
Estimation of the Velocity of Multiple Moving
Persons in Non-Stationary Indoor Environments

from Received RF Signals
Rym Hicheri

Faculty of Engineering and Science
University of Agder

NO-4898 Grimstad, Norway
rym.hicheri@uia.no

Matthias Pätzold
Faculty of Engineering and Science

University of Agder
NO-4898 Grimstad, Norway

matthias.paetzold@uia.no

Abstract—This paper presents a new accurate iterative proce-
dure to estimate the time-variant (TV) velocity, i.e., TV speed,
TV vertical angle-of-motion (VAOM), and TV horizontal angle-
of-motion (HAOM), of multiple moving objects/persons in three-
dimensional (3D) non-stationary indoor propagation environ-
ments. The indoor space is assumed to be equipped with a
distributed 3×3 multiple-input multiple-output (MIMO) system.
The proposed procedure focuses on estimating the TV speed,
TV VAOM, and TV HAOM by matching the spectrogram of
the complex channel gain of a non-stationary indoor channel
model to the spectrogram obtained from received radio frequency
(RF) signals. Together with the velocity parameters, this method
estimates all channel parameters, such as path gains, phases,
etc. Numerical examples are presented to validate the proposed
estimation algorithm by comparing the estimated parameters of
interest with their corresponding exact quantities.

Index Terms—Velocity estimation, Doppler characteristics, in-
door areas, distributed MIMO systems, non-stationary channels.

I. INTRODUCTION

The precise estimation of the speed of mobile stations
(MSs’) has been shown to be a key feature in the design of
several applications in mobile radio communications, such as
hand-off, adaptive modulation, and power control algorithms
[1]. A review of the literature [1]–[5] shows that this topic has
been exhaustively investigated. The current speed estimation
methods utilize different properties of the fading channels, e.g.,
level-crossings, covariance, correlation properties, and power
spectrum, and require a priori knowledge of the statistics of
the channel. Due to the small number of of statistical analyses
of non-isotropic non-stationary channels, this constraint limits
their applicability to wide-sense stationary channel models
for which the speed is assumed to be constant. In addition,
these techniques estimate only the speed of the MSs without
providing any information regarding their direction of motion.

Velocity estimation has also been of central importance in
the context of human in-home activity tracking and monitor-
ing. It has been featured in numerous wireless indoor services
[6]–[8], such as healthcare services, remote medical care, and
home security and surveillance. There are mainly three classes
of indoor activity tracking systems: video-, sensor-, and radio
frequency (RF)-based devices. Video-based systems evaluate
the motion of objects or persons by applying image processing

techniques [9], [10]. On the other hand, sensor-based human
activity tracking employs context-aware or wearable hardware
sensors, e.g., accelerometers and gyroscopes [11]. One of the
main drawbacks of on-body sensors is that they have to be
connected to the human body. The RF-based motion tracking
technique is a contactless solution which has been introduced
to compensate the limitations of both video- and sensing-
based methods [12]. It analyzes and leverages the effects of
moving objects or persons on the Doppler characteristics of
the received radio signals. The pertinence of this approach is
best exemplified by the mmVital [13], the WiGait [14], and
the WiFall [15] products. A brief review of radar-based indoor
motion tracking approaches can be found in [16].

There has been growing attention paid to channel-state-
information (CSI)-based human detection, e.g., [17]–[19].
Since most of the aforementioned studies consider pre-existing
Wi-Fi infrastructures, they face several challenges [13], [16],
[18], [20]. For example, the RF signal is reflected from
multiple moving objects/persons in the room. This makes
it difficult to distinguish between the individual contribution
of each moving object/person. Hence, numerous Wi-Fi-based
studies assume a single moving person in the indoor space.
This assumption is not always realistic as there is usually more
than one person present in indoor environments. The signal
can also be reflected from fixed objects (e.g., walls, furniture,
decorations), resulting in a rich scattering structure in indoor
environments and need for signal processing techniques to
remove the contributions of the fixed objects. The performance
of RF-based systems is also sensitive to the changes in the
direction of motion of the moving users. Therefore, it is of
great interest to overcome these limitations. Considering the
effects of both fixed and moving objects and using millimeter
waves technology, a velocity estimation method has been re-
cently proposed in [21], which is based on the two-dimensional
non-stationary channel model introduced in [22]. Later, a new
iterative procedure to estimate the TV velocity of a single
moving person in three-dimensional (3D) indoor environments
has been reported in [23], which considers the motion of a
person in the vertical plane.

In this paper, we extend the algorithm developed in [23]
to consider multiple moving objects/persons in an indoor
environment and estimate their individual TV velocity, i.e., TV



speed, TV vertical angle-of-motion (VAOM), and TV horizon-
tal angle-of-motion (HAOM). The propagation phenomenon
taking place in the indoor space is modelled by means of
the fixed-to-fixed 3D channel model in [24], which considers
both fixed and moving objects. We also take into account
the line-of-sight (LOS) component. Here, each moving en-
tity (object/person) is represented by a single moving point
scatterer. In the case of walking persons, the point scatterer
may represent any part of the person’s body, such as the
center of gravity, the head, hip, or shoulder. The fixed items
in the room are modelled by fixed scatterers. In the present
work, we require that the indoor environment is equipped
with a distributed 3×3 multiple-input multiple-output (MIMO)
system, i.e., three distributed transmit antennas and three
distributed receive antennas.

Here, the TV velocities, i.e, speeds and directions of motion,
of the moving persons are estimated by matching the spectro-
grams of the considered non-stationary 3× 3 MIMO channel
model with the spectrograms of the received RF signals. To-
gether with the TV velocities, the proposed iterative estimation
method determines all channel parameters, including the path
gains and phases as well as the TV azimuth (elevation) angles-
of-departure (AAODs (EAODs)) and TV azimuth (elevation)
angles-of-arrival (AAOAs (EAOAs)). These quantities are ob-
tained by minimizing the Euclidean norm of the fitting error,
which measures the difference between the spectrograms of the
measured and modelled sub-channels. Besides the usefulness
of the proposed algorithm in indoor human activity tracking,
the determination of all channel parameters would allow the
design of robust indoor channel simulators, which emulate
the behavior of realistic indoor propagation scenarios in the
presence of moving persons. Moreover, exact closed-form so-
lutions have been derived for the estimates of the path gains of
the moving scatterers (objects/persons) and the fixed scatterers
(room items). For the performance analysis of the proposed
procedure, we compare the estimated TV speed, TV VAOM,
and TV HAOM with the corresponding “true” quantities. To do
so, one needs the prior knowledge of the ‘true” TV velocities
(TV speed and TV direction of motion) of the walking persons.
Exact values of these parameters are not easily available for
measurement data (e.g., using wearable sensors). Hence, we
will use test signals, generated by computer simulations for
which the parameters of interest are known, to validate the
accuracy of the estimation technique.

This paper is organized as follows. Section II presents a
brief review of the non-stationary indoor channel model. The
proposed iterative estimation technique is the topic of Sec-
tion III. Numerical results and their discussions are presented
in Section IV. Finally, Section V concludes the paper.

II. BACKGROUND MATERIAL

A. Scenario Description

In this paper, we take advantage of the effects of a person’s
motion on the Doppler characteristics of propagation media
and propose a new accurate procedure to estimate the TV
velocity, i.e., TV speed, TV VAOM, and TV HAOM, of

Fig. 1. Example of a typical room architecture with distributed antennas,
fixed objects, and two walking persons.

moving persons in a 3D indoor environment. In contrast
to the algorithm developed in [23], the current estimation
procedure considers the presence of multiple moving persons
in the room. An example of a room architecture with six
distributed antennas and two moving persons (F) is depicted
in Fig. 1. Here, we denote by A, B, and H the length, width,
and height of the room, which is centered at the origin O.
The indoor environment is equipped with a distributed 3×3
MIMO system, i.e., three transmit antennas (AT

1 , AT
2 , and AT

3 )
and three receive antennas (AR

1 , AR
2 , and AR

3 ). We employ
the 3D indoor channel model reported in [24] to describe
and model the propagation phenomenon taking place. For
clarity, a simplified geometrical description of the propagation
scenario is illustrated in Fig. 2. The fixed omni-directional
antennas AT

j and AR
i are located at the positions (xTj , y

T
j , z

T
j )

and (xRi , y
R
i , z

R
i ), i, j = 1, 2, 3, respectively. Moreover, it is

assumed that N (N ≥ 1) objects or persons are moving in the
room. Each object/person is modelled by a single moving point
scatterer. The nth moving object/person corresponds to the
nth moving scatterer SM

n (F), n = 1, . . . , N . These moving
scatterers are located at the initial positions (xMn , y

M
n , zMn ) and

are moving with a TV velocity ~vn(t). The trajectory of the
nth moving point scatterer SM

n is determined by its TV speed
vn(t) = |~vn(t)|, TV VAOM βv,n(t), and TV HAOM αv,n(t).
The TV positions xn(t), yn(t), and zn(t) along the x-, y- and
z-axis of SM

n can be obtained according to [24, Eqs. (5)−(7)].
The scenario takes also into account the fixed objects in the
room, which are modelled by Mij fixed scatterers SF

mij
(•)

(mij = 1, 2, ...,Mij). The quantity Mij refers to the number
of fixed scatterers that can be seen between the jth transmit
antenna AT

j and the ith receive antenna AR
i . Single-bounce

scattering is assumed when modelling the moving scatterers.
As is shown in Fig. 2, the TV AAOD, EAOD, AAOA, and
EAOA are denoted by βT

jn(t), αT
jn(t), βR

in(t), and αR
in(t),

respectively.

B. Non-Stationary Indoor Channel Model

In this section, we will review the analytical model em-
ployed for the simulation of realistic 3D non-stationary indoor
channels. We will present the expressions for the complex
channel gains µij(tp), Doppler frequency instances fnij (tp),
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Fig. 2. Geometrical model for a non-stationary 3×3 MIMO indoor channel.

and spectrograms S(fq, tp) sampled at discrete time instants
tp = p∆t ∈ [0, T ] and discrete frequencies fq = −B/2 +
q∆f ∈ [−B/2, B/2], where ∆t (∆f ) is the time (frequency)
sampling period and T (B) is the total observation time
(bandwidth), respectively. Assuming perfect CSI at the re-
ceivers side, the discrete complex channel gain µij,p = µij(tp)
between the jth transmit antenna and ith receive antenna
(i, j=1, 2, 3) can be expressed [24, Eq. (27)] as

µij(tp) =

N∑
n=1

cijnexp[jθijn(tp)]+

Mij∑
m=0

aijm exp(jϑijm) . (1)

Here, the first term describes the components associated
with the N moving scatterers SM

n (n = 1, . . . , N ), and
the second term refers to the sum of the multipath prop-
agation components resulting from the Mij fixed scatterers
SF
ijm (mij = 0, . . . ,Mij). Since the positions of both the

transmit antennas AT
j and receive antennas AR

i are fixed,
the LOS component does not experience any Doppler shift.
Hence, can be modelled as a fixed component with gain
aij0 and phase ϑij0 and is included in the second term of
(1). The quantity cijn (aijm) denotes the fixed path gain of
the nth (mth) moving scatterer (fixed scatterer between AT

j

and AR
i ). The phases ϑijm are assumed to be independent

and identically distributed random variables which follow
the uniform distribution over the interval (0, 2π]. In (1), the
TV phases θijn(tp) = θijn,p = 2π

∫ tp
0
fijn(u)du + θijn,0

are stochastic processes, where fijn(tp) = fijn,p is the TV
Doppler frequency caused by the motion of the nth moving
scatterer SM

n , and θijn,0 is the initial phase of the nth
multipath component at the time instant tp = 0. According
to [24, Eq. (18)], the TV Doppler frequencies fijn,p are
given by fijn,p =−f0vn,p{cos(βv,n,p)[cos(βT

jn,p) cos(αT
jn,p−

αv,n,p) cos(αT
jn,p−αv,n,p) +cos(βR

in,p) cos(αR
in,p−αv,n,p)] +

sin(βv,n,p)[sin(βR
in,p) + sin(βT

jn,p)]}/c0. Here, vn,p = vn(tp)
is the TV speed of SM

n at the time instant tp and the
quantities f0 and c0 denote the carrier frequency and the
speed of light, respectively. The TV angles βT

jn,p = βT
jn(tp),

αT
jn,p = αT

jn(tp), βR
in,p = βR

in(tp), and αR
in,p = αR

in(tp) can
be expressed in terms of the TV positions of the moving
scatterers and the positions of the distributed transmit and
receive antennas as detailed in [24, Eqs. (10)−(13)].

C. Spectrogram

The main goal of this work is to estimate the TV ve-
locity ~vn(tp) of the moving persons, represented by SM

n ,
n = 1, . . . , N , from the complex channel gains µij(tp)while
taking into account the overall effect of the fixed scatterers,
regardless of the individual contribution of each fixed scatterer
SF
ijm, m = 1, ..,Mij . In the following, the overall effect

of the fixed scatterers (second part of (1)) will be described
using the single complex term CFij exp(jϑFij ), where CFij =

((
∑Mij

m=0aijmcos(ϑijm))2 + (
∑Mij

m=0aijmsin(ϑijm))2)1/2 and
ϑFij

= atan2(
∑Mij

m=0 aijm sin(ϑijm),
∑Mij

m=0aijm cos(ϑijm)),
in which atan2 stands for the inverse tangent function that
returns the angle in the interval [−π, pi). According to [24], by
approximating the Doppler frequencies fijp by K piecewise
linear functions, the spectrogram Sij(fq, tp) of µij(tp) can be
expressed as

Sij(fq, tp) = S
(a)
ij (fq, tp) + S

(c)
ij (fq, tp) (2)

where S(a)
ij (f, t) and S

(c)
ij (f, t) are called the auto-term and

the cross-term of the spectrogram, respectively. The auto-term
S
(a)
ij (f, t) is given by

S
(a)
ij (fq,tp)=

N∑
n=1

c2ijnG
(
f,fijn,p,σ

2
ijn,1,p

)
+G

(
f,0,

σ2
0

2

)
C2

Fij
(3)

where G(a, b, c) = exp[−(a − b)2/(2c)]/(
√

2πc), σ2
0 =

1/(2πσw)2, and σ2
ijn,1,p = (σ2

0 + σ2
wk

2
ijn,p)/2, in which

kijn,p = kijn(tp) is defined in [24, Eq. (25)] and σ2
w is the

spread of the Gaussian window utilized for the computation
of the spectrogram [24, Eq. (30)]. The cross-term S

(c)
ij (fq, tp)

is expressed as in (4) [see the top of the next page], where
the operator R{·} denotes the real part of a complex function
and σ2

ijn,2,p = σ2
0 − jkijn,p/(2π).

A new method to estimate the TV velocity of moving
persons in indoor areas will be presented in the following
section, based on the Doppler properties of the channel model
described by (1).

III. ESTIMATION OF THE TIME-VARIANT VELOCITY

In reality, the complex channel gain µ̂ij,p = µ̂ij(tp) is
computed from samples of the measured received RF signal
at discrete time instances tp. Then, the corresponding spectro-
gram Ŝij(fq, tp), which is sampled at discrete time instances
tp and discrete frequencies fq , is computed according to the
procedure described in [24, Section IV]. The problem at hand
here is to determine, at each time instant tp, a set of parameters
Pp = {cijn,kijn,p,θijn,0,CFij

,ϑFij
,vn,p,α

T
jn,p,β

T
jn,p, α

R
in,p,

βR
in,p,αv,n,p,βv,n,p}, i, j = 1, 2, 3 and n = 1, . . . , N , in such

a way that the spectrogram Sij(fq, tp) of µij(tp) [see (3)]
matches the spectrogram Ŝij(fq, tp) of the measured channel.
For this purpose, we introduce the objective function for
determining Pp as

E(Pp)=

3∑
i,j=1

∣∣∣∣∣∣Ŝij(fq, tp)− Sij(fq, tp)
∣∣∣∣∣∣2
2
. (5)



S
(c)
ij (fq, tp) =

2

σw
√
π

[
N∑

n=1

N∑
k=n+1

cijncijkR
{
G
(
fq, fijn,p, σ

2
ijn,2,p

)
G∗
(
fq, fijk,p, σ

2
ijk,2,p

)
exp (j (θijn,p−θijk,p))

}
+CFij

N∑
n=1

cijnG
(
fq, 0, σ

2
0

)
R
{
G
(
fq, fijn,p, σ

2
ijn,2,p

)
exp

(
j
(
θijn,p−ϑFij

))}]
(4)

E(Pp)=

3∑
i,j=1

∣∣∣∣∣
∣∣∣∣∣Ŝij−

N∑
n=1

c2ijnG
(
fq,fijn,p, σ

2
ijn,1,p

)
−GC2

Fij
− 2

σw
√
π

[
N−1∑
n=1

N∑
k=n+1

cijncijkR
{
G
(
fq, fijn,p, σ

2
ijn,2,p

)
exp(jθijn,p)

· exp(−jθijk,p)G∗
(
fq, fijk,p, σ

2
ijk,2,p

)}
+CFij

N∑
n=1

cijnG
(
fq, 0, σ

2
0

)
R
{
G
(
fq, fijn,p, σ

2
ijn,2,p

)
exp
(
j
(
θijn,p−ϑFij

))}]∣∣∣∣∣
∣∣∣∣∣
2

2

(6)

h
(l)
ijn0

(fq, tp)=Ŝij−
N∑

n=1
n 6=n0

(
c
(l)
ijn

)2
G

(
fq,f

(l)
ijn,p,

(
σ
(l)
ijn,1,p

)2)
− 2

σw
√
π

[
N−1∑
n=1
n 6=n0

N∑
k=n+1

c
(l)
ijnc

(l)
ijkR

{
G

(
fq,f

(l)
ijn,p,

(
σ
(l)
ijn,2,p

)2)
exp
(
jθ

(l)
ijn,p

)
· exp

(
−jθ(l)ijk,p

)
G∗
(
fq,f

(l)
ijk,p,

(
σ
(l)
ijk,2,p

)2)}
+C

(l)
Fij

N∑
n=1
n 6=n0

c
(l)
ijnG

(
fq,0,σ

2
0

)
R

{
G

(
fq,f

(l)
ijn,p,

(
σ
(l)
ijn,2,p

)2)
exp
(
j
(
θ
(l)
ijn,p−ϑ

(l)
Fij

))}]
(7)

(
c
(l+1)
ijn0

, k
(l+1)
ijn0,p

, θ
(l+1)
ijn0,0

, C
(l+1)
Fij

, ϑ
(l+1)
Fij

, v(l+1)
n0,p , β

(l+1)
v,n0,p, α

(l+1)
v,n0,p, (β

T
jn0,p)(l+1), (αT

jn0,p)(l+1), (βR
in0,p)(l+1), (αR

in0,p)(l+1)
)

=

argmin
Pp


3∑

i,j=1

∣∣∣∣∣
∣∣∣∣∣Ĥ(l)

ijn0,p
−c2ijn0

G
(
fq,fijn0,p, σ

2
ijn0,1,p

)
−GC2

Fij
− 2

σw
√
π

[
N∑

k=n0+1

cijn0
cijkR

{
G
(
fq, fijn0,p,σ

2
ijn0,2,p

)
· exp(j(θijn0,p−θijk,p))G∗

(
fq,f

(l)
ijk,p,σ

2
ijk,2,p

)}
+CFij

cijn0
G
(
fq,0,σ

2
0

)
R
{
G(fq,fijn0,p,σijn0,2,p)exp

(
j
(
θ
(l)
ijn,p−ϑFij

))}]∣∣∣∣∣
∣∣∣∣∣
2

2

 (8)

Inserting (3) and (4) in (5), the objective function E(Pp) can
be alternatively written as in (6) [see the top of this page],
where Ŝij and G are column vectors containing the stacked
values of Ŝij(fq, tp) and G(fq, 0, σ

2
0/2) for increasing values

of q, respectively. Starting with N = n0 = 1 and choosing
arbitrary initial values for c(0)ijn0

, k(0)ijn0,p
, θ(0)ijn0,0

, C(0)
Fij

, ϑ(0)Fij
,

v
(0)
n0,p, β(0)

v,n0,p, α(0)
v,n0,p, (βT

jn0,p
)(0), (αT

jn0,p
)(0), (βR

in0,p
)(0), and

(αR
in0,p

)(0) (i, j = 1, 2, 3 and n = 1, . . . , N ), we introduce
the error functions h(l)ijn0

(fq, tp) for the n0th moving scatterer
SM
n0

at every iteration l (l = 1, 2, . . . ) as in (7) [see the top
of this page]. Then, the new estimates of c(l+1)

ijn0
, k(l+1)

ijn0,p
,

θ
(l+1)
ijn0,0

, C(l+1)
Fij

, ϑ(l+1)
Fij

, v(l+1)
n0,p , β(l+1)

v,n0,p, α(l+1)
v,n0,p, (βT

jn0,p
)(l+1),

(αT
jn0,p

)(l+1), (βR
in0,p

)(l+1), and (αR
in0,p

)(l+1) are obtained
according to (8) [see the top of this page]. For fixed values
of c(l)ijn0

, k(l)ijn0,p
, θ(l)ijn0,0

, C(l)
Fij

, ϑ(l)Fij
, v(l)n0,p, β(l)

v,n0,p, α(l)
v,n0,p,

(βT
jn0,p

)(l), (αT
jn0,p

)(l), (βR
in0,p

)(l), and (αR
in0,p

)(l), one can
derive the right-hand side of (8) with respect to the variable
cijn0 , which shows that (8) reaches a minimum if the new
estimate c(l+1)

ijn0
satisfies the following cubic equation

a0

(
c
(l+1)
ijn0

)3
+ b0

(
c
(l+1)
ijn0

)2
+ c0c

(l+1)
ijn0

+ d0 = 0 (9)

where a0 = 2||y(l)
ijn0
||22, b0 = 3(y

(l)
ijn0

)T f
(l)
ij ,

c0 = ||f (l)ij ||22 − 2(Ĥ
(l)
ijn0,p

− G(C
(l)
Fij

)2)Ty
(l)
ijn0

, and

d0 = (f
(l)
ij )T [Ĥ

(l)
ijn0,p

− G(C
(l)
Fij

)2], with (·)T being

the transpose operator. Here, f
(l)
ij and y

(l)
ijn0

are column

vectors containing the stacked values of the functions
2[
∑N

k=n0+1 cijk R{G(fq, fijn0,p, σ
2
ijn0,2,p

) exp(j(θijn0,p −
θijk,p))G∗(fq, f

(l)
ijk,p, σ

2
ijk,2,p)} + R{G(fq, fijn0,p, σijn0,2,p)

exp(j(θ
(l)
ijn0,p

− ϑFij
))}CFij

G(fq, 0, σ
2
0)]/(σw

√
π) and

G(fq, f
(l)
ijn0,p

, (σ
(l)
ijn0,1,p

)2), respectively, for increasing
values of q. Since the coefficients a0, b0, c0, and d0
of (9) are real, one can state that at least one of its
roots xk (k = 1, 2, 3) is real. These roots xk can be
expressed as xk = −(b0 + ζkA0 + B0/(ζ

kA0))/(3a0),
where ζ is a cube root of unity, B0 = b20 − 3a0c0,
and A0 = [(C0 ±

√
−27∆0a20)/2]1/3, in which the

quantity C0 is given by C0 = 2b30 − 9a0b0c0 + 27a20d0,
and the discriminant ∆0 is expressed as ∆0 =
18a0b0c0d0 − 4b30d0 + b20c

2
0 − 4a0c0 − 27a20d

2
0. Then,

the new estimate of the gain c
(l+1)
ijn0

of the moving scatterer
SM corresponds to the real-valued root xk that minimizes
the right-hand side of (8). Similarly, it can be shown that (8)
is minimized if the new estimate C(l+1)

Fij
satisfies

a1

(
C

(l+1)
Fij

)3
+ b1

(
C

(l+1)
Fij

)2
+ c1C

(l+1)
Fij

+ d1 = 0 (10)

where a1 = 2 ||G||2, b1 = 3GTk
(l)
ij , c1 = ||k(l)

ij ||2

−2(Ŝij−v(l)
ij −u

(l)
ij )TG, and d1 = −(k

(l)
ij )T (Ŝij−v(l)

ij −u
(l)
ij ),

in which k
(l)
ij , v

(l)
ij and u

(l)
ij refer to the column

vectors containing the stacked values of the functions∑N
n=1 c

(l+1)
ijn R{G(fq, fijn,p, σijn,2,p)G(fq, 0, σ

2
0)exp(−j(ϑFij

−θijn,p))}2/(σw
√
π),

∑N
n=1 c

2
ijnG(fq, fijn,p, σ

2
ijn,1,p), and



(
k
(l+1)
ijn0,p

, θijn0,0, ϑ
(l+1)
Fij

, v(l+1)
n0,p , β

(l+1)
v,n0,p, α

(l+1)
v,n0,p, (β

T
jn0,p)(l+1), (αT

jn0,p)(l+1), (βR
in0,p)(l+1), (αR

in0,p)(l+1)
)

=

argmin
Pp\{cijn0

,CFij
}


3∑

i,j=1

∣∣∣∣∣
∣∣∣∣∣Ĥ(l)

ijn0,p
−c2ijn0

G
(
fq,fijn0,p, σ

2
ijn0,1,p

)
−GC2

Fij
− 2

σw
√
π

[
N∑

k=n0+1

cijn0
cijkR

{
G
(
fq, fijn0,p,σ

2
ijn0,2,p

)
· exp(j(θijn0,p−θijk,p))G∗

(
fq,f

(l)
ijk,p,σ

2
ijk,2,p

)}
+CFij

cijn0
G
(
fq,0,σ

2
0

)
R
{
G(fq,fijn0,p,σijn0,2,p)exp

(
j
(
θijn,p−ϑFij

))}]∣∣∣∣∣
∣∣∣∣∣
2

2

 (11)

[2/(σw
√
π)]
∑N−1

n=1

∑N
k=n+1cijncijkR{G(fq, fijn,p, σ

2
ijn,2,p)

exp(j(θijn,p − θijk,p))G∗(fq, f
(l)
ijk,p, σ

2
ijk,2,p)} for increasing

values of q, respectively. The expressions of the real
or/and complex roots xk (k = 1, 2, 3) of (10) are given
by xk = −(b1+ ζkA1 + B1/(ζ

kA1))/(3a1), where
B1 = b21 − 3a1c1, and A1 = [(C1 ±

√
−27∆1a21)/2]1/3,

with C1 = 2b31 − 9a1b1c1 + 27a21d1, and ∆1 = 18a1b1c1d1
−4b31d1 + b21c

2
1 − 4a1c1 − 27a21d

2
1. Then, the new estimate

C
(l+1)
Fij

corresponds to the non-negative real-valued root xk
of (10) that is the global minimum of the right-hand side
of (8). Inserting the new estimates c(l+1)

ijn0
and C

(l+1)
Fij

in (8),
we obtain the reduced optimization problem in (11) [see the
top of this page]. Finally, the new estimates of the remaining
parameters are numerically computed according to (11). The
steps in (5)−(11) proceed as long as the relative change
|E(l+1)(Pp)−E(l)(Pp)|2 of the objective function E (Pp) is
higher than the predefined error level ε. If the relative change
|E(l+1)(Pp)−E(l)(Pp)|2 in the objective function is smaller
than ε, the number of moving scatterers N is incremented by
1, i.e., N ←− N + 1. By considering new initial values for
the parameters corresponding to the N th moving person c(0)ijN ,
k
(0)
ijN,p, θ(0)ijN,0, v(0)N,p, β(0)

v,N,p, α(0)
v,N,p, (βT

jN,p)(0), (αT
jN,p)(0),

(βR
iN,p)(0), and (αR

iN,p)(0), we define a new error function
h
(0)
ijN (fq, tp), whose expression can be obtained from (7) by

replacing n0 by N . Then, the new estimates of the parameters
of interest can be computed following the steps (5)−(11).
This iterative procedure is repeated until the increase of the
number of moving scatterers N does not further decrease
the objective function E (Pp) (the relative change of the
function E (Pp) is smaller than or equal to ε) or a predefined
maximum number of moving scatterers Nmax is reached.

Finally, it should be mentioned that, due to the non-
stationary behavior of indoor channels, the proposed
estimation method for the TV velocities needs to be
performed at each time instant tp.

IV. NUMERICAL RESULTS

The validation of the proposed velocity estimation algorithm
is the topic of this section. To do so, we present numerical
results comparing the exact TV Doppler frequencies, TV
speed, and TV VAOM with the corresponding estimated
quantities. This task cannot be achieved with measurement
data, for which the accurate channel parameters, including
the TV velocity of the person, are not always known. To
ensure a fair evaluation of the iterative estimation method

explained in Section III, we will consider sample functions
of the complex channel gains µ̂ij(tp), generated by means of
computer simulations. Then, we will compute the correspond-
ing spectrograms Ŝij(fq, tp) according to the framework for
activity monitoring based on the Doppler characteristics of
indoor channels reported in [24]. The values of the parameters
used in the following figures are presented in Table I and have
been chosen according to [25] and [26].

We start by describing the scenario considered for the
performance analysis. This scenario consists of a room of
length A, width B, and height H . The fixed omni-directional
antennas AT

1 , AT
2 , AT

3 , AR
1 , AR

2 , and AR
3 are located at

the positions (5, 2.5, 2.25), (−5, 2.5, 2.25), (5,−2.5,−2.25),
(5, 2.5, 2.25), (5, 2.5,−2.25), and (−5,−2.5, 2.25), respec-
tively. Here, we consider two moving persons, P1 and P2,
who start walking from opposite corners of the room. Each
person Pn is modelled by a single moving point scatterers
SM
n (n = 1, 2), which represents the person’s head. According

to [25], the head trajectory of the walking person Pn can be
modelled as zn(t) = hstep,n cos(2πfstep,nt) + hhead,n, where
hstep,n and hhead,n are the step height and the height of Pn,
n = 1, 2. Here, fstep is the walking frequency and is equivalent
to the horizontal speed VH,n over the step length Lstep,n. The
observation time duration is 4 s. For simplicity, we assume
the persons’ trajectories in the xy-plane to be linear. The
movement of person P1 can be divided into three phases.
In this first phase, the person starts walking with a constant
speed for 2.5 s (corresponds approximately to a distance of
2 m). In the second phase, he/she starts falling until he/she
lies on the floor. The fall phase lasts 1 s. For the rest of the
observation time, the person P1 lies completely on the floor
and is no longer moving. The person P2 walks with constant
speed during the total observation time. The parameter σ2

w

has been chosen to be σ2
w = min(1/

√
2π|kij(tl)|). The TV

HAOM αv,n(t) and TV VAOM βv,n(t) of the person Pn have
been computed in terms of the initial and final locations of
the moving scatterer SM

n .
Figs. 3(a) and (b) illustrate the “true” or exact TV speed

vn(t), n = 1, 2, of the moving persons P1 and P2 (modelled
by the scatterers SM

1 and SM
2 , respectively) together with

the corresponding estimated values. The good fit between
the exact TV speed and the estimated TV speed verifies the
validity and accuracy of the proposed iterative estimation
technique. Together with the TV velocity, i.e., TV speed
and TV direction of motion, the acceleration (as well as



TABLE I
SIMULATION PARAMETERS

Symbol Name Value
A Room length 10 m
B Room width 5 m
H Room height 2.4 m
N Number of moving scatterers 2
Mij Number of fixed scatterers between AT

j and AR
i 7

cijn Path gain of the nth moving scatterer SM
n 1

aijm Path gain of the mij th fixed scatterer SF
mij

√
1/Mij

hhead,1 Height of person P1 1.60 m
hhead,2 Height of person P2 1.60 m
hstep,2 Step height of person P1 (young adult) 3.2 cm
hstep,1 Step height of person P2 (elderly person) 2.7 cm
Lstep,2 Step length of person P1 (young adult) 66 cm
Lstep,1 Step length of person P2 (elderly person) 35 cm
VH,2 Horizontal speed of person P1 (young adult) 0.8 m/s
VH,1 Horizontal speed of person P2 (elderly person) 0.8 m/s
f0 Carrier frequency 5.9 GHz
ε Predefined error level 0.001

acceleration-based parameters) has been shown to play an
important role in daily human activity tracking and monitoring,
e.g., in [11]. Here, the absolute (total) acceleration an(t) of the
moving scatterer SM

n can be obtained from the speed vn(t) as
an(t) =

√
(dvn,x(t)/dt)2 + (dvn,y(t)/dt)2 + (dvn,z(t)/dt)2

(n = 1, 2). This quantity is depicted in Fig. 4(a) and (b)
for persons P1 and P2, respectively. Here again, the good
match between the exact and estimated accelerations stresses
the validity of the estimation technique. Furthermore, we plot
in Fig. 5(a) and (b) the exact TV VAOM αn(t) of the persons
P1 and P2 with the estimated angles, respectively. A good
correspondence can be observed between both quantities.

It is worth mentioning that several trials have shown that
a small error in the estimation of the TV direction of motion
(VAOM and HAOM) does not affect the objective function
E (Pp). It should also be emphasized that, in this section,
we considered the case where the two persons P1 and P1

are moving with different speed models to demonstrate that
the presented velocity estimation procedure remains valid
regardless of the activities of the persons in the indoor area.

Comparison with other methods: Although it is of great
importance to compare the performance of the presented
velocity estimation algorithm with algorithms available in the
literature, this task cannot be achieved. This is because, to our
knowledge, there are no detailed studies that can be considered
for this purpose. In addition, and as has been stressed in
the beginning of Section I, the estimation methods developed
in the context of mobile radio communication cannot be
considered either because they are limited to WSS channels
(the speed of the MSs is assumed to be constant) and do not
provide any information regarding the direction of motion.

V. CONCLUSION

In this paper, we propose a new RF-based iterative pro-
cedure to estimation the velocity of multiple moving ob-
jects/persons in indoor areas equipped with a distributed 3×3
MIMO system. The propagation phenomenon taking place in
the indoor space is modelled by a non-stationary 3D indoor
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Fig. 3. TV speed (a) v1(t) of the moving scatterer SM

1 (person P1) and (b)
v2(t) of the moving scatterer SM

2 (person P2).

channel model. The main aim of this method is to estimate
the TV velocity, i.e., TV speed, TV VAOM, and TV HAOM,
of the multiple moving persons. This task is achieved by
matching the spectrogram of the channel model as close as
possible to the spectrogram computed from the received RF
signals. Together with the TV velocity, the proposed algorithm
determines all channel parameters, e.g., path gains, phases,
angles, etc. The good fit observed between the exact TV
speed, TV acceleration, and TV VAOM of the different moving
persons and the corresponding estimated quantities verifies the
accuracy and soundness of the estimation approach.
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[6] M. Ermes, J. Pärkkä, J. Mäntyjärvi, and I. Korhonen, “Detection of daily
activities and sports with wearable sensors in controlled and uncontrolled



0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

Exact
Estimated

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

(b)
Fig. 4. TV absolute (total) acceleration (a) a1(t) of the moving scatterer SM

1
(person P1) and (b) a2(t) of the moving scatterer SM

2 (person P2).

0 0.5 1 1.5 2 2.5 3 3.5 4
-

- /2

0

/2

Exact
Estimated

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
-

- /2

0

/2

Exact
Estimated

(b)
Fig. 5. TV VAOM (a) αv,1(t) of the moving scatterer SM

1 (person P1) and
(b) αv,2(t) of the moving scatterer SM

2 (person P2).

conditions,” IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 1, pp. 20–26,
Jan. 2008.

[7] C. Strohrmann, H. Harms, C. Kappeler-Setz, and G. Tröster, “Monitor-
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