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Improving risk assessments in conservation
ecology
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Conservation efforts and management decisions on the living environment of our planet often

rely on the results from statistical models. Yet, these models are imperfect and quantification

of risk associated with the estimate of management-relevant quantities becomes crucial in

providing robust advice. Here we demonstrate that estimates of risk themselves could be

substantially biased but by combining data fitting with an extensive simulation–estimation

procedure, one can back-calculate the correct values. We apply the method to 627

time series of population abundance across four taxa using the Gompertz state-space model

as an example. We find that the risk of large bias in population status estimate increases with

the species’ growth rate, population variability, weaker density dependence, and shorter time

series, across taxa. We urge scientists dealing with conservation and management to adopt a

similar approach to ensure a more accurate estimate of risk measures and contribute towards

a precautionary approach to management.
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One of the main challenges and goals in conservation
ecology is to sustainably manage the integrity of the
ecosystem. A healthy ecosystem provides numerous ser-

vices to the human population including food, climate regulation,
disease regulation, nutrient cycling, and cultural experience1. In
order to manage an ecosystem sustainably with its wildlife and
surrounding environment, sound management decisions based
on the knowledge of the structure and dynamics of the ecosystem
are required2. Statistical models have often served as a workhorse
behind many conservation or management decisions by provid-
ing important estimates of population status. These include
examples of IUCN red list definition3, endangered species listing
in the US or Canada4, fisheries catch limits estimation5, and
more. However, models are mere simplifications of the complex
dynamics of the natural system6. Therefore, appropriate con-
sideration of uncertainty is crucial to avoid fallacious inter-
pretation of ecosystem functioning7,8. Sources of uncertainty
represent, for example, our lack of knowledge on the mechanisms
that govern the population dynamics or errors associated with
measurements of the population. In this regard, it has become
increasing popular and important to quantify risks (used in this
study as the probability that something harmful to the society
might happen e.g., risk of overexploitation, risk of population
extinction) in population and conservation ecology9,10 and many
institutions as well as regulations now require a precautionary
approach to conservation and management11.

However, estimates of risk may themselves be biased in sta-
tistical models—even in ones that are carefully configured12. This
can have important consequences if these estimates are directly
used to provide management advice. Much work has gone into
evaluating model performance and parameter estimation bias13,14

or evaluating risks of management strategies8,15 but little has been
directed to develop approaches that can correct for the inherent
bias in risk estimates and calculate the correct level of risk
associated with the study system. Indeed, all statistical models are,
to some degree, subject to estimation bias and all model para-
meters (and derived quantities) have a probability of being esti-
mated as a different set of values, depending on the amount of
noise in the data, time-series length, and the statistical properties
of the model.

Here we focus on a risk measure with management relevance: the
probability that the estimate of final-year population depletion is at
least 50% biased i.e., an absolute relative error rate of 0.5. Popula-
tion depletion estimate—estimate of population size at the end of
the time series compared to the population size at the start of the
time series (or another reference point)—is often used to assess
population status in fisheries and set catch limit accordingly i.e., if
this ratio is below a given limit, no harvest is allowed, but when this
ratio is high, a higher catch is allowed. The so-called 40–10 rule
used in the US West coast by the Pacific Fishery Management
Council is an example. We refer to this risk measure as risk of
biased population status estimate. Through an extensive
simulation–estimation procedure (>5 million datasets were gener-
ated. Fig. 1 and Methods), we quantify the risk of biased population
status estimate for 627 time series of population abundance from
the Global Population Dynamics Database (GPDD), covering four
taxonomic groups16.

Briefly, our approach consists in creating an extensive set of
realistic population dynamics scenarios, appropriate for wildlife
populations, from which we simulate data then perform data
fitting. Next, we use the results from this simulation–estimation
routine to back-calculate the probability that certain parameter
combinations can be estimated as a different set of values (that we
call the “true” parameter range). This probability depends on the
parameter combination itself but also on the time-series length.
We demonstrate our approach by using the Gompertz state-space

model (GSSM) as an example and show that the risk of biased
population status estimate could be substantial for data-limited
species with high growth potential, high population variability,
and with weak density dependence. Gompertz model have been
extensively used in ecology to study the dynamics of many dif-
ferent taxa17–19 due to its well-known statistical properties, ability
to capture important population processes such as density
dependence (i.e., how important population processes change
over time in relation to the population density) and different
sources of uncertainty, as well as the fact that it does not require
extensive quantities of data. Our approach is, however, applicable
to many other ecological models, such as the Ricker model, theta-
logistic model, and more complex models.

Results
Factors influencing the accuracy of risk estimates. Using the
example of the GSSM, we find that the underlying risk of biased
population status estimate varies depending on the species life
history and length of the time series (Supplementary Figs. 1–3).
In general, species with high growth potential, high population
variability, and weak density dependence tend to have a higher
risk level than species with low growth potential, low variability,
and high density dependence (Fig. 2a–e). High population
variability adds noise to the data, which complicates parameter
estimation20. Similarly, shorter time series complicate estimation
as limited information is available to separate the signal from
noise17. Species with weaker density dependence have increasing
bias in the estimates of growth parameters (Supplementary
Fig. 4), which leads to more bias in the estimate of final-year
depletion level, and more risk (Fig. 2a–e).

On the other hand, estimates of density dependence are more
biased for species with strong density dependence21 (Supplemen-
tary Fig. 5). Finally, higher growth potential increases the risk of
biased population status estimate because of a scaling issue: the
GSSM population abundance is log transformed for
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Fig. 1 Schematic illustration of the simulation–estimation and parameter
back-calculation. Schematic of a the simulation–estimation procedure and
b back-calculation of the “true” parameter range that can produce the
estimated values. Points in blue are the “true” parameter values used in the
simulation (summarized here in a theoretical 2D surface). Points in green
are the estimated parameter values (maximum likelihood estimate) when
model are fitted to data generated from the corresponding simulation
scenario (i.e., the blue points where the black arrows point towards in a).
The magenta line with the magenta point in a shows the location of the
unbiased parameters estimates. Any difference between the magenta and
green points suggest parameter bias. In panel b, the shaded blue area in the
“true” parameter space shows the range of estimated “true” parameter
values that could have led to the green point in the estimated parameter
space based on the simulation–estimation results from a. Additionally, in
panel b, X points at the center of gravity of the “true” parameter space, the
magenta point is the corresponding projection in the estimated parameter
space, and the purple arrow shows the average bias
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computational efficiency and accuracy but when back-
transformed discrepancies in the estimates of bias are created
e.g., underestimating by 10% a population size of 2 (in log scale)
leads to a negative bias of 18% in original scale, whereas
underestimating by 10% a population size of 10 (in log scale)
leads to a negative bias of 63% in original scale.

Directionality of bias. There were more false-positives in risk
estimates (i.e., thinking that population is healthier than it

actually is by at least 50%) for species in the lower risk cate-
gory (i.e., species with lower growth rate, lower population
variability, and stronger density dependence) but the pro-
portion of false-positives decreases with the species risk
category (Fig. 2a–e, Supplementary Figs. 2–3). This suggests
that estimates of population depletion for species categorized
in the lower risk zone have a low chance (<30%) of being very
biased (>50% bias) but when they are, they have close to 75%
chance of overestimating population status. An over-
estimation of the population status may lead to an elevated
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Fig. 2 Risk of biased population status estimate. Risk maps of biased population status estimate across four taxonomic groups (birds, fish, insects, and
mammals) with a time series length ranging from 21 to 30 years. Risks are quantified as having more than 60% (orange-red), 30–60% (orange), and below
30% (bluish-green) chance of estimating the final-year depletion level (how much the population has changed compared to the start of the time series or
another reference point) with at least 50% bias in both directions. Risk are quantified based on the results from extensive (135,000 scenarios)
simulation–estimation study. The risk map is summarized in 2D based on total (both process and observation) population variability measured in terms of
coefficient of variation and population density dependence. The plot is restricted to the parameter range used in the simulation studies. The panels are
organized by the species intrinsic rate of growth from very slow-growing (0–0.3) (a), slow-growing (0.3–0.7) (b), medium-growing (0.7–1.1) (c), fast-
growing (1.1–1.5) (d), to very fast-growing (>1.5)) (e) species. The filled dots are the estimated parameter values for the four taxonomic groups (birds
(purple), fish (gray), insects (blue), and mammals (yellow)) and the arrows show the most plausible (“true”) parameter values that could have generated
such estimates. The pie chart within each panel identifies the sign of estimation bias for each risk category i.e., false-positive (thinking the population is
more than 50% healthier than it really is) in dark gray and false-negative (thinking the population is more than 50% in poorer condition that it actually is)
in light gray. The thicker yellow arrows illustrate the example of muskrat (photo credit: Wikimedia Commons) from different regions of Canada
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risk of population reduction (if population depletion estimate
is used for setting species harvest limit e.g., the so-called 40–10
rule in fisheries) with negative consequences for conservation.
Conversely, an underestimation of population status may lead
to underestimation of the harvest potential of the population
with negative socio-economic consequences.

We also find that the estimated risk of biased population status
is often biased and the direction of bias is mostly influenced by
the species growth potential, when using GSSM. The “true” risk
level of a species with high growth rate tends to be larger than the
one estimated from data (arrows pointing more toward the
orange-red zone), while the risk for a species with lower
growth rate tends to be lower (arrows pointing more toward

the bluish-green zone), independently of the taxa (Fig. 3a, c, e).
As an example, three local populations of muskrat (Ondatra
zibethicus)—a semi-aquatic rodent native from North America
that is important to wetland ecology (due to its large grazing
capability) and to the local economy (thanks to its fur)22—in
Canada are all estimated to be at medium risk but the
simulation–estimation exercise indicates that species with such
parameter estimates and time series length should have a much
higher risk on average (Fig. 2e). This suggests that the estimates of
final-year population depletion level for these three rodents’
populations are more likely to be highly biased (at least 50%) and
would therefore require additional precaution if managing the
populations based on such estimates.
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Fig. 3 Directionality and strength of bias in risk estimates. The directionality and strength of bias in risk (of large bias in population status) estimates for
different combination of population variability and density dependence for a very slow-growing species, c medium-growing species, and e very fast-
growing species with a time series length ranging from 21 to 30 years. The longer the arrow, the stronger the bias. In this illustration, the base of the arrow
shows the point estimates based on the GSSM fit to data and the arrow points towards the center of gravity of the “true” parameter range that likely
generated such values based on simulation. The underlying color-coded risk map (orange-red >60%, orange between 30–60%, and bluish-green <30%
chance of estimating the final-year depletion level with at least 50% bias) is represented based on the total (both process and observation) population
variability measured in terms of coefficient of variation and population density dependence. The plot is restricted to the parameter range used in the
simulation studies. b, d, f Contour plots of the back-calculated “true” parameter range for a few examples of very slow-, medium-, and very fast-growing
species. Contour lines represent the probability density with higher density at the center of the contour
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Back-calculating the “true” parameter range. The “true” para-
meter values that likely generated the observed parameter esti-
mates are quite uncertain and encompass varying degree of risk
level (Fig. 3b, d, f). For example, species with similar parameter
estimates to the three rodents mentioned above (i.e. the bottom
left region of Fig. 3f) have roughly a 50–50 chance of falling either
in the medium- or high- risk categories, whereas the most likely
values fall in the high-risk zone. Furthermore, certain parameter
combinations can even originate from a multimodal surface
(Fig. 3b). All of the above observations suggest that rigorous risk
evaluation needs to consider the full distribution of back-
calculated “true” parameter values.

Concomitantly, future studies should also consider other
sources of uncertainty such as parameter estimation uncer-
tainty (see Supplementary Fig. 8 for illustrative example) or
model types uncertainty (e.g., using a theta-logistic model in
addition to GSSM) when back-calculating risk values. One can
do so by taking a Bayesian modelling approach and increasing
the number of simulated scenarios, for example. However, care
must be taken as such transition may require an extensive
computational time, careful consideration of model conver-
gence criteria, and challenges in creating simple yet informative
summary figures. We explicitly did not include the above in this
study as our main objective was to create an illustrative, yet
convincing example to convey the importance of combining a
simulation–estimation exercise along with data fitting. The
applicability of this approach is therefore not only limited to
GSSM but to all other statistical models where
simulation–estimation exercise can be performed.

Take-home messages. The main take-home of our work is two-
fold. (i) We find that the estimated risk of large bias in population
status could be substantially biased for data-limited species with
high growth potential, high population variability, and weak
density dependence, when using the GSSM to provide advice for
management. (ii) More broadly, our findings demonstrate the
importance of combining a simulation–estimation exercise along
with data fitting to have a more accurate and robust view of the
risks associated with management-relevant quantities and con-
tribute towards a precautionary approach to management. Suc-
cessful management of the living environment of our planet relies
on models that tell the true story, hence we make a general call for
improved risk assessment in conservation ecology.

Methods
Use of the GPDD. GPDD is one of the largest collections of population time
series available online and has been extensively used to study cross-taxa patterns
in density dependence, extinction risks, population cycles, weather effect18. It
contains more than 5000 time series of population abundance obtained from
various forms of population surveys, and from many different taxa such as fish,
insects, mammals, and birds. However, not all datasets are reliable. Thus, data
were filtered out from the database using the same criteria as in ref. 18 i.e.,
harvest and non-index based data were removed, as well as data sampled at non-
annual intervals and time series with less than 15 unique values (Supplementary
Figure 6). The identities of the individual datasets analyzed are as follows: 1, 2, 3,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61,
1090, 1093, 1097, 1101, 1102, 1104, 1106, 1109, 1111, 1112, 1115, 1116, 1159,
1160, 1163, 1166, 1170, 1174, 1181, 1185, 1188, 1189, 1207, 1235, 1239, 1314,
1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1327, 1328,
1329, 1331, 1333, 1334, 1336, 1337, 1339, 1340, 1341, 1342, 1343, 1347, 1348,
1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361,
1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1377, 1402, 1403, 1405, 1505,
1507, 1508, 1516, 1517, 1522, 1523, 1524, 1526, 1536, 1602, 1612, 1613, 1618,
1626, 1628, 1633, 1660, 1664, 1667, 1669, 1670, 1671, 1674, 1783, 1792, 1826,
1828, 1829, 1830, 1831, 1857, 1858, 1860, 1865, 1866, 1868, 1869, 1870, 1875,
1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888,
1889, 1893, 1894, 1927, 1941, 1949, 1964, 1965, 1966, 1968, 1970, 1971, 1973,
1974, 1976, 1978, 1981, 1982, 1983, 1984, 1986, 1987, 1988, 1990, 1991, 1992,
1993, 1994, 1998, 1999, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011, 2012,
2013, 2015, 2016, 2017, 2018, 2019, 2020, 2024, 2025, 2026, 2027, 2028, 2031,

2032, 2033, 2034, 2066, 2096, 2097, 2098, 2721, 2722, 2726, 2732, 2733, 2736,
2737, 2757, 2758, 2759, 2771, 2774, 2775, 2778, 2780, 2781, 5019, 5020, 5024,
5026, 5029, 5032, 5033, 5034, 5035, 5036, 5037, 5038, 5039, 5040, 5044, 5045,
5047, 5049, 5054, 5055, 6057, 6059, 6061, 6144, 6522, 6527, 6528, 6529, 6530,
6531, 6532, 6533, 6534, 6535, 6536, 6537, 6538, 6541, 6542, 6547, 6549, 6550,
6552, 6553, 6554, 6555, 6558, 6561, 6564, 6565, 6566, 6567, 6568, 6570, 6571,
6582, 6588, 6589, 6590, 6633, 6634, 6657, 6673, 6674, 6676, 6677, 6678, 6688,
6713, 6714, 6715, 6764, 6765, 6770, 6863, 6864, 6865, 6866, 6867, 6868, 6869,
6870, 6871, 6872, 6873, 6874, 6875, 6876, 6877, 6878, 6879, 6880, 6881, 6882,
6883, 6884, 6885, 6886, 6887, 6888, 6889, 6890, 6891, 6892, 6893, 6894, 6895,
6896, 6897, 6898, 6899, 6900, 6901, 6902, 6903, 6904, 6905, 6906, 6907, 6908,
6909, 6910, 6911, 6912, 6913, 6914, 6915, 6916, 6917, 6918, 6919, 6920, 6921,
6922, 6923, 6924, 6925, 6926, 6927, 6928, 6929, 6930, 6931, 6932, 6933, 6934,
6935, 6936, 6937, 6938, 6939, 6940, 6941, 6942, 6943, 6944, 6945, 6946, 6947,
6948, 6949, 6950, 6951, 6953, 6955, 6956, 6957, 6958, 6959, 6960, 6961, 6962,
6963, 6964, 6965, 6966, 6967, 6968, 6970, 6971, 6972, 6973, 6974, 6975, 6976,
6977, 6978, 6982, 6983, 6985, 6986, 6987, 6989, 6990, 6991, 6992, 6993, 6994,
6995, 6996, 7022, 7025, 7041, 7042, 7048, 7051, 7059, 7060, 7061, 7067, 7088,
7089, 7091, 7092, 7093, 7094, 7096, 7115, 7119, 9185, 9186, 9187, 9188, 9191,
9192, 9200, 9207, 9211, 9232, 9245, 9247, 9270, 9271, 9272, 9273, 9276, 9277,
9279, 9280, 9294, 9308, 9330, 9331, 9339, 9344, 9347, 9355, 9357, 9370, 9371,
9372, 9373, 9374, 9375, 9376, 9377, 9378, 9379, 9381, 9391, 9393, 9395, 9400,
9436, 9437, 9438, 9439, 9440, 9441, 9442, 9443, 9444, 9445, 9446, 9447, 9460,
9463, 9506, 9507, 9513, 9515, 9519, 9641, 9685, 9686, 9688, 9689, 9690, 9691,
9692, 9693, 9694, 9695, 9696, 9698, 9699, 9700, 9701, 9702, 9703, 9704, 9705,
9706, 9707, 9708, 9709, 9710, 9711, 9712, 9713, 9714, 9715, 9717, 9718, 9719,
9720, 9721, 9722, 9723, 9724, 9725, 9726, 9727, 9728, 9729, 9730, 9731, 9732,
9733, 9734, 9736, 9737, 9738, 9739, 9740, 9741, 9793, 9794, 9795, 9796, 9797,
9832, 9835, 9836, 9837, 9855, 9856, 9857, 9858, 9859, 9860, 9861, 9862, 9863,
9864, 9865, 9866, 9867, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9876,
9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9887, 9888, 9893,
9894, 9896, 9897, 9898, 9899, 9901, 9902, 9903, 9904, 9907, 9947, 9948, 9949,
9950, 9951.

The GSSM. Our basic model expresses the change in log-population size, ln(Nt),
over annual time step t, as a function of its growth potential i.e., the maximum rate
that a population can increase from a time step to another, and a density-
dependent effect on population increase, which accounts for processes such as
competition, disease, and predation. These two processes are represented in the
model by the parameter μ and ρ, respectively. On top of that, a stochastic term is
added to the model to acknowledge our lack of understanding of the complex
dynamics of natural systems. The latter is represented by the Gaussian distribution
N with the variance term σ2proc.

ln Ntð Þ � Nðμþ ρ ln Nt�1ð Þ; σ2procÞ ð1Þ
From the above population, sampling is performed to obtain an index of

population abundance

ln Otð Þ � N ðln Ntð Þ; σ2obsÞ ð2Þ
The sampling of population abundance is often imperfect and comes with some

level of uncertainty, which is again represented by a Gaussian distribution with
variance term, σ2obs. We note that both Nt and Ot are log-normally distributed, thus
are strictly positive.

Simulation–estimation procedure. To evaluate the performance of GSSM in
estimating management-relevant parameters, we run a simulation–estimation
procedure under a variety of scenarios representative of the population dynamics
observed in the wildlife, across different taxa. The simulation–estimation experi-
ment consisted of the following steps. (i) Create relevant simulation scenarios using
GSSMs. A scenario was defined by a unique combination of model parameters
(Supplementary Table 1). The scenarios were based on a literature review to
determine the range of relevant parameters across taxa (Supplementary Table 1).
This step generated a time series of population abundance and observations. (ii)
We then fitted GSSMs to the generated data by using Template Model Builder
(TMB)23, a program that computes the marginal likelihood of the fixed effects and
integrates over the random effects using Laplace approximation. The marginal
likelihood was then maximized using the nonlinear maximization routine optim
available in the R statistical environment24 (version 3.5.2). Many other estimation
approaches exist in the literature (both in frequentist and Bayesian frameworks)
and have been used to fit GSSMs but studies showed that both Bayesian and
frequentist approach produce biased parameter estimates and suffer from esti-
mation problems13. (iii) We repeated this process many times until we got 50
results that converged (i.e., a successful convergence message code from optim and
an invertible hessian matrix). Convergence failure rate during
simulation–estimation varied between 0 and 0.7 (i.e., 70%) depending on the
scenario (Supplementary Fig. 7). (iv) Then, we examined the bias in the estimated
parameters as well as the estimated risks of biased population status (see section

below). Bias was calculated as the absolute relative error rate: E Xð Þ�Xtrue
Xtrue

���
���, with X
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being the variable of interest. We run all possible combinations of parameters from
Supplementary Table 1 to create a total of 135,000 scenarios.

Fitting GSSMs to the GPDD. In addition to the above simulation–estimation
procedure, we also fitted GSSMs to the GPDD time series. Convergence was
also examined based on a successful convergence message code from optim and
an invertible hessian matrix. If the model did not converge, we re-iterated the
model fitting process using a different parameter starting value (sampled
randomly from an uniform distribution μ ~U[0,max(y)], ρ ~U[−1,1], ln(σobs)
~U[−5,2], except ln(σproc) that was fixed at 0 for all starting value combina-
tions). If the model failed to converge after 1000 iterations, we flagged the time
series as non-converged. Nine out of 627 GPDD time series (~1.4%) failed to
converge thus were left out from the analysis. For these time series, no
appropriate GSSM parameter values could be estimated with our methods thus,
were not used together with the simulation–estimation results to back-calculate
the “true” parameter range (see section below for definition and method
detail). Additionally, we noted that for certain time series, GSSM estimated
relatively large process error variance. To match the simulation–estimation
exercise (which encompasses many realistic scenarios), we only plotted species
for which the density-dependent parameter ρ was estimated between 0 ≤ ρ ≤ 1,
and species with a total variability (coefficient of variation) between 0 and 2.
CV was calculated in this study based on the total variance (sum of the
observation and process error variance (in log scale)) and scaling it by the
equilibrium population size (in log scale). See Eq. (1) and (2) for the meaning
of the variables.

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2proc þ σ2obs

q

μ=ð1� ρÞ
ð3Þ

Risk evaluation. Here, we focused on a risk measure with relevance for man-
agement i.e., the probability that the estimate of final-year population depletion
is at least 50% biased i.e., an absolute relative error rate of 0.5. Population
depletion estimate (i.e., the population size at the end of the time series com-
pared to the population size at the start of the time series or another reference
point) has often been used in fisheries to assess the status of fish populations and
set catch limit (i.e., harvest quota) e.g., the so-called 40–10 rule set by the Pacific
Fishery Management Council in the US West coast, or as a proposed manage-
ment plan for European fisheries25. We referred to it as the risk of biased
population status estimate. For each simulation scenario (i.e., specific life his-
tory), we calculated the probability (i.e., how often based on the extensive
simulation–estimation runs that were conducted) that the final-year population
estimate was at least 50% biased (i.e., the estimate is more than 50% off in either
direction, compared to the truth used in the simulation). A species with high risk
can have, for example, 80% chance of having at least a 50% bias in the final
population depletion estimate. These results were subsequently used to create
color-coded 2D maps, which summarize the risk of biased population status
estimate with respect to important species life history characteristics (Figs 2, 3).
Species falling in the orange-red zone have more than 60% chance of ≥50% bias,
in the orange 30–60% change of ≥50% bias, and in bluish-green zone lower than
30% chance of ≥50% bias.

In addition to the above analysis of bias, we also used the results from
extensive simulation–estimation (135,000 scenarios, 6.75 million datasets) to
do a backward reasoning i.e., instead of looking at the range of parameter
estimates (for each simulated dataset) that each scenario lead to, we looked at
each simulated dataset (thus with a specific time series length) with its
population parameter estimates and determined the combination of true
population parameters (i.e., simulation scenario with the matching time series
length), which could lead to such parameter estimates. In a sense, the approach
is philosophically similar to the approximate Bayesian computation (ABC) but
we do not make any direct use of the simulated data per se as opposed to the
ABC, which require using a metric that compares the simulated data with the
observed data. We will refer to it as “true” parameter back-calculation in this
study. In order to do so, all parameters were binned into categories following
the values chosen in the simulation analysis (Supplementary Table 1). As an
example, a 25-year population time series ([15,30) years), with μ, ρ, and CV
estimated, respectively, between [0.3, 0.6], [0.55, 0.65], and [0.4, 0.6] might not
only come from a population dynamic models with the same parameter
combination but from a range of models with different parameter
combinations: what we will refer to as back-calculated “true” parameter space.
To help visualization, the back-calculated “true” parameter space was
summarized in 2D using contour plots (the two-dimensional kernel density
smoother function kde2d from the MASS package in R was used) over plots
with the CV values on x-axis, ρ values on the y-axis, and the growth category
on each panel. This contour plots allow to visualize the global directionality of
bias (i.e., the center of gravity of the back-calculated “true” parameter space)
but also the inherent uncertainty associated with the study case (i.e., surface
area of the back-calculated “true” parameter space).

We finally apply the approach to the GPDD data by linking the point estimates
from the data and the time series length with the results from the
simulation–estimation procedure to back-calculate the true parameter space.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper, the source data files, and from https://www.imperial.ac.uk/cpb/gpdd2/secure/
login.aspx.

Code availability
R code to reproduce the simulation–estimation as well as the data fitting to GPDD is
included in the source data.
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