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Abstract—The prevailing approach for characterizing the
Doppler shift (DS) of mobile radio channels assumes the trans-
mission of an unmodulated carrier. This consideration is valid
for the analysis of narrowband channels, but its pertinence is
questionable in regards to the modeling of wideband channels.
In this correspondence, we redefine the DS from a time-frequency
analysis perspective that does not depend on the aforementioned
assumption. We systematically demonstrate that the DS can be
characterized by the instantaneous frequency of the channel
transfer function. This generic definition makes evident a funda-
mental aspect of the DS that is seldom acknowledged, namely,
the DS is a frequency-varying quantity. We show that the second-
order statistics of wideband mobile radio channels are non-
stationary due to the DS’s frequency variations. In addition,
we present numerical results of a case study showing that
such non-stationarities can cause significant system performance
degradations.

Index Terms—Doppler shift, instantaneous frequency, non-
stationary channels, propagation delay, radio communications.

I. INTRODUCTION

IN the context of terrestrial mobile radio communications, it

is customary to characterize the frequency shift experienced

by a signal due to the Doppler effect by assuming the trans-

mission of an unmodulated carrier, e.g., see [1], [2]. Building

on this assumption, Ossana [3] proposed a constant Doppler

shift (DS) model for fixed-to-mobile radio channels which is

given as fD = υ
λ
cos(φ − γ), where υ denotes the speed of

the mobile station (MS), λ is the carrier signal’s wavelength,

φ indicates the direction of propagation of the received signal,

and γ stands for the MS’s direction of motion. Ossana’s DS

model has found widespread acceptance, and it has been

revisited several times to incorporate factors that were not

considered originally, such as three-dimensional propagation

[4], mobile-to-mobile (M2M) links [5], and moving scatterers

[6]. However, such revisions are also based on the assumption
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that an unmodulated carrier is being transmitted. This con-

sideration is valid for the modeling of frequency-nonselective

(narrowband) channels, but its pertinence is questionable in

regards to the modeling of frequency-selective (wideband)

channels. The settlement of this controversy is particularly

critical nowadays due to the emergence of a new generation

of mobile communications systems having extremely large

bandwidths [7].
In this correspondence, we model the DS from a time-

frequency (TF) analysis perspective that is transparent to the

transmitted signal’s bandwidth. We systematically show that

the DS can be characterized in general by the instantaneous

frequency (IF) of the channel transfer function (CTF). This

generic definition is an extension with respect to (w.r.t.) wide-

band channels of the idea presented in [8] for characterizing

the instantaneous DS of narrowband M2M radio channels

under velocity variations of the MSs. Our proposal can also

be seen as a generalization of the approach for computing the

DS by differentiation of the received carrier’s phase [1], [6]. A

fundamental aspect of the DS that is seldom known becomes

evident from the modeling perspective described in this corre-

spondence, namely: The DS is a frequency-varying quantity.

We demonstrate that the DS’s frequency variations cause the

second-order statistics of wideband channels to be jointly non-

stationary in time and frequency, implying that Bello’s wide-

sense stationary uncorrelated scattering (WSSUS) condition

[9] is not fulfilled. We numerically evaluate the impact of

such non-stationarities on the bit error rate (BER) of a ve-

hicular communications system based on the IEEE 802.11p

Standard [10] by considering four different channel estimation

techniques. The obtained results show that the non-stationary

effects stemming from the frequency-varying DS cause signif-

icant performance degradations when a combined TF interpo-

lation is applied for channel state information tracking.

II. THE DS FROM A TF-ANALYSIS PERSPECTIVE

A. DS Characterization for Narrowband Signals

To demonstrate that the DS can be characterized in general

by the IF of the CTF, let us analyze first the case of an

unmodulated carrier of frequency fc, which is transmitted over

a single-path mobile radio channel. For this simple case, the

DS can be modeled from a TF-analysis perspective [11] as

fD(t) =
1

2π

d

dt
[arg{ỹ(t)} − arg{x̃(t)}] (1)

where x̃(t) and ỹ(t) are the complex pass-band transmitted and

received signals, respectively. The previous equation simply
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states that the DS is given by the difference of the IF of the

received signal minus the IF of the transmitted signal. Such IFs

should be computed from analytic signals, i.e., from signals

which have no negative frequency components [11]. In this

regard, we assume that fc is large enough as to guarantee that

the spectra of x̃(t) and ỹ(t) are limited to positive frequencies.

The DS is modeled in (1) as a time-varying quantity because

the IF of ỹ(t) changes in time if the transmitter, the receiver,

or the scatterers (or a combination thereof) move with a

time-varying velocity [8], or if the angular statistics of the

received signal vary in time [12], [13]. However, the DS can

be characterized as a time-invariant quantity if the channel’s

angular statistics and the velocities of the aforementioned

wandering elements do not change over time, e.g., see [3]–[6].

From the theory of linear time-varying (LTV) systems [14],

we have ỹ(t) = H̃(t; f) exp{j2πft}
∣∣
f=fc

, where H̃(t; f) is

the TF-varying CTF. Hence, by evaluating (1) for x̃(t) =
exp{j2πfct} and ỹ(t) = H̃(t; fc) exp{j2πfct}, we find

fD(t) = 1
2π

d
dt arg{H̃(t; f)}

∣∣
f=fc

. This result can be rewritten

in terms of the complex base-band equivalent CTF H(t; f) as

fD(t) =
1

2π

d

dt
arg {H(t; f)}

∣∣
f=0

. (2)

Let us consider now the transmission of x̃(t) over a mobile

radio channel comprising L different propagation paths. For

this particular case, the complex pass-band received signal can

be modeled as ỹ(t) =
∑L

ℓ=1 ỹℓ(t), where ỹℓ(t) is the signal

that arrives at the receiver through the ℓth propagation path.

According to the definition of the IF of a multicomponent sig-

nal [11], a single DS has to be computed for each component

of ỹ(t). Thus, by proceeding as we did to obtain (2), we find

that the DS of the ℓth component of ỹ(t) is equal to

fD,ℓ(t) =
1

2π

d

dt
arg {Hℓ(t; f)}

∣∣
f=0

(3)

where Hℓ(t; f) denotes the complex base-band equivalent CTF

associated with the ℓth propagation path, for ℓ ∈ {1, 2, . . . ,L}.

Equation (3) shows that the DS of narrowband mobile ra-

dio channels is given by the IF of the channel’s complex

envelope. This DS model is equivalent to that proposed in

[8] for the characterization of non-stationary M2M channels

under non-uniform motion of the transmitter and the receiver.

The narrowband description of fD,ℓ(t) given by (3) is also

equivalent to the one obtained from differentiation of the

received carrier’s phase [1], [6].

B. DS Characterization for Wideband Signals

For an arbitrary complex-valued band-limited signal

s(t) transmitted over a single-path channel, the DS

can be computed also as in (1) by taking x̃(t) =
s(t) exp{j2πfct}. From the theory of LTV systems [14], we

have x̃(t) = 1
2π

∫ fc+
B

2

fc−
B

2

X̃(f) exp{j2πft} df , and ỹ(t) =

1
2π

∫ fc+
B

2

fc−
B

2

H̃(t; f)X̃(f) exp{j2πft} df , where X̃(f) is the

Fourier transform of x̃(t), and B is the signal’s bandwidth

(fc > B/2). These integrals can be approximated by a

Riemann sum consisting of N terms as

x̃(t) ≈
1

2π

N∑

n=1

X̃ (ξ + n∆) exp {j2π (ξ + n∆) t}∆ (4)

ỹ(t) ≈
1

2π

N∑

n=1

H̃ (t; ξ + n∆) X̃ (ξ + n∆)

× exp {j2π (ξ + n∆) t}∆ (5)

where ∆ = B/N and ξ = fc − B/2. Note that such

approximations are defined w.r.t. the same partition of the

integration interval, and they converge to x̃(t) and ỹ(t) in the

limit if N → ∞. Equations (4) and (5) show that x̃(t) and

ỹ(t) are multicomponent signals. The DS should be therefore

computed individually for each element of the series in (4) and

(5). By analogy with (1), the DS of the nth spectral component

of ỹ(t) is given by

fD,n(t) =
1

2π

d

dt
[arg{ỹn(t)} − arg{x̃n(t)}] (6)

where x̃n(t) = ∆
2π X̃ (ξ + n∆) exp {j2π (ξ + n∆) t} and

ỹn(t) = ∆
2π H̃ (t; ξ + n∆) X̃ (ξ + n∆) exp {j2π (ξ + n∆) t}.

Thus, by a direct evaluation of (6), we find fD,n(t) =
1
2π

d
dt arg{H̃(t; ξ + n∆)}, for n = 1, 2, . . . , N . In the

limit as N → ∞ (and ∆ → 0), the countably set of

Doppler frequencies {fD,n(t)}
N
n=1 can be modeled by a

non-countably set {fD(t; f
′) ∈ R}, where fD(t; f ′) =

1
2π

d
dt arg{H̃(t; f)}

∣∣
f=fc+f ′

, t ∈ R. Here, the symbol f ′ ∈[
−B

2 ,
B
2

]
stands for the frequency variable of the band-limited

signal s(t). Expressing the DS in terms of the complex base-

band equivalent CTF, we obtain

fD(t; f) =
1

2π

d

dt
arg {H(t; f)} , |f | ≤ B/2 (7)

where the operator | · | indicates the absolute value. We note

that (7) includes (2) as a particular case for narrowband

signals (B = 0). The extension of (7) w.r.t. a multipath

channel comprising L propagation paths is straightforward.

By proceeding as in Sec. II-A, the DS of the ℓth component

of the received wideband multipath signal can be written as

fD,ℓ(t; f) =
1

2π

d

dt
arg {Hℓ(t; f)} , |f | ≤ B/2. (8)

From (8), we can conclude that the DS of mobile radio

channels is given in general by the IF of the CTF. This

relationship was noted previously in [15], but its foundations

were not discussed there. Aside from [15], we are not aware

of any other work in which the DS of mobile radio channels

is modeled as in (8).

C. Remarks on the Frequency-Dependence of the DS

Equation (8) shows that the DS of wideband channels varies

in both time and frequency. The time-varying character of

fD(t; f) is only recently acknowledged within the field of land

mobile radio communications [8], [12]. The DS’s frequency

dependence, on the other hand, remains largely unknown, as

one can observe from a review of the literature (see, e.g., [1],

[2]). The fact that the DS of wideband mobile radio channels
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is a frequency-varying quantity can be highlighted from the

following standard model of the complex base-band equivalent

channel impulse response (CIR) at time t due to an impulse

applied τ seconds in the past [13], [16]

h(t; f) =

L∑

ℓ=1

gℓ exp
{
−j[θℓ + 2πfcτℓ(t)]

}
δ(τ − τℓ(t)). (9)

In the foregoing equation, the CIR is modeled by the superpo-

sition of L electromagnetic waves, each arriving at the receiver

antenna with an amplitude gℓ, a phase θℓ, and a time-varying

propagation delay τℓ(t), where δ(·) stands for the Dirac delta

function (see [13] for a detailed description of the model). For

the channel model defined by (9), the corresponding complex

base-band equivalent CTF is given as

H(t; f) =

L∑

ℓ=1

gℓ exp
{
− j[θℓ + 2πτℓ(t)(fc + f)]

}
(10)

for |f | ≤ B/2 [13]. By substituting (10) into (8), we find

fD,ℓ(t; f) = −(fc + f)
dτℓ(t)

dt
(11)

for f ∈ [−B/2, B/2]. This latter equation is noteworthy, as it

not only shows that the DS is a frequency-dependent quantity,

it also states that the DS and the propagation delay are related

to each other in such a way that fD,ℓ(t; f) can be determined

directly from τℓ(t). In turn, τℓ(t) can be computed from

fD,ℓ(t; f) provided that the initial conditions of the system

are known, such that

τℓ(t) = τ0ℓ −
1

fc + f

∫ t

0

fD,ℓ(x; f) dx (12)

where τ0ℓ is the initial propagation delay of the ℓth multi-

path component (MPC) of H(t; f). These two fundamental

relationships between fD(t; f) and τℓ(t) are often left aside

assuming that the channel’s Doppler and delay statistics are

separable, or that the DSs are different from zero and the

propagation delays are time invariant. The relationship defined

by (11) has been noted by several authors, but only for the

particular case in which f = 0, i.e., for the particular case

of an unmodulated carrier. For example, the DS is modeled

in [2] by a time-invariant quantity equal to fD = −fc
dτ(t)
dt ,

whereas the DS is characterized in [12] by a time-varying

quantity given as

fD(t) = −fc
dτ(t)

dt
. (13)

Equation (11) can be seen as an extension with respect to

wideband channels of these narrowband representations of the

DS. However, the extended DS relationship in (11) shows

that different spectral components of transmitted wideband

signals experience different DSs, while this property cannot

be deduced from (13). Aside from laying the groundwork for

this extension, the generic definition of fD,ℓ(t; f) given by

(8) places the results in (11) and (12) within the TF analysis

framework. One can therefore leverage on the mathematical

tools of such a framework to explore the intrinsic relation-

ships established by (11) and (12) between the DS and the

propagation delays. Some preliminary results in this direction

are presented in [15].

III. INFLUENCE OF THE FREQUENCY-VARYING DS ON THE

CHANNEL’S NON-STATIONARY CHARACTERISTICS

Even though the DS’s frequency dependence has passed

nearly unnoticed in the field of land mobile radio commu-

nications, this feature of fD(t; f) is widely acknowledged in

other areas of the telecommunications, such as in underwater

acoustic communications [17]. However, several questions

remain open, such as those pertaining to the effects that the

frequency-varying character of fD(t; f) has on the channel’s

statistical properties.

The origin of the DS’s frequency-varying character is ex-

plained by observing that the maximum DS (MDS) fmax of

a monochromatic signal is proportional to the signal’s fre-

quency f according to the well-known relation fmax = fυ/c0,

where c0 is the speed of light [1]. Hence, for a wideband

signal having spectral components whose frequencies span an

interval fc−B/2 < f < fc+B/2, the MDS is a monotonically

increasing linear function of f given as

fmax(f) = f0
maxγ(f) (14)

where f0
max = fcυ/c0 is the carrier signal’s MDS, and γ(f)

is a proportionality factor equal to

γ(f) =
fc + f

fc
, f ∈ [−B/2, B/2]. (15)

The frequency dependence of fmax(f) produces faster fades

for the signal’s spectral components of higher frequencies.

Such effects are illustrated in Fig. 1, where we show

the absolute value of the TF-varying CTF H̃(t; f) =
H(t; f) exp{−j2πfct}. This figure was generated by simu-

lating the complex base-band equivalent CTF defined in (10)

for L = 20 and the edge frequencies, f1 = fc − B/2 and

f2 = fc +B/2, of a band-limited signal of bandwidth B. We

assumed that the gains gℓ are modeled by independent and

identically distributed (i.i.d.) random variables characterized

by a Rayleigh distribution, whereas the phases θℓ are modeled

by i.i.d. random variables uniformly distributed in [−π, π).
In addition, we modeled the time-varying propagation delays

τℓ(t) by considering an M2M channel based on the geomet-

rical one-ring scattering model described in [13, Sec. VI].

Specifically, following [13, Eq. (22)], we computed τℓ(t) as

τℓ(t) = τ0ℓ − t
f0
D,ℓ

fc
(16)

where f0
D,ℓ is the carrier signal’s DS for the ℓth MPC of

H(t; f) (see [13, Eq. (23)]). We computed τ0ℓ and f0
D,ℓ

according to [13, Eqs. (22), (23), and (29)] by considering the

parameters summarized in Table I. The values of fc and B can

be chosen arbitrarily, but B should be large, say B > fc/10, to

make the effects discussed in the lines below easy to observe

on a graph. For the example presented in Fig. 1, we chose

fc = 5.9 GHz and B = 2 GHz (note that such a large

bandwidth is considered only for the purposes of illustration;

the practical implications of having a comparatively small
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Fig. 1. Absolute value of the CTF at the edges of a wideband signal’s
bandwidth for an observation time interval of length T0.

TABLE I
VALUES OF THE RELEVANT PARAMETERS FOR THE COMPUTATION OF THE

INITIAL PROPAGATION DELAYS τ0
ℓ

AND THE CARRIER SIGNAL’S DS f0

D,ℓ
.

Parameter Value

Initial distance between the transmitting and
receiving MSs

500 m

Initial distance between the receiving MS and
the scatterers

30 m

Direction of motion of the transmitting MS 60◦

Speed of the transmitting MS 45 km/h

Direction of motion of the receiving MS 120◦

Speed of the receiving MS 45 km/h

Distribution of the angle of arrival of the
received MPCs of H(t; f)

Uniform on
the circle

bandwidth B ≪ fc are analyzed in Section IV). We conducted

our simulations for an observation time interval of length

T0 = 192 ms.

Figure 1 shows that the waveform of high frequency

f2 = fc + B/2 varies faster than the waveform of low

frequency f1 = fc − B/2. These differences in fading rate

cause the second-order statistics of H(t; f) to be jointly non-

stationary in time and frequency, because the waveforms of

higher frequencies decorrelate faster than those of lower fre-

quencies. This implies that the correlation function of H(t; f)
evaluated at two different observation points p1 = (t1; f1) and

p2 = (t2; f2) does not only depend on the time and frequency

lags ∆t = t2 − t1 and ∆f = f2 − f1, but it also depends on

the particular values of p1 and p2, meaning that the WSSUS

condition [9] is not fulfilled.

The fact that the WSSUS condition cannot be fulfilled due to

the DS’s frequency variations can be demonstrated analytically

on the grounds of the TF correlation function (TFCF) [18]

RH(t, f ; ∆t,∆f) = E{H∗(t−∆t, f)H(t, f +∆f)} (17)

where the operators E{·} and (·)∗ denote the statistical expec-

tation and the complex conjugate, respectively. If the channel’s

angular statistics and the velocity vectors of the transmitting

and receiving MSs remain constant in time, then the DS of

the ℓth MPC of H(t; f) can be modeled by a time-invariant

but frequency-varying quantity, fD,ℓ(f) (see Sec. II-A). Under

these conditions, and based on (12), we have

τℓ(t) = τ0ℓ − t
fD,ℓ(f)

fc + f
. (18)

For the computation of RH(t, f ; ∆t,∆f), we characterize the

gains gℓ and the phases θℓ as discussed previously in this

section for generating the graph in Fig. 1. We also assume that

the time-varying propagation delays τℓ(t) are mutually inde-

pendent but statistically equivalent random processes. Under

these conditions, we find E{H(t; f)} = 0, and we obtain the

following result by evaluating (17) using (10) and (18):

RH(t, f,∆t,∆f) = σ2
0E {exp {j2π [∆tfD(f)−∆fτ(t)]}}

(19)

where σ2
0 stands for the channel’s average power, whereas

fD(f) and τ(t) are arbitrary random processes in the sets

{fD,ℓ(f)}
L

ℓ=1 and {τℓ(t)}
L

ℓ=1, respectively.
Equation (19) shows that H(t; f) characterizes a non-

WSSUS channel, because its TFCF depends on the time vari-

able t and also on the frequency variable f . Furthermore, from

(18) and (19), it is evident that the second-order statistics of

H(t; f) are non-stationary jointly in time and frequency due to

the frequency-varying nature of the DS. If the DS’s frequency

variations are neglected, e.g., by invoking the uncorrelated

scattering (US) assumption [9] (such that fD(f) = f0
D and

fc + f = fc for |f | ≤ B/2), then the TFCF in (19) is equal

to a frequency-independent but time-dependent function

RH(t,∆t,∆f) = σ2
0E

{
exp

{
j2π

[
∆tf0

D −∆fτ(t)
]}}

(20)

where τ(t) = τ0 − tf0
D/fc. For this particular case, H(t; f)

is wide-sense stationary (WSS) in the frequency domain, but

non-WSS in the time domain. Furthermore, from (18) and

(19), we note that under the assumption that the WSSUS

condition holds, both the DS’s frequency variations and the

time-varying component of the propagation delays should be

neglected, such that fD(f) = f0
D for all |f | ≤ B/2 and

τ(t) = τ0 for all t. While these two conditions are in conflict

with the fundamental relationship between the DS and the

propagation delays, as discussed in Sec. II-C, they can be

met as approximations within a finite region Q of the TF

plane, such that fD(f) ≈ f0
D and τ(t) ≈ τ0 for (t, f) ∈ Q.

Thereby, Q defines a quasi-stationary region of non-WSSUS

channels, because E
{
exp

{
j2π

[
∆tfD(f) − ∆fτ(t)

]}}
≈

E
{
exp

{
j2π

[
∆tf0

D −∆fτ0
]}}

for (t, f) ∈ Q.
The result presented in (19) is similar to the TFCF presented

in other papers. For example, (19) is equivalent to the TFCF

obtained in [13, Eq. (36)] for non-WSSUS M2M Rayleigh

fading channels. There, it was found that1

RH(t, f,∆t,∆f) = σ2
0E

{
exp

{
−j2π

[
∆tf0

D

(
fc − f

fc

)

+∆f

(
τ0 − t

f0
D

fc

)]}}
. (21)

1In [13], the proportionality factor (fc+f)/fc is written as (fc−f)/fc , be-
cause the CIR is modeled in that paper for a positive argument of the complex
exponentials, such that H(t; f) =

∑

L

ℓ=1
gℓ exp

{

j[θℓ+2πτℓ(t)(fc −f)]
}

.
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However, the DS’s frequency-varying character was over-

looked in that paper, and it was concluded from (21) that

the channel’s non-WSSUS characteristics stem from the time-

varying nature of the propagation delays. This is not an

accurate conclusion, because for some particular cases, the

channel’s second-order statistics are stationary in the frequency

domain even if the propagation delays vary in time, as shown

in (20). The statistical expectation in (21) can be expressed

in a form similar to (19) by noting that the DS of the

wideband M2M channel model presented in [13] is equal

to fD(f) = f0
D(fc − f)/fc. This can be verified easily by

evaluating (8) using the complex conjugate of the CTF defined

in [13, Eq. (31)].2 The fact that the DS of the channel model

presented in [13] is a frequency-varying quantity conveys

a physical meaning to the results obtained in that paper

concerning the channel’s TF-dependent Doppler spectrum

D(t, f ; υ) =
∫∞

−∞
RH(t, f ; ∆t, 0) exp{−j2πv∆t} d∆t and

its variations over the frequency variable f . The reader is

referred to [13] for graphical examples of such variations.

The TFCF presented in (19) bears similarities also with the

TFCF computed in [12] for M2M channels. In that paper,

the DS of the carrier signal is modeled by a time-varying

but frequency independent quantity f0
D(t) given as in (13).

Invoking the US assumption, it is shown in [12, Sec. II-C]

that the channel’s TFCF is equal to the expectation in (20)

with f0
D replaced by f0

D(t). The generalization of (19) and its

particular case in (20) with respect to a time-varying DS is not

discussed in this paper, as our interest is in highlighting the

DS’s frequency-varying character. However, the similarities of

(20) with the results obtained in [12] reinforce the statement

that the channel’s statistics are WSS in the frequency domain

but non-WSS in the time domain if the DS is a frequency-

invariant quantity and the propagation delays vary in time.

IV. INFLUENCE OF THE FREQUENCY-VARYING DS ON THE

PERFORMANCE OF A VEHICULAR COMMUNICATION

SYSTEM

In practice, the frequency dependence of the DS could be

neglected stating that the bandwidth B of the transmitted

information signal is much smaller than the carrier frequency.

Thereby, the proportionality factor defined in (15) can be

approximated as γ(f) ≈ 1 for f ∈ [−B/2, B/2], and the MDS

given in (14) becomes a frequency-invariant quantity, which

motivates the assumption that H(t; f) fulfills the WSSUS

condition. However, such a simplification should not be done

thoughtlessly, as the channel’s non-stationary characteristics

that result from the frequency-varying DS could degrade the

system’s performance even if fc ≫ B.

To demonstrate that such non-stationarities are relevant

in practice, we present in this section a BER performance

analysis of a vehicular communications system based on

the IEEE 802.11p Standard [10]. For that purpose, we have

simulated the transmission of 10,000 physical layer conver-

gence procedure frames. Each frame comprised 2 orthogonal

2In the light of the concepts discussed in Section II, it follows that the
frequency-invariant quantities defined in [13, Eqs. (13) and (23)] characterize
only the carrier signal’s DS.

TABLE II
PARAMETERS OF THE SIMULATED OFDM SYMBOLS.

Parameter Value

Carrier frequency 5.9 GHz

Bandwidth 10 MHz

Number of total subcarriers 64

Number of data subcarriers 48

Number of pilot subcarriers 4

Modulation Binary phase shift keying

Coding rate None

frequency division multiplexing (OFDM) training symbols,

and 32 OFDM data symbols. The OFDM symbols were

simulated in accordance to the specifications of the IEEE

802.11p Standard [10] with the parameters listed in Ta-

ble II. At the receiver side, we considered the zero-forcing

equalizer and four different channel estimation techniques,

namely: The Least Squares (LS) [19], Constructed Data Pilots

(CDP) [20], Spectral-Temporal Averaging (STA) [19], and

Frequency Linear-Averaged Data Pilot (FLDP) [21] estimation

techniques. The former two techniques apply a time domain

interpolation for the channel state information tracking and

noise cancellation, whereas the latter two apply a joint TF

interpolation. The parameters α and β of the STA channel

estimator [19] were chosen equal to α = β = 2. We computed

the BER of the four channel estimators for the case that the

propagation channel fulfills the WSSUS condition, and also

for the case that this condition is not met. In both cases,

the channel was simulated on the grounds of (10) following

the procedure described in Sec. III for generating the graph

shown in Fig. 1. We note that a WSSUS channel model is

obtained from (10) if the factor τℓ(t)(fc + f) is replaced by

f0
Dt+ fτ0, as this is equivalent to assume that fDℓ(f) = f0

D

for all |f | ≤ B/2 and τℓ(t) = τ0ℓ for all t. The reader is

referred to [22] for a detailed description of the four channel

estimation techniques and our simulation set up.

The results of our simulations are presented in Fig. 2.

Figure 2(a) shows that the BER performance of the channel

estimators that only apply a time-domain interpolation (LS and

CDP) is nearly the same for the WSSUS and non-WSSUS

channels. However, Fig. 2(b) shows that the performance of

the channels estimators that apply a joint TF interpolation

(STA and FLDP) is severely affected by the channel’s non-

stationarities. Such a performance degradation is explained by

the fact that both the STA and the FLDP estimators rely on the

stationarity of the channel’s second-order statistics for noise

cancellation and channel state information tracking, but such

statistics are non-stationary due to the DS’s frequency-varying

character.

V. CONCLUSIONS

In this correspondence, we have shown that the DS of

wideband mobile radio channels can be characterized in gen-

eral by the IF of the CTF. Based on this generic definition,

we demonstrated that the DS is a frequency-varying quantity.
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(a)

(b)

Fig. 2. BER of a vehicular communication system based on the IEEE 802.11p
Standard [10] considering the LS, STA, CDP, and FLDP channel estimation
techniques for WSSUS and non-WSSUS channels.

Even though the DS varies in the frequency domain at a slow

rate, this feature of the DS cannot be discarded thoughtlessly,

as it causes the channel’s second-order statistics to be non-

stationary jointly in time and frequency. We presented a

numerical BER performance analysis of a vehicular commu-

nication system based on the IEEE 802.11p Standard. The

obtained results show that the channel’s non-WSSUS charac-

teristics stemming from the DS’s frequency variations degrade

significantly the system’s performance when a combined TF

interpolation strategy is applied for channel estimation and

noise cancellation.
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