inversion symmetry. Nevertheless, the systems do not
have an internal DMI field. Only a boundary-DMI field exists,
which in equilibrium stabilizes a helical spin phase (arrows).
(b) The crystal structure of the 2H monolayer. (c) Shows the
atomic configuration at a lattice point. In the TMDs, the
red atom represents the transition metal atom and the blue
atoms are the chalcogen atoms.

the 2H-phase is determined by the trigonal prismatic
point group D3h (see Fig. 1). The experiment on the
magnetic monolayer in Ref. [8] was performed for VSe2

in the centrosymmetric 1T-phase. Ferromagnetism in
the 2H-phase has not yet been experimentally observed.
However, theory predicts that nano sheets of ferromag-
netic TaS2 exist in the 2H-phase [3].
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We anticipate the spatially asymmetric 2H-phase to
exhibit more intriguing spin physics than the centrosym-
metric 1T-phase. Generally, broken inversion symme-
try combined with spin-orbit coupling (SOC) yields an
anisotropic relativistic exchange interaction known as the
Dzyaloshinskii-Moriya interaction (DMI) [9, 10]. Several
experiments have demonstrated that the DMI gives rise
to complex physical effects such as helical spin phases [9],
helimagnons [11, 12], boundary-induced twist states [13–
21], and topologically stabilized magnetic skyrmion tex-
tures [22–29]. Additionally, spatial asymmetric SOC
strongly affects the coupling between the magnetiza-
tion and the itinerant charge carriers and leads to novel
current-driven spin-torque mechanisms such as the spin-
orbit torques (SOTs) and spin-Hall torque [30].

So far, there have been no previous studies of the
SOC-induced spin phenomena in ferromagnetic mono-
layers with 2H structure. Importantly, the relativistic
effects can be particularly strong in the trigonal pris-
matic state, because first-principle calculations indicate
that the phase is often semiconducting [4, 8]. Conse-
quently, we expect the SOC and the potentially accom-
panying DMI and SOTs to be particularly strong.

Here, we develop a phenomenology of the magneti-
zation dynamics in 2D ferromagnets with 2H structure.
In stark contrast to previously investigated ferromagnets
with broken inversion symmetry, we find that the 2H-
ferromagnets exhibit no internal DMI field and no re-
active SOT. This is a direct consequence of the trigonal
prismatic crystal symmetry of the 2H phase. Remark-
ably, the DMI reveals itself only close to the edges of
the sample, where the asymmetric exchange interaction,
denoted as boundary-DMI in the following, modifies the
micromagnetic boundary conditions (BCs). We demon-
strate that the DMI-induced BCs produce a helical mod-
ulation of the magnetic moments with a helical wavevec-
tor that is locked to the internal orientation of the magne-
tization. Importantly, we show that this unique locking
enables all-electric manipulation of the helical wavevector
via the dissipative SOT and spin-transfer torque (STT).

To derive a phenomenological description of ferromag-
netic materials with trigonal prismatic 2H structure, we
start by writing down the magnetic free-energy functional
dictated by the D3h symmetry. We parameterize the lo-
cal magnetization direction by the unit vector m(r, t) and
expand the free energy up to second order in the mag-
netization gradients. In this case, the free energy can be
expressed as [31]

F [m] =

∫
dr [Fe + FD + Fh + Fa] , (1)

where Fe = Jij ∂im · ∂jm represents the symmetric ex-
change interaction, FD = Dijkmi∂jmk is the general
form of DMI [31], Fh = −m ·Hext describes the coupling
to an external magnetic field, Fa = Kijmimj represents
the anisotropy energy, and the integration is over the 2D

plane covered by the monolayer.
The tensors Jij , Kij , and Dijk are polar tensors of

rank two and three respectively, and their tensorial struc-
tures are governed by the symmetry of the system. For
systems characterized by the D3h point group, polar
second-rank tensors have three non-vanishing tensor el-
ements that are parameterized by two independent pa-
rameters [32]. In the following, we choose a coordinate
system where the z-axis is parallel to the three-fold rota-
tion axis and y is along a two-fold rotation axis, see Fig.
1. In this reference frame, the ferromagnetic monolayer
lies in the xy-plane and the symmetric exchange interac-
tion and anisotropy energy have the following non-zero
coefficients: Jxx = Jyy ≡ J , Jzz and Kxx = Kyy, Kzz.
The DMI tensor has four non-vanishing tensor elements
that are parameterized by a single parameter D [32]:

D ≡ Dxyy = Dyxy = Dyyx = −Dxxx. (2)

Substitution of the above tensor coefficients into Eq. (1)
yields the free energy density

F = J
[
(∂xm)

2
+ (∂ym)

2
]
−m ·Hext +Kum

2
z + (3)

D [my∂ymx +my∂xmy +mx∂ymy −mx∂xmx] .

Here, we have introduced the uniaxial anisotropy con-
stant Ku = Kzz −Kxx and only taken into account spa-
tial variations in the xy-plane.

The magnetization dynamics are given by the Landau-
Lifshitz-Gilbert (LLG) equation [33, 34]

ṁ = −γm×Heff + m×αṁ + τ , (4)

where γ is the gyromagnetic ratio, Heff is the effective
field and τ the current-induced torque. The matrix α is
the Gilbert damping tensor, which is a second-rank polar
tensor with the non-vanishing elements αxx = αyy = α⊥
and αzz. The effective field Heff is determined by the
internal value of the functional derivative,

Heff = − δF
δm

= 2J
[
∂2
xm + ∂2

ym
]
+Hext−2Kumz ẑ, (5)

whereas the boundary terms in the variational equation
δF/δm = 0 lead to the following micromagnetic BCs of
the LLG equation [14]:

2J n̂ ·∇m = −m× (ΓD ×m) . (6)

Here, n̂ = [nx, ny]T (T denotes the transpose of the
vector) is the surface normal and ΓD is the boundary-
induced DMI field:

ΓD = D [myny −mxnx,mxny +mynx, 0]
T
. (7)

Eqs. (4)-(7) are the first central result of this work and
represent a general phenomenological theory of the mag-
netization dynamics in 2H-ferromagnets. Importantly,
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we find that the DMI only affects the BCs in such sys-
tems. Despite the fact that 2H-ferromagnets have bro-
ken spatial inversion symmetry, the DMI does not en-
ter the effective field Heff in Eq. (5). The reason for
this is that only the parts of the DMI tensor, which
are antisymmetric with respect to the magnetic indices
D[ik]j = Dijk − Dkji [14], appear in the effective field
(HD)k = (Dijk − Dkji)∂jmi. These, however, van-
ish for systems with trigonal prismatic crystal symme-
try, see Eq. (2). This differs markedly from other non-
centrosymmetric magnets, in which the main effect of the
DMI is to produce an internal effective field that favors a
helical modulation of the magnetization direction. With
having derived Eq. (6), we predict that despite the ab-
sence of internal DMI, the DMI will still influence the
magnetization at the boundaries via the Neumann BCs.

Next, we will use the above formalism to investigate
the equilibrium state of ferromagnetic 2H monolayers.
We assume a strong in-plane alignment of the spins
(Ku � 0), which is consistent with the recent experi-
ment on VSe2 [8]. In this case, the magnetic state is
completely determined by the azimuthal angle φ(r, t):

m(r, t) = [cos(φ), sin(φ), 0]
T
. (8)

For simplicity, we disregard external magnetic fields.
The equilibrium equations for the magnetization are

found from the static LLG equation, i.e., when ṁ = 0 in
Eq. (4). Substituting Eq. (8) into Eqs. (4)-(7) produces
the following boundary-value-problem (BVP) for φ:

∇̃2φ = 0, internally, (9)

n̂ · ∇̃φ = −D̃n̂ · f̂ (φ) , at boundaries. (10)

Here, we have scaled the axes by a length scale a that
characterizes the typical size of the sample, x̃ = x/a and
ỹ = y/a, and introduced the dimensionless 2D nabla op-

erator ∇̃ = [∂x̃, ∂ỹ]
T

and DMI parameter D̃ = Da/2J .

The unit vector f̂ is a function of φ and given by f̂ (φ)
T

=
[sin(2φ), cos(2φ)] = [2mxmy,m

2
x −m2

y]. We see that φ is
governed by the 2D Laplace equation with nonlinear in-
homogeneous Neumann BCs. Qualitatively, we expect
for larger discs that the internal equation plays the dom-
inant role, while the BCs become more important for
smaller systems. We note, however, that for very small
samples our continuum description is not applicable.

The effect of the DMI-induced BCs is to produce a
magnetic twist state at the edges of the sample. Such
boundary-induced twist states have been studied in fer-
romagnetic heterostructures, where a DMI field occurs in
the bulk of the sample. In contrast, the 2H-ferromagnets
are only affected by the DMI via the BCs in Eq. (10).

Note that n̂ and f̂ consist of respectively the linear
and quadratic basis functions for the irreducible repre-
sentation E

′
of D3h. Consequently, the BCs (10) are as

expected invariant under any symmetry transformation
of D3h that acts simultaneously on n̂ and f̂ .

While being linear in the relativistic interactions, the
DMI is much smaller than the exchange interaction.
Therefore, we expect D̃ to be a small parameter in our
problem, which allows us to solve the BVP in Eqs. (9)-
(10) perturbatively to first order in D̃. To this end, we
consider a perturbative solution for φ of the form

φ(r̃) = φ0 + D̃φ1(r̃). (11)

The zeroth-order solution φ0 represents the magnetiza-
tion direction in absence of any DMI, while the first-order
solution φ1 determines the boundary-driven spatial mod-
ulation of the magnetization direction.

Further, we will assume that our sample has the shape
of a disk with a rescaled radius of R/a = 1. Upon sub-
stitution of Eq. (11) into Eqs. (9)-(10), we find the equa-
tions for φ0 and φ1. The zeroth-order contribution is
given by the 2D Laplace equation ∇̃2φ0 = 0 with the ho-
mogeneous Neumann BCs n̂ · ∇̃φ0 = 0. The solution of
this equation is just a constant that represents the inter-
nal value of the magnetization direction. The first-order
correction to this solution is given by the BVP

∇̃2φ1 = 0, when x̃2 + ỹ2 < 1, (12)

n̂ · ∇̃φ1 = −n̂ · f̂ (φ0) , when x̃2 + ỹ2 = 1. (13)

Via separation of variables, one obtains φ1 =
−x̃ sin(2φ0) − ỹ cos(2φ0). Thus, to first order in the rel-
ativistic interactions, we find the solution

φ(r̃) = φ0 + k̃D · r̃, (14)

where r̃ = (x̃, ỹ)T is the position vector on the unit disk.
The dimensionless wavevector k̃D is determined by

k̃D = −D̃[sin(2φ0), cos(2φ0)]T . (15)

Eqs. (14)-(15) represent the second central result of
this work and demonstrate that the DMI-induce Neu-
mann BCs (10) to first order in D̃ produces a helical
modulation of the magnetization direction. Significantly,
we find that the direction of the helical wavevector k̃D is
inherently linked to the internal orientation of the mag-
netization. The functional relationship k̃D,x ∼ sin(2φ0)

(k̃D,y ∼ cos(2φ0)) between k̃D and the magnetization im-
plies that the wavevector has a two-fold symmetry with
respect to φ0. This is illustrated in Fig. 2, which shows
the function D̃φ1 and the magnetization in Eq. (8) for
five different values of φ0.

The locking of k̃D to the internal magnetization opens
the possibility to electrically control the helical spin
phase via current-driven magnetization torques. In what
follows, we study the effects of the STT and SOT to
first order in the applied current-density J , the magne-
tization gradients and the degree of magnetic anisotropy,
as well as to lowest order in the relativistic interac-
tions. In this case, the STT takes the form of τ STT =
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FIG. 2: (color online). (a)-(e) Shows the equilibrium state
of the magnetization (arrows) on the 2D disk for φ0 = 0,
φ0 = π/4, φ0 = π/2, φ0 = 3π/4, and φ0 = π, respectively.

The density plots illustrate the first-order correction D̃φ1 to
the magnetic equilibrium state produced by the DMI-induced
BCs. For clarity, we have used D̃ = 0.5.

(1 − βm×)(PJ · ∇)m, where P is proportional to
the spin polarization of the current and β is the non-
adiabatic torque parameter [35, 36]. The SOT is τ SOT =
−γm × HSOT, with the current-induced effective field

HSOT,i = (Λ
(r)
ij + Λ

(d)
ijkmk)Jj . Λ

(r)
ij (Λ

(d)
ijk) represents the

reactive (dissipative) contribution to the SOT [35, 36].

The tensors Λ
(r)
ij and Λ

(d)
ijk originate from the intrinsic

SOC and their tensorial structures are solely determined
by the crystallographic point group of the system [35, 36].

Interestingly, the D3h group implies that Λ
(r)
ij = 0 [32].

As a result, ferromagnetic trigonal prismatic monolayers
do not exhibit any reactive SOT under the application
of an external electric field. This is in stark contrast
to previously studied asymmetric ferromagnets, in which
the reactive SOT is the dominant current-driven torque
mechanism (see Ref. [30] and references therein). Only
the dissipative SOT is present in ferromagnets with D3h

symmetry and its tensor is determined by a single pa-
rameter Λso. The non-vanishing tensor elements are [32]

Λso ≡ Λ(d)
yyx = Λ(d)

yxy = Λ(d)
xyy = −Λ(d)

xxx, (16)

in analog to Eq. (2). As the dissipative SOT is gov-
erned by the momentum space Berry curvature [37], the
strength of the SOT in ferromagnetic trigonal prismatic
monolayers is strongly linked to the band structure topol-
ogy of the system. In particular, the appearance of band
crossings close to the Fermi surface will greatly enhance
the strength of the Berry curvature and thus the SOT.

For modeling the current-induced magnetization dy-
namics, we apply a collective coordinate description as-
suming that the magnetic state is described by the per-
turbative solution (14). The Thiele equation for the time

1.0

-1.0

2.01.0

FIG. 3: (color online). Vectorfield plot of the differential
equation in Eq. (17) with the current density applied along
the x-axis. The red circles indicate unstable fix points for
the solution φ0(t), whereas the red dots represent stable fix

points. Here, we assume A ≡ − |J |D̃
α⊥

(
Pβ
R
− γΛso

D̃

)
> 0.

dependent collective angle φ0(t) is given by Γφ̇0 = L,
where L =

∫
dr ∂m/∂φ0 · (m × (τ STT + τ SOT)) and

Γ =
∫

drα⊥(∂m/∂φ0)2. The resulting equation becomes

φ̇0 =
1

α⊥

(
Pβ

R
− γΛso

D̃

)
J · k̃D. (17)

Both the dissipative STT and SOT contribute to the dy-
namics. Note that the current density couples directly to
kD ∼ sin(2φ0) and thus directly to the orientation of the
helix. For any applied current, the two-fold symmetry of
kD induces two (un-)stable fix points, i.e. (un-)preferred
directions for φ0 (see Fig. 3). As the locations of these
fix points can be tuned by changing the direction of the
current, the helix can be orientated along any axis in the
xy-plane via the electric field. The current-driven effects
on the boundary-induced helix are very different from
those on bulk helical textures, where an applied current
usually only leads to a weak tilting of the bulk magneti-
zation [38]. The boundary-induced spin texture therefore
opens the door for a unique way of controlling the helical
wavevector solely by means of electric currents.

In summary, we have developed a phenomenological
description of the magnetization dynamics in 2D ferro-
magnetic materials with trigonal prismatic 2H structure.
Extraordinarily, we find that the system exhibits no inter-
nal DMI field, despite the fact that the 2H structure lacks
inversion symmetry. We derive that the DMI only affects
the spin physics at the boundaries, where it yields non-
trivial BCs for the magnetization. The DMI-induced BCs
turn a field-polarized phase into a helical phase, where
the direction of the helical wavevector is locked to the
ferromagnetic orientation. By symmetry considerations
we show that these systems are subject to dissipative
STTs and SOTs, which allow to electrically control the
direction of the helical wavevector.
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[25] G. Finocchio, F. Büttner, R. Tomasello, M. Carpentieri,
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