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Abstract

This paper investigates distributed consensus tracking problem for uncertain nonlinear systems with event-triggered commu-
nication. The common desired trajectory information and each subsystem’s state will be broadcast to their linked subsystems
only when predefined triggering conditions are satisfied. Compared with the existing related literature, the main features of
the results presented in this paper include four folds. i) A totally distributed adaptive control scheme is developed for multiple
nonlinear systems without Lipschitz condition, while with parametric uncertainties. ii) The derivative of desired trajectory
function is allowed unknown by all subsystems and directed communication condition is considered. iii) The designed event
triggering conditions do not require either continuous monitoring of neighboring subsystems’ states or global graph information
available by all subsystems. iv) The results are successfully extended to the case with uncertain intermittent actuator faults by
modifying both local control laws and adaptive laws. It is shown that for both fault-free and faulty cases, all closed-loop signals
are ensured globally uniformly bounded and the tracking errors of all subsystems states will converge to a compact set. Besides,
the tracking performance in the mean square error sense can be improved by appropriately adjusting design parameters.

Key words: Distributed adaptive control; consensus; event triggered communication; intermittent actuator faults; uncertain
nonlinear systems.

1 Introduction

The fast few years have witnessed a continuously
growing interest in investigating distributed consensus
for multiple dynamic subsystems over a shared network.
Readers may refer to Ren & Cao (2010); Qin, Ma, Shi,
& Wang (2017) for comprehensive review of numerous
representative results reported in this area. However,
most of currently available distributed consensus con-
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trol laws are proposed with continuous communication
among neighboring subsystems. In practice, since data
is usually transmitted in discrete packets through digi-
tal communication network, these control laws are im-
plemented based on time-scheduled periodic sampling
(Seyboth, Dimarogonas, & Johansson, 2013). Specifi-
cally, state information of each subsystem is broadcast
to its linked subsystems periodically according to a con-
stant sampling period and distributed controllers are
updated synchronously. As a choice to effectively relieve
the stress of using limited communication channel band-
width, event-based consensus has received increasing
attention in recent years. The triggering time of subsys-
tem state broadcast is determined by the occurrence of
a state dependent function exceeding certain threshold
and is not necessarily periodic.



In Seyboth et al. (2013), a distributed control strate-
gy for average consensus with event-based broadcasting
is presented, where networks of single integrator agents
with/without communication delays and networks of
double-integrator agents are considered. Continuous
monitoring of the neighbors’ states as in Dimarogonas,
Frazzoli, & Johansson (2012) is successfully avoid-
ed, while the communication graph is assumed to be
undirected. In Zhu, Jiang, & Feng (2014), event-based
consensus for general linear multi-agent systems under
directed communication topology condition is investi-
gated. The selected triggering functions depend on not
only local states, but also the states of its neighbors.
Moreover, it is assumed that each agent knows the over-
all communication topology which is actually global
information. Similar event-based consensus problem is
solved in Xing, Wen, Guo, Liu, & Su (2016) by design-
ing simpler triggering protocols, which are determined
only by local state changing rates.

It is worth noting that all the aforementioned results
on event-based consensus are obtained by assuming the
internal dynamics of each subsystem is exactly known.
The assumption restricts these results from being ap-
plied to the scenarios with uncertain subsystem dynam-
ics involved. Although adaptive control has been shown
as a promising tool to handle parametric and structural
uncertainties in centralized control of single systems,
distributed adaptive event-based consensus results are
quite limited. In fact, even for uncertain multi-agent
systems with continuous communication strategies, it
is still non-trivial to design distributed adaptive con-
sensus controllers especially under directed communica-
tion graph condition. As observed from Das and Lewis
(2010); Wang, Huang, Wen, & Fan (2014); Huang, Song,
Wang, Wen and Li (2017), the main challenge lies in the
fact that a directed graph is associated with asymmet-
ric Laplacian matrix. Then if a Lyapunov function is
defined in terms of local neighborhood consensus errors,
computing its derivative inevitably results in cross-
coupling terms which are difficult to be counteracted
by designing distributed parameter estimators. In Xie,
Xu, Zhang, Li, & Chu (2016), a distributed adaptive
consensus protocol is proposed based on event-triggered
communication for single-integrator type of multi-agent
systems. In You, Hua, & Guan (2018), an event-based
distributed adaptive consensus approach is presented
for first-order multi-agent systems with uncertain non-
linearities satisfying locally Lipschitz conditions. For
each subsystem, the designed triggering condition re-
quires continuous monitoring of its neighbors’ states
and knowledge of global graph information. Hence, the
event-based controllers are not totally distributed.

Motivated by the limitations existed in the related
literature, a new distributed adaptive consensus track-
ing control scheme is developed in this paper for mul-
tiple uncertain nonlinear systems with event triggered
communication. The main contributions can be sum-
marized as follows.
• A group of N first-order nonlinear subsystems

with parametric uncertainties are considered. The sub-
systems are allowed to have non-identical dynamics,
though with similar structures. Different from You et
al. (2018), no Lipschitz condition is required for the
nonlinear functions of local states involved in each sub-
system’s dynamics.
• The common desired trajectory x0(t), which is

regarded as the state of a virtual leader, will be broad-
cast to only a subset of subsystems through event-based
communication. However, the exact information of the
derivative ẋ0(t) is allowed unknown by all subsystems
and the communication condition is described by a di-
rected graph. To tackle with the difficulties as discussed
about distributed adaptive consensus control, an esti-
mator is introduced in each subsystem to compensate
for the effects of unknown derivative of the desired tra-
jectory signal. Then the Lyapunov functions are defined
based on only local estimation errors and the distribut-
ed adaptive control laws can be designed in a totally
distributed manner.
• Inspired by Xing et al. (2016), the triggering rules

for subsystem broadcast are chosen to be dependent on-
ly on local state changing rates. Thus continuous mon-
itoring of neighboring subsystems’ states, as required
in Dimarogonas et al. (2012); You et al. (2018), can
be avoided. In addition, the global graph information is
not required to be shared by all subsystems, which is in
contrast with Das and Lewis (2010); Zhu et al. (2014);
You et al. (2018).
• Different from all the cited literatures, the case of

unknown actuator faults is also considered in this paper.
The leader-follower consensus problem of multi-vehicle
systems with actuator fault and discontinuous commu-
nication protocols is investigated in Wang et al. (2018),
where the fault parameter is assumed to be known.
Different from this, the actuator in each subsystem
may unawarely experience intermittent partial-loss-of-
effectiveness (PLOE) type of faults in this paper. To
treat the induced problem of unknown control coeffi-
cient with possibly infinite time of jumps, both control
laws and parameter update laws need be modified to
ensure closed-loop system stability. To the best of the
authors’ knowledge, this is the first solution of adaptive
event-based fault-tolerant consensus control problem.
Note that actuator failure compensation with event-
based adaptive control is investigated in Xing, Wen,
Liu, Su, & Cai (2017), whereas only tracking control of
just one single system is considered.

It is shown that in both fault-free and faulty cases,
all closed-loop signals are globally uniformly bounded
and the tracking errors will converge to a compact set.
Besides, Zeno behavior can be excluded and the track-
ing performance in the mean square error sense could
be improved by appropriately adjusting certain design
parameters.

An outline of this paper is summarized as follows.
The consensus tracking problem for multiple uncertain
nonlinear systems is formulated in Section 2. In Sec-
tion 3, distributed adaptive controllers are designed
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for fault-free case with event-triggered communication
strategies. Analysis of both system stability and con-
sensus tracking performance is provided. In Section 4,
the results are extended to the case with intermittent
PLOE actuator faults. Simulation studies are given in
Section 5 to validate the theoretical results, followed by
a conclusion of the paper drawn in Section 6.

2 Problem Formulation

2.1 System Model

In this paper, we consider a group of N nonlinear
subsystems modeled as follows.

ẋi = biui + ϕi(xi)
T θi (1)

where xi ∈ < is the state of the ith subsystem. θi ∈ <pi is
a vector of unknown constants and the control coefficient
bi ∈ < is an unknown non-zero constant. ϕi(·) : <j →
<pi is a column vector of known continuous nonlinear
functions.

2.2 Communication Condition Among the N Subsys-
tems

Suppose that the communications among the N sub-
systems can be represented by a fixed directed graph
G , (V, E) where V = {1, . . . , N} denotes the set of
indexes (or vertices) corresponding to each subsystem,
E ⊆ V×V is the set of edges between two distinct subsys-
tems. An edge (i, j) ∈ E indicates that subsystem j can
obtain information from subsystem i, but not necessar-
ily vice versa (Ren and Cao, 2010). In this case, subsys-
tem i is called a neighbor of subsystem j. We denote the
set of neighbors for subsystem i as Ni. Self edges (i, i)
is not allowed in this paper, thus (i, i) /∈ E and i /∈ Ni.
The connectivity matrix A = [aij ] ∈ <N×N is defined
such that aij = 1 if (j, i) ∈ E and aij = 0 if (j, i) /∈ E .
Clearly, the diagonal elements aii = 0. We introduce an
in-degree matrix 4 such that 4 = diag(4i) ∈ <N×N
with 4i =

∑
j∈Ni

aij being the ith row sum of A. Then,

the Laplacian matrix of G is defined as L = 4−A.

2.3 Event based Broadcast Mechanism

The desired trajectory is characterized by a bound-
ed time varying function x0(t), which is also regarded as
the state of a virtual leader 0. We now use µi = 1 to in-
dicate the case that the desired trajectory information
x0(t) is accessible directly to subsystem i through event-
based communication; otherwise, µi is set as µi = 0.

Besides, notations tj0, t
j
1, . . . , t

j
k, . . . with 0 ≤ tj0 <

tj1 < tj2 . . . < tjk < tjk+1 < . . . <∞, j ∈ {0,V} are adopt-
ed in this paper to denote the sequence of event times

for subsystem j (or the leader node if j = 0) to broad-
cast its state information. Then for each subsystem i,
the instantaneous state information from its neighbor-
ing subsystems is updated only at the time instants tjk
for j ∈ Ni.

The control objective in this paper is to design event-
based distributed adaptive controllers ui(t) with appro-
priate triggering condition for each subsystem by utiliz-
ing the continuous local state (xi(t)) and the discrete-
time states collected from its neighboring subsystem
through event-based communication (xj(t

j
k)) such that

i) all the signals in the closed-loop system are globally
uniformly bounded;
ii) the states of the overall system can still track the
desired trajectory x0(t) as closely as possible, though
µi = 1 only for a small fraction of the subsystems and
ẋ0(t) is unavailable to all subsystems.

To achieve the objective, the following assumptions
are imposed.

Assumption 1 The directed graph G contains a span-
ning tree and the root node il has direct access to x0(t),
i.e. µil = 1.

Assumption 2 For all subsystems, the only available
information about x0(t) is that |ẋ0(t)| ≤ F where F is
an unknown positive constant.

Assumption 3 The sign of bi is available in construct-
ing ui for each subsystem i.

Remark 1 Note that compared to traditional centralized
tracking problem of one single system, the main challenge
of solving the distributed consensus tracking problem lies
in the constraint that only part of the subsystems with
µi = 1 can acquire the desired trajectory information
directly. Besides, Assumption 2 indicates that the exac-
t information of x0(t) is allowed to be unknown by all
subsystems. This is more general than the assumption-
s required in the existing results on consensus tracking
control including Wang et al. (2014); Yu and Xia (2012)
that the reference signals are linearly parameterized and
the basis function vectors are known by all subsystems.
Besides, Assumption 3 is standard in adaptive control re-
sults; see for examples Krstic et al. (1995); Wang et al.
(2014, 2017).

The following lemma brought from Das and Lewis
(2010) is then introduced, which will be useful in our
design and analysis of distributed adaptive controllers.

Lemma 1 Based on Assumption 1, the matrix (L+ B)
is nonsingular where B = diag{µ1, . . . , µN}. Define

q̄ = [q̄1, . . . , q̄N ]T = (L+ B)−1[1, . . . , 1]T

P = diag{P1, . . . , PN} = diag

{
1

q̄1
, . . . ,

1

q̄N

}
Q= P (L+ B) + (L+ B)TP, (2)

then q̄i > 0 for i = 1, . . . , N and Q is positive definite.
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3 The Case without Actuator Faults

3.1 Design of Distributed Adaptive Controllers

• Step 1. Design of Triggering Condition
In this paper, we adopt x̄j(t) to denote the state in-

formation of subsystem j or the leader node with j = 0,
which is broadcast to its connected subsystems through
event-based communication strategy. Therefore, x̄j(t) =

xj(t
j
k), j ∈ {0,V}, t ∈ [tjk, t

j
k+1). As defined in Section

2, tjk is the kth event time for subsystem j broadcast-
ing its state information. This indicates that for time
t ∈ [tjk, t

j
k+1), the neighbour’s states available for sub-

system i are kept unchanged as x̄j(t) = xj(t
j
k), j ∈ Ni.

The triggering condition is then designed as

tjk+1 = inf{t > tjk, |xj(t)− x̄j(t)| > mj}, j ∈ {0,V} (3)

where mj is a positive constant to be determined by the

designer. tj0 is the first instant when (3) is fulfilled for
subsystem j (or the leader node with j = 0).

• Step 2. Design of Control Law
In each subsystem, we introduce x̂i,0(t) ∈ < to esti-

mate the unknown desired trajectory information x0(t).
Then the following error variables are defined, which will
be adopted in the design of adaptive control laws.

zi(t) = xi(t)− x̂i,0(t) (4)

εi(t) =

N∑
j=1

aij [xi(t)− x̄j(t)] + µi[xi(t)− x̄0(t)] (5)

From (4), we have

zi = xi − x0 + (x0 − x̂i,0) = δi + x̃i,0 (6)

where x̃i,0 denotes the estimation errors such that x̃i,0 =
x0 − x̂i,0.

The derivative zi is computed as

żi = biui + ϕTi θi − ˙̂xi,0 (7)

The control signal is designed as

ui = %̂iαi, (8)

%̂i is the estimate of %i = 1
bi

and αi is a virtual control

signal to be chosen. Substituting (8) into (7), we have

żi = bi%̂iαi + ϕTi θi − ˙̂xi,0 (9)

The virtual control signal αi is chosen as

αi = −kP̂iεi − cizi − ϕTi θ̂i + ˙̂xi,0 (10)

where k and ci are positive constants. P̂i and θ̂i are pa-
rameter estimates of Pi in Lemma 1, θi, respectively.
Substituting (10) into (9) yields that

żi = αi − bi%̃iαi + ϕTi θi − ˙̂xi,0

= −kP̂iεi − cizi − bi%̃iαi + ϕTi θ̃i (11)

where %̃i and θ̃i are defined as %̃i = 1
bi
−%̂i and θ̃i = θi−θ̂i,

respectively.

• Step 3. Design of Adaptive Laws
The state estimator generating x̂i,0 and parameter

update laws for P̂i, %̂i, θ̂i are designed as

˙̂xi,0 =−γxi0
εi − γxi0

κxi0
(x̂i,0 − xi,0) (12)

˙̂
Pi = γPiεizi − γPiκPi

(
P̂i − Pi,0

)
(13)

˙̂%i =−γ%isgn(bi)αizi − γ%iκ%i (%̂i − %i,0) (14)

˙̂
θi = Γθiϕizi − Γθiκθi

(
θ̂i − θi,0

)
(15)

where γ• and κ• (‘•’ denotes arbitrary subscript includ-
ing xi0, Pi, %i and θi) are positive design parameters.
xi,0, Pi,0, %i,0 and θi,0 respectively in the last brackets of
(12)-(15) are constant bias parameters, whose functions
will be explained in detail in Remark 4 and Remark 8.

Remark 2 Different from most of the related results in-
cluding Das and Lewis (2010); Mei et al. (2011); Yu and
Xia (2012); Yoo (2013); Wang et al. (2014, 2017); Huang
et al. (2017), we investigate the adaptive consensus track-
ing problem with event-based state broadcasting strategy,
which can effectively reduce the communication burden.
However, it can be seen that rather than the continuous
local neighborhood consensus errors ei in (16) which are
normally used in the above cited references, only event-
based consensus errors εi in (5) can be adopted in control
design. Hence new techniques such as introducing the last
terms in (12)-(15) need be applied to handle the terms
resulted from the mismatches between ei and εi.

Remark 3 Observing (3), it indicates that the trigger-
ing condition for each subsystem j is only determined by
its local state changing rate, which is similar to Xing et
al. (2016). Thus continuous monitoring of the neighbor-
ing subsystems’ states as in Dimarogonas et al. (2012);
You et al. (2018) can be avoided. Furthermore, (10) on-
ly involves local estimates of Pi in Lemma 1. Hence, in
contrast to Zhu et al. (2014) and Das and Lewis (2010),
no global communication graph information is needed in
either event triggering rule or distributed adaptive con-
trol laws. On the other hand, different from Xing et al.
(2016) where linear system with exactly known subsys-
tem dynamics is considered, the system here is nonlinear
with unknown parameters.

Remark 4 Let Θ̂i be a generalized notation to express
the estimate of a parameter vector Θi and Θ̃i be the esti-
mation error vector, i.e. Θ̃ = Θ− Θ̂. It will be observed
from (19) and (20) in subsequent stability analysis that by

adopting the terms in the form of −γΘi0κΘi0(Θ̂i −Θi,0)
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in (12)-(15), the property Θ̃T
i (Θ̂i − Θi,0) = Θ̃T

i (−Θ̃i +

Θi −Θi,0) ≤ −1
2‖Θ̃‖

2 + 1
2‖Θi −Θi,0‖2 can be obtained.

This property is crucial to establish the terms −σV +M∗

in the last row of (20), hence is crucial to guarantee the
closed-loop system stability.

3.2 System Stability and Consensus Analysis

The main results in this section are formally stated
in the following theorem.

Theorem 1 Consider a group of N uncertain subsys-
tems as modeled in (1) with a desired trajectory x0(t)
under Assumptions 1-3. By applying the distributed
adaptive controllers in (8) and (10), event-triggered
communication rules (3), distributed estimators (12),
parameter update laws (13)-(15) to (1), the following
results can be guaranteed.
1) All the closed-loop signals are globally uniformly
bounded.
2) The tracking error signals δ = [δ1, δ2, ..., δN ]T will
converge to a compact set.

3) The upper bound of ‖δ(t)‖2[0,T ] = 1
T

∫ T
0
‖δ(t)‖2dt can

be decreased by choosing suitable design parameters.
4) Zeno behavior is excluded.

Proof. Firstly, the actual distributed synchronization er-
ror is defined as

ei(t) =

N∑
j=1

aij [xi(t)− xj(t)] + µi[xi(t)− x0(t)] (16)

Then we choose the Lyapunov function as

V =

N∑
i=1

Vi (17)

where

Vi =
1

2
z2
i +

k

2γPi

P̃ 2
i +

|bi|
2γ%i

%̃2
i +

1

2
θ̃Ti Γ−1

θi
θ̃i +

kPi
2γxi0

x̃2
i,0

(18)

where P̃i = Pi − P̂i.
From (6), (11)-(15), the derivative of V in (17) is

computed as

V̇ =

N∑
i=1

{
−kPiziεi − ciz2

i +
k

γPi

P̃i

[
− ˙̂
Pi + γPiεizi

]
+
|bi|
γ%i

%̃i

[
− ˙̂%i − γ%isgn(bi)αizi

]
+ θ̃Ti Γ−1

θi

×
[
− ˙̂
θi + Γθiϕizi

]
+
kPi
γxi0

x̃i,0

(
ẋ0 − ˙̂xi,0

)}
=

N∑
i=1

{
− kPi(δi + x̃i,0)εi − ciz2

i

+kκPi
P̃i

(
P̂i − Pi,0

)
+ |bi|κ%i %̃i (%̂i − %i,0)

+κθi θ̃
T
i

(
θ̂i − θi,0

)
+
kPi
γxi0

x̃i,0

(
ẋ0 − ˙̂xi,0

)}

=

N∑
i=1

{
− kPiδi

[
ei +

N∑
j=1

aij(xj − x̄j) + µi(x0 − x̄0)

]
−ciz2

i + kκPi P̃i

(
P̂i − Pi,0

)
+ |bi|κ%i %̃i (%̂i − %i,0)

+κθi θ̃
T
i

(
θ̂i − θi,0

)
+
kPi
γxi0

x̃i,0

(
ẋ0 − ˙̂xi,0 − γxi0

εi

)}

≤
N∑
i=1

{
− kPiδiei + |δi|kPi(∆i + µi)m− ciz2

i

+kκPi
P̃i

(
P̂i − Pi,0

)
+ |bi|κ%i %̃i (%̂i − %i,0)

+κθi θ̃
T
i

(
θ̂i − θi,0

)
+
kPi
γxi0

|x̃i,0|F

+kκxi0
Pix̃i,0(x̂i,0 − xi,0)

}
(19)

where m = max{mj} for j ∈ {0,V}.

V̇ ≤−kδTP (L+ B)δ +

N∑
i=1

{
k

[
1

4
λmin(Q)δ2

i

+
P 2
i (∆i + µi)

2m2

λmin(Q)

]
− ciz2

i

}

+

N∑
i=1

{
kκPi

2

[
−P̃ 2

i + (Pi − Pi,0)2
]}

+

N∑
i=1

{
|bi|κ%i

2

[
−%̃2

i + (%i − %i,0)2
]}

+

N∑
i=1

{κθi
2

[
−‖θ̃i‖2 + ‖θi − θi,0‖2

]}
+

N∑
i=1

{
kPiκxi0

2

[
− x̃2

i,0 + (x0 − xi,0)2

]}

+

N∑
i=1

{
kPi
γxi0

[
1

4
γxi0κxi0 x̃

2
i,0 +

F 2

γxi0
κxi0

]}

≤−k
4
λmin(Q)‖δ‖2 −

N∑
i=1

(
ciz

2
i +

kκPi

2
P̃ 2
i

)

−
N∑
i=1

(
|bi|κ%i

2
%̃2
i +

κθi
2
‖θ̃i‖2 +

kPiκxi0

4
x̃2
i,0

)
+M∗

≤−k
4
λmin(Q)‖δ‖2 − σV +M∗ (20)

where
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σ = min

{
2ci, κPi

γPi
, κ%iγ%i ,

κθi
λmax(Γ−1

θi
)
,

1

2
κxi0

γxi0

}
(21)

M∗ =

N∑
i=1

{
kP 2

i (∆i + µi)
2m2

λmin(Q)
+
kκPi

2
(Pi − Pi,0)2

+
|bi|κ%i

2
(%i − %i,0)2 +

κθi
2
‖θi − θi,0‖2 +

kPiκxi0

2

×(x0 − xi,0)2 +
kPiF

2

γ2
xi0
κxi0

}
(22)

We now establish the results in Theorem 1 one by one.
1) By direct integrations of the following inequality

V̇ ≤ −σV +M∗, (23)

we have

V (t) ≤ V (0)e−σt +
M∗

σ

(
1− e−σt

)
≤ V (0) +

M∗

σ
(24)

which shows that V is uniformly bounded. Thus the sig-

nals zi, P̂i, %̂i, θ̂i and x̂i,0 are bounded. From (6), δi is
bounded. From (8) and (10), ui is bounded. Therefore all
the closed-loop signals are globally uniformly bounded.

2) From (4), the definitions of Vi in (18) and V in
(17), we have

‖δ(t)‖2 ≤
N∑
i=1

1

2

[
zi(t)

2 + x̃i,0(t)2
]

≤
N∑
i=1

max

{
1,
γxi0

kPi

}
Vi(t)

≤ ξV (t) (25)

where ξ = max{1, γx10

kP1
, . . . ,

γxN0

kPN
}. From (24), it follows

that

‖δ(t)‖2 ≤ ξ
[
V (0)e−σt +

M∗

σ
(1− e−σt)

]
. (26)

This implies that the tracking errors in Euclidean norm
will converge to a compact set Er = {δ|‖δ‖2 ≤ ξ(M∗ +
ς)/σ} for t ≥ (1/σ) ln(|V (0)σ −M∗|/ς) with ς an arbi-
trarily small positive constant. It is worthy to point that
the compact set Er can actually be made as small as de-
sired by increasing the control gain ci and adaptive gains
γPi , γ%i ,Γθi , γxi0, while fixing all the remaining design
parameters. However, such small Er is obtained at the
expense of increasing control amplitude. Thus determin-
ing the design parameters is a trade-off issue.

3) From (20), we have

V̇ ≤ −k
4
λmin(Q)‖δ‖2 +M∗ (27)

Integrating both sides of (27) yields that

‖δ(t)‖2[0,T ] =
1

T

∫ T

0

‖δ(t)‖2dt

≤ 4

kλmin(Q)

[
V (0)− V (T )

T
+M∗

]
≤ 4

kλmin(Q)

[
V (0)

T
+M∗

]
(28)

From (17), (18) and (22), it follows that the upper bound
of the overall tracking errors in the mean square sense
of (28) can be decreased by decreasing mi, κPi

, κ%i , κθi
and increasing k, γPi

, γ%i , Γθi , γxi0
.

4) To show the exclusion of Zeno behavior, we shall

show that the inter-execution intervals (tjk+1−t
j
k) for j ∈

V̄, ∀k ∈ Z+ are lower-bounded by a positive constant.
Define ηjk(t) = xj(t) − x̄j(t) for t ∈ [tjk, t

j
k+1), whose

derivative is computed as

d
∣∣∣ηjk∣∣∣
dt

=
d(ηjk × η

j
k)

1
2

dt
= sgn(ηjk)η̇jk ≤

∣∣∣η̇jk∣∣∣ . (29)

Since x̄j(t) keeps unchanged for t ∈ [tjk, t
j
k+1), we have∣∣∣η̇jk(t)

∣∣∣ =
∣∣bjuj + ϕTj θj

∣∣ , for j ∈ V (30)

and
∣∣η̇0
k(t)

∣∣ = |ẋ0(t)|. From the boundedness of uj , xj , ẋ0

and the assumption that φj is continuous, it is concluded

that there exist a positive constant ιj such that
∣∣∣η̇jk(t)

∣∣∣ ≤
ιj for j ∈ V̄. Then the inter-execution intervals must

satisfy that tjk+1 − tjk ≥ mj/ιj , i.e. Zeno behavior is
excluded. 2

4 The Case with Intermittent Actuator Faults

4.1 Intermittent Actuator Fault Model

Suppose that the internal dynamics in actuators is
negligible. For system i, i ∈ V, we denote uci as the input
of its actuator, which is to be designed. An actuator with
its input equal to its output, i.e. ui = uci, is regarded as
fault free. The actuator fault of interest is modeled as
follows,

ui(t) = ρi(t)uci(t), (31)

where

ρi(t) = ρih,
t ∈ [tih,s, tih,e),

h ∈ Z+
(32)

0 < ρ
i
≤ ρih ≤ 1 (33)

where ρih, tih,s, tih,e and ρ
i

are all unknown constants.
0 ≤ ti1,s < ti1,e ≤ ti2,s < · · · < tjh,e ≤ tj(h+1),s <
tj(h+1),e and so forth. Equations (31) and (32) indicate
that the actuator of system i loses (1 − ρih) × 100% of

6



its effectiveness from time tih,s till tih,e. ti1,s denotes the
time instant when the first PLOE fault takes place on
the actuator of system i.

Remark 5 As explained in Wang & Wen (2011), the
considered fault model includes the possibility of actua-
tors unawarely changing from a faulty mode to a normally
working mode or another different faulty mode infinitely
many times. Thus it is more general than the fault mod-
els with just one single occurrence which are commonly
seen in fault tolerant control results.

4.2 Design of Distributed Adaptive Controllers

• Step 1. Design of Triggering Condition
The triggering condition is designed the same as (3)

in Section 3.1.

• Step 2. Design of Control Law
Similar to Section 3, the error variables zi(t) and

εi(t) are designed in the same forms as in (4) and (5),
respectively. The control signal is designed as

uci = sgn(bi)αi (34)

where αi will be chosen in (37). The derivative of zi is
computed as

żi = diαi + ϕTi θi − ˙̂xi,0 (35)

where 0 < di ≤ di(t) = |bi|ρi(t) ≤ |bi|, di = |bi|ρi.
We define ωi as

ωi = ci +
1

2εi

(
kP̂iε

2
i + ‖ϕi‖2 ˆ̄θi + ˙̂x2

i,0

)
(36)

where k, ci and εi are positive constants. ˆ̄θi is the esti-
mate of θ̄i = θ2

i . Then αi is designed as

αi = %̂iβi (37)

where

βi = −ωizi (38)

and %̂i is the estimate of %i = 1
di

.

• Step 3. Design of Adaptive Laws
The parameter update laws are designed as

˙̂xi,0 = −γxi0
εi − γxi0

κxi0
(x̂i,0 − xi,0) (39)

˙̂
Pi =

γPi

εi
ε2i z

2
i − γPi

κPi

(
P̂i − Pi,0

)
(40)

˙̂%i = γ%iωiz
2
i − γ%iκ%i (%̂i − %i,0) (41)

˙̄̂
θi =

γθ̄i
εi
‖ϕi‖2z2

i − γθ̄iκθ̄i
(

ˆ̄θi − θ̄i,0
)

(42)

where γ• and κ• (‘•’ denotes arbitrary subscript includ-
ing xi0, Pi, %i and θ̄i) are positive constants. xi,0, Pi,0,
%i,0 and θ̄i,0 in the last brackets of (39)-(42) are constant

bias parameters whose functions are the same as those

in (12)-(15). Besides, the initial states P̂i(0), %̂i(0), ˆ̄θi(0)
and bias parameters Pi,0, %i,0, θ̄i,0 are all chosen to be
non-negative.

By doing so, P̂i(t), %̂i(t) and ˆ̄θi(t) are rendered non-
negative for all t ≥ 0 due to the fact given in Lemma 2
below.

Lemma 2 Consider a first-order differential equation

ṡ = γsfs − γsκs(s− s0) (43)

where γs, κs are both positive constants, fs ≥ 0 and
s0 ≥ 0. The solution of (43) is rendered non-negative for
all t ≥ 0 such that

s(t) = e−γsκsts(0) +

∫ t

0

e−γsκs(t−τ)(γsfs + γsκss0)dτ

≥ 0 (44)

Define

Vi,1 =
1

2
z2
i (45)

The derivative of Vi,1 is shown to satisfy that

V̇i,1 =zi

(
di%̂iβi + ϕTi θi − ˙̂xi,0

)
≤− di(%i − %̃i)ωiz2

i +
z2
i ‖ϕi‖2

2εi
θ2
i +

z2
i

˙̂x2
i,0

2εi
+ εi

≤− ciz2
i −

k

2εi

(
Pi − P̃i

)
ε2i z

2
i +

z2
i ‖ϕi‖2

2εi
˜̄θi

+ di%̃iωiz
2
i + εi (46)

where ziϕ
T
i θi ≤

z2i ‖ϕi‖2θ2i
2εi

+ εi
2 , zi ˙̂xi,0 ≤

z2i
˙̂x2
i,0

2εi
+ εi

2 have

been used to obtain the first inequality and P̃i = Pi−P̂i,
%̃i = %i − %̂i, ˜̄θi = θ̄i − ˆ̄θi.

Remark 6 It should be emphasized that the control
method presented in Section 3 cannot be applied di-
rectly in this section. This is because the intermittent
faults will cause the unknown virtual control coefficient
di(t) in (35) to be a time-varying parameter which may
experience infinite number of sudden changes, result-
ing in the time derivative ḋi(t) unbounded. If previous
control design is adopted here without modification,
%̃i = %i − %̂i = 1/di − %̂i as indicated by the definition
of %̃i below (11). Then computing the derivative of Vi

in (18) will result in an unbounded term |bi|
γ%i
%̃i

(
%̇i − ˙̂%i

)
such that the proof of Theorem 1 is no longer valid.
To handle this issue, the design of adaptive controllers
is modified by adopting the Young’s inequality several
times and introducing the nonlinear damping terms in
the quadratic form as in (36) and (38). The parameter
update laws are also modified accordingly as in (39)-(42).
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4.3 System Stability and Consensus Analysis

The main results in this section are formally stated
in the following theorem.

Theorem 2 Consider a group of N uncertain subsys-
tems as modeled in (1) with a desired trajectory x0(t)
under Assumptions 1-3 and possibly intermittent ac-
tuator faults as modeled in (31)-(33). By applying the
distributed adaptive fault tolerant controllers in (34)
and (37)-(38), event-triggered communication rules (3),
distributed estimators (39), parameter update laws (40)-
(42) to (1), the following results can be guaranteed.
1) All the closed-loop signals are globally uniformly
bounded.
2) The tracking error signals δ = [δ1, δ2, ..., δN ]T will
converge to a compact set.

3) The upper bound of ‖δ(t)‖2[0,T ] = 1
T

∫ T
0
‖δ(t)‖2dt can

be decreased by choosing suitable design parameters.
4) Zeno behavior is excluded.

Proof. Similar to the Proof of Theorem 1, an error vari-
able ei(t) is firstly defined in the same form as in (16).
Then we choose the Lyapunov function as

V =

N∑
i=1

Vi (47)

Vi = Vi,1 +
k

4γPi

P̃ 2
i +

di
2γ%i

%̃2
i +

1

4γθ̄i

˜̄θ2
i +

kPi
2γxi0

x̃2
i,0 (48)

From (39)-(42) and (46), we have

V̇ ≤
N∑
i=1

(
−ciz2

i −
k

2εi
Piε

2
i z

2
i + εi

)
+

N∑
i=1

{
k

2γPi

P̃i

×
(
− ˙̂
Pi +

γPi

εi
ε2i z

2
i

)
+

di
γ%i

%̃i

(
− ˙̂%i + γ%iωiz

2
i

)
+

1

2γθ̄i

˜̄θi

(
− ˙̄̂
θi +

γθ̄i
εi
‖ϕi‖2z2

i

)
+
kPi
γxi0

x̃i,0

(
ẋ0 − ˙̂xi,0

)}

≤
N∑
i=1

[
− kPi(δi + x̃i,0)εi − ciz2

i +

(
kPi
2

+ 1

)
εi

]

+

N∑
i=1

[
− kκPi

4
P̃ 2
i +

kκPi

4
(Pi − Pi,0)2 − diκ%i

2
%̃2
i

+
diκ%i

2
(%i − %i,0)2 −

κθ̄i
4

˜̄θ2
i +

κθ̄i
4

(
θ̄i − θ̄i,0

)2
+
kPi
γxi0

|x̃i,0|F −
kPi
γxi0

x̃i,0 ˙̂xi,0

]

≤
N∑
i=1

{
− kPiδi

ei +

N∑
j=1

aij(xj − x̄j) + µi(x0 − x̄0)



− ciz2
i −

kκPi

4
P̃ 2
i −

diκ%i
2

%̃2
i −

κθ̄i
4

˜̄θ2
i −

kPi
γxi0

x̃i,0

×
(

˙̂xi,0 + γxi0εi

)
+
kPi
γxi0

|x̃i,0|F +

(
kPi
2

+ 1

)
εi

+
kκPi

4
(Pi − Pi,0)2 +

diκ%i
2

(%i − %i,0)2

+
κθ̄i
4

(θ̄i − θ̄i,0)2

}
≤− k

4
λmin(Q)‖δ‖2 − σV +M∗ (49)

where

σ = min

{
2ci, κPi

γPi
, κ%iγ%i , κθ̄iγθ̄i ,

1

2
κxi0

γxi0

}
(50)

M∗ =

N∑
i=1

{
kP 2

i (∆i + µi)
2m2

λmin(Q)
+
kκPi

4
(Pi − Pi,0)2

+
diκ%i

2
(%i − %i,0)2 +

κθ̄i
4

(θ̄i − θ̄i,0)2

+
kPiκxi0

(x0 − xi,0)2

2
+

kPiF
2

γ2
xi0
κxi0

+

(
kPi
2

+ 1

)
εi

}
(51)

The remaining analysis is similar to the proof of Theorem
1. 2

Remark 7 In this paper, a local estimator x̂i,0(t) is in-
troduced in each subsystem for uncertain desired trajec-
tory signal x0(t). Then the Lyapunov functions Vi in (18)
(or (48) with (45) for faulty case) is defined based on

only local estimation errors including zi, P̃i, %̃i, θ̃i ( ˜̄θi
for faulty case) and x̃i,0. Such way of constructing Lya-
punov function is fundamentally different from most of
the existing distributed consensus control results, where
the Lyapunov functions are defined based on local neigh-
borhood consensus errors in the form of (16). It should

be noted that if a local parameter estimator θ̂i is designed
in each subsystem, then computing the derivative of the
latter form of Lyapunov functions will result in cross-
coupling terms related to local consensus errors ei and
neighboring subsystems’ parameter estimation errors θ̃j
with j ∈ Ni. And these terms are difficult to be canceled by
designing distributed adaptive laws under directed graph
condition.

Remark 8 The mismatches between ei and εi as men-
tioned in Remark 2 and relaxed assumption on ẋ0(t) lead

to the terms −kPiδi

[
N∑
j=1

aij(xj − x̄j) + µi(x0 − x̄0)

]
and kPi

γxi0
x̃i,0ẋ0 in the computed V̇ in (19) for the fault-free

case. One important technique to handle these terms is to
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introduce the terms in the form of −γΘi0
κΘi0

(Θ̂i −Θi,0)
in (12)-(15) as discussed in Remark 4.

Apart from the design parameters mi, κ•, k, γ• and
Γ• in the proof of Theorem 1, the function of constan-
t bias parameters •i,0 in the distributed adaptive laws
(12)-(15), (39)-(42) is to provide more possibilities of
improving the consensus tracking performance. More
specifically, if some a priori knowledge of the true values
of x0(t), Pi, %i, θi (or θ̄i in the faulty case) is available,
M∗ in (22) (or (51) for the faulty case) can be effectively
reduced if xi,0, Pi,0, %i,0, θi,0 and θ̄i,0 are chosen to be
sufficiently close to x0, Pi, %i, θi and θ̄i, respectively.

Remark 9 Clearly, only first-order system is considered
in this paper. Extending the results to a more general
case of higher-order multi-agent system with mismatched
parametric uncertainties is an open and interesting is-
sue, which is left for future study. Backstepping technique
(Krstic et al., 1995) may be a useful tool. However, the
main difficulty is to compute the derivatives of virtual
control signals, which actually do not exist as they in-
volve piecewise constant state information of neighboring
subsystems due to event-based communication. Besides,
improving consensus tracking performance with modified
event triggering conditions is also an interesting topic,
which is worthy of further investigation.

5 Simulation Studies

We consider a numerical example to verify the estab-
lished theoretical results. Suppose that there are a group
of 4 nonlinear subsystems with the following dynamics

ẋi = ui + x2
i θi (52)

where θ1 = 1, θ2 = 2, θ3 = 3, θ4 = 4 are unknown
system parameters. The communication topology for the
4 subsystems is given in Fig. 1.

x0

1

2

3

4

Fig. 1. Communication graph for the 4 nonlinear subsystems.

• Fault-free Case: The desired trajectory is given by
x0(t) = 1 + sin(0.1t) + sin(0.05t).

The state initials including xi(0), x̂i,0(0), P̂i(0), %̂i(0)

and θ̂i(0) are set to zeros for all i ∈ {1, 2, 3, 4}. The de-
sign parameters are chosen as k = 5, ci = 5, mi = 0.3,
γxi0 = γPi = γ%i = Γθi = 5, κxi0 = κPi = κ%i = κθi =
0.005. The tracking performance of xi(t) with compared
to x0(t) is provided in Fig. 2. Fig. 3-Fig. 7 exhibit the

triggering time, control ui(t), local estimates x̂i,0(t), and
parameter estimates for subsystems 1-2, respectively.
Desired tracking performance of all subsystem states to
x0(t) is seen while all the observed signals are bounded.

To demonstrate the effect of adjusting mi, we change
mi from mi = 0.4 to mi = 0.2 while keeping other pa-
rameters unchanged. The comparisons of errors δi and
triggering time is given in Fig. 8. It can be seen that the
tracking performance can be improved by reducing mi,
however the triggering frequency will be increased.

t(sec)
0 50 100 150 200

T
ra

ck
in

g 
P

er
fo

rm
an

ce

-2

-1

0

1

2

3

x
0
(t)

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

Fig. 2. Tracking perfor-
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• Faulty Case: The desired trajectory is given by
x0(t) = 1 + 0.5 sin(0.1t) + 0.5 sin(0.05t).

In the faulty case, the local controllers are designed as
in (34) with (37), event triggering condition (3) and es-
timators (39)-(42). The faulty case considered in simu-
lation is modeled as

u2(t) = ρ2huc2(t), t ∈ [hT ∗, (h+ 1)T ∗), h = 1, 3, . . . ,
(53)

where ρ2h = 30% and T ∗ = 50 seconds, which are both
unknown in the designs.
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Fig. 8. The comparison of δi(t) and triggering time for x0(t)
and the 4 subsystems with different mi.

The state initials including xi(0), x̂i,0(0), P̂i(0), %̂i(0)

and θ̂i(0) are set to zeros for all i ∈ {1, 2, 3, 4}. The de-
sign parameters are chosen as k = 3, ci = 3, mi = 0.3,
γxi0 = γPi = γ%i = γθ̄i = 3, κxi0 = κPi = κ%i = κθ̄i =
0.005, εi = 10. The tracking performance of xi(t) with
compared to x0(t) is provided in Fig. 9. Fig. 10-Fig. 14
exhibit the triggering time, control ui(t), local estimates
x̂i,0(t), and parameter estimates for subsystems 1-2, re-
spectively. Satisfactory tracking performance of all sub-
system states to x0(t) in the considered faulty case can
be observed while all the observed signals are ensured
bounded.
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mance of xi(t) for 1 ≤ i ≤ 4
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6 Conclusion

In this paper, a distributed adaptive control scheme
is presented for a group of uncertain nonlinear system-
s under directed communication condition with event-
triggered communication strategy. For desired trajecto-
ry regarded as virtual leader and the remaining subsys-
tems, triggering conditions are all designed based on lo-
cal state changing rates. Compared with the existing re-
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Fig. 11. Control inputs
uci(t) for 1 ≤ i ≤ 4.
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Fig. 12. The estimates
x̂i,0(t) for 1 ≤ i ≤ 4.
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for subsystem 2.

lated references, neither continuous monitoring of neigh-
bors’ states nor global communication graph informa-
tion available by all subsystems is required. The results
are then successfully extended to the case with uncer-
tain intermittent actuator faults. Simulation studies are
provided to demonstrate the theoretical results.
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