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Abstract. This paper analyzes the time-variant (TV) Doppler power spectral

density of a 3D non-stationary fixed-to-fixed indoor channel simulator after feed-

ing it with realistic trajectories of a walking person. The trajectories of the walk-

ing person are obtained by simulating a full body musculoskeletal model in Open-

Sim. We provide expressions of the TV Doppler frequencies caused by these

trajectories. Then, we present the complex channel gain consisting of fixed scat-

terers and a cluster of moving scatterers. After that, we use the concept of the

spectrogram to analyze the TV Doppler power spectral density of the complex

channel gain. Finally, we present expressions of the TV mean Doppler shift and

Doppler spread. The work of this paper is important for human activity recog-

nition systems using radio-frequency (non-wearable) sensors as the demand for

such systems has increased nowadays.

Keywords: non-stationary channel model, OpenSim, musculoskeletal model, dy-

namic simulation, spectrogram, time-frequency distributions

1 Introduction

Human activity recognition (HAR) aims at inferring human activities from body mo-

tion and gesture data recorded by different types of wearable and non-wearable sensors.

Systems with the ability to automatically recognize human activities can significantly

improve and simplify our daily living in an increasingly complex society. Motivated

by this, HAR is not only a well-researched, but still a very active research area mainly

due to its dynamic nature, wide variety of applications, advancements in learning algo-

rithms, and developments in sensing technologies. Depending on the type of sensors,

HAR systems can be divided into vision-based [4, 9], sensor-based [7, 18], and device-

free systems [14, 15].

Vision-based systems record and process videos and still images of users to recog-

nize their activities. They require a line-of-sight (LOS) link and may lead to possible

violations of the user’s privacy.

Sensor-based systems use inexpensive sensors, such as inertial measurement units

(IMUs) to capture human movement data. However, users need to carry these sensors all

the time for continuous activity recognition. Furthermore, the performance of sensor-

based systems is susceptible to the placement of the sensors on the human body. In
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the device-free approaches, such as radio-frequency (RF) sensing, the transmitter and

receivers are placed in the environment and they continuously transmit and receive RF

signals. These RF signals are very sensitive to the change in the domestic environment.

Human movements in the environment introduce fluctuations in the RF signals. These

variation enriched RF signals are picked up by the receivers and used for activity recog-

nition [15]. Since device-free HAR systems suffer less from privacy issues and do not

require the users to carry sensors all the time, the device-free approach has become a

preferred choice for applications such as health and indoor HAR systems for the elderly.

In recent years, various device-free HAR systems have been developed [14–17]. Al-

though the existing device-free HAR systems have shown promising results, they face

a major challenge, i.e., namely limited capability to deal with changes in the environ-

ment [6]. This is because RF signals picked up by the receivers usually carry infor-

mation about the moving and non-moving scatterers1 present in the environment. As

a result, a HAR system trained by using the data collected from specific subjects in a

specific environment may not perform well when applied to a different environment to

recognize activities of other individuals. To overcome this challenge, researchers have

proposed several ideas. For instance, Jiang et al. [17] used environment and subject-

independent features to train HAR models. This approach requires training data to be

collected from various subjects under different environmental settings. In [16], a semi-

supervised learning approach is used to address this issue, where users are required to

manually label the new instances of recorded channel state information (CSI) data upon

detecting changes in the CSI-fingerprints of the activities. This approach requires man-

ual interaction from users which is not feasible in various environment. such as public

places and hospitals.

Radio communication researchers have proposed a three-dimensional (3D) indoor

channel modeling2 technique, which captures the Doppler effect caused by the body

movements, for device-free HAR [1, 2]. The basic idea is that fixed scatterers and dif-

ferent movements of moving scatterers affect the Doppler characteristics of the channel

differently. After filtering out the effect of fixed scatterers on the Doppler characteris-

tics of the channel, we can obtain Doppler signatures for different activities, which can

be used for environment-independent activity recognition. The additional advantage of

this approach is that the measurements from the simulated channel can be used to train

the learning algorithms without additional efforts for the collection of training data.

The contribution of this paper is the analysis of the Doppler power spectrum charac-

teristics of a 3D non-stationary fixed-to-fixed (F2F) indoor channel simulator, which is

fed with the trajectories of major body parts. For this purpose, we first simulate the hu-

man walking activity by using a full-body musculoskeletal model to obtain trajectories

of different body parts, e.g., torso, pelvis, upper arms, lower arms, hands, upper legs,

lower legs, and toes. Then, we model these moving body parts of the walking human

by a cluster of synchronized moving scatterers. After that, we compute the time-variant

(TV) Doppler frequencies caused by the trajectories of these major body parts. Further-

1 Here scatterers mean objects present in the environment. When a radio wave hits an object,

then the wave will be redirected in many directions depending on the slope of the object.
2 A channel model is a physical layer model of the mathematical representation of the effects of

a communication channel through which RF signals propagate.
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more, the expression of the instantaneous channel phase of each moving scatterer of

the cluster is provided. Next, we present an expression of the complex channel gain of

the 3D non-stationary F2F multipath fading channel with fixed scatterers and a clus-

ter of synchronized moving scatterers. Moreover, expressions of the TV mean Doppler

shift and TV Doppler spread are also presented. Furthermore, we use the spectrogram

approach to analyze the influence of a cluster of moving scatterers on the TV Doppler

power spectrum. The spectrogram provided in this paper consists of two terms: the auto-

term and the cross-term. The auto-term represents the desired Doppler power spectrum,

while the cross-term represents an undesired interference term, which reduces the res-

olution of the spectrogram. Finally, we provide expressions for the TV mean Doppler

shift and TV Doppler spread computed by using the spectrogram.

The rest of this paper is organized as follows. Section 2, succinctly explains the

dynamic simulation of human walking activities. Section 3 presents the TV Doppler

frequencies caused by the walking person, the complex channel gain, TV mean Doppler

shift, TV Doppler spread, and the spectrogram of the complex channel gain. Section 4

discusses the numerical results of the spectrogram of the complex channel gain fed by

the trajectories of the body parts of a walking human. Section 5 summarizes our work

and proposes possible extensions for future work.

2 Overview of Simulation of Human Walking Activities

To study the influence of human walking activities on the Doppler characteristics of

the indoor channel model, we need to obtain trajectories of human body parts during

walking activities. Instead of defining and validating our own trajectory models for

different human body parts, in this paper, we have used an OpenSim-based full-body

musculoskeletal model to obtain realistic trajectories of human body parts.

2.1 OpenSim and its general workflow

OpenSim [5] is a publicly available open-source suit of tools for modeling muscu-

loskeletal structures and analyzing dynamic simulation of a wide range of human move-

ments [3] in rehabilitation science [8], sports science [10], and robotics research [11].

OpenSim provides a large repository of musculoskeletal models consisting of rigid bod-

ies, joints, and specialized forces. The skeleton is modeled by rigid bodies which are

interconnected by joints. Joints define the motion of a rigid body with respect to its par-

ent rigid body and specialized force elements are used to model the muscles of human

bodies.

The first step in simulating any human movement in OpenSim is to formally define

the dynamic musculoskeletal model and its interactions with the environment. Once the

model is formulated, it is scaled by using the scaling tool of OpenSim. In the scaling

process, the dimensions and mass properties of each body segment as well as the mus-

culotendon properties (e.g., muscle fiber length) of the dynamic musculoskeletal model

are scaled to match with the anthropometric data of real subjects [3, 5].

In the next step, the inverse kinematics (IK) tool is used to find the generalized co-

ordinates (including joint angels and positions) of the dynamic musculoskeletal model.
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At each time step, the IK tool computes the generalized coordinates that describes the

model in a pose which “best matches” the experimental/motion-capture data at each

time step [3, 5]. At this stage, the measured ground reaction forces (GRFs) and joint

moments are usually inconsistent with the model kinematics. To overcome this issue a

residual reduction algorithm (RRA) is applied. The goal of the RRA is to make mea-

sured GRFs and moments more consistent with the model kinematics [3,5]. Thereafter,

the computed muscle control (CMC) tool is used to compute muscle excitations that

drive the generalized coordinated muscle-driven simulation of the movement [3, 5].

2.2 Trajectories of body parts of a moving person

In this paper, we have employed a validated full-body musculoskeletal model and the

experimental motion data from a previously published work by Rajagopal et al. [13].

This model consists of a bony geometry of the full body, 37 degrees of freedom (DoF),

hill-type muscle models to model 80 musculotendon units actuating the lower body, and

17 ideal torque actuators for the upper body [13], as shown in Fig. 1.

The authors in this study [13] collected motion data using 41 retroreflective markers

measured at a sampling rate of 100 Hz by using an eight-camera optical motion-capture

system. GRFs and moments were measured with ground force plates at a sampling rate

of 2000 Hz, and the EMG data were recorded by placing wireless surface electrodes on

10 different muscles. Further details about the dynamic model and data collection pro-

cess can be found in [13]. First, the full-body musculoskeletal model is scaled accord-

ing to the experimental data, then the general workflow of OpenSim (see Section 2.1)

is followed to generate the dynamic simulation of the full gait cycle. Finally, the body

kinematics analysis is performed to obtain the TV kinematics (including position and

velocity) of the center of mass (CoM) of each body segment defined in the full body

Fig. 1. A full body musculoskeletal model [x-axis (red), y-axis (green), and z-axis (blue)].
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musculoskeletal model as shown in Fig. 2. The TV velocity vectors vn(t) of CoM of

each body segment are fed to the channel simulator described in Section 3 to compute

the complex channel gain of the RF channel in presence of a walking human.

Fig. 2. 3D displacement of the CoM of the right and left toes during walking.

3 Monitoring Human Activity Using the Spectrogram

The trajectories of the major body parts discussed in Section 2 vary in time and space.

In this section, we explore the impact of these temporal and spatial variations on the

Doppler characteristics of the received signal. This is done by simulating the complex

channel gain of F2F indoor channels with these trajectories generated in section 2.2

as inputs. Then, the Doppler spectral characteristics of the complex channel gain are

analyzed by using the concept of the spectrogram.

3.1 The complex channel gain

Figure 3 shows a multipath propagation scenario of a F2F 3D indoor channel. In this

scenario, we have a fixed transmitter (Tx) and a fixed receiver (Rx) located at
(

xT , yT , zT
)

and
(

xR, yR, zR
)

, respectively. We assume that the LOS is obstructed

and both Tx and Rx are equipped with omnidirectional antennas. The considered sce-

nario includes fixed objects, such as walls and furniture. These fixed objects are simply

modelled by M -fixed point scatterers SF
m for m = 1, 2, . . . , M. Fig. 3 also shows a

moving person modelled by a cluster of N -synchronized moving scatterers SM
n , where

n = 1, 2, . . . , N . Each moving scatterer SM
n represents a moving body part, which has
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a trajectory described by its TV velocity vector vn(t) (see section 2.2). Single bounce

scattering is assumed, i.e., each wave arriving at Rx is scattered by either a fixed scat-

terer SF
m or a moving scatterer SM

n .

�
�
�

�
�
��

�

�
�

Fig. 3. A 3D non-stationary indoor multipath propagation scenario with fixed transmitter Tx,

fixed receiver Rx, a moving person, and fixed objects, such as walls and furniture.

The Doppler frequency influenced by the nth moving scatterer SM
n of the cluster is

given by [1]

fn(t) = −Vn (t) f0
c0

×
{

cos (βvn
(t))

[

cos
(

βT
n (t)

)

cos
(

αT
n (t)− αvn

(t)
)

+ cos
(

βR
n (t)

)

cos
(

αvn
(t)− αR

n (t)
) ]

+sin (βvn
(t))×

[

sin
(

βT
n (t)

)

+ sin
(

βR
n (t)

)]

}

(1)

where the functions βvn
(t), αvn

(t), βT
n (t), α

T
n (t), β

R
n (t), and αR

n (t) denote the TV

horizontal angle of motion (HAOM), vertical angle of motion (VAOM), elevation an-

gle of departure (EAOD), vertical angle of departure (AAOD), elevation angle of arrival

(EAOA), and azimuth vertical angle of (AAOA) of the nth moving scatterer SM
n , respec-

tively. The expressions of these functions are obtained by using the inverse trigonomet-

ric functions. Further details about these expressions are provided in [1]. The function

Vn(t) = |vn(t)| designates the TV speed of the motion of the nth moving scatterer

of the cluster. The parameters f0 and c0 are the carrier frequency of the signal and

the speed of light, respectively. The instantaneous channel phase influenced by the nth

moving scatterer of the cluster is expressed as [12]

θn,M(t) = 2π

t
∫

−∞

fn(t
′)dt′ = 2π

t
∫

0

fn(t
′)dt′ + θn,M (2)

where the first term of the right-hand side of (2) is the TV phase shift influenced by the

motion of the nth moving scatterer of the cluster of the moving person. The second term

θn,M designates the initial phase shift which is modelled as a zero-mean random variable

with uniform distribution with values from −π to π, i.e., θn,M ∼ U (−π, π]. Thus, the
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instantaneous channel phase θn,M(t) in (2) is a stochastic process. The complex channel

gain µ(t) that consists of N+M received multipath components can be expressed as [1]

µ(t) =
N
∑

n=1

cn,M ejθn,M(t) +
M
∑

m=1

cm,F e
jθm,F . (3)

The first term in (3) represents the superposition of the received N waves correspond-

ing to the moving scatterers. Each path in the first term of (3) is described by a constant

path gain cn,M and a stochastic phase process θn,M(t) due to the motion of the mov-

ing scatterer. The second term represents the superposition of M received multipath

components originating from the fixed scatterers. Each component in the second term

is associated with a constant path gain cm,F and a random phase θm,F caused by the

interaction with the fixed scatterer. The random variables θn,M and θm,F are indepen-

dent and identically distributed (i.i.d.) with uniform distribution from −π and π, i.e.,

θm,F, θn,M ∼ U (−π, π]. The expression of the complex channel gain µ(t) given by

(3) is a stochastic model for a 3D non-stationary F2F multipath fading channel with

fixed scatterers and a cluster of moving scatterers. The TV mean Doppler shift and TV

Doppler spread by the model described by (3) are given by [12]

B
(1)
f (t) =

N
∑

n=1
c2n,M fn(t)

N
∑

n=1
c2n,M +

M
∑

m=1
c2m,F

(4)

and

B
(2)
f (t) =

√

√

√

√

√

√

√

√

N
∑

n=1
c2n,M f2

n(t)

N
∑

n=1
c2n,M +

N
∑

m=1
c2m,F

−
(

B
(1)
f (t)

)2

(5)

respectively.

3.2 Spectrogram of the complex channel gain

To compute the TV Doppler power spectrum by using the spectrogram approach, a

sliding window is required. In this paper, a Gaussian window described by

h(t) =
1

√

σw

√
π
e
− t2

2σ2
w (6)

is used, where the parameter σw is called the window spread. The window function h(t)
is positive, even, and has normalized energy, i.e.,

∫∞

−∞
h2(t) = 1. Then, we compute

the Fourier transform of the multiplication of the complex channel gain and the sliding

window to obtain the short-time-Fourier-transform (STFT) X(f, t). Finally, the STFT
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X(f, t) is multiplied by its complex conjugate, which defines the spectrogram Sµ(f, t)
as

Sµ(f, t) = |X(f, t)|2 = S(a)
µ (f, t) + S(c)

µ (f, t). (7)

The spectrogram Sµ(f, t) in (7) consists of two terms, the auto-term S
(a)
µ (f, t) and

the cross-term S
(c)
µ (f, t). The auto-term S

(a)
µ (f, t) represents the desired TV Doppler

power spectral density. It is a real and positive function. The cross-term S
(c)
µ (f, t) rep-

resents an undesired spectral interference components, which is also real, but not nec-

essarily positive. It reduces the resolution of the spectrogram. Further details about

the expressions of X(f, t), S
(a)
µ (f, t), and S

(c)
µ (f, t) can be found in [1]. It should be

noted that the cross-term can be eliminated by taking the average of the spectrogram

Sµ(f, t) over the random phase variables θn,M and θm,F, i.e., E {Sµ(f, t)} |θn,M,θm,F
=

S
(a)
µ (f, t). The TV mean Doppler shift and Doppler spread can be computed from the

spectrogram using the following expressions [2]

B(1)
µ (t) =

∞
∫

−∞

fSµ(f, t)df

∞
∫

−∞

Sµ(f, t)df

(8)

and

B(2)
µ (t) =

√

√

√

√

√

√

√

√

∞
∫

−∞

f2Sµ(f, t)df

∞
∫

−∞

Sµ(f, t)df

−
(

B
(1)
µ (t)

)2

(9)

respectively.

4 Numerical Results

In this section, we will discuss the numerical results of the spectrogram Sµ(f, t), the

auto-term S
(a)
µ (f, t) of the spectrogram, the TV mean Doppler shift, and TV Doppler

spread. For the simulation scenario in Fig. 4, we have chosen a room with the dimen-

sions 10m × 5m × 2.4m. For the locations of Tx and Rx, we chose the coordinates

(5m, 2.5m, 2.3m) and (5m, 3m, 2.3m), respectively. The number of the fixed scat-

terers M was chosen to be 6. With respect to Fig. 4, a person is walking parallel to the

x-axis, towards the positive direction as a cluster of 18 moving scatterers, i.e., N = 18.

The path gains of each moving and fixed scatterer have been computed by

cn,M =

√

2η

N and cm,F =

√

2 (1− η)

M (10)

where the parameter η is used to balance the contribution of the moving scatterers in

the cluster and the fixed scatterers to the fading power. Its value was set to 0.6. The
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Fig. 4. 3D indoor simulation scenario showing the trajectories of some body parts of a walking

person.

value for the carrier frequency f0 was chosen to be 5.9 GHz. The indoor F2F channel

simulator was monitoring the walking person for 6 ss. The TV VAOMs βvn
(t) and

TV HAOMs αvn
(t) were computed from the TV velocities of the moving scatterers.

The TV EAODs βT
n (t) and AAODs αT

n (t) of the moving scatterers were calculated

from their TV displacements and the location of Tx. Also, the TV EAOAs βR
n (t) and

AAOAs αR
n (t) of the moving scatterers were computed from their TV displacements

and the location of Rx. Then, the Doppler frequencies of the moving scatterers were

computed using (1). For computing the spectrogram, the window spread parameter σw

of the Gaussian window function h(t) was set to 0.01 s. The values of the random

channel phases θn,M and θm,F were obtained as outcomes from random generators with

uniform distributions from −π and π.

Figure 5 depicts the spectrogram Sµ(f, t) given by (7) showing the variations of

the TV Doppler power spectrum. However, they are blurred due to the effect of the

cross-term S
(c)
µ (f, t), which reduces the resolution of the spectrogram Sµ(f, t). Fig-

ure 6 shows the auto-term S
(a)
µ (f, t) of the spectrogram. The influence of the moving

cluster on the TV Doppler power spectrum is clearly visible. The Doppler frequencies

approach zero values at t≈ 3.2 s. The reason is that, at this time instant, the values of

the TV EAODs βT
n (t), AAODs αT

n (t), TV EAOAs βR
n (t), AAOAs αR

n (t) of the moving

scatterers tend to −π/2 rad.

Figure 7 depicts the TV mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) calculated as

expressed in (4) and (8), respectively. The expression of the TV mean Doppler shift

B
(1)
µ (t) given by (8) was applied to the spectrogram Sµ(f, t) and the auto-term S

(a)
µ (f, t).

The variations of B
(1)
µ (t) calculated by using Sµ(f, t), are due to the impact of the

cross-term S
(c)
µ (f, t). There is a good match between B

(1)
µ (t) and B

(1)
f (t). The de-

picted functions in Fig. 7 approach zero-mean values at t ≈ 3.2 s as the values of

the TV EAODs βT
n (t), AAODs αT

n (t), TV EAOAs βR
n (t), and AAOAs αR

n (t) of the

moving scatterers tend to −π/2 rad.
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Fig. 5. Spectrogram Sµ(f, t) of the complex channel gain µ(t) given by (7).

Fig. 6. The auto-term S
(a)
µ (f, t) of the spectrogram of the complex channel gain µ(t).

0 1 2 3 4 5 6
-60
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Fig. 7. TV mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) given by (4) and (8), respectively.

Figure 8 depicts the TV Doppler spreads B
(2)
f (t) and B

(2)
µ (t) calculated by using (5)

and (9), respectively. The expression of TV Doppler spread B
(2)
µ (t) given by (8) was

applied to the spectrogram Sµ(f, t) and the auto-term S
(a)
µ (f, t). The fluctuations of

B
(2)
µ (t) calculated by using Sµ(f, t) are due to the impact of the cross-term S

(c)
µ (f, t).

The functions B
(2)
µ (t) computed by utilizing the auto-term S

(a)
µ (f, t) and B

(2)
f (t) do

not match closely due to the influence of the Gaussian window spread σw on B
(2)
µ (t).
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Fig. 8. TV Doppler spreads B
(2)
f (t) and B

(2)
µ (t) computed by using (5) and (9), respectively.

5 Conclusion

In this paper, we studied the influence of human walking activity on the Doppler char-

acteristics of a F2F non-stationary indoor channel model. At first, we used a full-body

musculoskeletal model to simulate human walking activity to obtain trajectories of dif-

ferent body parts. We modelled the walking human as a cluster of synchronized mov-

ing scatterers. After that, we used the trajectories as inputs for this channel simulator

to compute the Doppler frequencies caused by the walking human. The influence of

the walking person on the TV Doppler power spectral density was shown by means of

the spectrogram of the complex channel gain. Moreover, we analyzed the impact of the

walking human on the TV mean Doppler shift and TV Doppler spread derived from

the spectrogram. The results demonstrated the influence of the walking person on the

Doppler power spectral characteristics. In the future, we will study the influence of ac-

tivities such as sitting and running as well as the detection of events such as falling on

the Doppler characteristics of the channel.
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