
Date of publication xxxx 00, 0000, date of current version August 02, 2019.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Language and Platform Independent
Co-simulation Framework based on the
Functional Mock-up Interface
LARS I. HATLEDAL1, ARNE STYVE2, GEIR HOVLAND3, AND HOUXIANG ZHANG.1, (Senior
Member, IEEE)
1Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway
2Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Ålesund, Norway
3Department of Engineering Sciences, University of Agder, Grimstad, Norway

Corresponding author: Lars I. Hatledal (e-mail: laht@ntnu.no).

The research presented in this paper is supported by the Norwegian Research Council, SFI Offshore Mechatronics, project number 237896.

ABSTRACT
The main goal of the Functional Mock-up Interface (FMI) standard is to allow the sharing of simulation
models across tools. To accomplish this, FMI relies on a combination of XML-files and compiled C-
code packaged in a zip archive. This archive is called a Functional Mock-up Unit (FMU). In theory, an
FMU can support multiple platforms, but not necessarily in practice. Furthermore, software libraries for
interacting with FMUs may not be available in a particular language or platform. Another issue is related
to the protection of intellectual property (IP). While an FMU is free to only provide the C-code in its
binary form, other resources within the FMU may be unprotected. Distributing models in binary form
also opens up the possibility that they may contain malicious code.
In order to meet these challenges, this paper presents an open-source co-simulation framework based on
FMI, which is language and platform independent thanks to the use of well-established remote procedure
call (RPC) technologies. One or more FMUs are wrapped inside a server program supporting one or
more language independent RPC systems over various network protocols. Together, they allow cross-
platform invocation of FMUs from multiple, including previously unsupported, languages. The client-
server architecture allows the effective protection of IP while also providing a means of protecting users
from malicious code.

INDEX TERMS Co-simulation, Distributed simulation, FMI, FMU, Model Exchange, RPC

I. INTRODUCTION

No one simulation tool is suitable for all purposes, and
complex heterogeneous models may require components
from several different domains, perhaps developed in sep-
arate, domain-specific tools. Co-simulation refers to an
enabling technique, where different sub-systems making
up a global simulation are being modeled and run in a
distributed fashion. Each sub-system is a simulator and
is broadly defined as a black box capable of exhibiting
behavior, consuming inputs, and producing outputs [1].
Co-simulation is a hot topic in research fields such as
automotive [2], [3], maritime [4]–[6] and power systems [7].
Compared to more traditional monolithic simulations, co-
simulation encourages re-usability, model sharing and fusion
of simulation domains. A crucial point is that it allows users

to simulate models exported from different tools together,
enabling simulation of the type of complex cyber-physical
systems found in areas such as the automotive and maritime
industry. Fig. 1 illustrates a possible co-simulation scenario
for a vessel, which requires models from several different
domains. Co-simulation is absolutely imperative for this
scenario to succeed, not only because models from different
domains need to be coupled, but also because the models
may originate from different, perhaps competing companies
that would not be willing to share their models in any other
form than as a black-box model.

Distributed co-simulation refers to the idea that a co-
simulation can be distributed not only logically, but physi-
cally across a network. There are several reasons to perform
a co-simulation with one or more remote simulators. For

VOLUME 4, 2016 1

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

FIGURE 1: Simulation of a complex cyber-physical system in the maritime domain. The complete vessel model is
constituted by the individual sub-modules connected through FMI for Co-simulation. Sub-model figures courtesy of the
Virtual Prototyping of Maritime Systems and Operations project (Research Council of Norway, grant nr. 225322).

instance, a simulator may impose one or more require-
ments onto the simulation environment, such as a platform,
software, or license requirement, that is for some reason
impossible to meet. In such a case, the simulator can run in
a compatible environment and accessed remotely. Also, if
the overall simulation is suited for parallelization, it may be
more efficient to balance the workload over several compu-
tation nodes. Another use-case is to prevent the execution
of malicious code on a sensitive system by accessing it
from a sand-boxed environment. Physically distributed co-
simulation is also an excellent way of protecting intellectual
property (IP), as clients would not have direct access to the
simulation model. It’s also worth noting that distributed co-
simulations are vital for enabling digital twin technology,
which requires the integration of industrial internet of things
devices.

Multi-domain co-simulation is not without its chal-
lenges [8]. However, the Functional Mock-up Interface
(FMI) standard [9] tries to make this task easier and more
accessible by defining a standard way of interfacing simu-
lation models. More specifically, FMI is a tool independent
standard that supports both model exchange (ME) and co-
simulation (CS) of dynamic models. A model implementing
the FMI standard is known as a Functional Mock-up Unit
(FMU). Many tools support FMUs, and it has become the
de-facto standard for ME and CS. However, it does not solve
everything and itself brings some problems. These issues
are:

• Open-source FMI implementations exist for relatively
few programming languages, like C, C++, Java and
Python.

• FMI is cross-platform in theory, but not necessarily in
practice. It depends on the exporting tools’ ability to
cross-compile.

• An FMU may require a particular software or license.
• An FMU may only support instantiating a single

model-instance per process.
• The binary code within an FMU may contain malicious

code.
• Reluctance to share FMUs even if the source code is

provided in binary form, due to IP concerns.
Fortunately, distributed access can solve these issues. In

describing how and presenting a benchmark, this paper
builds on the work presented in [10], which introduced a
framework for accessing models compatible with FMI 2.0
for CS and ME in a language and platform-independent
manner. This is achieved using well-established remote
procedure call (RPC) technologies, allowing cross-platform
clients and servers to be written in most major languages,
overcoming the issues listed above. For instance, this kind
of architecture protects IP and prevents unintended distri-
bution [11]. Furthermore, it allows the use of FMUs with
special requirements, such as pre-installed software and
license requirements, from otherwise incompatible systems.

Server and client implementations have been realized
for both C++ and the Java Virtual Machine (JVM). Proof
of concept clients also exists for Python, JavaScript and
MATLAB. Thanks to the stub generation capability of
selected RPC systems, such as Apache Thrift and gRPC,
additional implementations are easy to realize as the selected
RPC’s compiler will auto-generate most, if not all, of the
code required to interact with the remote FMUs.

The rest of the paper is organized as follows. Sec-
tion II introduces recent and related work on FMI and
distributed co-simulation. A presentation of the high-level
architecture of the framework, as well as an introduction
of the necessary background on the RPC standards and
technologies referenced in this work, is provided in Sec-
tion III. Implementation details follows in Section IV. A
case study is presented in Section V along with a discussion
of relevant findings. Finally, Section VI concludes the paper
and provides directions for future work.

II. RELATED WORK
This section presents a brief summary of the current state of
the FMI standard and distributed FMI based co-simulation.

A. THE FUNCTIONAL MOCK-UP INTERFACE
FMI is a tool independent standard that supports both (ME)
and (CS) of dynamic models. Currently at version 2.0, the

2 VOLUME 4, 2016

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

standard was one of the results of the MODELISAR project
and the Modelica Association manages it today. A key goal
of FMI is to improve the exchange of simulation models
between suppliers and original equipment manufactures
(OEMs).

An FMU is a model that implements the FMI standard
that is distributed as a zip-file with the extension .fmu. This
archive contains:

• An XML-file that contains meta-data about the model,
named modelDescription.xml.

• C-code implementing a set of functions defined by the
FMI standard.

• Other optional resources required by the model imple-
mentation.

The FMI standard consists of two main parts, both of
which a single FMU may support:

• FMI for ME: Models are exported without solvers and
are described by differential, algebraic, and discrete
equations with time-, state-, and step-events.

• FMI for CS: Models are exported with a solver, and
data is exchanged between subsystems at discrete com-
munication points. In the time between two communi-
cation points, the subsystems are solved independently
from each other.

The first version of the standard, FMI 1.0, was released
in 2010. Version 2.0 of the standard, was released in 2014.
This version merged the two types of FMI standards and
incorporated some major enhancements compared to the
initial release. As a result, version 2.0 is not backwards com-
patible with version 1.0. In December 2017, the Modelica
Association released a preliminary feature list for version
3.0 that includes:

• Meta-data for ports and icons, allowing for a more
consistent representation across tools.

• Support for multi-dimensional variables (arrays).
• Co-simulation with events.
• Inclusion of a binary data type.
• Access of intermediate output values between commu-

nication points.
• Better support for source code FMUs.

Since the inception of the FMI standard, a multitude
of libraries and software tools that support it have been
implemented. As of March 2018, the official FMI web page
lists 108 such tools, 71 of which support invocation of FMI
2.0 compatible simulation models. Table. 1 provides a sum-
mary of open-source libraries with FMI import capabilities.
Clearly, the standard is solving a real problem. However,
practical challenges persist.

• FMI is cross platform in theory, but in practice can
only be used cross-platform if the exporting tools have
the ability to cross-compile native binaries. Many do
not.

• While FMI has been implemented in several languages,
such as C [12], [13], C++ [14], [15], Python [16], [17]

and Java [18]–[20], out-of-the-box support for FMI is
still missing in many languages.

• An FMU may require a license or pre-installed soft-
ware on the target computer, making the FMU unavail-
able on many systems.

• Some FMI implementations only support CS, making
parts of the standard unavailable. Others may also
support ME but may not provide an easy way of solving
them. Thus, some users may find the threshold for
utilizing this feature too high.

• The standard does not cover IP protection. While,
model exporters can implement protection as they see
fit. Some model owners may worry about leaking IP
and might be reluctant to share FMUs with others.

• As an FMU’s application code can be delivered in
binary form, end-users may be afraid to use it because
it could contain malicious elements.

B. DISTRIBUTED FMI BASED CO-SIMULATION
Table. 2 provides a list of open-source tools for simulating
FMUs. Among these, the ones that support distributed
invocation of FMUs are as follows.

DACCOSIM (Distributed Architecture for Controlled
CO-SIMulation) [21], is an FMI-based co-simulation en-
vironment written in Java. DACCOSIM lets the user design
and execute a simulation requiring the collaboration of
multiple FMUs on multi-core computation nodes or clusters.
For complex scenarios with many FMUs and/or connections,
a domain specific language can be used to replace the graph-
ical user interface (GUI). It also includes a command line
interface (CLI) for running co-simulations. JavaFMI [19] is
used for simulating FMUs. DACCOSIM is released under
the LGPLv3 license and is available for both Windows and
Linux.

Coral [6] is a free and open-source software for dis-
tributed FMI based co-simulation. It supports FMI 1.0 and
2.0 for CS and is licensed under the MPL 2.0. Coral was
developed as part of the R&D project Virtual Prototyping
of Maritime Systems and Operations [5]. According to its
creators, Coral is primarily a C++ library, but also acts
as a tool as it requires setting up and running several
programs in a distributed fashion. It also comes with a CLI
for running simulations. Coral works by installing a server
program called a slave provider on each of the machines
that should participate in a simulation. This program is
responsible for publishing information on which FMUs are
available on that machine to the network, as well as loading
and running FMUs at the request of the master software,
which acts as a client. Coral relies on the FMI Library
to interact with FMUs, while the ZeroMQ middleware
facilitates networking. Google Protocol Buffers are used for
encoding/decoding messages sent over the network.

FMI Go! [22] is an MIT-licensed software infrastructure
designed to perform distributed simulations with FMI com-
patible components, that runs on Windows, Linux and Mac
OS X. It supports CS as well as ME FMUs by wrapping

VOLUME 4, 2016 3

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

TABLE 1: Open-source software libraries providing FMI import capabilities.

FMI support
Language CS ME

Name C C++ Java Python v1.0 v.2.0 v1.0 v2.0 Version License
FMI Library x x x x x 2.0.3 BSD
FMU SDK x x x x x 2.0.6 BSD
FMI4cpp x x xb 0.7.0 MIT
FMI++ x xa xa x x xb xb - BSD
PyFMI x x x xb xb 2.5 LGPLv3
FMPy x x x xb xb 0.2.11 BSD
JFMI x x x 1.0.2 MIT
JavaFMI x x x 2.25.3 LGPLv3
FMI4j x x xb 0.22.1 MIT
a Through SWIG
b Can solve ME FMUs

TABLE 2: Open-source software tools for simulating FMUs.

FMI support
CS ME

Name v1.0 v2.0 v1.0 v2.0 Standalone Plugin Distributed API CLI GUI Version License
Coral x x x x x x 0.10.0 MPLv2
DACCOSIM x x x x x 2018 LGPLv3
FMI Go! x x x x x x x 0.5.0 MIT
FIDE x x x - -
FUMOLA x x x x x x x alpha -
Hopsan x x x 2.11.0 GPLv3
Maestro x x x x 1.0.2 ICAPL
MasterSim x x x x x x 0.5.3 LGPLv3
OpenModelica x x x x x 1.13.0 OSMC-PL
OMSimulator x x x x x x x 2.0.1 OSMC-PL
Ptolemy II x x x x x x x 10.0.1 MIT
Xcos FMU wrapper x x x x 0.6 CeCILL

these into CS FMUs. ME FMUs are preferred, as they allow
the FMI Go! run-time environment to provide rollback and
directional derivatives of the FMU. In CS FMUs, these
features are considered optional and are often absent, but
in fact they may be required to achieve accurate and or
stable simulations. FMI Go! uses a client-server architecture,
where a server hosts an individual FMU. Google Protocol
Buffers are used for mapping the various FMI functions to
messages, which are transmitted using the ZeroMQ middle-
ware. The message passing interface is also supported. The
global stepper is then a client, consuming results produced
by the FMUs. For applications that would want access
to the simulation data, such as loggers, visualization etc.,
the global stepper serves also as a server. The system
specification and parameterization (SSP) is used for defining
the structure of a simulation. A bare-bones CLI for this
purpose also exists.

λ-Sim is a tool implemented on top of Amazon Web
Services (AWS) that converts FMI based simulation models
into REST APIs. Provided with an FMU bundled with a
JSON configuration file, λ-Sim builds a series of AWS that
will run simulations upon requests from a RESTful API.
Two services are provided. Lambda, a service that operates
on-demand servers for running simulations and return meta-
data associated to the requested model, and Apigateway -
the service that exposes the server via a public REST API.
A web-based GUI is available, allowing users to load the

generated API, simulate the model and visualize the results.
A software architecture for simulation and visualization

based on FMI and web technologies was presented in [23].
This work leveraged the Java specific RPC technology
Remote Method Invocation [24] for distributed access to
FMUs.

The proposed framework differs from the ones mentioned
above in that it totally separates itself from the master
algorithm. It is a completely standalone project that pro-
vides the infrastructure required to invoke FMI compatible
models, such as FMUs, remotely using RPCs. Multiple
RPC systems over several network protocols are supported.
Time stepping, variable routing, plotting, and tasks typically
performed by a master tool are left implemented by the
integrating tool. This creates a lightweight framework that
is easy to use and is re-usable.

Rather than having several tools implementing their own,
perhaps non-modular or internal, distribution mechanism,
we hope that the solution offered here can be considered as
an alternative or drop-in replacement for existing solutions.
However, this work can only be integrated into simulation
masters with a centralized design. Data must flow through
the master, and not directly between slaves.

Highly related to the work presented in this paper is the
Distributed Co-Simulation Protocol (DCP) [25], which is
a standard for real-time and non-real-time system integration
and simulation. The DCP is compatible with FMI, and just

4 VOLUME 4, 2016

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

like FMI, it defines only the slave. The design of a master is
not in scope of the specification. Recently it was adopted by
the Modelica Association as a Modelica Association Project
(MAP)

This work is similar to the DSP in that both initiatives aim
to enable and promote distributed co-simulation. However,
this work does not define a standard, but mimics FMI for
function definitions and leverages existing cross-platform
RPC frameworks for serialization and networking. This
makes it less complex, more accessible and easier to use.
However, this work relies on reliable network communica-
tion and no special considerations have been made for real-
time system or hardware-in-the-loop integration, making
DSP more suited for these kinds of co-simulation tasks.

III. THE PROPOSED FRAMEWORK
This section introduces the high-level concepts of the
proposed framework. The framework uses a client-server
architecture and embraces cross-platform and language in-
dependent RPCs for communication between clients and
servers. Such RPCs have several benefits compared to ad-
hoc message passing systems, such as:

1) Tried and tested.
2) Not having to re-invent the wheel.
3) Built in serialization and networking.
4) Schema based code validation and generation.
5) Large open-source communities surrounding them.
In particular, Apache Thrift and gRPC are supported -

both of which are schema based and available in a wide
range of languages. Additionally, JSON-RPC is supported
by one of the server implementations. JSON-RPC is lan-
guage and transport agnostic and can be used to fill any
gaps left by the other RPCs regarding language, transport
and/or platform support, effectively making the framework
accessible from virtually any client application.

A. KNOWLEDGE BACKGROUND
This section will introduce the necessary background on
the RPC technologies and standards used by the proposed
framework.

1) Remote Procedure Call
An RPC is an abstraction for executing a function call
(or procedure) located in a different address space (e.g an-
other computer). RPCs provide more structure than request-
response message-passing systems. Typically, a RPC request
demands a response and error handling is baked into the pro-
tocol. Many RPCs also rely on a pre-definition of available
functions and types, either through schema definitions or
language interfaces. This allows statically typed languages
to verify the message-passing logic at compile time, making
bugs less likely to appear in production code.

2) Protocol Buffers
Protocol buffers [26], or protobuf, are Google’s mechanism
for serializing structured data. Compared to common alter-

natives for data serialization over the wire, such as XML
and JSON, protobuf generate much smaller data packages
because they use a binary format. Messages are compiled
using a predefined schema, allowing messages to be more
compact. The schema is specified in a file with a .proto
extension. Both regular messages and RPC services can
be defined using the protobuf interface definitions language
(IDL). However, the RPC feature requires a 3rd party plugin
because the protobuf library itself does not implement it.

3) gRPC
gRPC [27] is a language- and platform-neutral open-source
RPC system, initially developed at Google, with support for
a wide range of programming languages. Official support
exists for C/C++, C#, Node.js, PHP, Ruby, Python, Go and
Java. It relies on HTTP/2 for transport and protobuf for
data serialization. gRPC is essentially an implementation of
the protobuf RPC. Listing. 1 demonstrates an example RPC
service definition using gRPC/protobuf.

Listing 1: Example protobuf schema with service
definitions
message H e l l o R e q u e s t {

s t r i n g g r e e t i n g = 1 ;
}

message Hel loResponse {
s t r i n g r e p l y = 1 ;

}

s e r v i c e H e l l o S e r v i c e {
rpc SayHel lo (H e l l o R e q u e s t) r e t u r n s (

He l l oResponse) ;
}

4) Apache Thrift
Apache Thrift [28] is a cross-platform RPC framework
that supports several protocols and transports, e.g. binary
over TCP/IP and JSON over HTTP. Initially developed at
Facebook, it is now an open source project maintained by
the Apache Software Foundation. A variety of programming
languages are supported, including C++, Java, Python, PHP,
Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js,
Smalltalk, OCaml and Delphi. It is schema-based, with
definitions and services declared in .thrift files. A analogous
example to the protobuf definition in Listing. 1 is shown in
Listing 2.

Listing 2: Example Thrift schema

s e r v i c e H e l l o S e r v i c e {
s t r i n g s a y H e l l o (1 : s t r i n g g r e e t i n g) ;

}

5) JSON-RPC
JSON-RPC [29] is a stateless, light-weight RPC protocol.
The protocol uses JSON as the data format and is designed
to be simple. JSON-RPC is only a specification and is
totally transport agnostic. An example of a JSON-RPC call

VOLUME 4, 2016 5

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

is given in Listing. 3. Here, a method called sayHello is
given a single parameter "World!". The result sent back
to the invoking part is "Hello, World!". In case of errors,
the result part of a response is replaced by an error object
containing a code and a explanatory message.

Listing 3: Example JSON RPC call
−> {"jsonrpc" : "2.0" , "method" : "sayHello" , "

params" : {"greeting" : "World!"} , "id" : 1}

//on success
<− {"jsonrpc" : "2.0" , "result" : "Hello, World

!" , "id" : 1}

//on error
<− {"jsonrpc" : "2.0" , "error" : {"code" :

−32601 , "message" : "Method not found"} , "
id" : 1}

B. FRAMEWORK OVERVIEW
The software architecture is shown in Fig. 2 and consists of
three main parts, each of which is described in more detail
below.

1) The Discovery Service
The discovery service is a web application whose main
responsibility is to redistribute information about and the
location of available FMUs. This information can be ob-
tained visually through a web interface, or programmatically
through HTTP requests. The following HTTP services are
defined:

• /availablefmus: Called by user applications. Returns a
JSON formatted string containing information about all
available FMUs registered with the discovery service.
The information include data from the modelDescrip-
tion.xml as well as the IP address of the host machine
and the RPC port(s).

• /register: Called by proxy-servers on start-up. Regis-
ters the server with this discovery service. Transmits
network information and information about the mod-
elDescription.xml for each locally available FMU.

• /ping: Called by a proxy-server at regular intervals.
Otherwise the discovery service will consider it to be
offline.

The discovery service is an optional feature and is not
required when the remote end-point of an RPC service is
known to the client application, for instance when running
the server on a physically accessible machine.

Multiple discovery services may be online at any given
time. They may be public or used internally in a restricted
network.

2) Proxy-Servers
A proxy-server is responsible for making available one or
more FMUs over a set of RPCs. Implementations should
support Thrift and or gRPC. Additional RPCs, such as
JSON-RPC can also be supported.

In addition to the RPC support, a full implementation
must be able to communicate with the discovery service over
HTTP. Upon starting the server, the address of a discovery
service should be specified. In order to ensure that the list
of available FMUs is up to date, the server must ping the
discovery service over HTTP, signaling that it is still online.
When enough time has passed without such a notification,
the server is considered offline and is removed from the
discovery service.

The framework supports both ME and CS FMUs running
on the back-end, but the user is only provided with a CS
API, as ME models are wrapped. The user can configure
which solver will be used for wrapping the ME model,
subject to availability of certain solvers, which depends on
the server implementation.

3) Proxy-Clients
A proxy-client is used to connect with the FMUs hosted
by the remote server(s), and can be implemented in a wide
variety of languages.

Using Thrift or gRPC, the process of generating the
required source-code for interacting with an remote FMU
is quite straightforward. Listing. 4 shows the command
required for generating the required sources when targeting
Thrift in JavaScript. Similarly, Listing. 5 shows how C++
sources for gRPC are generated. The same recipes apply to
targeting other languages.

Listing 4: Generating JavaScript sources for interfacing with
remote FMUs using Thrift.
t h r i f t − j s s e r v i c e . t h i f t

Listing 5: Generating C++ sources for interfacing with
remote FMUs using gRPC.
p r o t o c −I = . −−p l u g i n = p r o t o c−gen−g rpc =

g r p c _ c p p _ p l u g i n −−cpp_ou t = . −−g r p c _ o u t = .
s e r v i c e . p r o t o

The framework accomplishes several things, such as:
• Additional language support. FMUs can be accessed

in previously unsupported languages with low effort,
as no XML must parsed and no C-code has to be
interfaced. Depending on the RPC used, stubs are auto-
generated.

• Cross-platform access to any FMU. FMUs can
be invoked from unsupported platforms, i.e an FMU
compiled only for Windows can be invoked from a
Linux system. Naturally, a server running on a platform
supported by the FMU must be available.

• FMI compliance without FMU packaging. It allows
models to be compliant with the FMI standard without
actually being packaged as an FMU. From a client’s
perspective, there is no difference between a "physi-
cally backed" FMU and one implemented in-memory.
All the client sees is the RPC interface mimicking FMI.

• Relaxed run-time constraints. FMUs that require
special software and/or licenses can be invoked from

6 VOLUME 4, 2016

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

FIGURE 2: The high level software architecture of the proposed framework. The client-server architecture relies on RPCs
for communication. The Discovery Service is optional, and serves as a centralized hub for locating available FMUs.

otherwise incompatible systems, granted that a server
fulfilling the needs is available.

• Re-usability. As the framework is decoupled from the
master algorithm, it can be used by any software tool
with a centralized master architecture that wants to
support distributed execution of FMUs.

• Protection against malicious code. Non-source code
FMUs could possibly contain malicious software. This
framework makes it easy to place FMUs in a sand-
boxed environment and invoke them remotely and
safely.

• Multiple instances of models that cannot share
processes. Some FMUs can only be instantiated once
per process. One of the common reasons for this is the
use of global variables. Distributed access allows the
master to circumvent this restriction.

IV. IMPLEMENTATION DETAILS
This section describes some of the implementation details
related to the proposed framework. Currently, it comes
with server implementations for C++ and the JVM. Client
implementations exist for C++ and the JVM. Additionally,
proof of concept implementations for Python, JavaScript
and MATLAB exists. A web-server for keeping track of
available RPC servers, known as the discovery service, is
also bundled.

A. THE DISCOVERY SERVICE
The discovery service is implemented in Kotlin, a statically
typed language 100% interoperable with Java. The front-
end offers basic functionality such as the ability for users to
download available RPC schemas and to view information
about available FMUs in a structured way. The user interface
is somewhat crude but serves its purpose.

B. PROXY-SERVER
Two server implementations have been realized, each de-
scribed more in detail below. Which one to deploy in
production depends on factors like:

1) Which RPC to use.
2) Memory footprint and performance.

3) Maturity and stability of the implementation.
4) The quality of the available solvers for wrapping ME

models.

No one implementation will excel at everything.

1) JVM

The JVM implementation is written in Kotlin and rely on
FMI4j [18], an FMI implementation for JVM languages that
supports FMI 1.0 and 2.0 for CS and ME. Out of the box,
ME models can be wrapped as CS ones using solvers from
the Apache Commons Math3 [30] package. Compared to
other open-source FMI implementations targeting the JVM,
such as JFMI [20] and JavaFMI [19], FMI4j is the only
one to support ME for 2.0. Furthermore, FMI4j uses the
Java Native Interface (JNI) rather than Java Native Access
(JNA) for interfacing with the native FMI functions, which
significantly improves performance. The calling overhead
for a single native call using JNA can be an order of
magnitude greater than equivalent JNI [31].

The implementation supports Thrift (TCP/IP - binary,
HTTP - JSON), gRPC (HTTP2 - protocol buffers) as well
as JSON-RPC (HTTP, TCP/IP and WebSockets), and is
considered as the reference implementation.

2) C++

The C++ implementation is cross-platform and is written
in modern C++17. All dependencies are available using the
cross-platform package manager conan, making it easy to
build. Currently, Thrift (TCP/IP - binary, HTTP - JSON)
and gRPC (HTTP2 - protocol buffers) are supported RPCs.

FMI4cpp [15], an FMI 2.0 implementation for C++,
is used for interacting with FMUs. It supports both CS
and ME, where the latter can be wrapped as the former
using solvers from Boost odeint [32]. The main goal of
the FMI4cpp library is to be as easy to use and install
as possible. To achieve this, it makes use of modern C++
features and supports installation using the vcpkg and conan
package managers.

VOLUME 4, 2016 7

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

C. PROXY-CLIENTS
The framework comes bundled with client implementations
for C++, the JVM, Python and JavaScript. The two latter
are somewhat crude and ought to be considered as proof of
concept. They are, however, bundled with the source code
to showcase how easy it is to interface with the framework
from new languages. A MATLAB demo using JSON-RPC
over HTTP is also available. In the case of MATLAB, it
is worth noting that one of the existing Java clients can be
used.

The C++ and JVM implementations are more elaborate,
providing a unified, higher level API for its users. No matter
which RPC is used, there is no difference between a remote
and local co-simulation slave for the user. As illustrated
by Figure. 3, they all share the same interface, defined by
FMI4cpp and FMI4j for C++ and JVM implementations
respectively. Assuming a tool is using one of these FMI
implementations, support for distributed execution can be
seamlessly added with minimal changes to the existing code
base. See Listing. 6 for an example.

FIGURE 3: FMI4cpp and FMI4j’s slave interface could hide
slaves derived from either an in-memory implementation or
an actual FMU. Slaves in any language supported by the
chosen RPC could also be implemented directly behind the
RPC layer.

Listing 6: JVM Thrift example, written in Kotlin

v a l l o c a l M o d e l : Model = Fmu . from (< u r l o r f i l e >) //
FMI4j API

v a l remoteModel : Model = T h r i f t F m u C l i e n t .
s o c k e t C l i e n t (< hos t > , < p o r t >) . l o a d (< guid , u r l ,
o r f i l e >)

v a l model = . . . //one of the above

v a l s t e p S i z e = . . .
v a l s l a v e = model . n e w I n s t a n c e ()
s l a v e . s i m p l e S e t u p ()
s l a v e . doStep (s t e p S i z e)
s l a v e . t e r m i n a t e ()

After running the JavaScript code generation using the
command shown earlier in Listing. 4, the code shown in
Listing. 7 can be written. Here, Thrift is configured to use
HTTP transport and JSON encoding. Subsequently an FMU

slave is instantiated on the remote server and stepped for 1s
until termination. The process is similar for the 14+ other
languages supported by Thrift, as well as gRPC and its many
supported languages.

Listing 7: Invoking an FMU from JavaScript using Thrift
over HTTP.
var t r a n s p o r t = new T h r i f t . TXHRTransport ("http://

localhost:9091/thrift")
var p r o t o c o l = new T h r i f t . TJSONProtocol (t r a n s p o r t

)
var c l i e n t = new F m u S e r v i c e C l i e n t (p r o t o c o l)

var fmu_id = c l i e n t . loadFromXXX () //load from url
or guid

var s l a v e _ i d = c l i e n t . c r e a t e I n s t a n c e F r o m C S (fmu_id)

c l i e n t . s e t u p E x p e r i m e n t (s l a v e _ i d)
c l i e n t . e n t e r I n i t i a l i z a t i o n M o d e (s l a v e _ i d)
c l i e n t . e x i t I n i t i a l i z a t i o n M o d e (s l a v e _ i d)

var s t o p = 1 . 0
var s t e p _ s i z e = 1 . 0 / 1 0 0
do {

var r e s u l t = c l i e n t . s t e p (s l a v e _ i d , s t e p _ s i z e)
i f (r e s u l t . s t a t u s != 0) {

break
}

} whi le (r e s u l t . s i m u l a t i o n T i m e <= s t o p)

c l i e n t . t e r m i n a t e (s l a v e _ i d)

V. CASE STUDY AND DISCUSSION
The following presents a case study to illustrate the per-
formance of the various RPCs when running a somewhat
representative selection of FMUs using different network
topologies. These are:

1) Client and server running on localhost.
2) Client and server running on separate computers con-

nected directly by Ethernet.
3) Client and server running on separate computers con-

nected by Ethernet through a switch.
The different topologies are illustrated in Fig. 4.

FIGURE 4: The different network topologies used in the
case study.

The setup was as follows. A laptop running Ubuntu 18.04
and a desktop computer running Windows 10 was utilized.
Both are 64-bit systems. The laptop is fitted with an Intel i7-
6600U with four logical cores, while the desktop is equipped

8 VOLUME 4, 2016

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

TABLE 3: Performance of running the 33 FMUs listed in Table. 4 on the JVM. FMI4j is used to run the API version, which
serves as a baseline. The execution time required to step the FMUs using the Thrift and gRPC RPCs over the different
communication mediums are shown as a multitude of this.

API Thrift gRPC
In-memory localhost cable switch localhost cable switch

Time[ms] Sequential 1 9.5X 27.8X 29.3X 25.4X 50.6X 48.7X
Parallel 1 3.6X 6.6X 8.3X 9.8X 11.4X 12.5X

with an Intel core i7-4770 with eight logical cores. As the
desktop is the most powerful of the two, it was selected
as the server. The switch used during the experiment was
a ZyXEL GS-1055 v2 Gigabit Ethernet Switch. The JVM
implementation of the proposed framework were used by
both the client and server. While a C++ version is also
available, there are two main reason for running the JVM
implementation on both client and server. First, the JVM
version is more mature and second, using a JVM language
like Kotlin to set up the test case was deemed easier.

In order for an exporting tool to prove compliance with
the FMI standard it must upload a number of FMUs to
the FMI cross-check [33] repository. As these FMUs are
publicly available and represent a wide variety of models,
they are suited for testing in this experiment.

In this case-study, 33 of the 133 FMUs compatible with
64-bit Windows at the time of the test were selected. The
requirements for selection were as follows.

1) A non-zero step-size must be defined.
2) In order to run on the test system, the FMU must

require neither an execution tool nor a license.
3) In order not to skew the tests, the step-size must be

greater or equal than 0.0001 with a stop time less than
20 seconds.

4) The FMUs must not write files to the current directory,
as this proved to cause run-time issues in parallel
and/or subsequent runs.

Some vendors provide many similar FMUs, exported only
with different versions of the software. In order to keep
a more well-balanced set of FMUs, exported FMUs from
no more than two versions from the same vendor were
included. All FMUs that were included in the experiment
are listed in Table. 4.

The experiment was conducted as follows. For each
configuration, all 33 FMUs were first run sequentially, then
in parallel. Table. 4 also shows how long it took to step
each FMU using the specified step-size and stop time when
invoking the FMU directly using FMI4j (in-memory), as
well as through the framework using Thrift and gRPC.
Not surprisingly, calling the FMI API directly is much
faster than distributed invocation. As would be expected,
we observe that running both client and server on localhost
is faster than a point-to-point Ethernet connection between
two computers, which again is generally faster than having
to go through a network switch.

A more compact representation of the results are shown
in Table. 3, which also features results from simulating the

FIGURE 5: Bar plot of the results shown in Table. 3

FMUs in parallel. Figure. 5 presents the data shown in this
table as well. From the results, it is clear that, at least on
the JVM and for this particular set of FMUs, Thrift is a
considerably faster than gRPC. However, even when running
the client and server on the same machine Thrift is about
9.5x slower on average than in-memory API calls.

Running in parallel provides quite a significant perfor-
mance gain, moving from a ~ 9.5x to a ~ 3.6x performance
loss compared to local API calls. By parallelizing the
test case onto a computer cluster with the same per-FMU
computational power as the desktop used in this particular
test, one could in theory achieve similar or even better
results than running in-memory. It took 87.5s to run the
Thrift case sequentially using a network switch. Using a
computer cluster, one could distribute each FMU onto a
computation node. Theoretically, this should yield a total
computation time of 87.5s/33 = 2.65s, which in this case
is comparable to running non-distributed.

Although distributed co-simulation in general comes with
a significant performance overhead, it’s worth remembering
that this approach is required to accommodate certain use-
cases, such as overcoming license and software require-
ments, access from unsupported platforms or languages
and safe invocation of an FMU by running it in a sand-
boxed environment. And as pointed out above, in cases
were performance is crucial, the FMUs can be distributed
to several computational nodes and stepped in parallel,

VOLUME 4, 2016 9

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

provided the models involved allows the simulation to be
parallelized.

Also worth noting is how FMUs that are computational
heavy, such as the 20Sim TorsionBar were only marginally
slower to run distributed. This makes such FMUs prime
candidates for distribution. With a more powerful host
system, the overall performance would actually increase
compared to local execution. For FMUs that require low
step-sizes the results tell another story though. In such cases,
such as for the SimulationX DoublePendelum model, where
30000 invocations is required to simulate 3s, the overhead
of a network call becomes painfully obvious. Compare this
to the 20Sim model, which only requires 126 invocations to
simulate 12.56s. As a result, distributed execution of models
that require low time-steps should ideally be avoided when
performance is important.

VI. CONCLUSION AND FUTURE WORK
This paper has presented a language- and platform- inde-
pendent co-simulation framework based on the Functional
Mock-up Interface.

It has been designed to easily allow distributed execution
of FMI compatible models such as FMUs. The client server
architecture allows FMUs to be invoked from previously
unsupported languages and on incompatible platforms. It
also makes it possible to shield the user from malicious
code, while still being able to integrate models on a local
machine. Since the framework is independent of the master
algorithm, it can be re-used in different software projects.

Some of the highlighted features of the presented frame-
work are:

• Brings FMI capabilities to previously unsupported lan-
guages and otherwise incompatible platforms.

• By implementing the RPC functions directly, FMI
compliant models can be implemented without having
to package them as FMUs.

• Allows code re-use between projects that requires
distributed execution of FMUs, independent of imple-
mentation language.

• By hosting their own FMUs, companies may share their
models without worrying about leaking IP.

• A unified slave interface for C++ and JVM users. On
these platforms, local and remote slaves implement the
same interface. This makes it trivial to switch between
local and remote execution of a particular FMU.

The results provided in Section V clearly show that
there is some considerable performance overhead related to
distributed co-simulation. However, parallelizing the work
make it possible to minimize this overhead. In any case,
one should not decide to run distributed co-simulations for
its own sake. Running the scenario locally, using regular
API calls, should be the preferred approach. This framework
provides an alternative when that’s not feasible.

Server implementations exist for C++ and the JVM, while
client implementations exist for JavaScript, Python, C++
and the JVM. Due to the language independent nature of

the RPC frameworks and protocols used, and especially
the code-generation feature of selected RPC frameworks,
additional client implementations require little effort. For
instance, FMU-proxy was recently integrated into one of
the deliverables of the Open Simulation Platform, a joint
industry project initiated by DNV GL, Kongsberg mar-
itime, SINTEF Ocean and NTNU [34]. Using the Thrift
RPC, integration was easily and quickly realized by taking
the generated RPC code from the Thrift compiler and
writing a thin wrapper, stitching the two APIs together.
Furthermore, this integration supports the up-and-coming
SSP standard [35].

Several enhancements to the framework are planned for
the future, including:

• Authentication. Some form of authentication should be
added, restricting who may interact with a particular
proxy-server and or discovery service.

• Wrap client as FMU. It would be beneficial to be
able to wrap one of the available clients as an FMU.
This would allow FMI compliant tools to benefit from
distributed simulation with zero modifications.

• FMI 3.0 support. Support for the next version of the
standard will be added.

Additionally, the framework should be more thoroughly
documented and continuously maintained.

Pre-built server executables for Linux and Windows
can be found at https://github.com/NTNU-IHB/FMU-proxy.
Client libraries for Java are available through maven at
https://jitpack.io/#NTNU-IHB/FMU-proxy, while C++ arti-
facts are available as conan recipes. There are no immediate
plans to publish the Python and JavaScript clients through
any type of package managers. However, they are easily
obtained from the publicly available source repository.

REFERENCES
[1] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-

simulation: a survey,” ACM Computing Surveys (CSUR), vol. 51, no. 3,
p. 49, 2018.

[2] Z. Zhang, E. Eyisi, X. Koutsoukos, J. Porter, G. Karsai, and J. Sztipanovits,
“A co-simulation framework for design of time-triggered automotive cyber
physical systems,” Simulation modelling practice and theory, vol. 43, pp.
16–33, 2014.

[3] R. L. Bücs, L. Murillo, E. Korotcenko, G. Dugge, R. Leupers, G. Ascheid,
A. Ropers, M. Wedler, and A. Hoffmann, “Virtual hardware-in-the-loop
co-simulation for multi-domain automotive systems via the functional
mock-up interface,” in Languages, Design Methods, and Tools for Elec-
tronic System Design. Springer, 2016, pp. 3–28.

[4] Y. Chu, L. I. Hatledal, F. Sanfilippo, V. Æs, H. Zhang, H. G. Schaathun
et al., “Virtual prototyping system for maritime crane design and opera-
tion based on functional mock-up interface,” in OCEANS 2015-Genova.
IEEE, 2015, pp. 1–4.

[5] V. Hassani, M. Rindarøy, L. T. Kyllingstad, J. B. Nielsen, S. S. Sadjina,
S. Skjong, D. Fathi, T. Johnsen, V. Æsøy, and E. Pedersen, “Virtual
prototyping of maritime systems and operations,” in ASME 2016 35th
International Conference on Ocean, Offshore and Arctic Engineering.
American Society of Mechanical Engineers, 2016, pp. V007T06A018–
V007T06A018.

[6] S. Sadjina, L. T. Kyllingstad, M. Rindarøy, S. Skjong, V. Æsøy, D. E.
Fathi, V. Hassani, T. Johnsen, J. B. Nielsen, and E. Pedersen, “Dis-
tributed co-simulation of maritime systems and operations,” arXiv preprint
arXiv:1701.00997, 2017.

10 VOLUME 4, 2016

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

[7] C. Shum, W.-H. Lau, T. Mao, H. S.-H. Chung, K.-F. Tsang, N. C.-F. Tse,
and L. L. Lai, “Co-simulation of distributed smart grid software using
direct-execution simulation,” IEEE Access, vol. 6, pp. 20 531–20 544,
2018.

[8] M. Faruque, V. Dinavahi, M. Steurer, A. Monti, K. Strunz, J. Martinez,
G. Chang, J. Jatskevich, R. Iravani, and A. Davoudi, “Interfacing issues
in multi-domain simulation tools,” IEEE Transactions on Power Delivery,
vol. 27, no. 1, pp. 439–448, 2012.

[9] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel et al., “Functional
mockup interface 2.0: The standard for tool independent exchange of
simulation models,” in Proceedings of the 9th International MODELICA
Conference; September 3-5; 2012; Munich; Germany, no. 076. Linköping
University Electronic Press, 2012, pp. 173–184.

[10] L. I. Hatledal, H. Zhang, A. Styve, and G. Hovland, “Fmu-proxy: A frame-
work for distributed access to functional mock-up units,” in Proceedings of
the 13th International Modelica Conference, Regensburg, Germany, March
4–6, 2019, no. 157. Linköping University Electronic Press, 2019.

[11] E. Durling, E. Palmkvist, and M. Henningsson, “Fmi and ip protection of
models: a survey of use cases and support in the standard,” in Proceedings
of the 12th International Modelica Conference, Prague, Czech Republic,
May 15-17, 2017, no. 132. Linköping University Electronic Press, 2017,
pp. 329–335.

[12] JModelica, “Fmi library,” 2017, (Date accessed 16-May-2019). [Online].
Available: http://www.jmodelica.org/FMILibrary

[13] QTronic, “Fmu sdk,” 2014, (Date accessed 16-May-2019). [Online].
Available: https://github.com/qtronic/fmusdk

[14] E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, and P. Palensky, “The
fmi++ library: A high-level utility package for fmi for model exchange,” in
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
2013 Workshop on. IEEE, 2013, pp. 1–6.

[15] L. I. Hatledal, “Fmi4cpp,” 2018, (Date accessed 16-May-2019). [Online].
Available: https://github.com/FMU-proxy/FMI4cpp

[16] Dassault Systems, “Fmpy,” 2017, (Date accessed 16-May-2019). [Online].
Available: https://github.com/CATIA-Systems/FMPy

[17] C. Andersson, J. Åkesson, and C. Führer, “Pyfmi: A python package
for simulation of coupled dynamic models with the functional mock-up
interface,” Technical Report in Mathematical Sciences, vol. 2016, no. 2,
2016.

[18] L. I. Hatledal, H. Zhang, A. Styve, and G. Hovland, “Fmi4j: A software
package for working with functional mock-up units on the java virtual
machine,” in Proceedings of The 59th Conference on Simulation and Mod-
elling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University,
Norway, no. 153. Linköping University Electronic Press, 2018, pp. 37–
42.

[19] J. S. Cortes Montenegro, “Javafmi una librería java para el estándar
functional mockup interface,” 2014.

[20] D. Broman, C. Brooks, E. A. Lee, T. S. Nouidui, S. Tripakis,
and M. Wetter, “Jfmi - a java wrapper for the functional mock-up
interface,” 2013, (Date accessed 16-May-2019). [Online]. Available:
https://ptolemy.eecs.berkeley.edu/java/jfmi/

[21] J. É. Gómez, J. J. H. Cabrera, J.-P. Tavella, S. Vialle, E. Kremers, and
L. Frayssinet, “Daccosim ng: co-simulation made simpler and faster,” in
Proceedings of the 13th International Modelica Conference, Regensburg,
Germany, March 4–6, 2019, no. 157. Linköping University Electronic
Press, 2019.

[22] C. Lacoursière and T. Härdin, “Fmi go! a simulation runtime environment
with a client server architecture over multiple protocols,” in Proceedings
of the 12th International Modelica Conference, Prague, Czech Republic,
May 15-17, 2017, no. 132. Linköping University Electronic Press, 2017,
pp. 653–662.

[23] L. I. Hatledal, H. G. Schaathun, and H. Zhang, “A software architecture for
simulation and visualisation based on the functional mock-up interface and
web technologies,” in Proceedings of The 57th Conference on Simulation
and Modelling (SIMS 56): October, 7-9, 2015, Linköping University,
Sweden. Linköping University Electronic Press, Linköpings universitet,
2015.

[24] E. Pitt and K. McNiff, Java. rmi: The Remote Method Invocation Guide.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[25] M. Krammer, M. Benedikt, T. Blochwitz, K. Alekeish, N. Amringer,
C. Kater, S. Materne, R. Ruvalcaba, K. Schuch, J. Zehetner et al., “The
distributed co-simulation protocol for the integration of real-time systems
and simulation environments,” in Proceedings of the 50th Computer Simu-

lation Conference. Society for Computer Simulation International, 2018,
p. 1.

[26] K. Varda, “Protocol buffers: Google’s data interchange format,” Google
Open Source Blog, Available at least as early as Jul, 2008.

[27] gRPC, “grpc,” 2018, (Date accessed 16-May-2019). [Online]. Available:
https://grpc.io/

[28] Apache Software Foundation, “Apache thrift,” 2019, (Date accessed
16-May-2019). [Online]. Available: https://thrift.apache.org/

[29] JSON-RPC Working Group and others, “Json-rpc 2.0 specification,”
2012, (Date accessed 27-March-2019). [Online]. Available: https:
//www.jsonrpc.org/specification

[30] Apache foundation, “Apache commons math3,” 2019, (Date accessed
27-March-2019). [Online]. Available: http://commons.apache.org/proper/
commons-math/

[31] JNA authors, “Jna faq,” 2018, (Date accessed 27-March-2019).
[Online]. Available: https://github.com/java-native-access/jna/blob/5.2.
0/www/FrequentlyAskedQuestions.md

[32] Boost developers, “Apache commons math3,” 2019, (Date accessed
27-March-2019). [Online]. Available: http://headmyshoulder.github.io/
odeint-v2/

[33] C. Bertsch, E. Ahle, and U. Schulmeister, “The functional mockup
interface-seen from an industrial perspective,” in Proceedings of the 10 th
International Modelica Conference; March 10-12; 2014; Lund; Sweden,
no. 096. Linköping University Electronic Press, 2014, pp. 27–33.

[34] OSP, “Open simulator platform,” 2019, (Date accessed 16-May-2019).
[Online]. Available: https://opensimulationplatform.com/

[35] J. Köhler, H.-M. Heinkel, P. Mai, J. Krasser, M. Deppe, and M. Nagasawa,
“Modelica-association-project “system structure and parameterization”–
early insights,” in The First Japanese Modelica Conferences, May 23-24,
Tokyo, Japan, no. 124. Linköping University Electronic Press, 2016, pp.
35–42.

VOLUME 4, 2016 11

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface

LARS IVAR HATLEDAL received the B.Sc. de-
gree in automation from NTNU, Aalesund, Nor-
way, 2013. After his graduation he started work-
ing part-time as a research assistant with the
mechatronics lab at NTNU Ålesund, Department
of Ocean Operations and Civil Engineering. In
2017 he received a M.Sc. in Simulation and Visu-
alisation also from NTNU, where he is currently
working towards a PhD degree with the Depart-
ment of Ocean Operations and Civil Engineering.

His research interests include simulation, artificial intelligence and 3D
visualisation.

ARNE STYVE received the B.E. degree (hon-
ors) in microelectronics and software engineering
from the University of Newcastle upon Tyne,
Newcastle upon Tyne, U.K., in 1991. He is an
Assistant Professor with the Department of ICT
and Natural Sciences, NTNU, Ålesund, Norway.
He has more than 20 years of experience in the
SW industry, having worked in areas like fire
detection systems, the Norwegian defence indus-
try and digital television broadcasting systems

(Tandberg Television). In 2004, he joined what later became the Offshore
Simulator Centre AS (OSC), where he held the position of R&D Manager
until his return to NTNU Ålesund in 2014.

GEIR HOVLAND received the M.Sc. degree
in engineering cybernetics from the Norwegian
University of Science and Technology, Trond-
heim, Norway, in 1993, and the Ph.D. degree in
robotics from the Australian National University,
Canberra, ACT, Australia, in 1997. He was a
Research Engineer at ABB Norway, Sweden, and
Switzerland (Oslo, Västerås, and Baden, respec-
tively) during 1997-2003, and took part in the
development of ABBs control system for indus-

trial robots. He was a Senior Lecturer in Mechatronics at the University of
Queensland, Brisbane, QLD, Australia, during 2004-2006, and has been a
Professor in Robotics and Control Systems with the University of Agder,
Grimstad, Norway, since 2007. He is currently the Director of the Centre for
Research-based Innovation Offshore Mechatronics and Technical Manager
of the Norwegian Motion Lab (both in Grimstad, Norway). Dr. Hovland
is the Chief Editor of the MIC Journal.

HOUXIANG ZHANG (M’04–SM’12) Prof.
Houxiang Zhang received the Ph.D. degree on
Mechanical and Electronic Engineering in 2003.
From 2004, he worked at the Institute of Tech-
nical Aspects of Multimodal Systems (TAMS),
Department of Informatics, Faculty of Mathemat-
ics, Informatics and Natural Sciences, University
of Hamburg, Germany. In Feb. 2011, he finished
the Habilitation on Informatics at University of
Hamburg. Dr. Zhang joined the NTNU, Norway

in April 2011 where he is a Professor on Robotics and Cybernetics.
The focus of his research lies on two areas. One is on biological robots
and modular robotics. The second focus is on virtual prototyping and
maritime mechatronics. He has applied for and coordinated more than
20 projects supported by Norwegian Research Council (NFR), German
Research Council (DFG), and industry. In these areas, he has published
over 160 journal and conference papers as author or co-author. Dr. Zhang
has received four best paper awards, and four finalist awards for best
conference paper at International conference on Robotics and Automation.

12 VOLUME 4, 2016

Lars I. Hatledal et al.: A Language and Platform Independent Co-simulation Framework based on the Functional Mock-up Interface
TA

B
L

E
4:

O
ve

rv
ie

w
of

FM
U

s
an

d
se

tti
ng

s
us

ed
fo

r
th

e
ex

pe
ri

m
en

t,
as

w
el

l
as

pe
rf

or
m

an
ce

re
su

lts
.

Ti
m

e
el

ap
se

d
[m

s]
A

PI
Th

ri
ft

gR
PC

To
ol

Ve
rs

io
n

N
am

e
St

ep
si

ze
[s

]
St

op
tim

e
[s

]
N

o.
ca

lls
In

-
m

em
or

y
lo

ca
lh

os
t

ca
bl

e
sw

itc
h

lo
ca

lh
os

t
ca

bl
e

sw
itc

h

20
si

m
4.

6.
4.

80
04

To
rs

io
nB

ar
0.

1
12

.5
6

12
6

19
71

20
62

22
02

21
52

23
22

22
96

23
83

A
Si

m
20

19
FD

01
C

ir
cl

e_
SW

C
0.

1
4.

0
40

66
69

63
66

10
9

14
2

16
2

Sp
ee

d_
SW

C
0.

01
0.

4
40

21
32

53
57

96
11

1
14

3

dS
PA

C
E

Ta
rg

et
L

in
k

R
el

ea
se

20
18

-B

Fm
uc

on
tr

ol
le

r
0.

00
1

0.
35

35
0

20
83

23
9

25
3

42
8

73
1

73
0

Fm
uf

ue
lr

at
ec

on
tr

ol
le

r
0.

01
20

.0
20

00
21

32
4

10
58

10
66

14
87

24
27

24
50

Fm
uT

L
_V

el
oc

ity
C

on
tr

ol
le

r
0.

00
1

0.
2

20
0

19
51

12
3

17
6

15
3

50
5

24
7

D
S

FM
U

E
xp

or
t

fr
om

Si
m

ul
in

k

2.
1

B
ou

nc
in

gB
al

ls
_s

f
0.

00
1

10
.0

10
00

0
25

15
16

41
96

50
33

47
50

90
77

89
70

Te
st

M
od

el
1_

sf
0.

00
1

10
.0

10
00

0
22

14
96

48
23

49
59

42
54

91
23

85
31

Tr
ig

ge
re

dS
ub

sy
st

em
s_

sf
0.

00
1

10
.1

10
10

0
23

15
23

43
00

49
80

42
28

79
75

83
33

2.
3.

0

B
ou

nc
in

gB
al

ls
_s

f
0.

00
1

10
.0

10
00

0
23

14
95

45
44

49
27

42
45

86
62

81
80

Te
st

M
od

el
1_

sf
0.

00
1

10
.0

10
00

0
27

15
11

47
01

49
99

41
97

83
19

80
32

Te
st

M
od

el
2_

sf
0.

00
1

10
.0

10
00

0
39

14
79

41
09

49
21

42
07

87
00

82
86

Tr
ig

ge
re

dS
ub

sy
st

em
s_

sf
0.

00
1

10
.0

10
00

0
27

14
90

47
15

49
50

42
07

88
45

82
17

FM
IT

oo
lb

ox
M

A
T

L
A

B

2.
1

C
on

tin
uo

us
0.

01
10

.0
10

00
21

16
9

52
9

52
4

45
9

87
4

86
9

D
is

co
nt

in
ui

tie
s

0.
01

10
.0

10
00

20
16

7
73

9
52

6
46

0
79

5
87

5
E

m
be

dd
ed

C
od

e
0.

01
10

.0
10

00
29

16
8

50
0

50
6

45
6

11
43

85
5

In
te

gr
at

eS
ig

na
l

0.
01

10
.0

10
00

19
17

1
64

0
52

1
46

3
10

51
86

5
Si

gn
al

_A
ttr

ib
ut

es
0.

01
10

.0
10

00
21

16
8

47
3

51
2

46
1

11
17

85
7

2.
3

C
on

tin
uo

us
0.

01
10

.0
10

00
22

16
9

57
0

52
1

45
7

80
9

83
8

D
is

co
nt

in
ui

tie
s

0.
01

10
.0

10
00

24
17

1
49

9
51

2
45

2
10

49
85

7
E

m
be

dd
ed

C
od

e
0.

01
10

.0
10

00
26

17
1

60
5

52
7

44
9

81
2

86
5

In
te

gr
at

eS
ig

na
l

0.
01

10
.0

10
00

24
17

3
72

3
50

6
44

9
99

9
85

1

M
ap

le
Si

m
20

15
.1

C
on

tr
ol

le
dT

em
pe

ra
tu

re
0.

00
1

10
.0

10
00

0
29

14
84

46
10

49
86

41
87

76
26

80
38

C
ou

pl
ed

C
lu

tc
he

s
0.

01
1.

5
15

0
21

46
92

12
2

99
14

7
17

7

20
18

C
on

tr
ol

le
dT

em
pe

ra
tu

re
0.

00
1

10
.0

10
00

0
34

14
96

48
99

49
55

42
19

78
51

81
25

C
ou

pl
ed

C
lu

tc
he

s
0.

01
1.

5
15

0
20

50
87

11
0

94
15

0
16

8

M
W

or
ks

20
16

B
ou

nc
in

gB
al

l
0.

01
10

.0
10

00
23

17
1

89
1

52
3

45
2

10
26

84
6

C
on

tr
ol

le
dT

em
pe

ra
tu

re
0.

00
1

10
.0

10
00

0
27

15
10

49
13

49
36

41
45

10
33

3
82

18
C

ou
pl

ed
C

lu
tc

he
s

0.
00

1
1.

5
15

00
28

25
1

92
3

77
5

65
1

14
33

12
61

M
ix

tu
re

G
as

es
0.

00
1

1.
0

10
00

32
17

8
64

1
52

2
44

9
10

34
85

9

Si
m

ul
at

io
nX

3.
7.

41
13

8
C

on
tr

ol
le

dT
em

pe
ra

tu
re

0.
00

1
10

.0
10

00
0

38
15

20
42

72
49

16
41

32
79

71
79

87
C

ou
pl

ed
C

lu
tc

he
s

0.
00

01
1.

5
15

00
0

95
24

28
72

57
74

88
62

09
13

92
1

12
42

7
D

ou
bl

eP
en

du
lu

m
0.

00
01

3.
0

30
00

0
12

4
46

30
13

91
2

14
96

2
12

27
0

23
93

2
24

70
7

SU
M

25
7.

61
29

82
28

42
2

82
90

1
87

48
9

75
69

6
15

09
86

14
52

09

VOLUME 4, 2016 13

