
Technische Universität Ilmenau
Department of Computer Science and Automation
Control Engineering Group

University of Agder
Faculty of Engineering and Science
Department of Engineering Sciences

Identification of Fractional-Order Models for
Viscoelastic Behavior

Master Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science (M.Sc.)

Daniela Kapp

Supervising Tutor: M.Sc. Christoph Weise (TU Ilmenau)

Responsible Professors: Prof. Johann Reger (TU Ilmenau)

Prof. Michael Ruderman (University of Agder)

Submission Date: February 20, 2020





Acknowledgments
First of all, I would like to thank my thesis supervisor, M.Sc. Christoph Weise, for
his support during the work and for patiently answering all my questions. I would
also like to express my gratitude to Prof. Johann Reger for the opportunity to write
my master’s thesis in the Control Engineering Group, as well as for his professional
and organizational assistance.
My thanks also go to Prof. Michael Ruderman and M.Sc. Philipp Pasolli for

the warm welcome at the UiA in Grimstad and for their help in carrying out the
experiments, which presented us with some challenges. Without Philipp’s support
in rebuilding the experimental setup, the experiments would not have been possible
in this form.
I would also like to acknowledge Janek Fehlbier for proofreading my thesis and

for his valuable comments.
Tom in particular has supported me throughout my research and also in writing

my thesis. Many thanks for his great efforts.
Finally, I must express my very profound gratitude to my family for providing

me with unfailing support and continuous encouragement throughout my years of
study. This accomplishment would not have been possible without them. Thank
you.





Abstract

In this thesis, the fractional-order modeling of viscoelastic behavior based on mea-
surement data obtained in the frequency domain is analyzed. Polymer samples as
well as the transfer behavior of a hydraulic dashpot are investigated, whereby two
different experimental setups are used for the former. Existing fractional-order trans-
fer function estimation algorithms based on integer-order identification techniques
are applied. These algorithms require a priori knowledge of the system structure
including the commensurate order of differentiation. Hence an iterative procedure
is used to evaluate the influence of the unknown structure. To avoid this, a global
optimization is introduced, where the commensurate order is also part of the param-
eter set to be optimized. The measured polymer samples show a viscoelastic stress
response. It can be shown that known model structures of low order for viscoelastic
models can represent the measured transfer behavior very well. It is also proven that
integer-order models do not reach the accuracy achieved with fractional-order ap-
proaches. For low-dimensional models, for which similar coefficients are estimated,
the commensurate order is also in a limited range. However, as soon as there are
only small deviations or the given model orders increase, it fluctuates enormously
between 0 and 1. Additional considerations have to be included in the identification
process to generate reliable physical models. The investigated dashpot is rather
approximated by integer-order models.





Kurzfassung

In dieser Arbeit wird die nicht-ganzzahlige Modellierung viskoelastischen Verhal-
tens auf Basis von Messdaten im Frequenzbereich untersucht. Unter Nutzung zwei-
er Versuchsstände werden Messdaten verschiedener Kunststoffproben sowie eines
hydraulischen Zylinders aufgenommen und deren Übertragungsverhalten bestimmt.
Für die Identifikation der nicht-ganzzahligen Übertragungsfunktionen im Frequenz-
bereich werden bereits existierende Algorithmen implementiert, die aus ganzzahli-
gen Identifikationsansätzen entstanden sind. Für die Anwendung dieser Methoden
sind a priori Informationen über die Modellstruktur notwendig. Aus diesem Grund
muss auf ein iteratives Verfahren zurückgegriffen werden. Um dies zu vermeiden,
wird eine globale Optimierung genutzt, welche neben den Koeffizienten der Übertra-
gungsfunktion auch die kommensurable Ordnung optimiert. Einige der untersuchten
Kunststoffproben weisen ein viskoelastisches Verhalten auf. Es kann gezeigt werden,
dass bekannte viskoelastische Modellstrukturen niedriger Ordnung das gemessene
Übertragungsverhalten sehr gut abbilden. Außerdem ist erkennbar, dass mit ganz-
zahligen Modellen nicht die Genauigkeit einiger nicht-ganzzahliger Ansätze erreicht
wird. Im Fall niedrigdimensionaler Modelle, deren geschätzte Koeffizienten in einem
ähnlichen Bereich sind, liegen auch die gefundenen kommensurablen Ordnungen nah
beieinander. Sobald jedoch kleine Abweichungen auftreten oder die Modellordnung
höher angesetzt wird, variieren diese Ordnungen sehr stark im vorgegebenen Be-
reich von 0 bis 1. Daher sollten bei der Auswahl der Modelle weitere Betrachtungen
mit einbezogen werden, um sinnvolle physikalische Modelle zu erhalten. Für den
untersuchten Zylinder werden eher Modelle ganzzahliger Ordnung identifiziert.
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1 Introduction

Since their discovery about 100 years ago, polymers have replaced many classic ma-
terials and taken over a huge area of application. They are used in the construction
industry (e.g. as a replacement for wooden window frames), in the sanitary sector
(as a replacement for ceramics), in the automotive industry as well as in the pack-
aging industry and are essential for many other purposes [36]. In order to be able
to open up further areas of application or to optimize the current use, complex and
expensive tests have to be carried out. To replace these with numerical simulations,
it is necessary to develop exact models of these plastics.
The aim of this thesis is the identification of fractional-order models based on real

measured data in the frequency domain. Not only the transfer behavior of polymers
is investigated, but also that of a hydraulic dashpot, which also has viscoelastic prop-
erties. Therefore, an existing hydraulic setup is used and modified to measure the
strain-stress relation of different samples. For validation purposes single samples are
remeasured with a servo-hydraulic testing machine for dynamic load measurement.

1.1 State of the Art
Many different models have already been developed to represent the viscoelastic be-
havior of polymers [16]. However, these classic integer-order models quickly become
very large and need an excessive number of model parameters to adequately model
the memory effects of physical processes. Although known for a long time, the frac-
tional calculus has only managed to make the transition from theory to practice in
recent decades. By introducing fractional-order operators instead of integer-order
operators in the constitutive relations, the number of parameters required to accu-
rately describe the dynamic properties can be significantly reduced [2, 23]. Although
the model structure seems to be more natural for such processes, the identification
is extensive. Compared to integer-order models, not only the number of states, but
also the order of differentiation is an unknown system parameter. Additional, the
maximum fractional order of the system gives no information about the other frac-
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1 Introduction

tional orders present. This is unlike the integer-order case where the maximum order
dictates the only orders present [1, 12]. In [2] it is shown that the classical viscoelas-
tic model with a large number of internal variables converges to the fractional-order
model with a single internal variable. The extension of one-dimensional fractional-
order viscoelastic models into their three-dimensional equivalents for finitely deform-
ing continua, as well as the numerical algorithms for their solution are presented in
[8]. For the application of Magnetic Resonance Elastography reconstruction algo-
rithms, a fractional-order Voigt model of soft tissue-like materials is developed in
[23].
There are various approaches available to identify fractional-order models in the

time domain, e.g. subspace methods [19, 33] and modulation-function based methods
[4, 20]. However, the computation in the time domain is costly in view of the long
memory and the non-local properties of fractional differential operators [35]. The
determination of a linear model is also much easier in the frequency domain, since in
the time domain it is necessary to either design filters or estimate derivatives. There
are also advantages in the treatment of noise. If the conditions for white noise in
the time domain are violated (e.g. signal-correlated noise), the covariance matrix of
the Fourier-transformed noise vector approximately takes the form of a scaled unit
matrix and the signal can be assumed as “white-noise-like” in the frequency domain
[11]. For these reasons, it was decided to conduct the investigations in the frequency
domain.
In [6] the effect of the error definition is evaluated using nonlinear optimization

techniques, whereas in [35] an identification method is presented which combines
the merits of differential evolution algorithm and subspace identification algorithm
in the frequency domain. In [34] different integer-order identification techniques are
taken up, e.g. the complex-curve fitting introduced by Levy in [18], the weighting
presented in [29] or an online identification method in [17], and are transferred to
the fractional-order domain. The usefulness of these algorithms has already been
investigated using a simple simulated example.

1.2 Contributions of this Thesis
The main focus of this thesis is to investigate the influence of the model structure
and the commensurate order on the quality of identification. Furthermore, the
algorithms presented in [34] are validated using real measurement data. The results
are also compared with an optimization of the coefficients and the commensurate
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1.3 Structure

order of the system. Materials are investigated that have not yet been described with
fractional-order transfer functions. The attempt to model a hydraulic dashpot is also
new. In addition, the thesis from the literature is to be proven that fractional-order
models need a significantly lower number of parameters than integer-order models
for the same identification accuracy.

1.3 Structure
This thesis is structured as follows: In Chapter 2 general definitions of fractional
derivatives and integrals are briefly introduced and the fractional-order models in
the frequency domain are explained. Based on this, the fundamental integer- and
fractional-order models of linear one-dimensional viscoelastic phenomena are re-
called. Assuming zero initial conditions these models are reduced to fractional-order
transfer functions (FOTF). Furthermore, some remarks about hydraulic dashpots
and white noise are made. Chapter 3 summarizes all necessary algorithms and pro-
cedures that are used for the fractional-order system identification in the frequency
domain. This includes the postprocessing of the measurement data, the explana-
tion of the basic ideas of the identification algorithms presented in [34] as well as
the introduction of an optimization approach. The robustness of the identification
approaches towards unknown structural parameters (commensurate order, general
system order) are validated using simulation data in Section 3.4. In this context, the
need for a global optimization is also addressed. Finally, the experimental setups,
the measurement procedure, the results and their discussion, as well as the identified
models and their validation are given in Chapter 4.

- 3 -



2 Fundamentals

2 Fundamentals

The identification of the model parameters for fractional-order systems requires a
basic understanding of the different definitions of these systems and the impacts in
the frequency and time domain. Therefore, this chapter is used to give the most
important functions needed for the definition of the fractional calculus, a list of
the best-known fractional derivatives and integrals and the derivation of fractional-
order dynamic systems in the time and frequency domain. Additionally, linear
viscoelasticity is introduced and some important integer- and fractional-order models
for the description of viscous materials are presented. The next section is dedicated
to a short introduction of hydraulic dashpots, and finally noise is briefly discussed.

2.1 Special Functions
This section includes the definitions of the gamma function, the Mittag-Leffler func-
tion, and the Wright function.
The gamma function Γ(·), also known as second order Euler integral, is a general-

ization of the factorial n! and allows n to take also non-integer and complex values
[27]. It is defined by the integral

Γ(z) =
∫ ∞

0
e−ttz−1dt

with z ∈ C, Re (z) > 0 [27]. The convergence at infinity is provided by e−t, and
for the convergence at t = 0, Re(z) > 1 must apply [27]. The gamma function
has many useful properties. One of the most important for the fractional calculus
is the following characteristic which also shows the generalization of the factorial
n! = Γ(n+ 1) [27]:

Γ(z + 1) = zΓ(z).
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2.2 Fractional Derivatives and Integrals

The one-parameter Mittag-Leffler function Eα(·) generalizes the exponential func-

tion ez = ∑∞
k=0

zk

k! [27]

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1) , Re(α) > 0.

A very important role in fractional calculus plays the two-parameter Mittag-Leffler
function Eα,β(·), which is defined by the series expansion [27]

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β) , Re(α) > 0, Re(β) > 0.

Particular cases of the Mittag-Leffler function are e.g. the hyperbolic sine and co-
sine as well as the trigonometric functions [27]. This function has an important
application in the solution of differential equations of rational order [27].
Another notable function for solving linear partial fractional differential equations

is the Wright function

W (z;α, β) =
∞∑
k=0

zk

k!Γ(αk + β) .

2.2 Fractional Derivatives and Integrals
“The fractional calculus is a name for the theory of integrals and derivatives of ar-
bitrary order, which unify and generalize the notions of integer-order differentiation
and n-fold integration” [27, p. 42]. A short overview of this theory will now be
given.
For the description of fractional integrals, the concept of Riemann-Liouville is

the best-known. Based on Cauchy’s formula for repeated integrals, the Riemann-
Liouville fractional-order integral is defined as [24]

Iαc f(t) = 1
Γ(α)

∫ t

c

f(τ)
(t− τ)1−αdτ, t > c, α ∈ R+. (2.1)

For dynamic systems, it can be assumed that f(t) is a causal function of t, i.e. t > 0,
and thus the definition that is mostly used is [24]

Iαf(t) = 1
Γ(α)

∫ t

0

f(τ)
(t− τ)1−αdτ, t > 0, α ∈ R+. (2.2)

- 5 -



2 Fundamentals

In the following definitions of fractional derivatives the special case c = 0 is still
used. For simplification, Dα is therefore given instead of 0Dα.
Let Dm be the derivative operator of order m ∈ N. Then the just defined integral

operator in (2.2) can be transformed into the Riemann-Liouville fractional-order
derivative of arbitrary order α ∈ R+, m = dαe, that is [24]

RDαf(t) = DmIm−αf(t) = dm
dtm

[
1

Γ(m− α)

∫ t

0

f(τ)
(t− τ)α−m+1 dτ

]
.

Fractional derivatives is the short name for derivatives of arbitrary real order [27].
Another very common definition of the fractional-order derivative was introduced
by Caputo [24]:

CDαf(t) = Im−αDmf(t) = 1
Γ(m− α)

∫ t

0

f (m)(τ)
(t− τ)α−m+1 dτ,

where m = dαe and f(t < 0) = 0. This definition requires the absolute integrability
of the mth-order derivative of the function f , therefore it is more restrictive than the
Riemann-Liouville definition [24]. It allows the formulation of initial conditions for
initial-value problems for fractional-order differential equations in a form involving
only the limit values of integer-order derivatives at the lower terminal (initial time)
[27]. This is important for applied problems that require physically interpretable
initial conditions, which are not given by the Riemann-Liouville approach [27].
Due to its importance in applications, the definition of Grünwald-Letnikov [24]

shall be mentioned, as well,

Dαf(t) = lim
h→0
nh=t
n∈N

1
hα

n∑
i=0

(−1)i
(
α

i

)
f(kh− ih).

The definitions of the fractional calculus in the time domain are quite difficult to
handle. Therefore, a frequency domain analysis is reasonable. Fundamental tools
in systems and control engineering are Laplace and Fourier integral transforms [24].
The Laplace transform of the function f(t) is defined by

L{f(t)} = F (s) =
∫ ∞

0
e−stf(t)dt, (2.3)

where s ∈ C is a complex number that can be interpreted as a frequency parameter
[27]. In most cases, s ∈ C+ to ensure the convergence of the integral for functions
with exponential growth, which are the common solutions of ordinary linear systems.
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2.3 Definition and Stability of Fractional-Order LTI Systems

The Laplace transforms of the presented fractional-order operators are [24]

L{Iαf(t)} = s−αF (s),

L{RDαf(t)} = sαF (s)−
m−1∑
k=0

sk
[
RDα−k−1f(t)

]
t=0

,

L{CDαf(t)} = sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0),

L{Dαf(t)} = sαF (s),

where m− 1 ≤ α < m. The exponential Fourier transform of a continuous function
h is defined by

F {h(t)} =
∫ ∞
−∞

ejωth(t)dt.

For the defined fractional-order operators holds [24]

F {Iαf(t)} = F
{
tα−1
+

Γ(α)

}
F {f(t)} = (jω)−αF (ω),

F {Dαf(t)} = F
{
DmIm−αf(t)

}
= (jω)αF (ω),

where m− 1 ≤ α < m.

2.3 Definition and Stability of Fractional-Order LTI
Systems

After introducing the most important definitions of the fractional calculus, the var-
ious ways to describe continuous-time dynamic systems of fractional-order are now
presented as a central theme of this thesis.
In the LTI single variable case, a fractional-order system can be characterized

with the equation
A(Dα0...αn)y(t) = B(Dβ0...βm)u(t), (2.4)

with the input u(t), the output y(t) and the combination laws of the fractional-order
derivative operator A(Dα0...αn) = ∑n

k=0 akDαk and B(Dβ0...βm) = ∑m
k=0 bkDβk with

ak, bk ∈ R [24].

Definition 1 (Commensurate order [24]). A system is of commensurate order q,
if all the orders of derivation are integer multiples of the base order q ∈ R+, that
means αk, βk = kq.

- 7 -



2 Fundamentals

A system of commensurate order can be written as

n∑
k=0

akDkqy(t) =
m∑
k=0

bkDkqu(t). (2.5)

It can be noted that from a numerical point of view all systems are commensurable
because coefficients can be chosen infinitesimally small, so that the corresponding
order (i.e. a multiple of the commensurate order) no longer has any influence. The
system described by (2.5) is of rational order, if q = 1/p, p ∈ Z+ [24].
The transfer function of fractional-order systems (2.4) can be obtained by applying

the Laplace transform (2.3) with zero initial conditions [24]. This yield

G(s) = Y (s)
U(s) = bms

βm + bm−1s
βm−1 + . . .+ b0s

β0

ansαn + an−1sαn−1 + . . .+ a0sα0
.

In case of a commensurate order q, this equation changes to

G(sq) =

m∑
k=0

bks
kq

n∑
k=0

akskq

, (2.6)

where G(sq) consists of two pseudo polynomials. This relationship can also be
expressed using a pseudo-rational function [24]

H(λ) = B(λ)
A(λ) =

m∑
k=0

bkλ
k

n∑
k=0

akλk

.

The fractional-order transfer function is obtained by inserting λ = sq.
The two main external stability criteria for the polynomial representations are set

out in the following.

Theorem 2 (Stability of fractional-order LTI systems [24]). A fractional-order sys-
tem with an irrational-order transfer function G(s) is bounded-input bounded-output
stable (BIBO stable) if and only if (iff) the following condition is fulfilled:

∃M ∈ R : |G(s)| ≤M, ∀s ∈ C : Re(s) ≥ 0.

- 8 -



2.4 Linear Viscoelasticity

Theorem 3 (Stability of fractional-order LTI systems of commensurate order [24]).
The fractional-order system with transfer function H(λ) = B(λ)/A(λ), λ = sq, and
commensurate order q is stable iff

| arg(λi)| > q
π

2 , ∀λi ∈ C : A(λi) = 0.

2.4 Linear Viscoelasticity
In the following, the fundamental integer- and fractional-order models of linear one-
dimensional viscoelastic phenomena are introduced. Assuming zero initial conditions
these models are reduced to fractional-order transfer functions.

2.4.1 Integer-Order Models

The polymers studied in this thesis, polypropylene and polybutylene terephthalate,
are semicrystalline materials. In a certain temperature range their behavior is vis-
coelastic [36]. “Viscoelastic” is an artificial word combining elastic and viscous. This
topic will be clarified in more detail in this section.
In case of viscoelasticity, the deformation energy is split into two parts: the viscous

dynamics dissipates the energy while the elastic part stores the mechanical energy.
The material models are bounded by the ideal solid body on the one side and the
ideal Newtonian fluid on the other side.
Elasticity is the property of a material to resist a distorting or deforming force

and return to its original shape after removing the force [22]. The relationship
between the stress σ(t) and strain ε(t) for pure elastic components can be described
by Hooke’s law

σ(t) = Eε(t) (2.7)

with Young’s modulus E, which is not constant for a material as it depends on many
factors such as temperature, strain velocity and humidity [36]. Metals are elastic up
to a certain stress limit at which permanent plastic deformation occurs. In contrast,
the Hooke’s area, in which the stress is in a constant ratio to the deformation, is
often not present in plastics [36].
For ideal viscous components (Newtonian fluids), the stress is proportional to the

local shear velocity, i.e.
σ(t) = ηε̇(t), (2.8)

- 9 -



2 Fundamentals

where η is the coefficient of viscosity which is a scalar constant of proportionality
[23]. The viscosity of a fluid describes the linear resistance to shear flow and strain
when a stress is applied [22].
To model real materials with properties somewhere in between, there are various

approaches [22]. On the one hand integer-order elements can be combined, on the
other hand fractional-order calculus can be applied.
To use integer-order derivatives, the elastic element is represented as a spring,

while the ideal viscous element is realized as a dashpot [27]. These representations
can be combined in parallel and/or series. The two simplest representations are the
Maxwell model [27]

dε(t)
dt = 1

E

dσ(t)
dt + σ(t)

η
, (2.9)

which connects two elements in series, and Voigt’s model [27]

σ(t) = Eε(t) + η
dε(t)

dt , (2.10)

which uses the parallel arrangement. The schematic diagrams of the spring and
dashpot representations of both models can be seen in Figure 2.1. More complex
models are e.g. the Kelvin model that consists of the Voigt viscoelastic element (E2

and η, in parallel) and the Hooke elastic element (E1) in series, leading to

dσ(t)
dt + ασ(t) = E1

(
dε(t)

dt + βε(t)
)
, (2.11)

and the Zener model, that is given by a combination of the Maxwell viscoelastic
element (E2 and η, in series) and the Hooke elastic element, such that

dσ(t)
dt + βσ(t) = αη

dε(t)
dt + βE1ε(t), (2.12)

where α = (E1 + E2)/η and β = E2/η [27]. The Zener model is also known as
standard linear solid [16]. The mentioned models have been further improved to
achieve higher accuracy. Then they consist of several Kelvin or Maxwell elements
combined with Hooke’s elastic element. This results in very complex relationships
between stress and strain. The most general case are models of the form

n∑
k=0

ak
dkσ(t)

dtk =
m∑
k=0

bk
dkε(t)

dtk . (2.13)

- 10 -



2.4 Linear Viscoelasticity

E

η

E η

Figure 2.1: Schematic diagrams of the Maxwell model (left) and the Voigt model
(right) [27].

The best adequacy can be achieved for n = m [27]. These higher order models
require a large set of parameters, which are difficult to measure individually and
hard to estimate without overfitting. Therefore the fractional-order approach aims
at parameter reduction while maintaining the accuracy of the model [13].

2.4.2 Fractional-Order Models

Based on the previous explanations, it is quite obvious to use fractional-order deriva-
tives to model viscoelastic materials [27]. The material response is bounded by solid
and fluid behavior, hence the order of differentiation should be between zero and
one.
In [27] the primary form

σ(t) = EDαε(t), 0 < α < 1, (2.14)

is introduced. There are also multi-element models such as those for the integer-
order models. Besides of combining Hooke and Newton elements, the Scott Blair
element in (2.14) can be used in addition to integer-order elements [27].
The one-parameter model of Hooke and the two-parameter model (2.14) can also

be further generalized by adding more terms on both sides, containing arbitrary-
order derivatives of stress and strain [27]. There is e.g. the fractional Voigt model
where the first time derivative in (2.10) is replaced by fractional-order derivative of
order α [5], that is

σ(t) = E (ε(t) + ταDαε(t)) (2.15)

with τ = ηE−1. Following the same principle, the four-parameter (or generalized)
Maxwell model can be defined in such a way that the elastic element and the vis-
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cous element in (2.9) are replaced by viscoelastic elements [13]. The corresponding
constitutive equation is

σ(t) + ταDασ(t) = EτβDβε(t), (2.16)

where 0 < α ≤ β < 1. For this model the thermodynamic condition for a mono-
tonically decreasing energy function is automatically fulfilled [13]. This is necessary
because thermodynamics imposes restrictions on physically feasible processes by its
second fundamental law, which means that the constitutive equation in general or
the parameter functions or parameters in particular must guarantee a non-negative
rate of mechanical energy dissipation [9].
Another representation is the generalized Zener model. This is a modification

of the integer-order Zener model in (2.12). Only the time derivatives of stress and
strain are replaced by fractional-order derivatives of order α and β, respectively [13].
It should be noted that α = β, so that the thermodynamic conditions are fulfilled
as before [13]. The resulting equation is

σ(t) + τβDβσ(t) = (E1 + E2)τβDβε(t) + E1ε(t), (2.17)

where τ = ηE2
−1 is the time constant of the Maxwell element [13].

In [13] it is stated that such formulations give an adequate description of real
viscoelastic behavior with a limited number of material parameters. A disadvantage
of fractional-order identification, however, is that these models are physically difficult
to interpret [13] and a simulation in the time domain is complicated.
Applying the Laplace transform to the presented fractional-order models and as-

suming a stress-free material for t < 0 (zero initial conditions) yields the fractional-
order transfer functions

GVoigt = ε(s)
σ(s) = 1

E

1
ταsα + 1 = b0

a1sα + 1 ,

GMaxwell = ε(s)
σ(s) = ταsα + 1

Eτβsβ
= b1s

α + 1
a1sβ

,

GZener = ε(s)
σ(s) = τβsβ + 1

(E1 + E2)τβsβ + E1
= b1s

β + 1
a1sβ + a0

.
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2.5 Hydraulic Dashpot

2.5 Hydraulic Dashpot
Hydraulic cylinders convert the hydraulic energy provided by a pressure supply and
transmitted by a hydraulic fluid into linear mechanical force and movement at the
piston rod [7].
In relation to the uniform thrust phase, the starting and braking phases are gen-

erally small, so that hydraulic and mechanical parameters can be considered as
mean values over the entire stroke [7]. The three phases are shown schematically in
Figure 2.2.

start-up
phase

uniform
thrust phase

braking
phase

Time

V
el
o
ci
ty

Figure 2.2: Characteristic motion sequence over time for a pushing dashpot with the
idealized motion phases starting, moving and braking [7].

First, the hydraulic parameters of loss-free cylinders will be presented. The
schematic structure of a dashpot and the forces acting on it are shown in Figure 2.3.

F1 F2

Ff

p1, A1

p2, A2

Fl

Figure 2.3: Schematic of a single rod, double acting hydraulic cylinder [7].

The (static) pressure difference of the cylinder or the pressure drop (load pressure)
between the effective areas of the piston is defined as [7]

∆p = p1 − p2.

The effective areas, piston area A1 and piston ring area A2, can be calculated with

A1 = π

4D
2, A2 = π

4
(
D2 − d2

)
,
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where D and d are the diameters of the cylinder and the piston rod, respectively.
In the case of a differential cylinder, the effective areas differ by the rod surface
Ar = ∆A = A1 − A2 [7]. The stroke volume then has two values for the double-
acting design. The area ratio ϕ between cylinder and piston rod is [7]

ϕ = A1

A2
.

The resulting force inside of the cylinder Fcyl can be described by

Fcyl = F1 − F2 = A1p1 − A2p2

with the maximum piston force F1 and the counterforce F2. This yields the equilib-
rium of forces

Fres = Fcyl − Ff − Fl, (2.18)

where Fres is the resulting force, Fl is the load force and Ff is the force of friction.
The mechanical behavior of hydraulic dashpots depends on several factors, such

as the damper design and dimensions, the properties of the hydraulic fluid and the
operating conditions [30]. In many cases, especially at high frequencies where the
damper force has a component that is in phase with the position of the cylinder arm,
dampers exhibit a spring-like behavior [30]. Therefore, fluid cylinders can often be
described by a combination of an ideal linear purely viscous damper and an ideal
spring, either in parallel or series as explained in Section 2.4 [30]. This viscoelastic
behavior is most likely caused by the hydraulic fluid in the dashpot, which is often a
polymeric liquid [30]. Such fluids show a shear thinning behavior, i.e. their viscosity
decreases with increasing shear strain [30]. Therefore, the models of the hydraulic
fluid cannot be accurately described using (2.8) of the Newtonian fluid. These liquids
often show an elastic behavior that cannot be captured for all flow conditions by
generalized Newtonian models, e.g. the Carreau-Yasuda model [37]. For this reason,
viscoelastic models have been developed to be able to describe the shear thinning
nature of polymeric fluids. One very popular model is the Phan-Thien & Tanner
model [32].
Following on from Section 2.4, it is therefore also possible to describe the vis-

coelastic behavior of a hydraulic dashpot with fractional-order transfer functions.

- 14 -



2.6 Noise

2.6 Noise
When performing real measurements, there is often undesired influence of noise,
caused by measurement disturbances or noisy and inaccurate measuring devices
[11]. Since real experiments are also carried out in this work, it is necessary to make
some remarks on this subject.
In this thesis, identification problems are investigated, which can be described

with a linear system of equations of the form Ax = b. For simplicity it is assumed
that only the right-hand side vector b is subject to noise. Of course, the matrix A
is often influenced by model or quadrature errors, too, but these errors are more
systematic and therefore more complicated [11]. It is assumed that there exists an
exact right-hand side given by bexact = Axexact if there is an exact solution xexact

[11]. The model for the right-hand side is therefore

b = bexact + ξ,

where the vector ξ ∈ Rl represents the noise in the data. It is assumed that this
is Gaussian white noise even if certainly other structural errors can have an influ-
ence. The elements of the noise vector are therefore drawn from the same Gaussian
distribution with zero mean and standard deviation σ [11]. This is equivalent to

Cov(ξ) ≡ E(ξξ>) = σ2I,

where Cov(ξ) is the covariance matrix, E(·) denotes the expected value, and σ2 is
the variance [11]. According to the definition of the noise vector, E(ξi) = 0 and
E(ξ) = 0. The following also applies to the elements ξi [11]:

E(ξ2
i ) = σ2,

E(|ξi|) =
√

2
π
σ ≈ 0.8σ.

The noise vector ξ ∈ Rl satisfies [11]

E(‖ξ‖2
2) = lσ2,

E(‖ξ‖2) =
√

2 Γ
(
l+1

2

)
Γ
(
l
2

) σ

with the gamma function Γ(·).
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Based on the assumption that ξ is white noise, it follows that bexact and ξ are
uncorrelated and therefore E(b) = E(bexact) applies. It follows that the covariance
for the right-hand side b is [11]

Cov(b) ≡ E
(
(b− E(b))(b− E(b))>

)
= E(ξξ>) = σ2I.

The “naive” solution x can be written as

x = A−1b = A−1(bexact + ξ) = xexact + A−1ξ

and the covariance matrix of x is [11]

Cov(x) = A−1Cov(b)A−> = σ2(A>A)−1.

This covariance matrix shows the sensitivity of x = A−1b to data errors. Large
elements imply high sensitivity [11]. This happens when A is very ill conditioned.
However, since this work is primarily concerned with frequency domain consid-

erations, a second definition of white noise will be given. The vector ξ can be
called white-noise vector if all frequencies present in this time series signal have the
same probability [11]. The discrete Fourier transform of the noise vector ξ̂ can be
calculated with the relationships

ξ̂ = Fξ,

ξ = 1
l
F ξ̂,

where F is the discrete Fourier matrix which is complex and symmetric and satisfies
FF = lI [11]. Similar to the first definition, it is necessary that the covariance
matrix of the discrete Fourier transform is a scaled identity for ξ to be a white noise
vector [11]. From

Cov(ξ̂) = Cov(Fξ) = FCov(ξ)F = lσ2I

it can be seen that both definitions are equivalent [11]. An advantage of the consid-
eration in the frequency domain is also that signals which are not pure white noise
in the time domain, but rather signal-correlated noise, can be regarded as “white-
noise-like” when Fourier transformed [11]. An exact explanation and justification of
this effect can be found in [11].
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3 Fractional-Order System
Identification in the Frequency
Domain

In this chapter, the algorithms used for the postprocessing of the measured data are
presented. This includes the extraction of the magnitude and phase information for
plotting the data in a Bode diagram as well as the subsequent identification of the
fractional-order transfer function. Additionally, the robustness of the identification
approaches towards unknown structural parameters is validated using simulation
data.

3.1 Extraction of Magnitude and Phase from
Measurement Data

One of the most well-known and easiest methods to identify the transfer behavior of
a linear system in the frequency domain is the excitation of the system input with
an oscillation u(t) = u0 sin(ωit) [14]. For linear systems the output is also sinusoidal
y(t) = y0 sin(ωit + ϕ). By calculating the amplitude ratio and phase shift of these
sinusoidal signals, a discrete point of the desired frequency response can be found.
The measurements have to be repeated for each frequency ωi that is of interest [14].
The gain and phase of G(jωi) can be calculated with

|G(jωi)| =
y0

u0
,

∠G(jωi) = −tϕωi,

where tϕ = tout − tin is the time of the phase lag.
For real measurement series, which can be highly noisy, these necessary parameters

must first be extracted from the recorded data. This can be realized with the Fast
Fourier Transform (FFT) of the time series data. The FFT is a computationally
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3 Fractional-Order System Identification in the Frequency Domain

more time saving realization of the discrete Fourier transform [14]. The Fourier
transform of a single sine function is a combination of delta impulses at the frequency
of the given sine [10],

F {A sin(2πν0x)} = A

[
1
2jδ(ν − ν0)− 1

2jδ(ν + ν0)
]
,

with ν0 = ωi/(2π). The amplitude of the FFT can then be used to determine the
amplitude of the measured sine wave. However, the FFT has not only one amplitude
peak due to the noisy data. This is shown in Figure 3.1 as an example for a real
measurement series. Only the positive values are displayed here, as the function
is symmetrical. Due to the regular spacing, the peaks could also be caused by a
dead zone or other nonlinearity. The fundamental oscillation can be recognized by
the highest peak in the amplitude curve (here marked with a red dot). The phase
information can be calculated with the command angle() in MATLAB which uses
the atan2() function.

Frequency (Hz)
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Figure 3.1: Amplitude of the FFT of an exemplary measurement data set.
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3.2 Identification of the Transfer Function
Coefficients

In this section, algorithms for the estimation of the parameters of fractional-order
transfer functions with measurement data are presented. For the application of these
algorithms, modeled transfer functions of the form (2.6) with the commensurate
order q are considered, where a0 = 1 is fixed (this choice is not restrictive [18]):

G̃(s) = bms
mq + bm−1s

(m−1)q + . . .+ b1s
q + b0

ansnq + an−1s(n−1)q + . . .+ a1sq + 1 . (3.1)

The identification problem in the frequency domain for fractional-order LTI sys-
tems is given by:

Problem 4 (Parameter Identification with Frequency Data). Given the commen-
surate order q, orders m,n of the pseudo polynomials in (3.1) and measurements of
the output Ym(jω) and input Um(jω) for a set of frequencies Ω = {ω1, ω2, . . . , ωN}
minimize

min
p

N∑
k=1

Jk
(
G̃(p, ωk), Ym(jωk), Um(jωk)

)
, (3.2)

where Jk is the cost function representing the identification error of the model trans-
fer function G̃(s) at frequency ωk and p is the parameter vector containing the coef-
ficients a1, . . . , an and b0, . . . , bm.

This section introduces methods for solving minimization problems that belong
to this form where m, n and q must be known in advance.

3.2.1 Algorithm Based on Time Domain Approaches

The first approach is basically motivated by time domain approaches [21]. It is
known that the transfer function can be defined as the ratio of the measured outputs
and inputs as well as the ratio of the pseudo polynomials

G(s) = Y (s)
U(s) = B(sq)

A(sq) . (3.3)

Equation (3.3) motivates to define the error for a certain frequency ωk, i.e.

E(ωk) = ε(ωk)Um(jωk)A((jωk)q) = A((jωk)q)Ym(jωk)−B((jωk)q)Um(jωk), (3.4)
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3 Fractional-Order System Identification in the Frequency Domain

which is obtained by multiplication with the error between model and plant,

ε(ωk) = Gm(jωk)− G̃(jωk) = Ym(jωk)
Um(jωk)

− B((jωk)q)
A((jωk)q)

. (3.5)

In relation to Problem 4 the cost function reads

J(ωk) = |E(ωk)|2.

The error definition in (3.4) can be rewritten as

A((jω)q)Ym(jω) = B((jω)q)Um(jω) + E(ω)
⇔ ((an(jω)nq + . . .+ a1(jω)q + 1)Ym(jω)

= (bm(jω)mq + . . .+ b1(jω)q + b0)Um(jω) + E(ω)
⇔ Ym(jω) = (bm(jω)mq + . . .+ b1(jω)q + b0)Um(jω)

− (an(jω)nq + . . .+ a1(jω)q)Ym(jω) + E(ω).

Let the vector p = [a1, . . . , an, b0, . . . , bm]> define all linear parameters. This
results in the linear system

Ym(jω) = S(jω)p+ E(ω)

with the matrix of measurements

S(jω) =



−(jω)qYm(jω)
...

−(jω)nqYm(jω)
Um(jω)

(jω)qUm(jω)
...

(jω)mqUm(jω)



>

.

The common least squares approach is used to find an optimal solution for the
minimization problem (3.2) with the cost function

J(ωk) = |Ym(jωk)− S(jωk)p|2. (3.6)

The minimization problem has a unique solution under the assumption that S has
full rank. This is the case when sufficient measurements are available at different
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frequencies. The optimal parameter vector can then be calculated using

p = S+(jω)Ym(jω) (3.7)

with the Moore-Penrose inverse S+(jω) of matrix S(jω).
Since the fractional calculus is limited to real values in this work, the calculation

of p ∈ Rm+n+1 is adjusted. To avoid complex numbers, the real and imaginary parts
of S(jω) and Ym(jω) are separated. For readability reasons the frequency argument
is omitted here. Then

‖Ym − Sp‖2
2 = ‖Re (Ym − Sp) + j Im (Ym − Sp)‖2

2

= ‖Re (Ym)− Re (S) p+ j (Im (Ym)− Im (S) p)‖2
2

= (Re (Ym)− Re (S) p+ j (Im (Ym)− Im (S) p))H

(Re (Ym)− Re (S) p+ j (Im (Ym)− Im (S) p))
= (Re (Ym)− Re (S) p− j (Im (Ym)− Im (S) p))>

(Re (Ym)− Re (S) p+ j (Im (Ym)− Im (S) p))
= (Re (Ym)− Re (S) p)> (Re (Ym)− Re (S) p)

+ (Im (Ym)− Im (S) p)> (Im (Ym)− Im (S) p)
= ‖Re (Ym)− Re (S) p‖2

2 + ‖Im (Ym)− Im (S) p‖2
2

=
∥∥∥∥∥∥
Re (Ym)

Im (Ym)

−
Re (S)

Im (S)

 p
∥∥∥∥∥∥

2

2

.

The new matrices are defined as

M :=
Re (S(jω))

Im (S(jω))

 , N :=
Re (Ym(jω))

Im (Ym(jω))


and the parameter vector p can be calculated as in (3.7) with

p = M+(jω)N(jω).

3.2.2 Levy’s Algorithm

More advanced methods of finding the coefficients of a fractional-order transfer
function are summarized in [34]. These algorithms are based on considerations
of integer order but can easily be transferred to cases with fractional-order models.
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The best-known method was developed by Levy and will be explained first [18].
The model plant has the same structure as shown in (3.1) with known structural
parameters m, n and q. The frequency response of G̃ is given by

G̃(jω) =

m∑
k=0

bk (jω)kq

1 +
n∑
k=1

ak (jω)kq
= B((jω)q)
A((jω)q) = α(ω) + jβ(ω)

γ(ω) + jδ(ω) ,

where α, β, γ and δ are the real and imaginary parts of B((jω)q) and A((jω)q).
The cost function can again be motivated using the error definition ε(ωk) from

(3.5) [34]:
JLevy(ωk) = |ELevy(ωk)|2,

with
ELevy(ωk) = ε(ωk)A((jωk)q) = A((jωk)q)Gm(jωk)−B((jωk)q). (3.8)

Note that this error is identical to that of the previous approach if Um(jωk) = 1. By
dropping the dependency on the frequency argument, (3.8) can be transformed into

ELevy = (γ + jδ) (Re (Gm) + j Im (Gm))− α− jβ
= (γ Re (Gm)− δ Im (Gm)− α) + j (δRe (Gm) + γ Im (Gm)− β) .

Then the square of the norm of ELevy is

‖ELevy‖2 = (γ Re (Gm)− δ Im (Gm)− α)2 + (δRe (Gm) + γ Im (Gm)− β)2 .

After differentiating ‖ELevy(a1, . . . , an, b0, . . . , bn, q)‖2 with respect to one of the co-
efficients ai and bi, the results are set equal to zero

∂‖ELevy‖2

∂ai
= 2 (Re (Gm) γ − Im (Gm) δ − α) Re (Gm)Rk,i

+ 2 (Re (Gm) δ + Im (Gm) γ − β) Im (Gm)Rk,i

− 2 (Re (Gm) γ − Im (Gm) δ − α) Im (Gm) Ik,i
+ 2 (Re (Gm) δ + Im (Gm) γ − β) Re (Gm) Ik,i != 0, (3.9)

∂‖ELevy‖2

∂bi
= 2 (Re (Gm) γ − Im (Gm) δ − α)Rk,i

+ 2 (Re (Gm) δ + Im (Gm) γ − β)Rk,i
!= 0, (3.10)
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using the shorthand notations Rk,i = Re (jωk)iq and Ik,i = Im (jωk)iq. The difference
to Levy’s identification method for integer-order models can be seen in the term
(jωk)iq [34]. If q = 1, the real and imaginary parts of (jωk)i, k ∈ N, are ±ωik or ±jωik
and as in [18] Levy’s original formula is obtained.
A linear system can be created out of the n+m+ 1 equations given by (3.9) and

(3.10) [34]. The desired coefficients a = [a1, . . . , an]> and b = [b0, . . . , bm]> can be
found by solving this linear system. The number of measured frequencies will be
referred to N in the following. The system can be written as

Mp =
M11 M12

M21 M22

b
a

 =
N1

N2

 (3.11)

with

M11l,c =
N∑
k=1

−Rk,lRk,c − Ik,lRk,c, l = 0 . . .m, c = 0 . . .m,

M12l,c =
N∑
k=1

+Rk,lRk,c Re (Gm (jωk)) + Ik,lRk,c Im (Gm (jωk))

−Rk,lIk,c Im (Gm (jωk)) + Ik,lIk,c Re (Gm (jωk)) ,
l = 0 . . .m, c = 1 . . . n,

M21l,c =
N∑
k=1

−Rk,lRk,c Re (Gm (jωk)) + Ik,lRk,c Im (Gm (jωk))

−Rk,lIk,c Im (Gm (jωk))− Ik,lIk,c Re (Gm (jωk)) ,
l = 1 . . . n, c = 0 . . .m,

M22l,c =
N∑
k=1

[
(Re (Gm (jωk)))2 + (Im (Gm (jωk)))2

]
[Rk,lRk,c + Ik,lIk,c] ,

l = 1 . . . n, c = 1 . . . n,

N1l,1 =
N∑
k=1

−Rk,l Re (Gm (jωk))− Ik,l Im (Gm (jωk)) , l = 0 . . .m,

N2l,1 =
N∑
k=1

−Rk,l

(
(Re (Gm (jωk)))2 + (Im (Gm (jωk)))2

)
, l = 1 . . . n.

The optimal parameter vector in (3.11) can now be calculated similar to the
previous method in (3.7) using the inverse of M .
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The application of this algorithm is limited by the type of frequency response
function that can be fitted. Functions that have poles at the origin cannot be used
[18]. However, it is possible to adjust the specified transfer function if it does not
meet the requirements. For this purpose it has to be multiplied by (jω)n, where
n must be large enough to reduce the absolute magnitude of the function at zero
frequency to a finite value [18].

3.2.3 Vinagre’s Weights

The problem of the proposed algorithms is that low-frequency data have less influ-
ence on the fit than high-frequency data [34]. This is caused by the weighted error
ELevy(ωk) = ε(ωk)A((jωk)q), because the higher ωk is, the higher A((jωk)q) becomes
and the more influence the specific frequency has on the cost function. This also
applies for the first method with the additional term Um(jωk). Therefore, the re-
sulting transfer functions are more accurate for higher frequencies. To counteract
this, various approaches have been developed to introduce a weighting wk for the
cost function

Jw(ωk) = |ELevy(ωk)|2wk. (3.12)

A first approach is due to Vinagre [34]. He defined the additional weights as
follows:

wk = ϕk
ω2
k

, (3.13)

with

ϕk =



ω2 − ω1

2 , if k = 1

ωk+1 − ωk−1

2 , if 1 < k < N

ωN − ωN−1

2 , if k = N,

where ωk ∈ Ω = {ω1, . . . , ωN}. These weights are multiplied by each corresponding
summand in the definitions of M11, M12, M21, M22, N1 and N2. In short, this is
an attempt to reduce the influence of the higher frequencies to an appropriate level
by dividing in general by the frequencies. That means, using Viangre’s weights the
cost function

Jw(ωk) = |ε(ωk)A((jωk)q)|2
ϕk
ω2
k

(3.14)

is minimized.
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This improvement can also be used to enhance the first proposed method. There-
fore, the individual weights are combined in vector w = [w1, . . . , wN ]> to weight
S(jω) and Ym(jω) element wise:

Ym(jω)⊗ w = (S(jω)⊗ w) p+ E(ω),

where ⊗ denotes the Kronecker product. This means the cost function of method 1
changes to

J(ωk) = |Ym(jωk)− S(jωk)p|2
ϕk
ω2
k

.

3.2.4 Iterative Method of Sanathanan and Koerner

Another solution for the problem of the different influence of the frequencies was
introduced by Sanathanan and Koerner [29]. The previous weights are now replaced
by an iterative procedure. This means that the cost function is

Jw(ωk) = |ε(ωk)A((jωk)q)|2
1

|AL−1 ((ωk)q)|2
,

where L is the iteration number and AL−1 is the denominator found in the previous
iteration [34]. This choice of weights is intended to completely eliminate the influence
of A((jωk)q) on the error ε(ωk), which can be seen when the weight function is
inserted in the error definition [29], hence

Ew(ω) = ELevy,L

AL−1((jω)q) = AL((jω)q)ε(ω)
AL−1((jω)q) = AL((jω)q)Gm(jω)

AL−1((jω)q) − BL((jω)q)
AL−1((jω)q) .

In the first iteration, A0 is set equal to 1. The influence of the weighting becomes
smaller, because the subsequent iterations converge rapidly and Ew(ω) tends to be
equal to ε(ω) [29].
The resulting coefficients ai, i ∈ {1, . . . , n}, in each iteration are used to calculate

the weighting for the next iteration. In this work, the number of iterations is set
to 10 because too many iterations may cause numerical errors which can spoil the
result. In general, this number depends upon the desired accuracy in the values of
the coefficients and the nature of the transfer function [29].

3.2.5 Iterative Method of Lawrence and Rogers

The last improvement of Levy’s algorithm, listed in [34], is an iterative method that
avoids solving a set of linear equations compared to the previous methods. This
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3 Fractional-Order System Identification in the Frequency Domain

algorithm was introduced by Lawrence and Rogers [17]. Using this method, there is
no need to solve the system again when new data from new frequencies appear [34].
Each frequency is included simultaneously.
In view of (3.1) the frequency response can be written as

G̃(jω) = b>v(jω)
1 + a>u(jω) ,

where v =
[
1 (jω)q . . . (jω)mq

]>
and u =

[
(jω)q . . . (jω)nq

]>
. Again, n, m and

q are known. The same cost function as for Levy’s algorithm JLevy is optimized here,
where the error can be written as

ELevy = AGm −B = Gm + a>Gmu− b>v, (3.15)

for simplification without the dependency on ω. By defining the parameter vector
p =

[
b a

]>
and the vector r =

[
v −Gmu

]>
, (3.15) reads

ELevy = Gm − p>r.

This changes the quality functional to

‖ELevy‖2 =
(
Gm − p>r

)
(Gm − p>r)

>

= GmGm −Gmr
>p−Gmp

>r + p>rr>p.

A weighting w for the minimization is also applied. This can be obtained either from
the Vinagre approach or from the iterative method of Sanathanan and Koerner.
Similar to the general Levy method, ‖ELevy‖2w2 is differentiated with respect to

the parameter vector p

∂‖ELevy‖2w2

∂p
=
(
−Gmr −Gmr + rr>p+ rr>p

)
w2

and is set equal to zero, thus

w2
(
rr> + rr>

)
p = w2

(
Gmr +Gmr

)
.

The extension to all measured frequencies is then

N∑
k=1

w2
k

(
rkrk

> + rkr
>
k

)
p =

N∑
k=1

w2
k

(
Gm(jωk)rk +Gm(jωk)rk

)
. (3.16)
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With this equation a new matrix can be introduced:

H−1
N =

N∑
k=1

w2
k

(
rkrk

> + rkr
>
k

)
. (3.17)

From this also follows

H−1
N pN =

N∑
k=1

w2
k

(
Gm(jωk)rk +Gm(jωk)rk

)
, (3.18)

where pN is the parameter vector obtained using N frequencies.
Equation (3.16) can be poorly conditioned despite scaling, especially if a wide

frequency range is required to characterize the system [17]. Furthermore, adding
data points leads to a complete reformulation, and it is very difficult to use the
matching process online [17].
The essential algorithm for the parameters after N frequency data points, stated

in [17], consists of

ZN = HN−1

I − Re (rN) Re
(
r>N
)
HN−1

1
2w2

N

+ Re
(
r>N
)
HN−1 Re (rN)

 , (3.19)

HN = ZN

I − Im (rN) Im
(
r>N
)
ZN

1
2w2

N

+ Im
(
r>N
)
ZN Im (rN)

 , (3.20)

pN = pN−1 +HNw
2
N

(
rN
(
Gm(jωN)− r>NpN−1

)
+ rN

(
Gm(jωN)− r>NpN−1

))
,

(3.21)

where ZN and HN ∈ R(n+m+1)×(n+m+1). For a detailed derivation [17] or [34] can be
consulted.
Some initial values for H and p have to be selected beforehand. One possibility

to calculate them is the application of (3.17) and (3.18) with a few frequencies [34].
The remaining data can then be used for the algorithm.
Another possible initial estimate of the parameterH0 is

(1
ε

)
I where ε is a number

as small as computationally feasible [17]. The parameter vector can be chosen to be
zero at the beginning.
With these initial values, (3.19) to (3.21) can now be calculated in order to get

the optimal parameter vector p. If sufficient data points are available, an acceptable
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3 Fractional-Order System Identification in the Frequency Domain

model can be obtained with a single pass through the data [17]. However, an im-
proved estimate can be achieved by using the obtained parameter vector as a new
initial guess [17]. The weights can also be adjusted accordingly.

3.3 Optimization
Another possibility for the parameter identification is to use an optimization instead
of the just introduced algorithms. This has the advantage that not only a limited
number of different q can be examined, for each of which the transfer function has to
be determined. This means that the accuracy of the best fitting q can be increased.
Furthermore, the stability of the transfer function is not guaranteed by the previous
algorithms and must therefore be additionally checked afterwards. When using an
optimization, it is not necessary to use weights to keep a constant influence of the
noise, since a transformation into a linear parameter form is not required.
A disadvantage of the optimization, however, is that only a local minimum and no

global minimum could be found. This is illustrated by an example in Section 3.4. A
far more important drawback is that the optimization is computationally expensive
compared to the matrix multiplications when using the algorithms from Section 3.2.

Problem 5 (Optimization Problem). The optimization problem is defined as

min
x

f(x)

subject to lb ≤ x ≤ ub,

c(x) ≤ 0,

where f(x) =
∥∥∥Gm(ω)− G̃(ω, x)

∥∥∥2
, x = [a1, . . . , an, b0, . . . , bm, q]> ∈ Rn+m+2,

lb = [l1, . . . , ln, 0]> and ub = [u0, . . . , um, 1]>, li, uj ∈ R. The nonlinear inequalities
c(x) are used to ensure stability of the modeled transfer function G̃ by the application
of Theorem 3:

c(x) = q
π

2 − | arg(λi)|+ ε, ε > 0.

In the following, the lower and upper bounds are chosen as lb = [−100, . . . ,−100, 0]>

and ub = [100, . . . , 100, 1]> to reduce the search space of the optimization and be-
cause the coefficients obtained with the algorithms from Section 3.2 for the polymer
samples are in this range.
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3.4 Simulation Studies
In this section, the robustness of the identification approaches against unknown
structural parameters such as the commensurate order or the general system order
is validated using simulation data.

3.4.1 Comparison of the Proposed Algorithms for the
Identification of the Parameter Vector

The algorithms presented in Section 3.2 are now verified. The following parameters
are specified for this purpose: For 25 frequencies ωk ranging from ω1 = 0.6 rad

s

to ω25 = 300 rad
s the inputs Uk = 1 according to the frequency with index k and

the transfer function pseudo polynomials Aref(sq) and Bref(sq) are generated. A
Gaussian distributed, zero mean noise is added to the output Y (jωk), so

Y (jωk) = Bref((jωk)q)
Aref((jωk)q)

Uk + Ξ(jωk), (3.22)

where Ξ(jωk) is the Fourier transform of the noise vector ξ that consists of indepen-
dent entries drawn from the standard normal distribution N (0, σ).
The root-mean-square error (RMSE) is calculated to determine the accuracy of

the modeled transfer functions,

RMSE = 1
N

√√√√√ N∑
k=1

∣∣∣Gref(jωk)− G̃(jωk)
∣∣∣2, (3.23)

where Gref(jωk) are the complex reference transfer function data.
For low signal to noise ratios, all algorithms provide the correct transfer function,

i.e. the RMSE is in the range of 10−17, which corresponds to a numerical error.
The error values for the parameter identification using the different methods under
the influence of noise as in (3.22) are now compared using a simple example. The
specified transfer function is:

Gspec = 1
1 + s0.5 . (3.24)

A noise model Gnoise(jω) is generated using this transfer function and (3.22) with
σ = 0.001. Then, each of the algorithms that are summarized and further described
in Table 3.1 are used to calculate the coefficients of the FOTF using Gnoise(jω) as
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3 Fractional-Order System Identification in the Frequency Domain

artificial measurement data. Additional, q, n and m have to be specified. This
calculation is repeated 10000 times with different noise vectors.

Table 3.1: Summarized methods.
Method

1 Output error method with Vinagre’s weights
2 Levy’s method with Vinagre’s weights
3 Levy’s method with iterative method of Sanathanan and Koerner

4 Levy’s method with iterative method of Lawrence and Rogers
and Vinagre’s weights

5 Levy’s method with iterative method of Lawrence and Rogers
and iterative method of Sanathanan and Koerner

Here the results for the correct orders are given as an example. Further tables
can be found in Appendix A.1. The averaged coefficients of the pseudo polynomials,
a = [1, a1, . . . , an] and b = [b0, . . . , bm], as well as their variances are shown in
Table 3.2.

Table 3.2: Simulation studies: algorithms (averaged parameter vector over 10000
runs and variance of the results with σ = 0.001, q = 0.5, n = 1 and
m = 0).

Method Averaged coefficients Variance of the coefficients
×10−4

1 a =
[
1 0.9990

]
, b =

[
0.9996

]
σ2
a =

[
0 3.7071

]
, σ2

b =
[
1.2010

]
2 a =

[
1 0.9982

]
, b =

[
0.9990

]
σ2
a =

[
0 1.3618

]
, σ2

b =
[
0.4828

]
3 a =

[
1 0.9979

]
, b =

[
0.9988

]
σ2
a =

[
0 1.3907

]
, σ2

b =
[
0.4570

]
4 a =

[
1 1.0000

]
, b =

[
1.0000

]
σ2
a =

[
0 1.2513

]
, σ2

b =
[
0.0893

]
5 a =

[
1 0.9974

]
, b =

[
0.9987

]
σ2
a =

[
0 0.4281

]
, σ2

b =
[
0.3563

]

Table 3.3 shows the averaged RMSEs and variances for Gspec and Gnoise as refer-
ence model. To validate the performance of the algorithms, the RMSE with respect
to Gspec is of particular interest, as it shows how well the known model has been
fitted. The second RMSE has also been added for completeness to see if the noise
causes serious deviations.
It is recognizable that the accuracy of the results decreases slightly as the given

orders become less precise. For the given example, method 3 returns the smallest
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Table 3.3: Simulation studies: algorithms (averaged RMSE over 10000 runs and
variance of the RMSE for Gref and Gnoise with σ = 0.001, q = 0.5, n = 1
and m = 0).

Method
Mean RMSE
with Gspec
×10−4

Variance RMSE
with Gspec
×10−8

Mean RMSE
with Gnoise
×10−4

Variance RMSE
with Gnoise
×10−8

1 3.7326 3.9322 10.2942 2.5483
2 2.3283 1.4941 9.7477 1.9882
3 2.1990 1.3706 9.6404 1.9425
4 5.0580 14.2000 11.2319 5.6183
5 3.8884 7.0998 10.4396 3.0687

RMSE for both cases, but is also the slowest algorithm. The fact that method 3
gives the best results is often seen in other specifications or examples, e.g. in the
tables in the appendix. Method 4 has the worst RMSEs, although the parameter
vector is very close to the given one.
At a higher noise level, this rather clear ranking of the algorithms is no longer

so obvious. This means that for real measurements where the noise can be very
different any algorithm might be useful. However, it can be assumed that method
3 will find a reliable solution in most cases.
In addition, the dependency of the RMSE on the noise level σ and the commen-

surate order q is investigated. The noise level is varied from σ = 0.0001 on to
σ = 0.001 in steps of 0.0001 and for q values from 0 to 1 are given in steps of 0.01.
Method 5 is used exemplary in this case. The results are shown in Figure 3.2.
The influence of the noise level is as expected. The smoothness of the resulting

error decreases with increasing noise. However, in the direction of the variable
commensurate order q the function has a very irregular curve. In the range between
q = 0.2 and q = 0.3 there is an enormous increase of the RMSE. A similar behavior
is observed using the other methods. This could be particularly problematic in the
case of an optimization. The error in q is a non-convex function and hence it is
not guaranteed that an algorithm like steepest descent is able to find the global
minimum. The minimum for small noise is clearly q = 0.5, which is the correct q.
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Figure 3.2: RMSE with Gnoise for different noise levels and commensurate orders q
calculated with method 5.

3.4.2 Optimization

Following the just explained problem of the strong variance of the RMSE in depen-
dence of q, the optimization presented in Section 3.3 will now be examined.
The same conditions are used as in the previous section. That means Gspec is

defined as in (3.24). The same orders n and m are also given. The commensurate
order q is optimized this time. Also σ = 0.001 is selected again for the genera-
tion of the noise data. However, the calculation is only performed 1000 times for
different noise vectors, because the optimization is much slower. The influence of
different initial values on the result of the optimization is examined. Therefore two
stable initial estimates of the parameter vector x>0 =

[
0.5 0.5 . . . 0.5 0.1

]
and

x>0 =
[
0.5 0.5 . . . 0.5 1

]
as well as two unstable initial estimates of the param-

eter vector x>0 =
[
−0.5 0.5 . . . 0.5 0.1

]
and x>0 =

[
−0.5 0.5 . . . 0.5 1

]
are

examined where x0 ∈ R3, x0 ∈ R4 and x0 ∈ R6 (for the three different combinations
of the orders n and m discussed in Section 3.4.1).
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Table 3.4 shows the results for n = 1 and m = 0. Here the optimization gives the
same result for all specified initial vectors, so only one column is listed. The other
results are given in Table 3.5 and in Tables A.5 and A.6 in the appendix.

Table 3.4: Simulation studies: optimization (1000 runs, σ = 0.001,
n = 1 and m = 0).

a
[
1 0.9997

]
Var(a)

[
0 1.7678

]
× 10−4

b
[
0.9998

]
Var(b)

[
0.7195

]
× 10−4

q 0.5001
Var(q) 7.1897× 10−6

Mean RMSE
with Gspec

2.3346× 10−4

Variance RMSE
with Gspec

1.3059× 10−8

Mean RMSE
with Gnoise

9.5296× 10−4

Variance RMSE
with Gnoise

1.8946× 10−8

For the correct orders, the optimization still delivers the correct coefficients and
the correct q with an error that is within the range of the RMSEs of the algorithms.
For higher orders, however, it quickly becomes clear that the nonlinear optimization
runs into local minima due to the non-convex and nonlinear structure of the opti-
mization problem and the specification of different initial values. This results in the
necessity of a global optimization in order to find the parameter set with the best fit.
However, global optimization procedures are generally much more computationally
time-consuming, which makes it difficult to use this class of estimators for online
parameter identification.
The results of the global optimization using MultiStart in MATLAB which

attempts to find multiple local solutions by starting from various initial points
can be found in Table A.7. The given initial values are x>0 =

[
−0.5 0.5 1

]
,

x>0 =
[
−0.5 0.5 0.5 1

]
and x>0 =

[
−0.5 0.5 0.5 0.5 0.5 1

]
which are the

vectors that lead to the worst results of the nonlinear optimization discussed earlier.
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3 Fractional-Order System Identification in the Frequency Domain

Here, only 100 different runs (with variable noise vector) could be performed, due
to the already mentioned slow computation speed of the global optimization.
The results are significantly better compared to the previous optimization. In the

case n = 2 and m = 2, the identified model parameters are not well approximated
compared to the given model (the variances of some values are also very high), but
the RMSE is in a similar range. This could not be claimed before. Moreover, the
commensurate order is also well identified. In terms of the noisy data Gnoise, the
global optimization fits better than the algorithms from Section 3.2, but for the
correct model Gspec, the RMSEs obtained by methods 2 and 3 are smaller.
Thus, global optimization can also be used to estimate the model parameters with

real measurement data.
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4 Experiment

The last chapter is dedicated to practical experiments. First, the two experimental
setups are described, and then the measurement procedure is discussed.
This is followed by the evaluation of the measured data and the application of

the algorithms and methods for fitting fractional-order transfer functions explained
in Chapter 3. The results are discussed and validated.

4.1 Experimental Setup
The investigated hydraulic system is almost completely described in [26]. It consists
of two single rod, double-acting cylinders connected with a linear force sensor that
is measuring the respective load from the perspective of each cylinder. The actu-
ator of this system is a servo valve, the dashpots can be moved by controlling the
valve opening. According to [26] the valve has a ten percent overlap in the spool-
orifice area, i.e. there is a dead zone. The complete experimental setup is shown in
Figure 4.1.
The first part of the experiments deals with the dashpot on the right side. It is

disconnected from the force sensor and the left dashpot. This means that it can
move freely within its maximum extension length.

Figure 4.1: Experimental hydraulic setup (laboratory view).
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Figure 4.2: New parts of experimental hydraulic setup (laboratory view).

The hydraulic system was adjusted for the implementation of tensile tests. The
modified section of the setup is shown in more detail in Figure 4.2. There are mod-
ifications that are used as a mount for polymer samples. One side of the mounting
bracket is connected to the force sensor and the other side to the cylinder on the
right. During the experiments, the left cylinder is held in the retracted position and
only the right cylinder can move. This can then be driven manually to the desired
position in order to fix the sample. The position measurement by the linear poten-
tiometer has been extended by a laser sensor, which measures the distance from the
cylinder to the bracket on the force sensor.
Furthermore, the samples have been tested on a servo-hydraulic testing machine

for dynamic loads to validate the measurement results. The material testing ma-
chine HB100 was produced by ZwickRoell GmbH & Co. KG [38]. The schematic
structure of this machine is depicted in Figure 4.3. The test cylinder, which is in-
stalled in the upper load frame, can apply forces of up to 25 kN [38]. Using the
software Workshop 96, the position can be controlled sinusoidally [28]. The mea-
surement data acquisition required for dynamic testing is also implemented via the
software. A maximum of 10000 points can be recorded per measurement variable
and measurement process [28].

4.2 Measurement Procedure
The aim of the investigations is to determine the transfer behavior of the dashpot
and various polymer samples. According to the principle described in Section 3.1
they are excited with sinusoidal signals of different frequencies. In the following, the
measurement procedures of the experiments are explained.
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Figure 4.3: Servo-hydraulic testing machine (schematic view) [38].

Polymer Samples

In the force-controlled (FC) case, the right cylinder is moved to the initial position,
where the sample is fixed with the mounting brackets. The sample is prestressed to
−200 N in order to avoid compressive stress which might lead to buckling. The force
is then controlled sinusoidally. The control principle is presented in [25]. Finally, the
cylinder returns to the initial level of 0 N. Following a measurement, the sample must
be dissolved directly, which leads to variable initial conditions of each measurement.
However, this process is necessary to protect the samples from excessive loads.
The input-output plot is shown in Figure 4.4 for a single frequency. A hysteresis

and creep effect is clearly visible. Therefore, the fractional-order modeling approach
seems reasonable. The force-controlled measurement, however, leads to drifting off
the sample. It is not returned to its initial position and remains stretched. This
results in the drift, which can be observed in the position over time.
The measurements were carried out on three samples, two made of polypropylene

(PP) and one made of polybutylene terephthalate (PBT). The specified sine was
measured for frequencies from 0.05 rad

s to 10 rad
s in a logarithmic scale, alternately

ascending and descending. Eight measurement series were recorded per sample.
For the validation with the position-controlled (PC) setup, only one measurement

was recorded per sample and frequency. Less frequencies were considered in the
range of 0.01 Hz to 30 Hz. The stress-strain diagrams of some measurements are
depicted in Figure 4.5. Due to the position-controlled approach the loops are closed,
and a frequency dependent input-output lagging can be observed.
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Figure 4.4: Stress-strain diagram (force-controlled setup).
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Figure 4.5: Stress-strain diagram (position-controlled setup).
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Dashpot

In addition to the polymer samples, the transfer behavior of the dashpot is also
investigated in the first experimental setup. Here, the right cylinder is disconnected
from the left cylinder and is then freely movable within its maximum extension
length. Two different modes are examined. First, the dashpot is operated in open-
loop without a controller, i.e. the valve is directly excited sinusoidally. It is then
moved in closed-loop mode with the position control described in [25].
In the open-loop case, frequencies from 0.03 rad

s to 10 rad
s are considered. The

position of the cylinder arm is subject to a linear trend, as the arm extends faster
than it retracts. The amplitude of the sinusoidal oscillation therefore has to be very
low, otherwise the maximum extension length will be reached for small frequencies.
It is set to a 10% valve opening. However, this leads to the fact that for high
frequencies there is hardly any movement of the cylinder recognizable.
For the closed-loop case, these problems do not matter. Here the cylinder is

first moved to half its maximum extension length and then oscillates by 2 cm with
frequencies from 0.05 rad

s to 10 rad
s .

In both cases, ten measurement series were recorded per frequency.
Additional to these measurements, a Simulink model introduced by Pasolli and

Ruderman [25] is used to compare the results.

4.3 Results
This section includes the preprocessing of the measured data as well as the results
of the tests with the polymer samples and the dashpot.

4.3.1 Preprocessing

The collected raw data must be prepared before they can be used to determine the
transfer behavior. This preprocessing is explained in this section.
For the dashpot experiments, the following information is stored: the position

of the right cylinder xd and the two pressures at both ends inside the cylinder p3

and p4. According to Section 2.5, the equilibrium of forces inside the cylinder can
be described with (2.18). In this case, the dashpot is disconnected from the left
cylinder. Therefore, no external forces have an influence. That means, the load
force Fl is set to zero. Friction is also neglected (Ff ≈ 0). This simplifies the
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equation for the resulting force in the dashpot to

Fd = A4p4 − A3p3, (4.1)

where A4 = 0.0013 m2 and A3 = 0.00076 m2 are the cross-sectional areas of the
respective ends of the cylinder [26]. The mean values are calculated from the ten
measurement series. The non-sinusoidal parts of the averaged signals have to be cut
off and integer periods have to be selected because otherwise the results would be
affected. Finally, linear trends and offsets are eliminated, too.
For the polymer sample tests, the position of the dashpot xd (measured with two

different sensors) and the force F measured with the force sensor are stored. First,
all measured data are averaged over the eight measurement series. The ramps at
the beginning and at the end, which are used for prestressing the samples, must be
cut off. Again, integer periods must be selected and the offsets have to be removed.
Since, as written in Section 2.4, the viscoelastic behavior of the samples is of interest,
the force and position signals were converted into stress and strain, i.e.

σ(t) = F (t)
A0

,

ε(t) = ∆l(t)
l0

,

where ∆l(t) = xd(t)− l0. Based on the dimensions of the samples, A0 = 40 mm2 and
l0 = 80 mm are fixed. Only the middle uniform part of the sample was selected to
measure the size. The outer wider areas have been neglected. In addition, repeated
measurements may result in permanent changes in length and diameter. As known
from (2.7), Young’s modulus E can be calculated as follows:

E = σ

ε
= l0F

A0∆l .

The unit of E is then N
mm2 = MPa. The calculated E from the measurements with

the PP samples are in the range of 0.5 to 1.2 GPa. This is slightly below the values
from 0.7 to 1.5 GPa given in [15]. This deviation can have various causes, starting
with the difficult calculation of the values with the very noisy measurement data.
In contrast, the calculated values for the PBT samples lie in a wider range from 2
to 3.5 GPa compared to the values of 2.5 to 2.8 GPa given in [3]. The causes will be
similar.
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elastic viscoelastic viscous

temperatureTg Tm Td

Figure 4.6: Behavior of semicrystalline thermoplastics at rising temperature [36].

4.3.2 Polymer Samples

Polymers show a viscoelastic behavior in a limited temperature range. This can be
seen in Figure 4.6, where Tg is the glass-transition temperature, Tm is the melting
temperature and Td is the decomposition temperature. In the vicinity of Tg, which
is specific to each polymer, the behavior changes from hard and relatively brittle to
viscous or rubbery [36]. This can also be explained by the spring-damper analogy
introduced in Section 2.4. For temperatures below the glass-transition temperature
the dampers can be regarded as “frozen” [36]. This makes the material largely
elastic. The dampers only work above Tg and the higher the temperature, the easier
the dampers “run” [36].
The glass-transition temperature Tg of PP is 10 ◦C and of PBT 60 ◦C [36]. This

means that at a normal room temperature of 20 ◦C the PP samples should show a
viscoelastic behavior during the experiments and the PBT samples should still be
in the elastic range. It was at least evident that the PBT samples were significantly
harder and did not expand as much as the others under the same force. Whether
they have returned to their original length after a tensile test cannot be determined
exactly.
Polymers can show four possible behaviors in tensile tests which are depicted

simplistic in Figure 4.7 [36]:
1. Brittle: After elastic deformation, fracture occurs.
2. Brittle, hornlike: After exceeding a maximum tension, breakage occurs with-

out significant necking (the process by which a ductile material deforms under
tension forming a thin neck).

3. Viscoelastic: After exceeding the yield stress (first maximum) the sample con-
stricts spontaneously by a certain amount. In the further course of time, this
necking area is extended without a further reduction in cross-section. This
extension can reach a very large length. The total elongation may exceed
500%.

4. Rubber elastic: The deformation takes place largely without Hooke’s area.
Provided that the material has not been stressed to breakage, the deformation
largely returns after relief.
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Figure 4.7: Behavior of polymers in tensile tests (1 and 2 brittle, 3 viscoelastic,
4 rubber elastic) [36].

Figure 4.8: Result of tensile test with PP samples under high force (above sample
for comparison).

A material can show the behaviors 1 to 3 depending on the load temperature [36].
This is also visible from the PP samples. Two of the white samples were initially
stressed with a high force. The result is shown in Figure 4.8. The samples appear
to exhibit behavior 3, as they were stretched for a long time before they broke, or
the dashpot reached its minimum insertion length.
Following this preliminary examination of the samples, the results of the actual

investigations are now presented. Figure 4.9 shows the resulting Bode diagrams
for the three different samples obtained by applying the procedure described in
Section 3.1. For the measurement results recorded with the force-controlled setup,
the largest deviations from the mean value are also displayed with error bars. With
the other experimental setup, less data is recorded, but over a larger frequency range.
The error cannot be specified here because the measurements were not repeated.
They were subject to significantly lower noise compared to the other data. However,
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Figure 4.9: Bode diagram with the amplitude and phase responses of the three dif-
ferent samples for the force-controlled (FC) setup with error bars and
for the position-controlled (PC) setup.
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the accuracy of the position-controlled experiments was 1 · 10−5 m for the position
and 1 N for the force. These data points are near or between the error ranges of
the force-controlled measurements. The white sample shows the greatest deviation,
as the error bars are much smaller here. This indicates that the position-controlled
test setup also gives similar curves, at least for the lower frequencies. The force-
controlled test setup was poorly suited for higher frequencies, which is particularly
noticeable in the phase response. The signals are very noisy, therefore the evaluation
of the FFT can be inaccurate at this point. At least the data obtained with the two
different methods have the same scale and a slight decrease in their amplitude. In
a first approximation, this can be considered constant, which indicates the behavior
of a spring. The phase response could be caused by a delay. In general, the force-
controlled data are significantly worse despite the higher number of measurements.
In the following, only the results of one sample will be presented, as the results of

the other samples do not differ significantly. The orange PP sample is chosen, since
validation data for the time domain have also been recorded for this.
In Section 2.4.2 some well-known fractional-order models for viscoelastic behavior

were presented. Some of these model structures will now be used as a basis for
fitting the fractional-order transfer function. Starting with a very simple model, the
fractional Voigt model shall be examined, because the generalized Maxwell model
does not fit optimally to the required structure of the transfer function (3.1). One
parameter more must be found for the second model, the generalized Zener model.
And to investigate the influence of a higher order, the maximum orders nmax and
mmax for the third approach Gmax3 are set to 3. Maximum order means in this case
that the orders are not fixed, but that there is a loop over the orders n = 1, . . . , nmax

and m = 0, . . . , n and finally the stable model with the lowest RMSE is selected.
This means that the structures of the transfer functions to be fit are as follows:

GVoigt = b0

a1sq + 1 ,

GZener = b1s
q + b0

a1sq + 1 ,

Gmax3 = bmis
miq + . . .+ b0

anis
niq + . . .+ 1 , ni = 1, . . . , 3, mi = 0, . . . , ni.

In order to determine the coefficients of these models and the commensurate order
q such that they fit the measured data optimally, the methods tested in Section 3.4.1
and the global optimization discussed in Section 3.4.2 with 1000 different initial
points are used. When applying methods 1 to 5 the commensurate order q is varied
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in 0.01-steps from 0 to 1 to find the parameter vector that gives the smallest RMSE.
In addition, using the global optimization with q = 1 fixed models of integer order
with the same structure are fitted. In case of the position-controlled setup, not all
measured data points are fitted. As no validation data are available, two data points
are removed to be able to use them for a later validation.
Figures 4.10 and 4.11 show exemplary the results for the position-controlled setup

with GVoigt and Gmax3, respectively.

Frequency (rad/s)
10−2 10−1 100 101 102 103

M
ag
n
it
u
d
e
(d
B
)

-70

-68

-66

-64

-62

-60

-58

-56

Frequency (rad/s)
10−2 10−1 100 101 102 103

P
h
as
e
(d
eg
)

-70

-60

-50

-40

-30

-20

-10

0

Measured Data
Method 1
Method 2
Method 3
Method 4
Method 5
Optimization
Integer-Order Model

Figure 4.10: Best fit of the transfer behavior of PP for GVoigt (orange sample,
position-controlled setup).
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Further graphics for the orange sample can be found in the Appendix A.3. No
stable transfer function is found for the Zener approach using method 3, therefore
this result is not shown.
The graphs show that a significantly better fit is achieved with a higher model

order. Furthermore, it can be assumed that some better fitting results are thrown
away due to the subsequent check for stability when using the algorithms. Therefore,
it is obvious that the approximations of the global optimization are closest to the
measured data. This is also illustrated by the calculated RMSEs in Table 4.1. Also,
the low parameterized models of integer order do not reach the accuracy of the
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Figure 4.11: Best fit of the transfer behavior of PP for Gmax3 (orange sample,
position-controlled setup).
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optimized models, which was to be expected, because they have one free parameter
less. For Gmax3 the integer-order models do fit better than the optimized models.
This may be because they cover a smaller search space with the same number of
different initial values, which increases the possibility of determining a favourable
initial value. By choosing the solution of the integer-order optimization as starting
value for a local optimization of the fractional-order models with the SQP method,
an RMSE is obtained which is slightly better than that received with the integer-
order optimization. The RMSEs of the PC setup models are usually higher because
there are significantly fewer measurement points.

Table 4.1: Identification results orange PP samples: RMSE ×10−5.
GVoigt GZener Gmax3

Method FC PC FC PC FC PC
1 1.8121 6.3798 1.2878 5.9041 1.2878 0.7925
2 1.7112 5.1369 1.7696 5.8411 0.9446 0.5851
3 1.8082 3.8015 3.4448 1.1729 0.4032
4 1.8836 6.5335 1.4978 5.8096 1.4793 1.3218
5 1.8843 6.5332 1.4672 8.9906 0.9736 0.6858
Opt 1.5276 3.7678 1.1989 3.2842 0.7048 1.9875
Int 2.1221 4.4910 1.2002 4.1969 0.6186 0.8353

Further interesting information are the coefficients a = [a0, . . . , an] and b =
[b0, . . . , bm] and the commensurate order q of the approximated models. These
are shown exemplary for GVoigt in Table 4.2. The other tables can be found in
Appendix A.2.
For given small orders the obtained commensurate orders are very similar in case

of the force-controlled setup. The RMSEs show that for the position-controlled
setup the global optimization and method 3 clearly provide the best results, since
their orders q are very similar but fundamentally different from the ones provided by
the other algorithms. This shows that despite the specification of the same orders,
the obtained FOTFs can differ enormously.
A similar behavior can be seen in Table A.8 for the Zener approach. Here the

commensurate orders for the FC setup are for the most part relatively close to each
other, while for the PC setup, q varies more. This could be since the significantly
fewer measuring data offer more freedom in the search for the optimal parameters.

- 48 -



4.3 Results

Table 4.2: Identification results orange PP samples for GVoigt: coefficients
and commensurate order.

Method FC PC

1
a

b0

q

[
1 0.4262

]
,

0.0018,
0.1

[
1 7.7929

]
,

0.0091,
0.08

2
a

b0

q

[
1 0.5126

]
,

0.0019,
0.08

[
1 2.7926

]
,

0.0041,
0.07

3
a

b0

q

[
1 5.2621

]
,

0.0077,
0.05

[
1 0.0100

]
,

0.0011,
0.74

4
a

b0

q

[
1 3.5708

]
,

0.0058,
0.05

[
1 9.4960

]
,

0.0108,
0.08

5
a

b0

q

[
1 3.5434

]
,

0.0057,
0.05

[
1 9.4923

]
,

0.0108,
0.08

Opt
a

b0

q

[
1 2.9028

]
,

0.0048,
0.0357

[
1 0.0133

]
,

0.0011,
0.6980

Int
a

b0

[
1 0.0000

]
,

0.0012

[
1 0.0025

]
,

0.0011

A significantly higher variation of the commensurate order is shown for Gmax3 in
Table A.9, where it can be seen that very different parameter combinations lead to
a similar error, indicating overfitting. There is also a big difference between the FC
setup and PC setup fits, although both describe the same plastic. However, since
the plotted transfer behavior also shows differences, this problem can be attributed
to it. It is difficult to make generalized statements in this case. On average the PC
setup models have a higher model order.
These investigations confirm that fractional-order transfer functions represent the

assumed viscoelastic behavior of the orange samples more accurately than integer-
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order transfer functions of the same order. During optimization, however, it is never
quite certain that the global optimum has really been found. This is also not easy
to verify. The methods 1 to 5 would also give better results if the unstable transfer
functions are not subsequently removed. Thus, the potential of these algorithms
cannot be fully exploited. For low model orders, similarities can be found in the
optimized FOTF, but with increasing model order the obtained transfer functions
and their commensurate orders q show little in common. Especially the latter vary
enormously. In this case, it is therefore difficult to make a choice as to which of
the FOTFs represents the behavior best. What can be done, however, is to look
at the curves of the transfer functions in the Bode diagrams outside the measured
range and examine them for their physical usefulness. For example, in Figure 4.11
the amplitudes of the transfer functions obtained using methods 1 and 2 increase at
100 rad

s . This behavior cannot be explained physically, so these two FOTF should
not be considered further.

4.3.3 Model Validation

The transfer function models found in the previous section will now be validated.
It can be expected that the models fit well if the error between the validation data
and the fitted models corresponds approximately to the RMSEs that resulted from
the identification process.
For the FC setup a chirp signal was recorded and for the PC setup two data points

of the transfer behavior were removed before the identification procedure, because
it was not possible to generate a chirp signal in this experimental setup. This data
is now used for the validation. The magnitude and phase calculation described in
Section 3.1 can also be applied to obtain the transfer behavior of the orange PP
sample. This time, however, the FFT is not evaluated at a single frequency, but
at all frequencies contained in the chirp signal. The resulting bode diagram can be
seen in Figure 4.12 in comparison to the behavior already shown.
Again the RMSE is calculated as in (3.23), where Gref(ω) = Ychirp/Uchirp,

ω ∈ [0.4641 rad
s , 5.9619 rad

s ], in case of the FC setup and Gref(ω) = Y2of9/U2of9,
ω ∈ {0.5 Hz, 10 Hz} in case of the PC setup. The results can be found in Table 4.3.
In general, the RMSEs have a similar magnitude as the RMSEs in Table 4.1.

Most error values for the FC setup have become smaller, but for the PC setup
all but one value have become larger. This is also visible in Table A.10 where
the ratios of the RMSEs of the validation and the RMSEs of the fitting data are
shown. Additionally, there is a big change in the methods that show the best and
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Figure 4.12: Bode diagram with the amplitude and phase responses of the orange
PP sample for the FC setup obtained by using averaged sine waves of
different frequencies and a chirp signal.
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Table 4.3: Validation results orange PP samples: RMSE ×10−5 over validation
data set.

GVoigt GZener Gmax3

Method FC PC FC PC FC PC
1 1.4072 10.9880 1.1541 6.5167 1.1541 0.7693
2 1.3750 6.0318 1.2626 7.9880 1.0136 1.1674
3 1.1335 5.0402 4.2792 1.0877 0.9889
4 1.3196 11.4415 1.2857 7.0491 1.3829 1.8870
5 1.3214 11.4408 0.9580 17.8150 0.9690 1.2590
Opt 1.1828 5.0854 1.0652 4.3737 0.9870 3.1514
Int 1.4031 5.8456 1.0540 6.4366 1.0405 1.7367

worst values. The methods that provided the worst RMSEs for the PC setup have
remained the same. Noticeable is that the optimized models no longer have the
smallest RMSEs. It can be seen that good identification results can always be
achieved with the help of Levy’s method in combination with the iterative method
of Sanathanan and Koerner, which was already shown in Section 3.4.1.
For the FC setup the best fractional-order model was not obtained with the largest

model approach Gmax3, but with the Zener model approach and method 5. This
indicates that the model can be overfitted when using the largest model approach
or that the low-dimensional model approaches fit better for the frequency range
covered by the chirp signal. It is at least obvious that more free parameters do not
lead to better fits.
In contrast, the models of higher order of the PC setup only have smaller error

values. This could be because clearly fewer measuring values are available here and
thus the selection of two measuring points represents a very strong deviation.
Finally, the best fractional-order models will be validated in the time domain.

In order to implement such systems, a common method is to apply higher-order
approximations within a certain frequency set Ω = {ω ∈ R |ωl ≤ ω ≤ ωh}. The
Oustaloup filter [31] is given by

sα ≈ Gf(s) = ωαh

N∏
k=−N

s+ ω−k
s+ ω+

k

,
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Figure 4.13: Validation in the time domain: absolute error of strain using GZener
identified with method 5 (FC setup).

where 0 < α < 1 is the order of derivative, N is the order of the filter, and

ω±k = ωl

(
ωh
ωl

) k+N+ 1
2 (1±α)

2N+1
.

In MATLAB, the function oustapp() can be used to apply the Oustaloup filter to
identified fractional-order models [31]. Then the absolute error between the mea-
sured validation data and the modeled time domain data can be calculated with

eabs(k) = εm(k)−Gfσm(k),

where εm contains the discrete measured strain data and σm are the discrete mea-
sured stress data. This error is shown graphically in Figures 4.13 and 4.14 for the
best models for the verification data of the FC and PC setup. The corresponding
strain curves over time can be found in Appendix A.3. Here it can be seen once
again that the data measured with the FC setup are much noisier. The Fourier
transform of this error vector displayed in Figure A.7 shows a single large peak at
0.0349 rad

s . This may be caused by the slow decrease of the error values. Otherwise
the signal seems to be white-noise-like. This shows that the model approximates
the behavior very well and only the noise of the measured data remains.
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Figure 4.14: Validation in the time domain: absolute error of strain using Gmax3
identified with method 1 (PC setup).

In contrast, the curve of the error for the PC setup does not look like pure noise.
There are still systematic errors, which also show up in the Fourier transformation.
So, the models for PC setup seem to fit a little worse, but this is probably also due
to the significantly less measured data.

4.3.4 Dashpot

Using the procedure explained in Section 3.1, a Bode diagram for the measured and
simulated data can be obtained. This is shown in Figure 4.15 for the open-loop and
closed-loop case.
The curves of the two simulated transfer behaviors are very similar. In compar-

ison, the curves of the measured data differ significantly. Reasons for this can be
inaccurate measurement methods, measurement errors, other environmental influ-
ences, or an incorrect Simulink model that does not adequately represent the real
behavior of the test setup.
However, there is a certain similarity between the simulated data and the experi-

mental open-loop data, neglecting the higher frequencies. The strong deviations at
the higher frequencies can be explained by the fact that the system is not designed
for such frequencies, these fast changes of direction are physically hardly realizable.
This leads to a stronger phase shift and higher noise. As mentioned in Section 4.2,
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the amplitude of the input sine in the open-loop case is set to A = 0.1, which cor-
responds to a 10% valve opening. This means that the input signal is completely
within the dead zone of the servo valve. The following section explains why this can
lead to complications in the results.
Let Gd(s) be the transfer function of the right dashpot to be identified. Then the

system can be simply assumed as

Yd(s) = Gd(s)Ud(s),
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Figure 4.15: Bode diagram of open-loop and closed-loop measurements of the trans-
fer behavior of the dashpot.
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where Ud(s) denotes the Laplace transform of the output signal of the nonlinear
dead zone, that is

Ud(s) = L{fdeadzone(uin(t))} (s),

with the valve input uin(t). This is shown in Figure 4.16. The dead zone is approx-
imated very simplified with the following monomial function

fdeadzone(x(t)) = 372x5(t),

where the pre-factor is roughly calculated using values from the graph of the dead
zone, which was determined experimentally in [26]. If the selected sine function
uin(t) = 0.1 sin(ωt) is then inserted, this yields

fdeadzone(uin(t)) = 372(0.1 sin(ωt))5

= 372(0.1)5 sin5(ωt)
= 0.00372 sin5(ωt). (4.2)

Using Euler’s formula ejx = cos(x) + j sin(x) and the binomial theorem, the power
of the sine amounts to

sinn(x) =
(
ejx − e−jx

2j

)n

= 1
(2j)n

n∑
k=0

(
n

k

)
ej(n−k)x(−1)ke−jkx

=



1
2n(−1)n2

n∑
k=0

(
n

k

)
(−1)k cos((n− 2k)x), if n is even,

1
2n(−1)n−1

2

n∑
k=0

(
n

k

)
(−1)k sin((n− 2k)x), if n is odd.

Thus, (4.2) becomes

fdeadzone(uin(t)) = 0.00372
( 1

16 (10 sin(ωt)− 5 sin(3ωt) + sin(5ωt))
)

= 2.325× 10−4 (10 sin(ωt)− 5 sin(3ωt) + sin(5ωt)) .

It can be seen that the input signal ud(t), with which the transfer function Gd(s)
is to be determined, does not consist of a single sine wave anymore. Therefore, as
discussed in Section 3.1, multiple peaks can be detected in the FFT. This is shown
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Figure 4.16: Simplified diagram of the dashpot in open-loop.
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Figure 4.17: Amplitude of the FFT of the averaged measured position signal of the
dashpot in open-loop for ω = 1 rad

s .

in Figure 4.17. Here it is easy to see that the approximation of the dead zone using
the fifth power of x reflects reality well. The frequencies of the sines are clearly ω,
3ω and 5ω with a decreasing amplitude. This means that due to the dead zone, the
amplitude is determined incorrectly, as some non-negligible parts of the amplitude
are assigned to other frequencies.
The dead zone does not have this influence on the closed-loop measurements, since

the control concept in [25] also includes a dead zone compensation. Nevertheless,
this transfer behavior differs most from the others. The strong deviation at the
beginning of the amplitude response in Figure 4.15 may be due to the fact that
the measurement series for these three frequencies were recorded at a slightly later
time than the others. This means that the system requirements may have changed,
e.g. the supply pressure. However, it is difficult to explain why the general shapes of
amplitude and phase differ so fundamentally here. A possible reason could be that
by calculating the force in the dashpot with (4.1) the resulting signal is extremely
noisy and obviously has no sinusoidal shape. This can be seen in Figure A.9 in
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Figure 4.18: Bode diagram of closed-loop measurements with different pressures as
input and the position of the dashpot as output.

the appendix. In comparison, there is also a graph showing the two pressures in
Figure A.8. These look much more sinusoidal. For this reason, the transfer behavior
of the dashpot was determined using the pressures instead of the calculated force.
This means, Figure 4.18 shows the Bode diagram, which is generated when the
pressures are chosen as input and the position as output. In comparison to the
previous curves, fewer significant outliers are now visible.
As described in Section 2.5, hydraulic dashpots can also exhibit viscoelastic be-

havior. Therefore, it is also possible to adapt FOTF to the measurement data. Since
the open-loop data tend to show the expected behavior rather than the closed-loop
data, these are fitted.
A closer look at the curves of the open-loop measurements shows that the dashpot

has the behavior of an integrator with an amplitude drop of −20 dB per decade and
a phase at about −90°, if the higher frequencies, at which the measurements become
less accurate, are left out. Therefore, it does not seem to be reasonable to use the
previously chosen approaches, since there is a fixed a0 = 1 in the denominator
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4.3 Results

polynomial. Assuming that the transfer function rather takes the form G(s) = b0/s,
this specification is very unfavorable. For this reason, it is not advisable to choose
the transfer function stable. This could also be observed in the results obtained
with the previous approaches.
It is therefore decided to identify the inverse transfer function. This means that

Um(jω) and Ym(jω) are swapped and the same model structures as for the polymer
samples in Section 4.3.2 are fitted with

G(sq) = 1
G′ (sq) ,

where G′ = Um/Ym. By defining G′ = B′/A′, b′0 is in the denominator polynomial
of the actually desired transfer function

G(sq) = a′ns
nq + . . .+ a′1s

q + 1
b′ms

mq + . . .+ b′1s
q + b′0

= bms
mq + . . .+ b1s

q + 1
ansnq + . . .+ a1sq + a0

.

So, if this has an unwanted influence, the algorithms could make it very small.
A few other changes to the previous identification techniques still need to be made.

For G′max3 the iterated orders change tomi = 1, . . . , 3 and ni = 0, . . . ,mi. The upper
and lower bounds for the coefficients in the case of the global optimizations have
been extended to -1000000 and 1000000, respectively. This is done for reasons of
comparability, since the application of the algorithms leads to very high values. As
already mentioned, the nonlinear inequality constraint of the optimization, which is
necessary for stability, is also removed.
Figures 4.19 and 4.20 show the results of the identification using the inverted

G′Zener and G′max3 models. The results of GVoigt can be seen in Figure A.10 in the ap-
pendix. Levy’s Method and the iterative method of Sanathanan and Koerner require
that the order n ≥ 1. Therefore, no Voigt model can be fitted with methods 2, 3
and 5. For the models of the higher order a clear overfitting can again be seen, since
the identified curves adapt very strongly to the measurement data. In particular,
the assumed wrong phase drop at higher frequencies has a greater influence.
The RMSEs calculated during the identification process using G′ = U/Y as well

as the those obtained with G = Y/U are listed in Table 4.4. Since the magnitudes
of the RMSEs depend very much on the value range of the transfer function values,
a comparison of these values is not possible. This means, that the inversion of the
transfer function also causes the inversion of the error. This probably also leads to
the fact that the values for Gmax3 are sometimes significantly worse than those of
the low-dimensional models and to the big difference between the best and worst
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4 Experiment
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Figure 4.19: Best fit of the transfer behavior of the dashpot with open-loop data for
GZener.

model for the two different transfer behaviors. For the original transfer behavior,
the Zener models are obviously best.
The coefficients for these models are listed in Table A.12 in the appendix together

with the results of Gmax3. The results for the Voigt model approach can be found in
Appendix A.4, too. The commensurate order identified by most of the algorithms is
q = 1 in case of the Zener model approach which seems to cover the behavior best.
The results do not seem to vary as much as with the polymer samples.
This shows that the approximation of a fractional-order model is not necessary

in this case. This could look different if instead of choosing the force as input and
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4.3 Results

Table 4.4: Identification results dashpot open-loop measurements: RMSE.

Method GVoigt
×10−6

GZener
×10−6

Gmax3
×10−6

G′Voigt
×104

G′Zener
×104

G′max3
×104

1 8.7003 2.1694 0.3560 10.9571 4.6189 3.5560
2 4.8881 2.3458 5.2823 0.8023
3 10.1263 8.6925 4.3612 0.8134
4 9.4096 2.1826 6.0428 10.9543 5.0616 1.8280
5 2.8026 4.8181 4.4400 0.7797
Opt 10.1932 2.5529 9.9957 8.8712 3.9010 0.71268
Int 10.1932 2.5529 16.2399 8.8712 3.9010 0.7210

the position of the cylinder as output, the velocity is chosen as output. However,
it is difficult to make generalized statements, since the measurement data are very
poor and therefore a considerable uncertainty already exists. Additionally, there is
another source of error by inverting the models, because the error is inverted too
and the assumption of the algorithms that the noise is white-noise-like might be
violated. A further problem can be that nonlinear influences exist which cannot be
approximated by linear models.

- 61 -



4 Experiment
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Figure 4.20: Best fit of the transfer behavior of the dashpot with open-loop data for
Gmax3.
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5 Conclusion

In this thesis, different approaches to identify fractional-order transfer functions in
the frequency domain are presented. The aim was to verify these algorithms with
real measurement data of different materials and applications showing viscoelastic
behavior.
First, after a short introduction of the fractional calculus, the best-known integer-

order models for the representation of viscoelastic behavior are introduced. The
transfer to corresponding fractional-order models is also described at this point.
Subsequently, hydraulic dashpots are presented, which can exhibit viscoelastic prop-
erties and are included in the experimental investigations. There are also some theo-
retical considerations about noise, because the measured data are partly very noisy,
and these ideas show an advantage of the investigation in the frequency domain.
A whole chapter is then devoted to the possibilities of identifying the fractional-

order transfer functions. First, some literature-based algorithms are presented and
explained, which are further developments of integer-order algorithms. These algo-
rithms require a priori knowledge of the system structure including the commensu-
rate order. In addition, an optimization of the coefficients and the commensurate
order of the FOTF is introduced and implemented. In subsequent simulation studies,
the functionality of the presented approaches is examined. These show that often
Levy’s algorithm with the iterative method of Sanathanan and Koerner provides
the smallest RMSE. Furthermore, it turns out that the error in q is a non-convex
function and therefore finding a global solution when using a simple optimization
such as the steepest descent strongly depends on the selected initial value. The use
of a global optimization, which tries to find several local solutions by starting from
different initial values, leads to significantly improved results.
The transfer behaviors of polymer samples (PP and PBT) and of a hydraulic

dashpot (closed-loop and open-loop) have been measured. The results are depicted
in Bode diagrams.
Regarding the measurement data of the polymers, it can be stated that it is

essential to use the position-controlled approach in order to increase the repeatability
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5 Conclusion

of the measurements. The test sample is forced back to its original shape, so that
the influence of the load history is reduced. However, considerably less data could be
recorded at this experimental setup, which has a negative effect on the subsequent
model identification and validation. Since the PBT samples should have purely
elastic properties at the temperature at which the investigations were carried out
and the white and orange PP samples do not differ fundamentally in their transfer
behavior, only the results of the orange PP samples are presented in this thesis.
Three different model structures are fitted, the Voigt and Zener as well as a

higher order fractional-order transfer function. The model identification methods
used are the previously introduced algorithms and global optimization as well as
a global optimization to identify models of integer order. The resulting models
must meet the requirement for stability. It is shown that a significantly better fit is
achieved with a higher model order. The investigations also indicate that fractional-
order transfer functions represent the viscoelastic behavior more accurately than
integer-order transfer functions of the same order. It can also be assumed that
the algorithms would show better results if the unstable transfer functions are not
subsequently removed. In addition, it is difficult to verify the functionality of the
global optimization, as it has already been demonstrated that it does not always
deliver the best results. The transfer functions found show that for a low model
order the parameters are very similar. However, the higher the order, the more
variations there are. For similar coefficients of small order models (e.g. Voigt) very
similar commensurate orders q result. However, slight variations can quickly lead to
very large fluctuations in the commensurate order.
When validating with data sets that are not used to fit the models, there is a

change in the best fit away from global optimization to methods 1 to 5. Furthermore,
the higher parametric models for the FC setup are no longer clearly better, but
probably lead to an overfitting of the data. This shows that not only with the
algorithms but also with low-order models the viscoelastic behavior can be well
represented. Nevertheless, additional considerations, such as the high-frequency
behavior, should be mentioned in order to select a suitable model. It would also be
possible to use stochastic measures of model order selection techniques to investigate
the models in more detail. Additional for the validation of the PC setup results,
e.g. cross-correlation studies can be used to minimize the possibility of a poor data
point selection. Furthermore, it is also possible to determine the physical parameters
of the polymer samples in future investigations using the identified transfer functions.
The residuals from the identification can also be subject to further examination to
find out whether there are any remaining systematic errors.
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The evaluation of the dashpot experiments leads to partly very unexpected Bode
diagrams. This may indicate that there are nonlinearities in the system which cannot
be fitted with linear models. In case of the open-loop studies, the dead zone of the
servo valve can lead to complications. This behavior seems to be integrator-like.
Therefore, the structure of the investigated algorithms is not suitable to identify
the transfer function models. To solve this problem, the measured transfer behavior
is inverted, and the inverted fractional-order models are fitted. The Zener models
seem to identify this behavior best, and the resulting models are mostly integer-
order models. This suggests that the dashpot with the selected inputs and outputs
shows no fractional-order transfer behavior. This may well be due to the poor and
very noisy measurements.
It was possible to identify the measured transfer functions of the polymer samples

using low-dimensional fractional-order models. For very similar model structures
with a small number of parameters, the identified models show some similarities,
but the differences increase significantly with growing order. The dashpot studied
for this thesis is more likely to be approximated by integer-order models. In both
cases, however, it has to be admitted that due to the unfavorable measurement
conditions many problems of identification can be put at the expense of the poor
measurement data. For future investigations it would be interesting to see whether
the algorithms also provide similar results with measurement data obtained with a
lower probability of systematic errors.
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A Appendix

A.1 Simulation Studies: Tables

Table A.1: Simulation studies: algorithms (averaged parameter vector over 10000
runs and variance of the results with σ = 0.001, q = 0.5, n = 1 and
m = 1).

Method Averaged coefficients Variance of the coefficients ×10−4

1
a =

[
1 0.9948

]
,

b =
[
0.9984 −0.0013

] σ2
a =

[
0 10.1675

]
,

σ2
b =

[
1.8887 0.2752

]

2
a =

[
1 0.9963

]
,

b =
[
0.9984 −0.0004

] σ2
a =

[
0 2.1930

]
,

σ2
b =

[
0.6472 0.0254

]

3
a =

[
1 0.9989

]
,

b =
[
0.9995 −0.0001

] σ2
a =

[
0 1.2065

]
,

σ2
b =

[
0.4026 0.0146

]

4
a =

[
1 0.9997

]
,

b =
[
0.9999 −0.0001

] σ2
a =

[
0 7.9542

]
,

σ2
b =

[
0.2020 0.6184

]

5
a =

[
1 0.9965

]
,

b =
[
0.9984 −0.0002

] σ2
a =

[
0 0.9622

]
,

σ2
b =

[
0.2523 0.0332

]
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A Appendix

Table A.2: Simulation studies: algorithms (averaged RMSE over 10000 runs and
variance of the RMSE for Gref and Gnoise with σ = 0.001, q = 0.5, n = 1
and m = 1).

Method
Mean RMSE
with Gspec

×10−4

Variance RMSE
with Gspec

×10−8

Mean RMSE
with Gnoise

×10−4

Variance RMSE
with Gnoise

×10−8

1 6.1425 9.2972 11.3107 5.4620

2 2.8526 1.5611 9.7315 2.0643

3 2.2822 1.2675 9.5670 1.9496

4 9.1282 24.5144 13.4264 13.6890

5 4.3684 6.5408 10.4361 3.2819

Table A.3: Simulation studies: algorithms (averaged parameter vector over 10000
runs and variance of the results with σ = 0.001, q = 0.25, n = 2 and
m = 2).

Method Averaged coefficients Variance of the coefficients

1
a =

[
1 0.1069 0.6263

]
,

b =
[
1.1292 −0.3346 0.0723

] σ2
a =

[
0 0.0387 0.0631

]
,

σ2
b =

[
0.0182 0.0403 0.0014

]

2
a =

[
1 0.0442 0.9059

]
,

b =
[
1.0334 −0.0705 0.0122

] σ2
a =

[
0 0.0129 0.0073

]
,

σ2
b =

[
0.0049 0.0043 0.0001

]

3
a =

[
1 0.0606 0.9420

]
,

b =
[
1.0388 −0.0433 0.0065

] σ2
a =

[
0 0.0283 0.0173

]
,

σ2
b =

[
0.0112 0.0103 0.0002

]

4
a =

[
1 0.1330 0.6851

]
,

b =
[
1.1249 −0.2690 0.0564

] σ2
a =

[
0 0.0967 0.2374

]
,

σ2
b =

[
0.0521 0.1605 0.0062

]

5
a =

[
1 0.1457 0.8448

]
,

b =
[
1.0886 −0.1057 0.0153

] σ2
a =

[
0 0.0239 0.0137

]
,

σ2
b =

[
0.0074 0.0069 0.0002

]
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A.1 Simulation Studies: Tables

Table A.4: Simulation studies: algorithms (averaged RMSE over 10000 runs and
variance of the RMSE for Gref and Gnoise with σ = 0.001, q = 0.25, n = 2
and m = 2).

Method
Mean RMSE
with Gspec

×10−3

Variance RMSE
with Gspec

×10−6

Mean RMSE
with Gnoise

×10−3

Variance RMSE
with Gnoise

×10−6

1 3.1417 9.1396 3.3116 8.8555

2 0.4314 0.0204 0.9853 0.0251

3 0.3623 0.0210 0.9569 0.0219

4 4.4785 35.3426 4.6783 34.4486

5 0.6078 0.0550 1.0848 0.0386

-LXIX -



A Appendix

Table A.5: Simulation studies: optimization (1000 runs, σ = 0.001, n = 2 and
m = 2, part 1).

x>0
[
0.5 0.5 0.5 0.5 0.5 0.1

] [
−0.5 0.5 0.5 0.5 0.5 0.1

]
a

[
1 9.7620 8.8087

] [
1 8.3781 7.4182

]
Var(a)

[
0 280.6334 277.0976

] [
0 18.7990 17.0455

]
b

[
1.0991 8.7117 −0.0215

] [
0.9905 7.4089 −0.0022

]
Var(b)

[
0.4013 278.5133 0.0168

] [
0.0577 17.3309 0.0026

]
q 0.4831 0.4995

Var(q) 5.1489× 10−3 1.5945× 10−4

Mean RMSE
with Gspec

×10−4

5.3899 3.0339

Variance RMSE
with Gspec

1.3983× 10−6 1.5727× 10−8

Mean RMSE
with Gnoise

×10−4

11.2805 9.3163

Variance RMSE
with Gnoise

1.1731× 10−6 1.8977× 10−8
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A.1 Simulation Studies: Tables

Table A.6: Simulation studies: optimization (1000 runs, σ = 0.001, n = 2 and
m = 2, part 2).

x>0
[
0.5 0.5 0.5 0.5 0.5 1

] [
−0.5 0.5 0.5 0.5 0.5 1

]
a

[
1 5.1492 12.6855

] [
1 31.3166 30.4820

]
Var(a)

[
0 0.0501 5.6528

]
× 10−4

[
0 3.6875 0.6190

]
b

[
−1.6210 0.5380 5.7133

] [
0.9609 30.4430 −0.0081

]
Var(b)

[
0.1907 1.6068 1.5147

]
× 10−4

[
0.2756 0.0118 0.0153

]
q 1.0978× 10−7 0.4996

Var(q) 9.5824× 10−15 1.4635× 10−4

Mean RMSE
with Gspec

×10−4

452.5970 3.0477

Variance RMSE
with Gspec

4.7178× 10−13 1.5762× 10−8

Mean RMSE
with Gnoise

×10−4

452.6772 9.3115

Variance RMSE
with Gnoise

7.7618× 10−9 1.8988× 10−8
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Table A.7: Simulation studies: global optimization (100 runs, σ = 0.001,
multi start).

O
rd
er
s

n
=

1,
m

=
0

n
=

1,
m

=
1

n
=

2,
m

=
2

a
[ 1

1.
00

09
]

[ 1
1.

00
10
]

[ 1
45
.3

90
3

44
.2

36
4]

b
[ 1.

00
06
]

[ 1.
00

06
−

0.
00

00
]

[ 1.
02

31
44
.2

93
3

0.
00

08
]

Va
r(
a
)

[ 0
1.

36
54
] ×

10
−

4
[ 0

2.
40

27
] ×

10
−

4
[ 0

54
4.

66
53

53
1.

97
98
]

Va
r(
b)

[ 6.
07

78
] ×

10
−

5
[ 9.

45
42

0.
80

66
] ×

10
−

5
[ 0.

58
69

53
3.

08
43

0.
03

77
]

q
0.
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98

0.
49
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0.
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12
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4.
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×
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−

5
3.
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1.

61
59
×

10
−

4
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A.2 Experiments with Polymer Samples: Tables

A.2 Experiments with Polymer Samples: Tables

Table A.8: Identification results orange PP samples for GZener: coefficients
and commensurate order.

Method FC PC

1

a

b

q

[
1 2.2951

]
,[

0.0014 0.0027
]
,

0.73

[
1 60.4044

]
,[

0.0161 0.0499
]
,

0.21

2

a

b

q

[
1 0.6556

]
,[

0.0014 0.0007
]
,

0.74

[
1 1.7355

]
,[

0.0017 0.0012
]
,

0.28

3

a

b

q

[
1 0.0002

]
,[

0.0011 −0.0000
]
,

0.57

4

a

b

q

[
1 3.6306

]
,[

0.0016 0.0043
]
,

0.55

[
1 7.9200

]
,[

0.0034 0.0061
]
,

0.22

5

a

b

q

[
1 2.8421

]
,[

0.0015 0.0032
]
,

0.7

[
1 1.5213

]
,[

0.0015 0.0009
]
,

0.43

Opt

a

b

q

[
1 3.3787

]
,[

0.0014 0.0039
]
,

0.7030

[
1 0.0002

]
,[

0.0012 −0.0000
]
,

0.4203

Int
a

b

[
1 4.4548

]
,[

0.0014 0.0053
]

[
1 0.0044

]
,[

0.0011 0.0000
]
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Table A.9: Identification results orange PP samples for Gmax3: coefficients
and commensurate order.

Method FC PC

1

a

b

q

[
1 2.2951

]
,[

0.0014 0.0027
]
,

0.73

[
1 11.2894 5.2941 0.0000

]
,[

0.0014 0.0124 0.0051 −0.0000
]
,

0.84

2

a

b

q

[
1 0.7367 −0.0635 0.0043

]
,[

0.0014 0.0007
]
,

0.6

[
1 14.0493 −1.2076 0.0891

]
,[

0.0029 0.0133 −0.0012
]
,

0.55

3

a

b

q

[
1 8.2079 0.1379

]
,[

0.0015 0.0097 0.0002
]
,

0.86

[
1 14.0493 −1.2076 0.0891

]
,[

0.0029 0.0133 −0.0012
]
,

0.35

4

a

b

q

[
1 −4.2455 5.1113

]
,[

0.0011 −0.0050 0.0062
]
,

0.22

[
1 10.8617 1.2948 0.0028

]
,[

0.0013 0.0113 0.0012
]
,

1

5

a

b

q

[
1 −0.3138 0.0927

]
,[

0.0017 −0.0012 0.0004
]
,

0.21

[
1 3.0614e7 −1.6290e7 3.1067e6

]
,[

1.1135e4 1.1758e4 −4.1266e3
]
,

0.17

Opt

a

b

q

[
1 5.6708 4.0534 0.0001

]
,[

0.0014 0.0072 0.0045 0.0001
]
,

0.7082

[
1 1.8585 0.9880 0.1527

]
,[

0.0022 −0.0000 0.0024 −0.0002
]
,

0.2874

Int
a

b

[
1 11.1164 5.3111 0.0010

]
,[

0.0014 0.0140 0.0062 0.0001
]

[
1 25.2731 18.8599 0.0402

]
,[

0.0015 0.0289 0.0184 −0.0000
]
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A.2 Experiments with Polymer Samples: Tables

Table A.10: Validation results orange PP samples: relative error of validation
data to fitting data.

GVoigt GZener Gmax3

Method FC PC FC PC FC PC

1 0.7766 1.7223 0.8962 1.1038 0.8962 0.9707

2 0.8035 1.1742 0.7135 1.3675 1.0731 1.9952

3 0.6269 1.3258 1.2422 0.9274 2.4527

4 0.7005 1.7512 0.8584 1.2133 0.9348 1.4277

5 0.7013 1.7512 0.6530 1.9815 0.9953 1.8359

Opt 0.7743 1.3497 0.8885 1.3317 1.4004 1.5855

Int 0.6612 1.3016 0.8782 1.5337 1.6819 2.0791
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A.3 Experiments with Polymer Samples: Figures
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Figure A.1: Best fit of the transfer behavior of PP for GVoigt (orange sample, FC
setup).
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A.3 Experiments with Polymer Samples: Figures
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Figure A.2: Best fit of the transfer behavior of PP for GZener (orange sample, FC
setup).
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Figure A.3: Best fit of the transfer behavior of PP for Gmax3 (orange sample, FC
setup).
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Figure A.4: Best fit of the transfer behavior of PP for GZener (orange sample, PC
setup).
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Figure A.5: Validation in the time domain: measured and modeled chirp signals (FC
setup).
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Figure A.6: Validation in the time domain: measured and modeled sine signals with
frequency of 0.5 Hz (PC setup).
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A.4 Experiments with Dashpot: Tables
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Figure A.7: Validation in the time domain: FFTs of the calculated absolute errors
in Figures 4.13 and 4.14.

A.4 Experiments with Dashpot: Tables

Table A.11: Identification results dashpot open-loop measurements for GVoigt:
coefficients and commensurate order (b = 1).

Method a q

1
[
−5.5552e5 5.7268e5

]
0.01

4
[
−5.1949e5 5.3664e5

]
0.01

Opt
[
−2.2173e5 5.6845e4

]
1

Int
[
−2.2173e5 5.6845e4

]
1

-LXXXI -



A Appendix

Table A.12: Identification results dashpot open-loop measurements for GZener and
Gmax3: coefficients and commensurate order.

Met. GZener Gmax3

1

a

b

q

[
−2.0027e3 1.7763e5

]
,[

1 −0.1883
]
,

0.95

[
−812.7716 1.5646e5 −1.1731e6 −3.9857e5

]
,[

1 −15.1426 1.4236
]
,

0.78

2

a

b

q

[
−1.5992e3 1.4449e5

]
,[

1 −0.1060
]
,

1

[
−7.6264e3 7.0315e4 1.2110e4 −9.9384e3

]
,[

1 −0.4398 0.0763
]
,

0.64

3

a

b

q

[
4.7973e4 1.9677e5

]
,[

1 −0.1500
]
,

1

[
−6.4736e3 3.5904e4 1.8754e4 −1.6375e4

]
,[

1 −0.5133 0.0975
]
,

0.62

4

a

b

q

[
−2.1969e3 1.7343e5

]
,[

1 −0.1541
]
,

0.92

[
−2.1034e5 −8.6551e5 2.0077e7 5.1246e5

]
,[

1 159.9927 −29.2930 3.7717
]
,

0.80

5

a

b

q

[
−1.3577e3 1.8174e5

]
,[

1 −0.1337
]
,

1

[
−1.1587e4 6.5977e4 8.0291e3 −1.1230e4

]
,[

1 −0.5068 0.0995 −0.0023
]
,

0.62

Opt

a

b

q

[
−2.0973e3 2.2762e5

]
,[

1 −0.1908
]
,

1

[
−1.5540e3 8.1747e4 −6.5837e3 −3.0135e3

]
,[

1 −0.1613 0.0193 0.0013
]
,

0.9178

Int
a

b

[
−2.0973e3 2.2762e5

]
,[

1 −0.1908
]

[
2.0116e3 7.8916e4 −7.3047e3 −1.9220e3

]
,[

1 −0.1084 0.0136 0.0010
]
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A.5 Experiments with Dashpot: Figures
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Figure A.8: Stationary behavior of the averaged measured pressures in the dashpot
in closed-loop design for ω = 1 rad
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Figure A.9: Stationary behavior of the force calculated with the averaged measured
pressures in the dashpot in closed-loop design for ω = 1 rad

s .
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Figure A.10: Best fit of the transfer behavior of the dashpot with open-loop data
for GVoigt.
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